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MARLIN: a Co-design Methodology for
Approximate ReconfigurabLe Inference of Neural

Networks at the Edge
Flavia Guella Student member, IEEE, Emanuele Valpreda Student member, IEEE, Michele Caon Student

member, IEEE, Guido Masera Senior member, IEEE, Maurizio Martina Senior member, IEEE

Abstract—The optimization of neural networks (NNs) is nec-1

essary to enable their deployment on energy-constrained devices.2

State-of-the-art methods leverage approximate multipliers to3

execute NNs reducing the inference energy without heavily4

affecting the accuracy. However, previous works usually require5

a specialized hardware accelerator and are limited to fixed multi-6

pliers or reconfigurable ones with few approximation levels. This7

paper introduces MARLIN, a framework to deploy layerwise8

approximate NNs on PULP, a microcontroller with a RISC-V9

core. A multiplier architecture, with runtime selection of 25610

approximation levels, is developed and integrated into the PULP11

cluster cores, enabling runtime configuration through control12

status register (CSR) instructions embedded within the code.13

The PULP toolchain is adapted to incorporate the approximation14

level selection within the instruction flow seamlessly. MARLIN15

leverages the genetic algorithm NSGA-II to search for the16

best configurations among thousands of approximate NNs. The17

framework is validated by simulating an approximate NN trained18

with the MNIST dataset on PULP. Moreover, MARLIN is used19

to optimize and approximate six ResNet models trained with the20

CIFAR-10 dataset. In particular, for ResNet-56, the most complex21

NN used in the experiments, the multiplication energy is reduced22

by 23.9% while retaining 99% of the accuracy of the exact model.23

24

Index Terms—Approximate computing, neural networks,25

RISC-V, hardware acceleration, reconfigurable computing.26

I. INTRODUCTION27

IN recent years, there has been an increasing necessity28

to include neural networks (NNs) in embedded systems29

to deliver more advanced functionalities. Nonetheless, NNs30

superior task accuracy comes at the cost of high computational31
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complexity and memory requisites, thereby presenting chal- 32

lenges in deploying them on energy-constrained devices, such 33

as microcontrollers (MCUs) [1], [2]. Over the past decade, 34

dedicated hardware accelerators [3]–[9] have been developed 35

to optimize energy efficiency and throughput during inference 36

by reducing the data movement and the cost of arithmetic 37

operations. The latter usually accounts for around a fourth 38

of the total inference energy, as the convolutional and fully 39

connected layers of NNs involve millions of multiplications 40

and additions [10]. Nowadays, quantization-aware training 41

can reduce the bitwidth of NN models to 8 bits or below 42

with little or no loss in accuracy [3], [11]–[13]. It lowers 43

the amount of memory traffic and the computational cost, 44

allowing the deployment of NNs on low-power devices with no 45

support for floating-point arithmetic. Layer-wise quantization 46

leverages the different degrees of robustness and tolerance 47

to error introduction of NN layers. Therefore, a runtime 48

reconfigurable multiplier supporting operands with different 49

bitwidths is necessary to leverage mixed-precision and layer- 50

wise quantization [3], [4], [11], [12]. Similarly to quantization, 51

approximation is another co-design technique mainly aimed 52

at reducing the inference energy [14]. The basic idea is to 53

reduce computational complexity and cost using operators that 54

produce inexact results. However, as already pointed out, there 55

is high variability in the sensitivity of single layers inside the 56

same model and among different models. Therefore, designing 57

a multiplier with different approximation levels is fundamental 58

to ensure flexibility and adaptability. Several strategies have 59

been explored in the literature to design hardware supporting 60

layer-wise approximate NNs [15]–[17], leveraging retraining 61

or parameters fine-tuning to reduce the accuracy degradation. 62

However, previous works rely on specialized accelerators and 63

support very few approximation levels [17], [18], limiting 64

the possibility of finding the optimal error-accuracy trade- 65

off; other works use several non-reconfigurable multipliers 66

instances in the accelerator’s systolic array [15], [19], [20]. 67

The latter approach increases the area overhead and prevents 68

the same hardware from executing NNs with different pa- 69

rameters or NNs with different model architectures with the 70

same energy efficiency or accuracy. Since Internet of Things 71

(IoT) devices have limited area and power budgets [1], [2] and 72

must be able to adapt to different workloads and performance 73

targets, it is necessary to adopt a layer-wise approximation 74

strategy that relies on a single multiplier offering several ac- 75

curacy levels. Moreover, the architecture using this multiplier 76
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should be programmable and reconfigurable to support the77

deployment of different NNs, reusing the same hardware as78

efficiently as possible without requiring a redesign or recall of79

the IoT device. Such flexibility allows choosing which NN is80

suited for a particular scenario, prioritizing the battery life of81

the edge device or the accuracy of the predictions.82

In this work, we present MARLIN, an automated layer-wise83

approximation co-design methodology that enables searching84

for the optimal energy-accuracy trade-off and deploying ap-85

proximate NNs on a hardware accelerator. We leverage a86

runtime-reconfigurable parallel tree multiplier featuring 25687

error levels, assigning low-power inaccurate multiplier con-88

figurations to layers with high error resilience and more89

accurate, albeit less efficient, setup to layers with low error90

tolerance. Moreover, we search for different network-level91

approximate configurations, i.e., NNs with the same model92

architecture but a different layer-wise approximation and,93

consequently, energy-accuracy trade-off, supporting different94

workload priorities. In order to rapidly deploy an approximate95

NN and prove the portability of this method to a known open-96

source hardware, we selected the PULP MCU [21] as the97

target IoT platform with RI5CY [22], a RISC-V core. The98

search of the approximate NNs configuration is done with a99

non-dominated sorting genetic algorithm (NSGA-II) [23]. This100

procedure is automated and executed offline, before the NN101

is mapped to any specific hardware. The configuration of the102

arithmetic units, using the search results, is done online. The103

contributions of this work are summarized as follows:104

• A layer-wise approximation strategy that reduces the en-105

ergy of arithmetic operations while retaining the original106

task accuracy, applicable to any NN topology with convo-107

lutional and fully connected layers, with no modification108

to the model architecture. During the optimization pro-109

cess, relying on NSGA-II, approximate NNs are evaluated110

by their error resilience and energy, assigning to each111

layer a different multiplier configuration.112

• A runtime reconfigurable signed multiplier supporting113

256 approximation levels.114

• The post-synthesis simulation of the proposed methodol-115

ogy on a RI5CY core, adapted to include the proposed116

approximate multiplier, supporting the runtime selection117

of the accuracy. The entire deployment process of the118

approximate NN is automated and requires no specific119

knowledge of the optimization method.120

• The code used in this work, the experimental data, and the121

instructions to replicate the results presented in this paper122

are available at https://github.com/vlsi-lab/MARLIN123

This article is organized as follows: Section II introduces a124

background on NN accelerators and relevant works on ap-125

proximate inference, discussing the differences with MARLIN,126

Section III details the co-design framework, the search strat-127

egy, the multiplier design, and the modified PULP-toolchain,128

Section IV presents the results, a comparison with the state-129

of-the-art, and discusses the trade-offs of reconfigurable ap-130

proximate computing, and Section V summarizes the paper.131

II. BACKGROUND AND RELATED WORKS 132

A. Hardware Accelerators and Mapping 133

NN accelerators are typically based on a hardware archi- 134

tecture that comprises a memory hierarchy and an array of 135

interconnected processing engines (PEs) [4], [7]–[10], similar 136

to the one depicted in Figure 1. The memory hierarchy usually 137

comprises the system’s main memory (off-chip), global buffers 138

(on-chip), and the registers within the processing engines. 139

The off-chip and on-chip memories are connected through 140

the system’s bus, whereas the PEs communicate through a 141

network-on-chip. The execution of a NN is scheduled with a
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Fig. 1. Generic high-level model of a hardware accelerator for NN inference.
142

dedicated mapper that generates the instructions and partitions 143

the resources, minimizing the energy and latency associated 144

with the data movement. The complete cost of a multiplication 145

considered by a mapper includes the energy and latency 146

required to read all the operands, move them through the 147

memory hierarchy, compute and store the result [9], [10], [24], 148

[25]. The mappers used in [7]–[9] can be compared to the com- 149

pilers used to generate machine code for processors such as 150

RI5CY [22], which purpose is to optimize the performance and 151

resource usage. The approximation methodology described in 152

Section III is orthogonal to the mapping process as it only 153

modifies the energy associated with the arithmetic operations 154

and not the data movement. In [24] a tool that predicts the 155

energy of approximate NN with a mapper based on [10] is 156

presented validating the assumption that approximate comput- 157

ing only modifies the arithmetic energy without affecting the 158

data movement. Therefore, MARLIN does not influence the 159

mapping and could be easily integrated in [7]–[9], similarly to 160

what has been done for DORY in Section III-E, as discussed in 161

Section IV-D. Alternative hardware architectures for energy ef- 162

ficient NN inference at the edge are MCUs. ISA extensions and 163

dedicated dot-product units inserted in the RISC-V pipeline are 164

used in [5], [6], whereas in [26] a low-power neural processing 165

unit is connected to the MCU through the bus. In this work, 166

we selected PULP [5] as the target platform, a MCU-based 167

low-power computing platform with a host CPU relying on 168

the RI5CY or zero-riscy cores and equipped with a multi- 169

core programmable cluster. The motivation of using PULP is 170

twofold: the RTL and the toolchain are open-source and well 171

documented [21], and, being a MCU-based platform, PULP 172

truly represents a low-power IoT device with strict resource 173

constraints [2]. Additionally, PULP is selected to produce a 174

prototype that can be shared and adapted, without limiting 175

the compatibility of this methodology to the PULP platform, 176

as highlighted by the fact that the layer-wise approximation 177
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strategy of Section III-B and the deployment process of178

Section III-E do not have any hardware dependencies except179

the multiplier. The PULP project includes libraries and tools180

to easily export a NN model written in PyTorch to C code181

compatible with the MCU. The MARLIN framework includes182

modified versions of the RI5CY core and software tools,183

adapted to include the approximation level selection through184

control status register (CSR) instructions, whose generation185

and compilation are added to the original PULP toolchain.186

B. Approximate Neural Networks187

In [19], 600 non-reconfigurable approximate multipliers are188

tested with a multi-layer perceptron for MNIST and LeNet-5189

for the Street View House Numbers dataset. Each approximate190

neural network is executed using one of the 600 multipliers for191

every convolutional layer following five retraining steps, thus192

generating 600 different sets of weights for each model. In193

[16], [27] is suggested that hardware-aware retraining, while194

being a time-consuming, resource-intensive strategy, can miti-195

gate the effect of approximation. Mrazek et al. in [15] present196

ALWANN, a framework for the approximation of NNs where197

the assignment of each layer to an approximate multiplier,198

among the eight-bit ones in EvoApproxLib [28], is performed199

through the multi-objective genetic algorithm NSGA-II. The200

parameters of each approximate NN are fine-tuned (updated201

w.r.t. the starting model) without retraining. Therefore, for202

each approximate configuration, a new set of weights must203

be used for each convolutional layer. Similarly, Jain et al. in204

[20] present a methodology to map the layers of a NN on a205

group of systolic arrays, each composed of several instances206

of one approximate multiplier. The arrays are part of the same207

accelerator, with each region processing only one layer of the208

network. Contrary to [15], the weights are not updated; there-209

fore, the original weights can be used with different approxi-210

mate configurations. However, considering several static mul-211

tiplier architectures is not a scalable approach for a general-212

purpose processor due to the area overhead; this method also213

impacts flexibility in a custom array accelerator. Our work214

proposes a single runtime-reconfigurable multiplier with 256215

approximation levels, trading off the complexity of additional216

control logic with increased flexibility. In [17], Tasoulas et al.217

propose a methodology based on the modification of the bias218

parameter of each layer to alleviate the approximation error.219

Similarly to [15], this approach generates a new set of weights220

for each approximate NN. However, their multiplier features221

only three runtime adjustable approximation levels. Moreover,222

the reconfiguration is handled by chaining two bits to each223

weight stored in memory, increasing the storage requirements224

and energy associated with data movement. According to [29]225

and [30], the resilience of a NN model to adversarial attacks226

depends on the approximate multiplier adopted. Consequently,227

using different configurations, including an exact one, is sug-228

gested to achieve higher error tolerance in various scenarios.229

MARLIN applied to [30] would remove the constraint of230

using a single fixed approximate multiplier, enabling error231

compensation, used in [15], [17], [20] and this work to232

improve the accuracy. Moreover, MARLIN can eliminate the233

limitations of [29], in which 13 different multipliers are used 234

within each PE to support 13 approximation levels, enabling 235

21.3 times more approximation levels with a thirteenth of the 236

multipliers instances. Similarly to [18], we selected a RISC- 237

V-based deployment platform, thus simplifying the software 238

configuration of the approximate hardware. Nevertheless, in 239

[18], the configuration signals, handled by a control unit 240

external to the core, are generated by the user, thus relying 241

on his expertise rather than on an automated mechanism. 242

We overcome these limitations by embedding the runtime 243

approximation control inside the instructions processed by the 244

RISC-V core, leveraging the flexibility of the PULP platform. 245

III. PROPOSED METHODOLOGY 246

A. Overview 247

Fig. 2. MARLIN framework with hardware support specific for PULP SoC.

Our framework comprises different building blocks inter- 248

acting with one another to determine a flow covering from the 249

model definition up to its hardware deployment. From now 250

on, we study the specific case of PULP platform, depicted in 251

Figure 2. The first external input required is a valid dataset, 252

such as MNIST or CIFAR-10, which defines the target task 253

of the NN model. Given a specific application, there are 254

often constraints on the minimum acceptable accuracy or the 255

maximum tolerable energy consumption. Once the training 256

dataset is provided with the specifications, a suitable NN 257

model is identified and described with PyTorch [31]. At this 258

stage, hyperparameters tuning is crucial to obtain consistent 259

results and a model that is already robust to quantization 260

errors. This phase implies choosing the number of training 261

epochs, the type of optimizer, and other learning parameters. 262

A standardized representation of the NN in the form of a 263

data flow graph is required to port the model to PULP. 264

For this reason, the trained NN is passed to NEMO [32], 265

which transforms a floating-point model to an integer one in 266

ONNX format. The precision of the model is fixed at this 267

point in the procedure, with the added constraint that the bit- 268

width of weights and activations cannot be above eight bits, 269

either signed or unsigned. Up to this point of the procedure, 270

the model has no knowledge of the approximation. On the 271

hardware side, a reconfigurable inexact multiplier is designed 272
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and instantiated in MARLIN with a 9x9 bits parallelism. As273

MARLIN’s optimization software only requires, for each con-274

figurable approximation level, a look-up table (LUT) storing275

all the possible results for each couple of input operands276

and the average power to execute a single multiplication, the277

multiplier block is interchangeable. A single runtime recon-278

figurable approximate unit or several multipliers with fixed279

approximation levels could be integrated into the framework280

with little or no modification. Once this high-level description281

of the computational unit is available, the approximate model282

can be implemented and tested through the AdaPT library283

[33]. Any NN topology built with PyTorch’s convolutional and284

fully connected layers can be easily included in MARLIN by285

overloading the layer definitions with the AdaPT ones without286

retraining or changing the model architecture. MARLIN solves287

the complex multi-objective problem of assigning an optimal288

approximation level to each layer through NSGA-II, described289

in Section III-B. It requires repeated simulations of the model290

with the selected configurations to evaluate their accuracy291

and power consumption. The obtained Pareto front will show292

different possible trade-offs between accuracy and power,293

corresponding to the two fitness functions NSGA-II tries to294

optimize. The last step that MARLIN performs on the software295

side is the C code generation to execute the model on the target296

hardware, presented in Section III-D. A modified version of297

DORY [34] is used to accomplish this task. This is the first part298

of MARLIN which requires knowledge of the actual hardware299

architecture, including a detailed high-level description of300

every memory level size and latency to perform memory tiling301

effectively. For this work, PULP was selected as the target302

platform among those supported. DORY receives as an input303

the ONNX model generated by NEMO and an additional304

node-by-node dictionary of the NN containing information of305

the approximation of each layer retrieved by NSGA-II. The306

modified DORY tool generates the C code for the provided307

approximate architecture with the received configuration. For308

this purpose, DORY has to be aware of the modifications the309

PULP platform undergoes. An approximate unit is added to310

the execution stage of the cluster cores to approximate all311

the relevant instructions in the computation of convolutional312

layers. It is based on the same reconfigurable multiplier, whose313

LUTs are used by NSGA-II and AdaPT. This unit is managed314

through a dedicated CSR in charge of activating, deactivating,315

and configuring its approximation level. In Section III-E is316

discussed how the modified DORY automatically inserts CSR317

write and set instructions in the C code of the model to enable318

the approximate unit when required. The final code runs on319

the PULP platform through PULP-SDK. The model can be320

executed by providing input data read from the external L3321

memory while the weights are stored in L2 or L3 memory,322

depending on their sizes. The support of a real hardware RTL323

on which the model can run is crucial for the validation324

of the proposed co-design methodology, allowing accurate325

estimations of the metrics of interest on a complex system.326

B. Genetic Search of Optimal Inter-Layer Approximation327

In this work, we use NSGA-II, to solve the multi-objective328

problem of finding NN configurations with different trade-offs329

between energy and accuracy. NSGA-II is a multi-objective 330

genetic algorithm that evolves a population of solutions using 331

non-dominated sorting and crowding distance assignment to 332

classify and rank individuals based on their dominance and 333

diversity. Crossover, i.e., recombination of different chromo- 334

somes, and mutation, i.e., variation of a gene, are applied to 335

create offspring solutions, which are then integrated with the 336

parent population. The selection process favors solutions from 337

less crowded Pareto fronts and those with higher crowding 338

distances, promoting the front exploration and providing a 339

diverse set of non-dominated solutions [23]. The motivations 340

for choosing the NSGA-II algorithm are its proven effec- 341

tiveness in multi-objective optimization and relative ease of 342

implementation and tuning compared to other alternatives such 343

as reinforcement learning or Bayesian optimization. NSGA-II 344

generates a set of optimized approximate NN configurations 345

and selects for each one which approximation level is more 346

suitable for each convolutional layer. Algorithm 1 details the

Algorithm 1 Approximation level selection with NSGA-II
1: ▷ M is the quantized exact model
2: ▷ axx mult is the approximate multiplier
3: ▷ Ng is the number of generations
4: ▷ Np is the population size
5: ▷ Pc is the crossover probability
6: ▷ Pm is the mutation probability
7: ▷ ϑ is the chromosome of L elements, in range [0, A], storing the mult. configuration
8: ▷ f1 (ϑ),f2 (ϑ) are the fitness functions to optimize
9: ▷ Pn is the population at iteration n, with size Np

10: ▷ Initialization
11: L← count(M.Conv) ▷ Number of Conv. layers in the model
12: A← A0 ▷ Number of approximation levels for multiplier
13: P ← P0 ▷ Initial population vector randomly set
14: f(P0)← (f1(P0), f2(P0)) ▷ Initial fitness evaluation
15: ▷ Execution
16: for (n = 0; n < Ng; n + +) do
17: Qn ← Tournament(Pn, Pc, Pm)
18: retrain models(M,axx mult,Qn)
19: f1(Qn)← 1/accuracy(M,axx mult,Qn)
20: f2(Qn)← energy(M,axx mult,Qn)
21: f ← (f1, f2)
22: Rn ← Pn + Qn ▷ Total population, size 2Np
23: for each ϑ in Rn do
24: Rank(ϑ)
25: Fi ← Fi ∪ ϑ ▷ Fi are the fronts
26: end for
27: for each ϑ in Rn do
28: for each ϕk in f do
29: disϑ ← disϑ + Crowding distance(ϑ, ϕk)
30: end for
31: end for
32: Order Rn based on fronts and crowding distance
33: Pn+1 ← best Np solutions in Rn ▷ Update iteration counter
34: end for
35: return θbest ▷ Optimum Pareto front is returned

347

NSGA-II search flow. Each chromosome has a dimension L, 348

which is the number of layers composing the NN. The alleles 349

of each gene are encoded as an integer number between 0 350

(exact level) and A, which is the number of approximation 351

levels supported by the multiplier. Single-point crossover is 352

used to combine chromosomes while maintaining inter-layer 353

dependencies between approximate configurations, a strategy 354

used in [20] to reduce the effect of computation errors on 355

the NN accuracy without retraining. At the beginning of each 356

iteration, Np approximate NNs are retrained with 10% of 357

the training split (0.1 epoch). Then, the accuracy is evaluated 358

with the validation dataset. Contrary to previous works [15], 359

[17], the accuracy of candidate inexact NNs is not evaluated 360
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immediately, but after a quick retraining with a fraction of an361

epoch. By leveraging partial retraining and validation, each362

NN configuration is evaluated by its resilience to computation363

errors and the retraining effort required to recover from364

such errors. Solutions with faster recovery will have higher365

validation accuracy than others that are less fit, using the366

same number of training samples, and therefore have an367

evolutionary advantage. Therefore, retraining (or fine-tuning)368

is used to compensate for the error and enhance the design369

space exploration. For what concerns the fitness evaluation in370

Algorithm 1, the inference energy is estimated as in [15], [17]371

by multiplying the number of multiplications of each layer372

of the model M with the average energy of the approximate373

multiplier when set to the approximation level defined by the374

corresponding gene of chromosome ϑ. After the evaluation375

of the two fitness functions, the algorithm continues with the376

mutation, crossover, tournament selection, ranking, and finally,377

the evaluation of the crowding distance and the generation378

of the new front. The cycle starts anew until all the Ng379

generations have been evaluated.380

C. Reconfigurable Approximate Multiplier381

In this work, we employ a single-cycle multiplier architec-382

ture to introduce minimum modifications in the control flow383

of the RI5CY core. As our primary purpose is guaranteeing384

maximum versatility and ensuring portability to different hard-385

ware with minimum effort, a parallel multiplier architecture386

based on the Dadda reduction tree [35] is selected. The Dadda387

algorithm is employed to compress, through half-adders and388

full-adders, the matrix of partial products generated in the first389

step of the multiplication, following an as late as possible390

approach. It is preferred to the Wallace structure as it shows391

lower delay and complexity. The modified Baugh-Wooley al-392

gorithm [36] is employed to handle signed multiplication with393

minimum overhead in the size of the partial product matrix.394

Both techniques are general and scalable to arbitrary operand395

bit-width. A variation of the truncation mechanism proposed396

in [37] is identified as the target strategy to manage the397

dynamic setting of approximation and precision. It allows for398

easy support of approximate and exact configurations, both for399

full and reduced bit-width of the operands. Truncation relies400

on a masking signal to select specific columns of the partial401

product matrix to fix at zero to reduce the switching activity,402

hence dynamic power, of the logic gates in that section of403

the matrix, at the expense of an incorrect output. The number404

of reconfiguration levels is selected considering that when the405

approximation is extended to the most significant half of the406

result, the error becomes unbearable, as argued in [38] and407

[39]. An externally configurable masking signal noted as a, is408

introduced to manage the selection of the approximation level,409

as shown in Figure 3 for the case of 9-bit inputs and a on eight410

bits. Contrarily to [39], each mask bit aj of a corresponds to a411

column of the matrix; there is no sharing of the configuration412

signals. From bit 2 onward, the probability of the output413

bit being one or giving a carry-out is higher than 50%, as414

intuitively proven by the fact that the number of bits stacked415

in the columns of the matrix is greater than two (Figure 3).416

This high likelihood justifies the choice to gate the first row of 417

the partial product matrix, from position 2 to 7, to one, when 418

the corresponding bit of the approximation mask is active, and 419

it is implemented through the OR with aj complemented in 420

Figure 3. All other bits are gated to zero, similarly to [37], 421

using two-inputs AND gates for the masking. An additional 422

feature of the designed architecture, which is uncommon to 423

most approximate multipliers, is the capability of runtime 424

reconfiguration of the precision of the operands. A precision 425

masking signal p is introduced to perform data-gating on 426

the partial product matrix using a mechanism similar to the 427

approximation. The p mask is externally configured according 428

to the precision of the expected result, thus allowing power 429

saving when mixed-precision multiplications are required. The 430

minimum supported bit-width for the input operands is fixed 431

to two. The precision mask has the length of the output minus 432

four. Figure 3 shows the precision signal on fourteen bits pj 433

covering the most significant part of the partial products. When 434

a precision mask bit is set to zero the corresponding column 435

of the matrix is entirely zeroed. The complete logic inserted in 436

the generation of the partial product matrix to manage multiple 437

approximation and precision levels is depicted in Figure 3.

Fig. 3. Precision and approximation configuration management for the
proposed multiplier. The approximation level is selected with the mask a,
while the precision is selected with the mask p. aj indicates the jth bit of
the approx_mask signal a, pj the jth bit of the precision_mask signal
p, while ppij is the jth bit of the ith partial product evaluated according to
modified Baugh-Wooley algorithm.

438

D. Reconfigurable Approximate RISC-V Core for PULP SoC 439

The RI5CY core architecture instantiated in the PULP 440

cluster must be adapted to enable reconfigurability in terms 441

of approximation and precision. The first issue to tackle to 442

introduce inexact operators in the core is how to expose them 443

in the instruction set architecture (ISA) so that a programmer 444

can effectively use them. A possible solution is the one pro- 445

posed in [18]: adding custom instructions that, when decoded, 446

configure the execution stage to use approximate operators. 447

However, this approach requires an additional instruction for 448

each inexact arithmetic operation supported by the hardware, 449

defined with a new custom format capable of encoding the 450

approximation level. Another drawback is related to the fact 451

that, in this specific case, the C executable code is generated 452

automatically by the DORY tool. If custom instructions were 453

used, the user would have to replace the standard instructions 454

with the custom ones, whenever necessary, analyzing the 455
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generated C code line-by-line. The same could be achieved by456

making the compiler aware of the approximated instructions457

and where they are needed, but that would be time-consuming458

to implement and maintain. The methodology suggested in459

this work addresses flexibility and simplicity by defining a460

new custom CSR handling all the control and configuration461

of approximate operators. This approach is scalable; a single462

32-bit register can manage all the new operations and does463

not occupy additional instruction encoding space. It also464

enables reconfiguration, as part of the register bits control465

the approximation and precision level. Finally, it is much466

more programmer-friendly as it does not require significant467

changes in the C code of the microcontroller, except for the468

addition of CSR instructions. In order to achieve these results,469

the proposed methodology to enable the online configuration470

of the approximate multiplier relies on the following steps.471

First, a CSR write instruction sets the precision_mask472

and approx_mask fields according to the specification of473

the layer. Secondly, before the computation starts, a CSR474

set instruction enables approx_mac and approx_dot8,475

which are disabled when the computation is over. Each CSR

Algorithm 2 PULP-NN matmul function pseudocode
1: ▷ ch in/ch out input/output channels of the Conv layer
2: ▷ k x/k y filter dimension along x/y
3: ▷ im2col is ch in · k x · k y
4: ▷ col cnt im2col is im2col & 0x3
5: ▷ chan left is ch out & 0x3
6: ▷ Initialization
7: Load params. from stack and define variables ▷ 26 instr
8: ▷ Execution
9: for (i = 0; i < ch out >> 2; i + +) do

10: Setup ▷ if first iteration 41 instr, else 6 instr
11: for (j = 0; j < im2col >> 2; j + +) do
12: Setup ▷ 15 instr
13: Multiply and accumulate + save ▷ 15 instr ·(im2col >> 2) + 9 instr
14: end for
15: if (im2col >> 2 == 0) then; Setup end if ▷ 12 instr
16: while (col cnt im2col ! = 0) do
17: Setup ▷ 4 instr
18: Multiply and accumulate + save ▷ 15 instr ·(im2col >> 2) + 2 instr
19: end while
20: Quantize and save results ▷ 54 instr
21: end for
22: Setup ▷ 10 instr
23: while (chan left) do
24: Setup ▷ if first iteration 23 instr, else 1 instr
25: for (j = 0; j < im2col >> 2; j + +) do
26: Setup ▷ 6 instr
27: Multiply and accumulate + save ▷ 6 instr ·(im2col >> 2) +4 instr
28: end for
29: if (im2col >> 2 == 0) then; Setup end if ▷ 6 instr
30: while (col cnt im2col ! = 0) do
31: Setup ▷ 4 instr
32: Multiply and accumulate + save ▷ 6 instr ·(im2col >> 2) + 1 instr
33: end while
34: Quantize and save results ▷ 13 instr
35: end while
36: Save parameters and return ▷ 24 instr

476

instruction takes one clock cycle. In the general case, the477

last couple of CSR instructions are executed a number of478

times which depends on the tiler split performed by DORY.479

Their position in the code is optimized to produce minimum480

overhead in the control flow, considering the presence of481

MAC instructions that must produce the correct result. The482

usage of three instructions, rather than two, is forced by483

the specific organization of the template C files provided by484

DORY and PULP-NN C library [22]. The CSR instruction485

activating the approximate unit is the one executed more486

frequently. It is located before the matmul function, whose 487

pseudocode and number of assembly instructions are depicted 488

in Algorithm 2. In a pessimistic estimation, a CSR set is 489

performed once for each matmult function call, providing a 490

quantitative measure of the reconfiguration overhead on the 491

execution time. The GCC compiler is extended to account for 492

the new approx CSR, whose fields are given in Figure 4. The

[1] approx_MAC
[0] approx_MUL[2] approx_dot8

01231 18 31011

[10:3] approx_mask[31:18] precision_mask
[17:11] unused

Fig. 4. The approx CSR configuration.

493

Xpulp ISA extension [22] provides additional multiply-related 494

instructions compared to the basic ones of RV32M. Some of 495

these, such as MAC and SIMD dot products, are useful for 496

NN inference. Here, the choice is to provide an approximate 497

implementation only for instructions used in convolutional 498

and linear layers. An in-depth analysis of the disassembly 499

code produced by custom convolutions and a complete NN is 500

performed to select them. The assembly instructions included 501

in these benchmarks are approximated, together with others 502

for which it is straightforward to extend support; they are all 503

listed in Table I. In this first implementation, the approximate 504

pipeline only computes 8-bit multiplications, even when the 505

issued instruction expects a 32-bit or 16-bit operation. This 506

restriction cannot cause any error assuming that NN layers 507

quantization is always on 8 bits or below, which is the 508

ordinary case. The instructions for which approximate support 509

is provided are split into three subgroups, according to Table I. 510

For each category, the approx CSR has a configuration bit; 511

when this bit is set, all the instructions belonging to that 512

group are executed in approximate mode. Besides the custom 513

CSR, a unit responsible for inexact computation is inserted 514

in the execution stage of the pipeline alongside the exact 515

multiplier unit, as shown in the high-level block diagram of 516

the approximate core in Figure 5. This design choice requires

TABLE I
APPROXIMATE INSTRUCTIONS MNEMONICS

MAC MUL DOT8
p.mac mul p.mulsN pv.dotup.b pv.sdotup.b

p.macsN p.muls p.muluN pv.dotusp.b pv.sdotusp.b
p.macuN p.mulu pv.dotsp.b pv.sdotsp.b

517

some modifications in the decoding phase of the instruction. 518

Based on some control signals, the decoder has to activate 519

either the correct or the inexact unit. The arithmetic block 520

that is not selected for the instruction currently in the decode 521

stage does not perform any operation in the next clock cycle 522

as its inputs are not updated. Four instances of the designed 523

multiplier are allocated in the reconfigurable approximate unit, 524

as in Figure 6. They are all used in parallel to perform SIMD 525

dot products on 8 bits, while only one is activated for MUL 526

and MAC-related operations. 527

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2024.3365952

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

IF/
ID

ID/
EX

EX/
WB

Prefetch 

buffer

HW loop 

control

Controller

Decoder

RF

CSR

ALU

MUL/MAC 

DOT 

Exact 
unit

LSU

TCDMInstr IF

RI5CY

AddrA

instraddr

AddrB

AddrC

rA

wA

wB

rB

rC

OpA

OpA

addr

d_in
d_out

OpB

OpA

OpB

OpC

MUL/MAC 

DOT 

Approx 

unit

OpA

OpB

OpC

OpB

OpC

npc

approx

Fig. 5. RI5CY pipeline with approximate operations support.

++
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Fig. 6. RI5CY approximate multiplier unit. The leftmost multiplier is in
charge of MUL and MAC-related operations. The shifter is for immediate
instructions with the N suffix in Table I. All multipliers work in parallel to
execute dot8 operations and their result is fed to a 32-bit five-operands adder.
The sign extension block handles the split of the 32-bit operands into four
8-bit chunks and their sign extension according to the decoded instruction.

E. Approximation in PULP Toolchain528

Part of the PULP toolchain must be adapted to enable run-529

time approximation. Through NEMO and DORY libraries, the530

PULP platform offers software support to generate executable531

C code tailored to its architecture, starting from a PyTorch532

NN model. NEMO is a PyTorch complementary framework533

developed as a support tool to transform an already trained,534

full-precision NN into an integer one, performing the quanti-535

zation and calibration of the model. DORY is an open-source536

tool for optimizing NNs mapping on PULP and other MCUs.537

Two building blocks of DORY, the configurable templates and538

PULP-NN back-end functions, are modified to automatically539

add the approximate CSR instructions in proper points of the540

C code, while the mapping optimization is unaffected. Besides541

an ONNX graph, the modified DORY uses as input a JSON file542

containing a layer-by-layer description of the quantization and543

approximation of the NN. Once these parameters become part544

of the DORY intermediate representation, they are used to fill545

hardware-specific template files with the correct CSR setting546

and generate the C code for the different layers. Relying on547

a JSON dictionary guarantees flexibility, as new items can548

be defined for each node in the network. Furthermore, it is549

general; at this level, every type of approximate multiplier 550

could be available, either reconfigurable or not. Moreover, as 551

the precision information on the layer is kept separate from 552

the approximation level, it is possible to configure the layer as 553

exact but with reduced precision. This choice allows to save 554

power by leveraging operations with reduced bit-width rather 555

than with inexact computation. 556

IV. EXPERIMENTAL RESULTS 557

This section presents the computing setup used to conduct 558

experiments to validate the proposed methodology, summa- 559

rized in Figure 7. We synthesized and tested the modified 560

RISCY with the reconfigurable multiplier and extracted rele- 561

vant hardware metrics of the core and the arithmetic operator 562

alone. Additionally, we compare our approach against state- 563

of-the-art techniques that apply layer-wise approximation.

Training set

Test set

Validation set

HDL model Synopsys DC

UMC
65nm

LUTs

Hyper-parameters
tuning

Quantization-aware
training

AxxConv2d

AdaPT
Retraining

Power
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...

Pymoo
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[x1, x2,..xl]
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Multiplierts 
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Optimization  Simulator blockHW-specific blocks NN processing External data

PyTorch

Fig. 7. MARLIN framework and computing setup for software simulation.
564

A. Multiplier Characterization 565

A 9-bit reconfigurable multiplier is designed according to 566

the methodology in Section III-C to compute SIMD 8-bit dot 567

products supporting all possible combinations of signed and 568

unsigned operands in RI5CY core. The multiplier is synthe- 569

sized with Synopsys Design Compiler (DC) using the UMC 570

65 nm process technology library. The design is wrapped by a 571

group of input and output registers to ease the enforcement 572

of timing constraints. Similarly to [38], the target clock 573

period is set to 2 ns, making the multiplier critical path delay 574

compatible with the one it shows on the synthesized core. 575

The compile_ultra command is issued to generate the 576

gate-level netlist. Post-synthesis simulation is performed on 577

100000 random input samples to back-annotate the switching 578

activity for accurate power estimation, as in [40]. Random 579

input samples are a common approach in literature to charac- 580

terize the power profile of approximate multipliers, [28], [37]. 581

Table II shows the main hardware metrics and mean-relative 582

error distance (MRED) obtained for the maximum precision 583

configuration with different approximation levels. 584

MRED =
1

n

n∑
i=1

|ŷi − yi|
|yi|

(1)

The MRED, a commonly used metric to estimate the per- 585

formance of inexact arithmetic units [38]–[40], is defined in 586

Equation (1), where n is the number of possible combinations 587

of input values (i.e. n = 218, for a 9x9 multiplier), and ŷi 588
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and yi are the ith approximate and exact results, respectively.589

Error metrics are evaluated through exhaustive simulation on590

the entire inputs dynamic [38], [40]. Table II presents the591

same estimations, obtained with the same constraints and592

testing conditions, for an exact 9x9 signed multiplier described593

behaviorally in HDL and optimized by Synopsys DC, through594

Synopsys DesignWare (DW) library. Our multiplier has an595

area overhead of 28%, due to the additional logic for online596

reconfigurability. This feature does not impact on the critical597

path, as it remains under the 2 ns constraint. Finally, our598

multiplier, in the exact configuration, saves 41.4% of power599

compared to the one by Synopsys DW, while the highest600

approximate level saves up to 60.1%.

TABLE II
METRICS OF THE 9X9 SIGNED RECONFIGURABLE MULTIPLIER AND

COMPARISON WITH AN EXACT 9X9 MULTIPLIER

Design
Area

[µm2] (GE)1
Arrival

time [ns]
Approx

level
Total

power [µW ] MRED

Exact 607.3 (422) 1.7 - 414.0 0

MARLIN 822.6 (572) 1.8
0 241.2 0

127 183.0 0.07
255 164.4 0.18

1GE is the 2-input drive-strength-one NAND gate equivalent area.
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Fig. 8. MRED and dynamic power variation of the proposed multiplier with
the approximation level for the full-precision 9-bit inputs configuration. The
approximation level on the x-axis corresponds to the 1’s complement of the
approx_mask value.

601 Although the dynamic power variation with the approximation602

setting does not follow a monotonic trend, as can be observed603

in Figure 8, sub-optimal configurations are retained as they604

come at no hardware cost in area, power and latency once the605

8-bit approx_mask signal is inserted in the multiplier logic.606

Every level has its error distribution, which can be optimal for607

a specific NN layer. An optimal subset of the 256 configura-608

tions might be selected offline depending on the dataset and609

NN analysed. However, the proposed methodology aims to610

be application-agnostic and versatile to several use-cases, thus611

hardware and software provide support for the most generic612

scenario. The jumps in power and MRED in Figure 8 can be613

explained by looking at the logic in Figure 3. The MRED614

shows higher steps when the approximation moves towards615

columns on the left (e.g., from configuration 63 to 64, or from616

191 to 192). On the contrary, more power is saved when more617

columns, as far to the left as possible, are gated, reducing the618

switching activity of the compressors in the Dadda Tree. This 619

condition in Figure 8 corresponds to approx_mask values 620

ā = 2j − 1, j ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8]. Consequently, when 621

approx_mask is set as above, that configuration will save 622

more power than the subsequent ones. Furthermore, it is a 623

Pareto optimal point since all the successive configurations 624

imply the next columns to the left to be approximated, thus 625

increasing the MRED.

TABLE III
COMPARISON BETWEEN MARLIN 8X8 SIGNED MULTIPLIER AND

STATE-OF-THE-ART APPROXIMATE MULTIPLIERS.

Multiplier Conf Exact
conf

Online
reconf MRE

Area
[µm2] (GE)

Dynamic
power [µW ]

Ha [41] - ✗ ✗ 0.102 461.2 (321) 170
Strollo [40] - ✗ ✗ 0.053 496.8 (345) 181.6

Yang [42]
1 ✗ ✗ 0.031 529.2 (368) 222.3
2 ✗ ✗ 0.041 516.2 (359) 206.6
3 ✗ ✗ 0.069 500 (348) 190.9

Mul8s [28]

1KV6 ✓ ✗ 0 541.1 (376) 167.6
1KX5 ✗ ✗ 0.089 378 (263) 116.3
1L2N ✗ ✗ 0.274 200.9 (140) 60.9
1L12 ✗ ✗ 1.347 126 (88) 36.6

de La Guia [37]
0 ✓ ✓ 0 650.9 (452) 188.3

127 ✓ ✓ 0.374 650.9 (452) 130.3
255 ✓ ✓ 1.065 650.9 (452) 109.5

MARLIN
0 ✓ ✓ 0 652.7 (454) 188.6

127 ✓ ✓ 0.236 652.7 (454) 130.6
255 ✓ ✓ 0.621 652.7 (454) 109.9

626

Table III compares different state-of-the-art techniques to 627

design approximate multipliers. All multipliers are 8-bit signed 628

and have been synthesized with a clock period of 2 ns and 629

characterized as for the 9x9 case. For a fair comparison, our 630

multiplier is rescaled on 8 bits. The design choice to fix some 631

bits of the partial product matrix at one rather than zero when 632

the corresponding columns are approximated improves the 633

MRED by up to 41.7% compared to [37] truncation approach, 634

with negligible area and power overhead. Compared to [40]– 635

[42], all based on approximate 4-2 compressors, our multiplier 636

has lower power consumption, for corresponding MRED, 637

while still covering a much wider error dynamic. Furthermore, 638

the approximate compressors approach, even when runtime 639

error tuning is implemented [38], [39], cannot provide an exact 640

configuration. This implies the need to pair an exact multiplier 641

with the approximate one to manage operations, such as 642

control flow ones, which must produce the correct output, 643

unacceptably increasing the total area. This consideration still 644

holds for Evoapproxlib multipliers [28]. Although, according 645

to Table III, [28] show better area and power metrics com- 646

pared to ours, the absence of reconfigurability precludes their 647

compatibility with MARLIN. As in [15], the implementation 648

of layer-wise approximation with [28] requires to instantiate as 649

many multipliers as the number of approximation levels, which 650

becomes inconceivable above certain values due to control, 651

area, and power overhead. In conclusion, our multiplier offers 652

several power-error trade-offs, spanning the MRED dynamic 653

of most of the 8x8 multipliers compared in Table III, standing 654

as the cheapest and most flexible solution to implement layer- 655

wise approximation. Our multiplier, unlike [28], [38], [40]– 656

[42], also enables runtime selection of the result bit-width to 657

add versatility and reduce power when full precision is not 658

required. For the 9-bit architecture, output precision from 18 659

bits down to 4 bits is supported through data-gating on the 660
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most significant columns of the Dadda tree, with a maximum661

power saving of around 62%. In Table IV, we evaluate the662

trade-off of runtime precision setting with a ResNet-20 model663

executed with and without data-gating, and with different bit-664

widths. The average full precision power is evaluated with665

the multiplier configured to execute 9x9 bit multiplications,666

although input operands are quantized to lower precision. The667

average reconfigured power is evaluated when the masking668

signal p is set to match the input operand precision.

TABLE IV
RESNET-20 MULTIPLIER POWER WITH AND WITHOUT DATA-GATING

Activations Weights Avg mult pow Avg mult pow Absolute Relative
precision precision full precision reconfigured accuracy accuracy

8 8 239.15 µW 237.93 µW 91.50% 100%
6 4 227.85 µW 170.09 µW 91.43% 99.92%
4 4 225.85 µW 125.35 µW 89.87% 98.22%

669

B. Approximate RISC-V Core Characterization670

The RI5CY core featuring the approximate extension is671

synthesized to extract area, delay, and power estimations using672

Synopsys DC and the UMC 65 nm library. The clock period673

is set to 5 ns. The timing constraints were relaxed with respect674

to the ones for the multiplier alone to also accommodate in675

the cycle time the four-operand 32-bit adder that follows it,676

as can be observed in Figure 6. As a matter of fact, the677

approximate multiplier instance in the core has a delay of678

around 1.9 ns, which makes its implementation mapping and,679

therefore, its energy contribution consistent with the analysis680

previously performed with a 2.0 ns clock period. The two681

cores with exact and reconfigurable approximate operators682

are both synthesized using the command: compile_ultra683

-no_autoungroup - no_boundary_optimization684

-timing -gate_clock. Table V compares area and tim-685

ing values obtained. The delay constraints are satisfied by both

TABLE V
PERFORMANCE AND AREA COMPARISON FOR EXACT AND APPROXIMATE

RI5CY AND THEIR RELATIVE MULTIPLIER UNITS

Exact RI5CY Approx RI5CY

Area [µm2] (GE)
Exact mult 14842.8 (10k)

Approx mult - 4737.2 (3k)
Total 60621.1 (42k) 67006.8 (47k)

Timing [ns]
Exact mult 4.45

Approx mult - 4.41

686

designs, and from the fourth column of table V it can be687

observed that our multiplier does not interfere with the micro-688

processor critical path which remains in the exact multiplier689

unit. The area overhead caused by the approximate unit alone690

is 7.8%, while the total overhead, considering the additional691

control part and the approx CSR, is 10.5%. The extra area692

cost is mainly due to the allocation of four reconfigurable693

multipliers in order to manage 8-bit dot products. We consider694

this overhead acceptable as this is the first prototype of this695

architecture; however, it could be significantly decreased if696

our four multipliers replaced the exact ones, which is possible697

since they also feature a non-approximate mode.698

The RTL model of the RI5CY is replaced by the gate-level699

netlist for all cores in the PULP cluster to enable post-synthesis 700

simulation and power estimation on a demonstrative use-case. 701

A simple NN model is designed with PyTorch and used as a 702

benchmark on MNIST dataset to verify the correct behavior 703

of the entire framework and to collect power metrics. It 704

comprises five convolutional layers, each followed by a ReLU 705

activation function, and a final linear layer. The entire structure 706

is depicted in Table VI. The model is trained for 30 epochs,

TABLE VI
CUSTOM NN ARCHITECTURE DESCRIPTION

Layer name Output size Kernel size Output channels # Mult
conv1 28x28 7x7 3 115224
conv2 28x28 5x5 8 470400

max pool 14x14 3x3 8 0
conv3 14x14 3x3 10 141120
conv4 14x14 3x3 16 282240

max pool 7x7 3x3 16 0
conv5 7x7 3x3 24 169344

max pool 3x3 3x3 24 0
linear 1x10 9x24 1 2160

707

with a batch size of 32, an initial learning rate of 3·10−3, with 708

a step factor of 0.3 every 5 epochs. Stochastic gradient descent 709

with momentum 0.9 is used with a weight decay of 10−3. The 710

designed NN is run on the PULP platform for a single input 711

image. For this model, the overhead of the CSR instructions 712

execution can be quantified, according to Algorithm 2, in the 713

worst case, which is the first convolutional layer, as one CSR 714

set instruction every 403 instruction (0.25%). In the best case, 715

which is the last convolution, the extra cost is 0.026%. This 716

results in a negligible performance overhead due to the CSR 717

switching, and thus of reconfiguration, on the overall pro- 718

cessing. Through Siemens QuestaSim, the VCD dumps of the 719

entire core and the approximate and exact multiplying units are 720

collected. They are used as inputs for Synopsys Power Shell 721

to extract power metrics based on the actual switching activity. 722

Simulations are performed using the multipliers configurations 723

obtained from the NSGA-II run that achieve accuracy over 724

90% with no retraining. For every configuration, an example 725

for each of the ten possible categories is fed to the network, 726

meaning numbers from zero to nine for MNIST. The exact 727

post-synthesis RI5CY core is simulated with the same inputs, 728

and the power of the accurate multiplier unit is collected; all 729

results are averaged. Table VII reports, for the configurations 730

listed in the first column, the NN test accuracy and, in the 731

third column, the power of the multiplier unit (the exact one 732

for the exact configuration in the first row, the approximate 733

one for all other cases) averaged over the ten simulations. 734

The fourth column contains the relative energy saving of the 735

multiplier unit measured post-synthesis, the last column shows 736

the relative energy saving estimated at the end of the NSGA-II 737

search, as described in Section III-B. The first row of Table VII 738

contains the power estimation of the exact RI5CY multiplier 739

unit, where all operators, including the multipliers computing 740

dot8 instructions, are described behaviorally, thus leaving the 741

architecture selection to Synopsys DW. Consequently, for a 742

meaningful comparison, the reference model for the NSGA- 743

II relative estimation is the average energy consumed by a 744

behavioral 9-bit multiplier synthesized by Synopsys DC, with 745
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the same settings of the approximate multiplier. Although746

the exact multiplier always executes housekeeping operations,747

these are a negligible fraction of its overall workload when all748

NN multiplications are mapped on it; thus, their contribution to749

the average power is minimal. Therefore, since the number of750

multiplications of the NN model is fixed, and so is the time751

the multiplier stays active, the relative energy is considered752

equivalent to the ratio between the average power of the753

approximate unit in the modified RI5CY and that of the exact754

one in the unmodified core.755

TABLE VII
POWER CONSUMPTION AND ENERGY SAVING OF THE MULTIPLYING UNIT

WITH DIFFERENT LAYER-WISE CONFIGURATIONS FOR THE TARGET NN

Configuration
Test
Acc
[%]

Average
RI5CY mult
power [µW ]

Relative
RI5CY mult

energy saving

Relative
NSGA-II

energy saving
Exact 98.7 10.46 0% 0%

[0, 0, 0, 0, 0] 98.7 2.606 75% 42%
[59, 31, 15, 12, 3] 98.7 2.509 76% 46%

[59, 31, 15, 31, 31] 98.5 2.474 76% 48%
[255, 63, 15, 31, 11] 97.8 2.412 77% 50%
[255, 126, 3, 63, 63] 91.3 2.403 77% 53%

The fourth column of Table VII shows that the obtained756

average energy saving on the multiplier unit is at least 75%757

when comparing the exact core and the approximate one with758

all multipliers configured as accurate (first and second row759

in Table VII). The maximum saving is 77%, which is more760

than 20% higher than the high-level estimation performed761

in NSGA-II. However, the advantage of adopting different762

approximate configurations is heavily reduced compared to763

the initial evaluation. This can be observed by rescaling the764

energy results in the fourth and fifth columns of Table VII765

with respect to the exact configuration of our multiplier. The766

highest estimated energy reduction, with respect to the model767

using the exact configuration of our multiplier for all layers,768

is 7.7%, with an accuracy loss of 7.4%, while the predicted769

saving was 20.1%. The cause of the gain drop, obtained by770

configuring the multiplier with a higher approximation, has to771

be addressed to the chosen task for the network. When the772

average power of the multiplier is estimated, 100000 random773

values with uniform distribution are used as inputs to the774

multiplier. However, the MNIST dataset is composed of black775

numbers on a vast white background, which means that the776

network inputs and, consequently, those of the multipliers are777

not uniformly distributed. Both input images and intermediate778

activations show a high concentration of zeros, contrary to779

the initial assumption. The main consequence of most values780

being zero is that data-gating, which is the primary source781

of power saving when approximation is applied, becomes782

ineffective as the operands are already zeros and have a low783

switching probability themselves. A higher sensitivity of our784

multiplier to zero input operands, compared to the DW one,785

could also explain the increased relative energy saving in the786

example with respect to the estimates used during the NSGA-787

II search. Even acknowledging the difference in the statistics788

of the operands, we run the optimization algorithm using the789

estimated average energy computed with uniformly distributed790

inputs, keeping it data-agnostic, as commonly done in state-of-791

the-art optimization frameworks, where performance metrics792

are estimated independently from the statistics of the dataset 793

[3], [10]–[12]. The latter enables our search algorithm to 794

generalize to new data and thus demonstrate the efficacy of 795

our method, an approach that was also used in [15]–[17], [24] 796

to estimate the energy reduction with approximate multipliers. 797

C. Benchmark with CIFAR-10 798

We used 6 variations of the ResNet model architecture [43] 799

to experiment with shallow and deep NNs for image classifi- 800

cation, testing the effectiveness of MARLIN with CIFAR-10 801

[44], a more challenging dataset than MNIST. We based the 802

implementation of our ResNet models on the original paper 803

and used the same model architecture and hyper-parameters, 804

with 44k iterations instead of 64k, substituting the original 805

multi-step scheduling of the learning rate with a cyclical 806

scheduler [45], ranging between 10−1 and 10−4. We opted for 807

a cyclical learning rate instead of a stationary one to achieve 808

faster convergence with fewer training iterations during the 809

genetic search. We carried out separate quantization-aware and 810

full precision training for the INT8 and FP32 models. All the 811

experiments with approximate multipliers use the INT8 quan- 812

tized models; the FP32 results are presented only to provide 813

a comparison with full precision. We used scale quantization 814

with the straight-through-estimator for the weights [13], while 815

the activations are quantized using PACT [46]. Table VIII 816

reports the NNs used in the experiments.

TABLE VIII
NEURAL NETWORKS USED IN THE EXPERIMENTS

Neural # Conv. # Mult. FP32 INT8 Design space
network layers accuracy accuracy size

ResNet-8 7 12.2M 85.33% 85.43% 72·1015

ResNet-14 13 26.4M 90.17% 90.32% 20·1030

ResNet-20 19 40.6M 91.77% 91.50% 57·1044

ResNet-32 31 68.9M 92.65% 92.58% 45·1074

ResNet-50 49 111.3M 92.88% 92.60% 10·10117

Resnet-56 55 125.5M 93.14% 93.11% 28·10131

817

The INT8 accuracy results are evaluated using the approxima- 818

tion level 0 of the proposed multiplier, which provides exact 819

results, for all the layers of each network. The multiplications 820

reported in Table VIII are evaluated for the inference of one 821

32x32x3 input image from the CIFAR-10 dataset. The design 822

space size reported in the rightmost column is evaluated as 823

the number of unique approximate layer-wise configurations, 824

evaluated as AL
x , with Ax being the number of approximation 825

levels of the reconfigurable multiplier, in our case 256, and L 826

the number of layers that can be approximated. 827

For ResNet-8, ResNet-14, and ResNet-20, we ran the 828

genetic search for 80 generations with a population of 70 829

individuals, whereas for ResNet-32, ResNet-50, and ResNet- 830

56, we increased the generations to 120. We set both the 831

mutation probability Pm and the crossover probability Pc 832

to 0.8. During the search phase, every approximate NN is 833

retrained with 10% of the training set and the accuracy is 834

evaluated with the validation set (5000 unseen images from the 835

training set). We did not use the test set during the search phase 836

as it would have biased the results and negatively affected the 837
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Fig. 9. Top 1% accuracy and normalized energy variation with different ResNet configurations. The Pareto valid. blue marks represent the validation accuracy
evaluated during the genetic search, whereas the Pareto test orange marks represent the corresponding approximate configuration tested after the final retraining.

genetic algorithm. In this phase, the NN accuracy influences838

the evolution of each individual’s configuration, i.e., the layer-839

wise approximation; therefore, to obtain NN models that can840

generalize on new unseen data and prove the effectiveness of841

our methodology, we removed any correlation with the final842

test results. Finally, once the Pareto front has been computed,843

the approximate NNs are retrained for one full epoch and844

evaluated using the test set.845

The accuracy and energy results of only the dominant846

solution after the full retraining of the Pareto front are reported847

in Figure 9, providing a visual representation of the energy-848

accuracy trade-offs our methodology offers. For every NN849

under test, the absolute accuracy difference between Pareto850

valid. and Pareto test marks of each configuration is usually851

smaller than 1.5%, with even smaller values for deeper models.852

Therefore, the validation accuracy could represent a good ap-853

proximation of the final results, justifying the choice of using854

it in the proposed search strategy. Figure 10 depicts the utiliza-855

tion of approximation levels for each NN layer. It is possible856

to notice the presence of peaks around levels with an index857

equal to or smaller than 2j − 1, j ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8],858

corresponding to the Pareto optimal points of Figure 8. In859

Figure 10, it is shown how the majority of approximation860

levels are used in the Pareto front, justifying the choice to861

maintain power and MRED-dominated configurations as the862

most efficient levels might not be optimal ones to achieve a863

high task accuracy. Moreover, when concatenated appropri-864

ately, some approximation levels, even the Pareto-dominated865

ones, might mitigate the effect of computation errors on the866

final results, a strategy used in [20] to reduce the accuracy867

degradation. However, Figure 10 also highlights that some868

approximation levels are never used in this use case. Future869

development should add the possibility of pruning the search870

space removing unused solutions or those with the lowest uti-871

lization. In these experiments, to prove that our methodology872

is effective with an ample search space, low- and zero-usage873

solutions are deliberately kept to test the search algorithm in874

a worst-case scenario with the highest complexity.875

Table IX compares our approach with ALWANN [15] to876

TABLE IX
COMPARISON WITH ALWANN [15] WITH 0.5% AND 1% RELATIVE

ACCURACY DEGRADATION

This work ALWANN
Neural Absolute Relative Energy Absolute Relative Energynetwork accuracy accuracy accuracy accuracy

ResNet-8 0.5% 85.21% 99.74% 77.62% 83.16% 99.88% 84.31%
ResNet-8 1% 84.59% 99.02% 69.80% Same solutions as ResNet-8 0.5%

ResNet-14 0.5% 89.98% 99.63% 73.32% 85.42% 99.85% 74.34%
ResNet-14 1% 89.50% 99.09% 71.64% 84.77% 99.09% 70.85%

ResNet-50 0.5% 92.14% 99.50% 80.67% 89.08% 99.92% 78.47 %
ResNet-50 1% 91.70% 99.03% 76.67% 88.58% 99.36% 70.02 %

understand how MARLIN stands against the state-of-the-art. 877

To make a fair comparison, we compare approximate NNs 878

with weights updated after a single epoch retraining for MAR- 879

LIN and weight fine-tuning for ALWANN. Our method can 880

achieve better results for shallower NNs such as ResNet-8 and 881

maintain the same relative gains for ResNet-14, whereas it was 882

not able to achieve higher energy efficiency than ALWANN for 883

ResNet-50. Comparing the absolute accuracy of the NN mod- 884

els, the approximate ResNet-14 within 1% relative accuracy 885

degradation outperforms all the ResNet-50 models presented 886

by ALWANN in top-1 accuracy and, by extension, in energy 887

efficiency, as ResNet-14 has 76.3% fewer multiplications than 888

ResNet-50. Our methodology is competitive, considering that 889

the multipliers used in ALWANN have better area and power- 890

MRED metrics, but are not reconfigurable [15], [28]. The 891

main advantage of a reconfigurable multiplier against several 892

arrays of fixed multipliers is that it is possible to improve 893

the energy efficiency of arithmetic operations with lower area. 894

This approach extended to a systolic array, would require a 895

single array with the same multiplier architecture, whereas 896

ALWANN requires N separate sub-arrays in order to support 897

N approximation levels. 898

Table X compares MARLIN with the results presented in 899

[17], without including absolute accuracy metrics, as they 900

are not reported. We consider approximate NNs with one- 901

epoch retraining for MARLIN, and approximate NNs with 902

weight fine-tuning with and without additional bias for [17]. 903

Compared to the NNs with no additional bias, the approximate 904

NNs configurations found with MARLIN require up to 13.1% 905
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Fig. 10. Approximation levels utilization for all the configurations found for each ResNet model.

less energy for ResNet-20, up to 13% less energy for ResNet-906

32, and up to 15.1% for ResNet-56. When an additional error907

correction bias is added to the convolutional layer in [17],908

MARLIN can still achieve up to 9,8% less energy for ResNet-909

20, 8.6% for ResNet-32, and 7,3% for ResNet-56, without910

increasing the number of parameters and operations. Using911

more approximation levels proved to be an effective way to912

further reduce the inference energy, as we had 256 configura-913

tions against the 3 used in [17]. We justify these results with914

the traditional weight-update strategy used in this work and the915

presence of more approximate configurations. Retraining each916

configuration is slower and more computationally expensive917

than the multiplier-specific fine-tuning of [17], but allows a918

better adjustment of the NN parameters to compensate the919

computation errors, resulting in higher accuracy.

TABLE X
NORMALIZED ENERGY COMPARISON WITH [17] WITH 0.5%, 1%, AND 2%

ACCURACY DEGRADATION

Normalized energy
Neural Ours [17] [17]

network w/o bias with bias
ResNet-20 0.5% 75.91% 86.1% 83.1%
ResNet-20 1% 74.46% 85.6% 83.0%
ResNet-20 2% 74.46% 85.1% 82.5%

ResNet-32 0.5% 77.21% 85.7% 81.7%
ResNet-32 1% 74.50% 85.7% 81.7%
ResNet-32 2% 74.39% 85.5% 81.4%

ResNet-56 0.5% 79.87% 94.0% 83.0%
ResNet-56 1% 77.12% 86.1% 83.0%
ResNet-56 2% 77.04% 86.1% 83.0%

920

D. Compatibility with Other Accelerator Architectures921

Two important modifications are necessary to port MARLIN922

to other platforms: adapting the hardware architecture and the923

mapper to include the multiplier and the configuration instruc-924

tions. The former would require an additional 8-bit control925

signal from the PE control unit to set the approximation level.926

The elongated critical path delay due to the approximation927

logic could be a problem for some accelerators, but it is not928

for [8], [9], which have a critical path compatible with the929

proposed multiplier. For what concerns the mapper, recalling930

the discussion of Section II-A, a modification similar to what931

has been done in Section III-E can be implemented, inserting932

custom instructions to configure the multiplier , with negligible933

impact on the execution time. Since the scheduling does not934

change, the number of computation cycles would also be 935

unaffected. Table XI reports the area and the energy overheads 936

of including and controlling the approximate multipliers in 937

three accelerators, mapping the 19 convolutional layers of 938

the ResNet-20 with 1% accuracy degradation and 74.46% 939

energy of Table X. We used the power model in Timeloop 940

[10] to evaluate the energy used to communicate to the PEs 941

the approximation level of each layer, assuming one off-chip 942

to on-chip memory transfer, and then #PEs transfers from 943

the on-chip memory to the PEs’ registers. The configuration 944

energy of the entire NN is always below 0.002% of the total 945

energy evaluated with Timeloop. The area overhead of 35% 946

against exact multipliers can be negligible, considering that 947

they account for less than 10% of the PE area in [8], [9]. 948

TABLE XI
MARLIN’S AREA AND COMMUNICATION OVERHEAD APPLIED TO OTHER

HW ACCELERATORS

Eyeriss [9] DianNao [7] Simba [8]
# PEs 256 256 1024

PE conf. comm. energy [pJ] 2138 1997 2369
(relative) 0.001% 0.001% 0.002%

Mult. area exact [µm2] (GE) 155468 (108k) 155468 (108k) 621875 (432k)
Mult. area approx. [µm2] (GE) 210585 (146k) 210585 (146k) 842342 (586k)

(relative) (+35%) (+35%) (+35%)

E. Discussion 949

The optimization approach of Section III-B allowed MAR- 950

LIN to outperform previous works that relied on parameter 951

fine-tuning [15], [17], leveraging partial retraining. MARLIN 952

was run on a 32-thread Ryzen 5950X CPU with 64GB DDR4 953

RAM and an Nvidia Quadro RTX A5000. The GPU was 954

used only during the initial training of the FP32 and exact 955

INT8 NNs presented in Table VIII, while the CPU was 956

used to simulate the approximate convolutional layers during 957

the training, validation, and test done during the search, as 958

AdaPT only supports CPU computation [33]. The number of 959

threads used during the computation was set to 16 for every 960

experiment to compare how MARLIN execution time scales 961

with different NNs depths. Table XII reports the execution time 962

for the search phase and the training of the last Pareto front of 963

Figure 9. On average, partial retraining is ≈6x faster than full 964

retraining. An alternative implementation that leverages the 965

GPU processing power, based on [47], is in development, with 966
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the objective of reducing the search time with more complex967

NN models, allowing for a broader search space analysis.968

Compared to [15], the iteration time during the search phase969

is reduced by 72.8% for ResNet-8, 92.3% for ResNet-14, and970

85.4% for ResNet-50. This speed-up is due to the increased971

utilization of CPU threads, as our training loop processes more972

images during each iteration compared to [15].

TABLE XII
MARLIN’S AVERAGE EXECUTION TIME WITH 16 THREADS

Neural network Search phase Final training
One iter. Total One iter. Total

ResNet-8 6.8 sec. 10.6 hours 40.9 sec. 24.6 min.
ResNet-14 7.7 sec. 12 hours 79.4 sec. 35.7 min.
ResNet-20 19.6 sec. 30.5 hours 115.7 sec. 90.6 min.
ResNet-32 30.3 sec. 70.7 hours 189.0 sec. 81.9 min.
ResNet-50 47.1 sec. 109.9 hours 296.2 sec. 69.1 min.
ResNet-56 56.9 sec. 132.8 hours 329.2 sec. 93.3 min.

973

A limitation in finding the optimal trade-off between energy974

and accuracy is the dimension of the search space, which975

determines the search time and requires a carefully tuned976

search strategy. This problem is also found in mixed precision977

layer-wise quantization, in which the search space is q2L ,978

with q quantization levels for weights and activations, for L979

layers [11], [12]. Future work should focus on pruning the980

search space after a number of experiments (i.e., NSGA-II981

generations) to reduce its size, possibly reducing the time to982

converge. A further improvement over layer-wise approxima-983

tion can be proposed by looking at past works on quantization.984

In AutoQ [3] channel-wise quantization is used to reduce the985

inference energy with less accuracy degradation than [11],986

[12], proving that NNs resilience to quantization errors has an987

intra-layer dependency besides the inter-layer one. Therefore,988

achieving an optimal energy-accuracy trade-off is possible by989

extending approximate computing in the channel dimension.990

In AutoQ [3], a bit-serial accelerator is required to support991

channel-wise quantization, whereas with MARLIN the only992

necessary modification, to enable it with the proposed RISC-993

V core, would be to adapt the CSR instructions inserted by our994

modified version of DORY. Nonetheless, the main challenge995

would be the efficient exploration of a wider search space.996

V. CONCLUSION997

In this paper, we presented MARLIN, a layer-wise approxi-998

mation methodology leveraging a single multiplier architecture999

that can be configured runtime with 256 approximation levels1000

to achieve an optimal trade-off between the inference energy1001

and the task accuracy. In this work, a prototype based on a1002

modified RI5CY core is proposed to test our methodology1003

on a low-power IoT platform. The PULP toolchain has been1004

adapted to automatically include the runtime approximation1005

level selection alongside the instructions executed while pro-1006

cessing convolutional layers. MARLIN can evaluate thousands1007

of different NNs, leveraging NSGA-II to find the optimal1008

configuration by generating a Pareto front that contains a set1009

of layer-wise approximate NNs with reduced inference energy,1010

without a significant accuracy loss.1011
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