ABSTRACT
As speech processing moves toward more data-hungry models, data selection and acquisition become crucial to building better systems. Recent efforts have championed quantity over quality, following the mantra “The more data, the better.” However, not every data brings the same benefit. This paper proposes a data acquisition solution that yields better models with less data – and lower cost. Given a model, a task, and an objective to maximize, we propose a process with three steps. First, we assess the model’s baseline performance on the task. Second, we use efficient mining techniques to identify subgroups that maximize the target objective if acquired first as new samples. Being the subgroups interpretable, we can determine which samples to acquire. Third, we run incremental training sampling from those subgroups. Experiments with two state-of-the-art speech models for Intent Classification across two datasets in English and Italian show that our method is significantly better than random or complete acquisition and clustering-based techniques.

Index Terms— spoken language understanding, data acquisition, data markets, divergence

1. INTRODUCTION
Data has become increasingly important in building high-performing speech models. Deep learning-based speech models are data-hungry, relying on large amounts of data for effective training and optimization. Consequently, data selection and acquisition become critical to building better systems.

The default strategy is to prioritize the data volume, with the idea that the more data is used for training, the higher the performance of the resulting model. This strategy works up to a point, but has pitfalls with respect to model fairness, and, interestingly, even with respect to performance. For example, one may acquire data for already well-represented and modeled sub-populations, bringing little if any improvement to those sub-populations, and worsening the performance on sub-populations that tend to be under-represented in training data. More data does not entail better data. More data also means more cost in data collection, labeling, training, and verification. We show that for model improvement, a targeted data acquisition strategy aimed at compensating a model’s weaknesses can work better than an indiscriminate strategy.

Specifically, we consider the problem of improving the quality of a trained model via data acquisition. We propose a divergence-aware acquisition approach, in which we leverage the techniques of [1] to automatically identify data subgroups on which model performance is inferior to the average. As the subgroups are interpretable, we propose to use them to guide data acquisition.

Previous data augmentation strategies generally rely on either a fixed set of user-defined subgroups, or on automatically created, but non-interpretable, subgroups. The former approach may miss unexpected problematic subgroups; the latter can be used to guide data augmentation but not data acquisition. In contrast, our approach can autonomously discover that a model struggles with, for example, utterances of women over 60 and guide data acquisition accordingly.

We assess the proposed divergence-guided acquisition on two models across two Intent Classification datasets in English and Italian, and we show that our proposed acquisition approach leads both to better performance, and better performance across subgroups (that is, model fairness) compared to an indiscriminate acquisition strategy. Further, we show that the advantage of the divergence-guided approach persists even when we acquire data that is a subset of that acquired by the indiscriminate strategy.

2. RELATED WORK
Prior works addressing data acquisition in speech generally focus on the diversity and robustness of the data, tackling the challenges from linguistic variations, recording conditions, environment, and demographics [2]. The considered groups are user-defined and known a priori. In contrast, our approach can discover problematic subgroups automatically, by exploring how model performance varies across combinations of interpretable attributes.

Given a set of groups of interest, recent work addressed the question of how many data samples from each group we should acquire to improve model performance by leveraging learning curves [3, 4]. The work in [5] automatically groups data by clustering speaker embeddings and identifies the clusters that exhibit speaker embeddings and identifies the clusters that exhibit superior performance for a given model. Data
augmentation considers data samples close to the problematic clusters. However, these clusters, unlike our subgroups, are not interpretable. Subgroup interpretability is key for data acquisition. Interpretable subgroups allow the selection and acquisition of the required data from data vendors, or the planning of appropriate data acquisition strategies. Non-interpretable subgroups only allow filtering already-available data, e.g., by feeding it into an embedding model.

An approach that is close, and complementary, to ours is [6], which also proposes the automatic identification of subgroups defined by attribute combinations. Their work extracts subgroups that are under-represented in the training data and identifies the least amount of data to acquire to achieve adequate coverage. In contrast, we focus on identifying subgroups on which the model under-performs, so that more data can be acquired to specifically address this issue. Naturally, the two approaches can be used jointly.

3. METHODOLOGY

Our strategy to identify the subgroups with which the model struggles, and acquire data accordingly, entails two steps: (i) automatic under-performing subgroup detection, and (ii) divergence-aware data acquisition.

Automatic under-performing subgroup detection. Consider a set of labeled utterances and a speech model of interest. As a first step, we annotate the utterances with metadata. Metadata describe the utterances by means of interpretable features, such as demographic information of the speaker (e.g., gender, age, origin) and speaking and recording conditions (e.g., noise level, speaking rate, audio sample duration). It may be either already available in the dataset, or automatically derived [7] from utterances.

A subgroup is a subset of the utterances sharing the same metadata. We represent a subgroup as a conjunction of attribute-value pairs. For example, \{gender=female, age>60\} denotes the utterances of women with more than 60 years. Subgroups may overlap: for example, the previous subgroup overlaps with \{gender=female\}.

Once the utterances are annotated, we use DivEXPLORER [1, 8] to extract all subgroups over metadata with adequate representation and estimate their model performance. By setting a frequency threshold, we ensure that the subgroups contain enough data instances to make the performance evaluation statistically significant. For each subgroup, we define its divergence \(\Delta\) as the difference between the performance on the subgroup, and the performance on the entire dataset [1, 9]. Consider, for example, accuracy as a performance measure, and let \(S\) be a subgroup. A negative divergence in accuracy, denoted as \(\Delta_{acc}(S)\), denotes a worse performance of the subgroup than the overall performance, and the lower the divergence, the more the model struggles in modeling it.

Divergence-aware Data Acquisition. Once assessed the performance of a given speech model, we aim to perform a data acquisition that may improve it, both in terms of overall performance, and across subpopulations. Here, we focus on accuracy as a performance measure, but other performance measures could be applied.

We let \(S^-\) be the set of critical subgroups, consisting of the subgroups that have negative divergence. Our subgroups have the key feature of being interpretable. Hence, we can target the acquisition of data samples with characteristics of the identified challenging subgroups.

We perform a pruning step to reduce redundancy among the critical subgroups, following the pruning approach defined in [1]. In this pruning, given a subgroup \(S_a\) and a subgroup \(S_b\) that includes \(S_a\) and another metadata condition, we only keep the more general \(S_a\) if the absolute difference in the divergence of the two subgroups is lower than a predefined threshold. The idea is that \(S_a\) already represents the divergence of \(S_b\), as the additional features of \(S_b\) affect only slightly the divergence. For example, if the subgroup \{young,woman\} has divergence -0.39, and \{young, woman, utterance>10s\} has divergence -0.41, we keep only the former subgroup, as it accounts for most of the divergence of the latter. Pruning the critical subgroups results in a more concise representation, and facilitates data acquisition, as we can focus on the most relevant attributes.

We target for performance improvement the top-\(K\) summarized critical subgroups with the highest negative divergence, by acquiring data belonging to these subgroups. Specifically, we retrain the model with the addition of new data that belongs to one or more of the \(K\) subgroups (as subgroups can overlap, the same data instance can belong to more than one top-\(K\) subgroup). Thus, the parameter \(K\) allows us to control the data acquisition process. Our experiments will illustrate how the choice of \(K\) affects overall model performance as well as subgroup-specific performance.

4. EXPERIMENTAL SETUP

We split our datasets into training, validation, held-out, and test sets. We use the same validation and test sets as in the original dataset. We split the training set, using 80% of it for training, and 20% held out. We use the validation set to identify the critical subgroups. We then acquire data samples from the held-out set and we retrain the model including the new samples. Finally, we evaluate the model performance, overall and on subgroups, using the test set. The code used in the paper can be found in [10].

Datasets. We evaluate our targeted acquisition approach on two datasets: Fluent Speech Commands (FSC) [11] for the English language and ITALIC [12] for Italian. FSC contains 30,043 utterances from 97 speakers, each with three labeled slots (action, object, location), which combined define the intent. ITALIC has 16,521 audio samples from 70 Italian
We evaluate the effectiveness of our method (K = 20, and 50 subgroups with the highest negative divergence), as well as the average absolute divergence across all identified subgroups (|Δavg—all|).

Baselines
We evaluate the effectiveness of our approach against two baseline approaches. The first baseline draws inspiration from [5] and employs an unsupervised clustering approach. For the baseline, we extract acoustic embeddings from the audio samples and group them into clusters. We select the clusters with the poorest performance and acquire the data points closest to those clusters from the hold-out set. Note that these clusters lack interpretability since the chosen data points are not selected based on annotated metadata, e.g., “utterances of young men speaking slowly”, but rather on the distance measured in the embedding space. Thus, this technique can be used to select data samples from an available dataset, but it cannot be used to guide data collection or data acquisition. Given the specific characteristics of our datasets, we empirically determined that 20 clusters adequately capture the speech characteristics for FSC, while we used 10 clusters for ITALIC. Additional discussions on the cluster number are available in our project repository [10]. The second baseline approach involves adding instances selected at random from the held-out data set to the training data.

Experimental setting
For our approach, we acquire all the samples in the held-out set sharing the same metadata of the K critical subgroups. For the clustering-based baseline, we include in the training all the samples of the held-out set that have as closest-cluster one of the K clusters selected for improvement. This yields more data than with our targeted acquisition strategy (due to the narrowness of the latter). We compare targeted acquisition vs. clustering-based baseline both by allowing the clustering-based baseline to benefit from more data, and by assuming that targeted acquisition and clustering baseline can acquire the same amount of data. For the random baseline, we test two configurations, in which we randomly acquire 10 samples equal to the one acquired (i) with our technique and (ii) with the clustering one. We also report the results when we acquire all held-out data.

| K | Approach | #samples | Accuracy | F1 Macro | Δ_max | Δ_avg−10 | Δ_avg−20 | Δ_avg−50 | |Δ_avg—all|
|---|---------|----------|----------|----------|-------|----------|----------|----------|----------|
| - | original | - | 91.60 ± 0.08 | 86.34 ± 0.13 | -70.09 ± 0.26 | -70.09 ± 0.26 | -65.73 ± 0.49 | -53.51 ± 0.19 | 1.06 ± 0.07 |
| | random | 460 | 92.60 ± 0.27 | 91.76 ± 0.36 | -54.26 ± 1.14 | -53.93 ± 1.17 | -53.24 ± 1.12 | -52.37 ± 0.55 | 0.86 ± 0.06 |
| | random | 226 | 92.56 ± 0.44 | 90.25 ± 0.60 | -52.20 ± 2.57 | -51.11 ± 2.19 | -46.61 ± 1.34 | -43.98 ± 0.68 | 0.97 ± 0.02 |
| 2 | clustering | 460 | 92.94 ± 0.07 | 90.82 ± 0.19 | -51.81 ± 0.86 | -51.22 ± 0.92 | -49.99 ± 0.10 | -48.52 ± 0.11 | 1.24 ± 0.09 |
| | clustering | 226 | 89.77 ± 0.88 | 87.02 ± 0.15 | -47.37 ± 0.42 | -47.34 ± 0.42 | -47.23 ± 0.43 | -46.75 ± 0.91 | 0.94 ± 0.04 |
| | ours | 226 | 96.55 ± 0.08 | 94.71 ± 0.12 | -40.60 ± 0.35 | -40.28 ± 0.36 | -38.08 ± 0.36 | -37.22 ± 0.28 | 0.81 ± 0.03 |
| | random | 874 | 92.21 ± 0.49 | 90.30 ± 0.55 | -64.72 ± 3.07 | -62.10 ± 2.49 | -56.56 ± 2.32 | -51.57 ± 1.88 | 0.38 ± 0.06 |
| | random | 382 | 94.13 ± 0.58 | 91.51 ± 0.82 | -52.99 ± 3.40 | -51.92 ± 3.02 | -49.39 ± 2.21 | -45.98 ± 1.78 | 0.33 ± 0.04 |
| 3 | clustering | 874 | 94.47 ± 0.44 | 92.23 ± 0.45 | -47.33 ± 0.33 | -45.83 ± 0.16 | -42.73 ± 0.21 | -39.72 ± 0.49 | 0.32 ± 0.03 |
| | clustering | 382 | 90.03 ± 0.97 | 85.30 ± 0.94 | -46.40 ± 0.36 | -45.02 ± 0.33 | -41.59 ± 0.28 | -37.79 ± 0.16 | 0.81 ± 0.02 |
| | ours | 382 | 93.62 ± 0.29 | 92.96 ± 0.46 | -42.23 ± 0.12 | -42.21 ± 0.11 | -41.48 ± 0.11 | -33.61 ± 0.07 | 0.22 ± 0.02 |
| | random | 1046 | 91.31 ± 0.98 | 89.48 ± 0.52 | -61.85 ± 1.58 | -60.72 ± 1.28 | -58.08 ± 0.86 | -54.83 ± 1.00 | 1.19 ± 0.03 |
| | random | 422 | 96.24 ± 0.27 | 91.29 ± 0.21 | -55.83 ± 2.11 | -55.71 ± 2.04 | -51.41 ± 1.74 | -45.41 ± 1.74 | 0.39 ± 0.02 |
| 4 | clustering | 1046 | 93.28 ± 0.19 | 91.42 ± 0.18 | -52.28 ± 0.63 | -51.08 ± 0.58 | -48.65 ± 0.40 | -45.35 ± 0.44 | 0.85 ± 0.09 |
| | clustering | 422 | 87.72 ± 0.71 | 83.42 ± 0.48 | -47.59 ± 0.25 | -46.98 ± 0.21 | -45.69 ± 0.12 | -43.98 ± 0.09 | 0.72 ± 0.03 |
| | ours | 422 | 95.16 ± 0.11 | 92.47 ± 0.22 | -45.68 ± 0.24 | -44.56 ± 0.25 | -41.53 ± 0.24 | -37.02 ± 0.20 | 0.15 ± 0.01 |
| | random | 1276 | 92.01 ± 0.49 | 91.00 ± 0.65 | -67.77 ± 1.96 | -66.94 ± 1.55 | -65.31 ± 1.23 | -62.69 ± 1.19 | 0.48 ± 0.03 |
| | random | 509 | 91.48 ± 0.55 | 90.27 ± 0.49 | -54.82 ± 3.41 | -54.71 ± 3.29 | -54.69 ± 3.11 | -51.12 ± 2.25 | 0.96 ± 0.08 |
| 5 | clustering | 1276 | 92.75 ± 0.21 | 90.66 ± 0.22 | -61.04 ± 0.19 | -60.84 ± 0.24 | -57.84 ± 0.18 | -49.72 ± 0.11 | 1.33 ± 0.01 |
| | clustering | 509 | 91.44 ± 1.41 | 87.92 ± 1.38 | -51.92 ± 0.19 | -51.90 ± 0.24 | -49.79 ± 0.18 | -43.39 ± 0.11 | 0.45 ± 0.03 |
| | ours | 509 | 94.12 ± 0.13 | 92.67 ± 0.16 | -49.33 ± 0.15 | -49.29 ± 0.12 | -48.11 ± 0.21 | -39.01 ± 0.11 | 0.11 ± 0.02 |
| | all data | 4606 | 93.42 ± 0.17 | 93.11 ± 0.17 | -53.18 ± 0.15 | -50.89 ± 0.09 | -45.61 ± 0.14 | -40.37 ± 0.16 | 0.37 ± 0.01 |

Table 1. Mean and standard deviation with three different runs for FSC dataset, wav2vec 2.0 base model. We compare the results for the original fine-tuning procedure, the two baselines (random and clustering-based) and our divergence-aware strategy. Best results for each number of considered subgroups K are highlighted in bold. Results overall are underlined.
5. RESULTS AND DISCUSSION

Tables 1 and 2 compare the results of our approach and the baseline methods. Our targeted acquisition approach consistently demonstrates superior performance in terms of accuracy, F1 score, maximum divergence, and average divergence.

The best F1 score and accuracy performance for both datasets is observed when we selectively consider only the top-2 problematic subgroups (last row of the second block in both tables). Furthermore, the model also exhibits the lowest highest divergence (Δ_{max}^{-}) and the lowest average divergence for the top-10 (Δ_{avg-10}^{-}), top-20 (Δ_{avg-20}^{-}), and top-50 (Δ_{avg-50}^{-}) subgroups with the highest negative divergence. These findings suggest that an appropriate selection of a smaller set of samples can lead to significant performance improvements, both at the overall and subgroup levels.

As we increase the number of problematic subgroups for which we acquire data (i.e., $K=3$, 4, and 5), we notice a slight decrease in performance compared to $K=2$; the performance is nevertheless significantly better than the one of the original model (first row of the tables) and the one obtained when adding all available data (last row of the tables).

We observe a different trend in the overall average absolute divergence ($|\Delta_{avg-alt}|$). The lower is $|\Delta_{avg-alt}|$, the more the model shows less performance disparities across the subgroups. The lowest $|\Delta_{avg-alt}|$ is consistently found for both datasets and models when $K=5$. This is intuitive, as adding more samples allows the model to address more problematic subgroups simultaneously. On the other hand, being the improvement more distributed across subgroups, we have the lowest improvement for the highest negative divergence.

6. CONCLUSIONS

We investigated a novel data acquisition approach to improve the performance of end-to-end speech models. Our results show that less data, acquired with the guide of subgroup divergence, can lead to higher performance than more data, indiscriminately acquired. Our approach outperforms the baseline methods both overall and at the subgroup level.

7. ACKNOWLEDGMENTS

This work is partially supported by FAIR - Future Artificial Intelligence Research (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013), the spoke “FutureHPC & BigData” of the ICSC - Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing, both funded by the European Union - NextGenerationEU, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (No. 949944, INTEGRATOR). This manuscript reflects only the authors’ views and opinions, neither the European Union nor the European Commission can be considered responsible for them.
8. REFERENCES

