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†Politecnico di Torino, Turin, Italy, ⋆Bocconi University, Milan, Italy,
‡University of California, Santa Cruz, CA, USA

ABSTRACT

As speech processing moves toward more data-hungry mod-
els, data selection and acquisition become crucial to build-
ing better systems. Recent efforts have championed quantity
over quality, following the mantra “The more data, the better.”
However, not every data brings the same benefit. This paper
proposes a data acquisition solution that yields better models
with less data – and lower cost. Given a model, a task, and
an objective to maximize, we propose a process with three
steps. First, we assess the model’s baseline performance on
the task. Second, we use efficient mining techniques to iden-
tify subgroups that maximize the target objective if acquired
first as new samples. Being the subgroups interpretable, we
can determine which samples to acquire. Third, we run incre-
mental training sampling from those subgroups. Experiments
with two state-of-the-art speech models for Intent Classifica-
tion across two datasets in English and Italian show that our
method is significantly better than random or complete acqui-
sition and clustering-based techniques.

Index Terms— spoken language understanding, data ac-
quisition, data markets, divergence

1. INTRODUCTION

Data has become increasingly important in building high-
performing speech models. Deep learning-based speech
models are data-hungry, relying on large amounts of data
for effective training and optimization. Consequently, data
selection and acquisition become critical to building better
systems.

The default strategy is to prioritize the data volume, with
the idea that the more data is used for training, the higher the
performance of the resulting model. This strategy works up
to a point, but has pitfalls with respect to model fairness, and,
interestingly, even with respect to performance. For exam-
ple, one may acquire data for already well-represented and
modeled sub-populations, bringing little if any improvement
to those sub-populations, and worsening the performance on
sub-populations that tend to be under-represented in training
data. More data does not entail better data. More data also
means more cost in data collection, labeling, training, and
verification. We show that for model improvement, a targeted

data acquisition strategy aimed at compensating a model’s
weaknesses can work better than an indiscriminate strategy.

Specifically, we consider the problem of improving the
quality of a trained model via data acquisition. We propose a
divergence-aware acquisition approach, in which we leverage
the techniques of [1] to automatically identify data subgroups
on which model performance is inferior to the average. As the
subgroups are interpretable, we propose to use them to guide
data acquisition.

Previous data augmentation strategies generally rely on
either a fixed set of user-defined subgroups, or on automati-
cally created, but non-interpretable, subgroups. The former
approach may miss unexpected problematic subgroups; the
latter can be used to guide data augmentation but not data
acquisition. In contrast, our approach can autonomously dis-
cover that a model struggles with, for example, utterances of
women over 60 and guide data acquisition accordingly.

We assess the proposed divergence-guided acquisition on
two models across two Intent Classification datasets in En-
glish and Italian, and we show that our proposed acquisition
approach leads both to better performance, and better perfor-
mance across subgroups (that is, model fairness) compared
to an indiscriminate acquisition strategy. Further, we show
that the advantage of the divergence-guided approach persists
even when we acquire data that is a subset of that acquired by
the indiscriminate strategy.

2. RELATED WORK

Prior works addressing data acquisition in speech generally
focus on the diversity and robustness of the data, tackling the
challenges from linguistic variations, recording conditions,
environment, and demographics [2]. The considered groups
are user-defined and known a priori. In contrast, our approach
can discover problematic subgroups automatically, by explor-
ing how model performance varies across combinations of in-
terpretable attributes.

Given a set of groups of interest, recent work addressed
the question of how many data samples from each group we
should acquire to improve model performance by leveraging
learning curves [3, 4]. The work in [5] automatically groups
data by clustering speaker embeddings and identifies the clus-
ters that exhibit inferior performance for a given model. Data



augmentation considers data samples close to the problem-
atic clusters. However, these clusters, unlike our subgroups,
are not interpretable. Subgroup interpretability is key for
data acquisition. Interpretable subgroups allow the selection
and acquisition of the required data from data vendors, or
the planning of appropriate data acquisition strategies. Non-
interpretable subgroups only allow filtering already-available
data, e.g., by feeding it into an embedding model.

An approach that is close, and complementary, to ours
is [6], which also proposes the automatic identification of sub-
groups defined by attribute combinations. Their work extracts
subgroups that are under-represented in the training data and
identifies the least amount of data to acquire to achieve ad-
equate coverage. In contrast, we focus on identifying sub-
groups on which the model under-performs, so that more data
can be acquired to specifically address this issue. Naturally,
the two approaches can be used jointly.

3. METHODOLOGY

Our strategy to identify the subgroups with which the model
struggles, and acquire data accordingly, entails two steps:
(i) automatic under-performing subgroup detection, and
(ii) divergence-aware data acquisition.

Automatic under-performing subgroup detection. Con-
sider a set of labeled utterances and a speech model of inter-
est. As a first step, we annotate the utterances with metadata.
Metadata describe the utterances by means of interpretable
features, such as demographic information of the speaker
(e.g., gender, age, origin) and speaking and recording condi-
tions (e.g., noise level, speaking rate, audio sample duration).
It may be either already available in the dataset, or automati-
cally derived [7] from utterances.

A subgroup is a subset of the utterances sharing the
same metadata. We represent a subgroup as a conjunc-
tion of attribute-value pairs. For example, {gender=female,
age>60} denotes the utterances of women with more than
60 years. Subgroups may overlap: for example, the previous
subgroup overlaps with {gender=female}.

Once the utterances are annotated, we use DIVEX-
PLORER [1, 8] to extract all subgroups over metadata with
adequate representation and estimate their model perfor-
mance. By setting a frequency threshold, we ensure that the
subgroups contain enough data instances to make the perfor-
mance evaluation statistically significant. For each subgroup,
we define its divergence ∆ as the difference between the
performance on the subgroup, and the performance on the
entire dataset [1, 9]. Consider, for example, accuracy as a
performance measure, and let S be a subgroup. A negative
divergence in accuracy, denoted as ∆−

acc(S), denotes a worse
performance of the subgroup than the overall performance,
and the lower the divergence, the more the model struggles in
modeling it.

Divergence-aware Data Acquisition. Once assessed the per-
formance of a given speech model, we aim to perform a data
acquisition that may improve it, both in terms of overall per-
formance, and across subpopulations. Here, we focus on ac-
curacy as a performance measure, but other performance mea-
sures could be applied.

We let S− be the set of critical subgroups, consisting of
the subgroups that have negative divergence. Our subgroups
have the key feature of being interpretable. Hence, we can
target the acquisition of data samples with characteristics of
the identified challenging subgroups.

We perform a pruning step to reduce redundancy among
the critical subgroups, following the pruning approach de-
fined in [1]. In this pruning, given a subgroup Sa and a
subgroup Sb that includes Sa and another metadata condi-
tion, we only keep the more general Sa if the absolute differ-
ence in the divergence of the two subgroups is lower than a
predefined threshold. The idea is that Sa already represents
the divergence of Sb, as the additional features of Sb affect
only slightly the divergence. For example, if the subgroup
{young woman} has divergence -0.39, and {young woman,
utterance>10s} has divergence -0.41, we keep only the for-
mer subgroup, as it accounts for most of the divergence of the
latter. Pruning the critical subgroups results in a more con-
cise representation, and facilitates data acquisition, as we can
focus on the most relevant attributes.

We target for performance improvement the top-K sum-
marized critical subgroups with the highest negative di-
vergence, by acquiring data belonging to these subgroups.
Specifically, we retrain the model with the addition of new
data that belongs to one or more of the K subgroups (as sub-
groups can overlap, the same data instance can belong to more
than one top-K subgroup). Thus, the parameter K allows us
to control the data acquisition process. Our experiments will
illustrate how the choice of K affects overall model perfor-
mance as well as subgroup-specific performance.

4. EXPERIMENTAL SETUP

We split our datasets into training, validation, held-out, and
test sets. We use the same validation and test sets as in the
original dataset. We split the training set, using 80% of it
for training, and 20% held out. We use the validation set to
identify the critical subgroups. We then acquire data samples
from the held-out set and we retrain the model including the
new samples. Finally, we evaluate the model performance,
overall and on subgroups, using the test set. The code used in
the paper can be found in [10].

Datasets. We evaluate our targeted acquisition approach on
two datasets: Fluent Speech Commands (FSC) [11] for the
English language and ITALIC [12] for Italian. FSC con-
tains 30,043 utterances from 97 speakers, each with three la-
beled slots (action, object, location), which combined define
the intent. ITALIC has 16,521 audio samples from 70 Italian



Table 1. Mean and standard deviation with three different runs for FSC dataset, wav2vec 2.0 base model. We compare
the results for the original fine-tuning procedure, the two baselines (random and clustering-based) and our divergence-aware
strategy. Best results for each number of considered subgroups K are highlighted in bold. Best results overall are underlined.

K Approach #samples Accuracy F1 Macro ∆−
max ∆−

avg−10 ∆−
avg−20 ∆−

avg−50 |∆avg−all|

- original - 91.58 ± 0.08 86.34 ± 0.13 -70.09 ± 0.26 -70.09 ± 0.26 -65.73 ± 0.49 -53.31 ± 0.19 1.06 ± 0.07

2

random 406 94.26 ± 0.27 91.17 ± 0.86 -54.26 ± 1.14 -53.93 ± 1.17 -53.24 ± 1.12 -52.37 ± 0.55 0.86 ± 0.06
random 226 92.56 ± 0.44 90.25 ± 0.60 -52.20 ± 2.57 -51.11 ± 2.19 -46.61 ± 1.34 -43.98 ± 0.68 0.97 ± 0.02

clustering 406 92.94 ± 0.07 90.82 ± 1.19 -51.81 ± 0.86 -51.22 ± 0.92 -49.99 ± 0.10 -48.52 ± 0.11 1.24 ± 0.09
clustering 226 89.77 ± 0.88 87.02 ± 0.15 -47.37 ± 0.42 -47.34 ± 0.42 -47.23 ± 0.43 -46.75 ± 0.91 0.94 ± 0.04

ours 226 96.55 ± 0.08 94.71 ± 0.12 -40.60 ± 0.35 -40.28 ± 0.36 -38.08 ± 0.36 -32.72 ± 0.28 0.81 ± 0.03

3

random 874 92.21 ± 0.49 90.30 ± 0.55 -64.72 ± 3.07 -62.10 ± 2.49 -56.56 ± 2.32 -51.57 ± 1.88 0.38 ± 0.06
random 382 94.13 ± 0.58 91.51 ± 0.82 -52.99 ± 3.40 -51.92 ± 3.02 -49.39 ± 2.21 -45.98 ± 1.78 0.33 ± 0.04

clustering 874 94.47 ± 0.44 92.23 ± 0.45 -47.33 ± 0.33 -45.83 ± 0.16 -42.73 ± 0.21 -39.72 ± 0.49 0.32 ± 0.03
clustering 382 90.03 ± 0.97 85.30 ± 0.94 -46.40 ± 0.36 -45.02 ± 0.33 -41.59 ± 0.28 -37.79 ± 0.16 0.81 ± 0.02

ours 382 93.62 ± 0.29 92.96 ± 0.46 -42.23 ± 0.12 -42.21 ± 0.11 -41.48 ± 0.11 -33.61 ± 0.07 0.22 ± 0.02

4

random 1046 91.31 ± 0.98 89.48 ± 0.52 -61.85 ± 1.58 -60.72 ± 1.28 -58.08 ± 0.86 -54.83 ± 1.00 1.19 ± 0.03
random 422 92.64 ± 0.27 91.29 ± 0.21 -55.83 ± 2.11 -55.71 ± 2.04 -51.41 ± 1.74 -45.41 ± 1.74 0.39 ± 0.02

clustering 1046 93.28 ± 0.19 91.42 ± 0.18 -52.28 ± 0.63 -51.08 ± 0.58 -48.65 ± 0.40 -45.35 ± 0.44 0.85 ± 0.09
clustering 422 87.72 ± 0.71 83.42 ± 0.48 -47.59 ± 0.25 -46.98 ± 0.21 -45.69 ± 0.12 -43.98 ± 0.09 0.72 ± 0.03

ours 422 95.16 ± 0.11 92.47 ± 0.22 -45.68 ± 0.24 -44.56 ± 0.25 -41.53 ± 0.24 -37.02 ± 0.20 0.15 ± 0.01

5

random 1276 92.01 ± 0.49 91.00 ± 0.65 -67.77 ± 1.96 -66.94 ± 1.55 -65.31 ± 1.23 -62.65 ± 1.19 0.48 ± 0.03
random 509 91.48 ± 0.55 90.27 ± 0.49 -54.82 ± 3.41 -54.75 ± 3.29 -54.69 ± 3.11 -51.12 ± 2.25 0.96 ± 0.08

clustering 1276 92.75 ± 0.21 90.66 ± 0.22 -61.04 ± 0.19 -60.84 ± 0.24 -57.84 ± 0.18 -49.72 ± 0.11 1.33 ± 0.01
clustering 509 91.44 ± 1.41 87.92 ± 1.38 -51.92 ± 0.19 -51.90 ± 0.24 -49.79 ± 0.18 -43.39 ± 0.11 0.45 ± 0.03

ours 509 94.12 ± 0.13 92.57 ± 0.16 -49.33 ± 0.15 -49.29 ± 0.12 -48.11 ± 0.21 -39.01 ± 0.11 0.11 ± 0.02
- all data 4606 93.42 ± 0.17 93.11 ± 0.17 -53.18 ± 0.15 -50.89 ± 0.09 -45.61 ± 0.14 -40.37 ± 0.16 0.37 ± 0.01

speakers. The action and scenario slots determine the intent.
We use the “Speaker” configuration, mirroring FSC’s setup,
with distinct speakers in the train, validation, and test sets.
Metadata. We enrich the datasets with various metadata fol-
lowing the approach described in [7].
Models. We perform fine-tuning on two end-to-end speech
models: the wav2vec 2.0 [13] base model with approximately
90 million parameters on the FSC dataset and the multilin-
gual XLSR model [14] with around 300 million parameters
on ITALIC. We use the initial pre-trained model checkpoints
available in the Hugging Face hub repository [15].
Metrics. We evaluate model performance using the accu-
racy and F1 Macro scores. We also evaluate performance
at the subgroup level. We focus on the subgroup that shows
the most substantial decrease in performance compared to the
overall average, i.e., the highest negative divergence (∆−

max).
We also compute the average divergence across the top 10,
20, and 50 subgroups with the highest negative divergence
(∆−

avg−n), as well as the average absolute divergence across
all identified subgroups (|∆avg−all|).
Baselines. We evaluate the effectiveness of our method
against two baseline approaches. The first baseline draws
inspiration from [5] and employs an unsupervised clustering
approach. For the baseline, we extract acoustic embeddings
from the audio samples and group them into clusters. We
select the clusters with the poorest performance and acquire
the data points closest to those clusters from the hold-out set.
Note that these clusters lack interpretability since the chosen

data points are not selected based on annotated metadata, e.g.,
“utterances of young men speaking slowly”, but rather on the
distance measured in the embedding space. Thus, this tech-
nique can be used to select data samples from an available
dataset, but it cannot be used to guide data collection or data
acquisition. Given the specific characteristics of our datasets,
we empirically determined that 20 clusters adequately capture
the speech characteristics for FSC, while we used 10 clusters
for ITALIC. Additional discussions on the cluster number
are available in our project repository [10]. The second base-
line approach involves adding instances selected at random
from the held-out data set to the training data.

Experimental setting. For our approach, we acquire all the
samples in the held-out set sharing the same metadata of the
K critical subgroups. For the clustering-based baseline, we
include in the training all the samples of the held-out set that
have as closest-cluster one of the K clusters selected for im-
provement. This yields more data than with our targeted ac-
quisition strategy (due to the narrowness of the latter). We
compare targeted acquisition vs. clustering-based baseline
both by allowing the clustering-based baseline to benefit from
more data, and by assuming that targeted acquisition and clus-
tering baseline can acquire the same amount of data. For the
random baseline, we test two configurations, in which we ran-
domly acquire a number of samples equal to the one acquired
(i) with our technique and (ii) with the clustering one. We
also report the results when we acquire all held-out data.



Table 2. Mean and standard deviation with three different runs for the ITALIC dataset and multi-lingual XLS-R-300.
K Approach #samples Accuracy F1 Macro ∆−

max ∆−
avg−10 ∆−

avg−20 ∆−
avg−50 |∆avg−all|

- original - 73.79 ± 0.32 68.08 ± 0.37 -47.63 ± 1.93 -47.52 ± 1.94 -47.15 ± 1.92 -43.31 ± 1.78 0.60 ± 0.01

2

random 383 75.34 ± 0.32 69.75 ± 0.59 -40.12 ± 1.47 -40.01 ± 1.46 -39.21 ± 1.33 -35.81 ± 0.84 0.37 ± 0.03
random 154 75.32 ± 0.63 70.72 ± 0.58 -47.00 ± 0.81 -46.86 ± 0.80 -46.22 ± 0.77 -41.68 ± 0.70 0.38 ± 0.02

clustering 383 74.35 ± 0.12 69.51 ± 0.30 -41.64 ± 0.60 -41.52 ± 0.60 -40.84 ± 0.52 -36.90 ± 0.38 0.32 ± 0.02
clustering 154 74.05 ± 0.33 69.09 ± 0.75 -45.02 ± 2.02 -44.91 ± 2.01 -44.14 ± 1.81 -39.79 ± 1.33 0.37 ± 0.08

ours 154 77.40 ± 0.24 72.51 ± 0.14 -31.75 ± 0.55 -31.71 ± 0.55 -31.11 ± 0.41 -28.19 ± 0.18 0.34 ± 0.03

3

random 548 76.38 ± 0.12 71.09 ± 0.43 -40.51 ± 1.07 -40.41 ± 1.06 -39.52 ± 1.03 -35.12 ± 0.80 0.23 ± 0.04
random 252 75.81 ± 0.13 71.46 ± 0.25 -51.32 ± 1.30 -51.14 ± 1.29 -50.27 ± 1.16 -45.37 ± 0.89 0.25 ± 0.01

clustering 548 75.71 ± 0.12 71.31 ± 0.18 -39.74 ± 2.24 -39.65 ± 2.22 -38.81 ± 2.09 -35.02 ± 1.70 0.29 ± 0.01
clustering 252 75.87 ± 0.20 70.70 ± 0.31 -42.93 ± 0.52 -42.82 ± 0.51 -41.89 ± 0.51 -37.25 ± 0.48 0.25 ± 0.02

ours 252 76.50 ± 0.30 71.69 ± 0.59 -36.73 ± 0.33 -36.57 ± 0.32 -36.18 ± 0.30 -32.20 ± 0.57 0.17 ± 0.03

4

random 945 75.90 ± 0.30 70.83 ± 0.39 -42.34 ± 1.23 -42.23 ± 1.22 -41.65 ± 1.15 -37.83 ± 0.76 0.19 ± 0.02
random 540 75.67 ± 0.20 71.71 ± 0.02 -41.07 ± 0.69 -40.96 ± 0.68 -40.36 ± 0.72 -36.41 ± 0.77 0.34 ± 0.05

clustering 945 76.02 ± 0.40 71.53 ± 0.63 -42.52 ± 3.26 -42.43 ± 3.24 -41.76 ± 3.16 -37.97 ± 2.71 0.26 ± 0.06
clustering 540 75.76 ± 0.21 71.22 ± 0.17 -41.50 ± 0.80 -41.40 ± 0.80 -40.79 ± 0.80 -37.87 ± 0.71 0.22 ± 0.03

ours 540 76.29 ± 0.13 72.48 ± 0.48 -37.30 ± 1.05 -37.22 ± 1.04 -36.79 ± 1.03 -33.42 ± 0.75 0.16 ± 0.04

5

random 1035 77.19 ± 0.34 71.51 ± 0.39 -46.37 ± 0.88 -46.27 ± 0.89 -45.73 ± 0.98 -41.38 ± 1.11 0.21 ± 0.05
random 604 75.13 ± 0.05 71.26 ± 0.17 -41.91 ± 1.95 -41.79 ± 1.94 -41.09 ± 1.83 -37.53 ± 1.26 0.29 ± 0.04

clustering 1035 77.05 ± 0.22 71.93 ± 0.04 -42.93 ± 1.04 -42.86 ± 1.05 -42.39 ± 1.11 -38.34 ± 1.14 0.18 ± 0.03
clustering 604 75.88 ± 0.29 70.60 ± 0.59 -40.41 ± 1.17 -40.32 ± 1.16 -39.47 ± 1.10 -36.12 ± 0.81 0.19 ± 0.03

ours 604 77.14 ± 0.04 71.32 ± 0.41 -37.52 ± 0.78 -37.44 ± 0.77 -36.83 ± 0.76 -33.75 ± 0.40 0.09 ± 0.02

- all data 2625 75.71 ± 0.36 73.22 ± 0.33 -47.54 ± 0.79 -47.36 ± 0.76 -46.68 ± 0.47 -41.93 ± 0.00 0.15 ± 0.03

5. RESULTS AND DISCUSSION

Tables 1 and 2 compare the results of our approach and the
baseline methods. Our targeted acquisition approach consis-
tently demonstrates superior performance in terms of accu-
racy, F1 score, maximum divergence, and average divergence.

The best F1 score and accuracy performance for both
datasets is observed when we selectively consider only the
top-2 problematic subgroups (last row of the second block
in both tables). Furthermore, the model also exhibits the
lowest highest divergence (∆−

max) and the lowest average
divergence for the top-10 (∆−

avg−10), top-20 (∆−
avg−20), and

top-50 (∆−
avg−50) subgroups with the highest negative diver-

gence. These findings suggest that an appropriate selection of
a smaller set of samples can lead to significant performance
improvements, both at the overall and subgroup levels.

As we increase the number of problematic subgroups for
which we acquire data (i.e., K=3, 4, and 5), we notice a slight
decrease in performance compared to K=2; the performance
is nevertheless significantly better than the one of the origi-
nal model (first row of the tables) and the one obtained when
adding all available data (last row of the tables).

We observe a different trend in the overall average ab-
solute divergence (|∆avg−all|). The lower is |∆avg−all|, the
more the model shows less performance disparities across the
subgroups. The lowest |∆avg−all| is consistently found for
both datasets and models when K=5. This is intuitive, as
adding more samples allows the model to address more prob-
lematic subgroups simultaneously. On the other hand, being

the improvement more distributed across subgroups, we have
the lowest improvement for the highest negative divergence.

6. CONCLUSIONS

We investigated a novel data acquisition approach to improve
the performance of end-to-end speech models. Our results
show that less data, acquired with the guide of subgroup di-
vergence, can lead to higher performance than more data, in-
discriminately acquired. Our approach outperforms the base-
line methods both overall and at the subgroup level.
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