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ARTICLE INFO ABSTRACT

Keywords: The optimization of industrial products and processes has been, since the beginning of the third industrial

Crankshaft revolution, a fundamental aspect of the design phase as it allows, together with the testing and validation

Balancing L phases, the improvement of the performance or efficiency of what has been designed. Optimization is also

S[e‘;?itrg optimization applied to the counterweights of the crankshafts that ensure the balancing of the forces and moments
ulti-body

generated by internal combustion engines during their regular use. Traditionally, this process is carried out,
at the preliminary stage, in an analytical way, using specific formulas for each engine configuration. This
approach, however, allows the identification of only the macro-parameters of the counterweight, i.e. mass
and position of the center of gravity, leaving the designer the translation into technical drawing of the
result of the optimization. Thanks to the increase in computational power obtained in recent decades and
the interconnection of systems, typical of Industry 4.0, this work intends to propose a new methodology for
optimizing counterweights, based on a two step approach, able to identify the best solution not only in terms

of macro-parameters, but also of the specific dimensional parameters of the counterweight.

1. Introduction

Today’s industrial reality is constantly looking for products and
solutions that allow us to better meet customer demands. This is
equally true for the automotive industry, which seeks to refine even
the smallest detail to improve the performance and quality of its
products [1]. One of these aspects is certainly the balancing of the
crankshafts of internal combustion engines, a highly complex process
that is difficult to carry out in the preliminary stages of develop-
ment [2,3]. However, making a crankshaft as balanced as possible is
extremely important: in fact, a good balance allows to greatly reduce
the vibrations generated by the engine itself, improving passenger
comfort [4]; in addition, it is possible to reduce the deformations
induced on the shaft, ensuring a reduction in friction between moving
components [5-7] and, consequently, an increase in the efficiency
of the powertrain and a reduction in surface wear [8-10]. For this
reason, it is imperative to identify new development methodologies,
which allow to advance the design of balancing counterweights, the
most used component to balance the crankshafts [11,12], to a more
preliminary phase of engine development. This would pave the way
for a faster and more flexible development process, as development
time and costs tend to increase exponentially as the [13] project
progresses. In fact, balancing procedures tend to be a very late-design
phase, employing experimental procedures and on-product testing to
find the correct balancing configuration. For instance, the influence
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coefficient balancing method [14] employs trial masses to identify
an influence matrix, based on experimental measurements obtained
through the in-place balancing procedure [15], from which a set of
correction masses is identified. The same could be said for the modal
balancing procedure [16], which analyses one mode at a time of the
rotor system to find trial balancing masses to then test them in an
experimental environment. Even a more complex approach, like the ap-
plication of the least-square method for balancing optimization [17] is
based on experimental testing. Meanwhile, more numerical approaches
usually consider balancing masses just as point-masses, and rarely are
developed for a wide variety of engine architecture [18-20]. The aim
of this contribution is therefore to propose a new method for the
development of counterweights. It is based on numerical script for the
computation of the forces and moments generated by a crankshaft and a
simplification of the geometry of the balancing counterweights, which
is expressed as a function of a set of independent design parameters.
This characterization enables the execution of an optimization process
that evaluates the best solution in terms of mass, size and balancing.
Optimization techniques are commonly employed in the industrial field
and allow to find the best solution to a certain problem [21-24]. This is
very in line with what the current contribution aims at achieving, since
obtaining an optimized counterweight geometry allows to maximize
its balancing capability and limiting at the same time the additional

E-mail addresses: eugenio.brusa@polito.it (E. Brusa), alberto.dagna@polito.it (A. Dagna), cristiana.delprete@polito.it (C. Delprete), chiara.gastaldi@polito.it

(C. Gastaldi).

https://doi.org/10.1016/j.jestch.2024.101657

Received 3 August 2023; Received in revised form 13 February 2024; Accepted 19 February 2024

Available online 23 February 2024
2215-0986/© 2024 The Authors.
(http://creativecommons.org/licenses/by/4.0/).

Published by Elsevier B.V. on behalf of Karabuk University This is an open access article under the CC BY license


https://www.elsevier.com/locate/jestch
https://www.elsevier.com/locate/jestch
mailto:eugenio.brusa@polito.it
mailto:alberto.dagna@polito.it
mailto:cristiana.delprete@polito.it
mailto:chiara.gastaldi@polito.it
https://doi.org/10.1016/j.jestch.2024.101657
https://doi.org/10.1016/j.jestch.2024.101657
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2024.101657&domain=pdf
http://creativecommons.org/licenses/by/4.0/

E. Brusa et al.

masses that must be applied to the crankshaft. Such process will be
done through a preliminary integration of simulation tools, which will
provide a faster and more intuitive development infrastructure for the
designer, which includes both the geometric characterization of the
counterweight and the definition of its configuration on the crankshaft,
and the optimization of its parameters. The tools that will be used for
this purpose are the following:

+ MATLAB®, for calculating the geometry of the counterweight and
its forces and balancing moments;

» DAKOTA, specialized in the implementation of optimization algo-
rithms [25].

Due to the multiple phases of an engine development, it is quite
improbable that a counterweight design proposed at the preliminary
stage, where the dimensions, the tolerances and even the architecture
are not finalized, will be the definitive one. Therefore, the optimization
phase will be presented as a two-step process: first, a more flexible
optimization will be described, suitable for an initial analysis and
capable of identifying multiple solutions, and then a more stringent
optimization, aimed at finding the best possible design. Such opti-
mization process will be applied to a relevant case study, with the
addition of multi-body simulations to reproduce the dynamic behavior
of the balanced crankshaft, that will help in verifying the capabilities
of the methodology and identifying the pros and cons of different
optimization algorithms.

2. Methodology

The crankshaft of an internal combustion engine transmits the
translational movement generated by the pistons to the wheels in the
form of a rotary motion, thus allowing the movement of the vehicle.
The complex kinematic chain that characterizes the crankshaft involves
many forces. The inertial translational forces are due to the translating
masses, which include the pistons and a part of the connecting rods,
while the centrifugal forces are due to the rotating masses, which
include most of the connecting rods and their pins. Such forces, given
their cyclic nature, create deformations of considerable importance on
the shaft, which should maintain a perfect rotation around its axis.
Due to these deformations, the shaft may incur in a reduced operating
life and vibrations of high intensity may be transmitted to the entire
vehicle, reducing the comfort of the occupants.

2.1. Counterweight definition

In order to reduce deformations, the forces and moments acting on
the crankshaft must be countered with equal and opposite equivalents.
In the case of centrifugal forces, the main topic of this memory, each
crank generates a force equal to:

F,=m, o r @

rot

where m,,, is the rotating mass, given by the sum of the rotating masses
of the connecting rod, connecting rod pins and cranks, w the speed of
the motor, r the crank radius.

This force is always equal in absolute value while the direction
changes continuously. The best way to counteract these forces is to
apply balancing counterweights, as shown in Fig. 1.

Counterweights are placed so that their mass, having a center of
gravity at a certain distance from the axis of rotation, generates a
resulting centrifugal force equal in amplitude and opposite in direction
to that of the shaft itself. The centrifugal force of each counterweight
can thus be expressed as:

FCM) = mL‘LU w2 yEl,U (2)

where m,,, is the mass of the counterweight and y,,, the distance of its
center of gravity to the axis of rotation of the shaft.
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Fig. 1. Crankshaft example [26], with corresponding parts.

>

Fig. 2. Geometric characterization of a generic counterweight.

Since the rotational velocity w of the shaft is fixed, the designer
may act on the mass m,, and the center of gravity position y,,. In
order to achieve this goal, it is necessary, first of all, to characterize
the geometry of the counterweight section. Given its complex shape,
it is convenient to divide the cross-section into elementary geometric
areas, as shown in Fig. 2.

The area of each section is derived from the following equations:

a, a
A =R, ( ae s1n—cosﬂ>—

2 2 2
"o (izw - u) &)

Ay = (r, +lcw)|lcw|tan5 ( Vcw cos chw)
e <A§w s @
As = Uaahoy = iy + 1oy (55 —sin 5 cos B2 ) ®)
o = et S e o

where the different geometric quantities are indicated in Fig. 2.

The area highlighted in red is a constituent part of the crankshaft
and is therefore considered as an input of the optimization, as a result
rap @nd t,, may be considered as project parameters. Instead, /.,
derived via Eq. (6), is an additional parameter that helps define the
geometry of the counterweight. From the values obtained from the
Eq. (3), (4) and (5), the total area of the counterweight cross-section
can be expressed as:

Ay =A| + Ay + Az @)
from which its mass is obtained:

= Acwtcw/’ ®

cw
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where p is the density of the counterweight.
Once the value of the areas has been calculated, it is then possible
to determine the position of the center of gravity of each area:

1 Aoy .
y = ™ {R3M< Lzu — sin 22 2 © s 2 )[hcw+|lm|tdn§m

3
< , sin e )

@,

cw
Rcwcos + - - - -
12R? ( €0 sin £ cos ‘“’)

2
3
2 - Aew
grzw <sm %) 9

1
y, = ™ {@rep + Il tan 8, [Aey + 11| tan 8., —

e 0 8 By + o) Yew ' _ (i P )’
32 oy + o) 3 ACEICE a0

2 {3 (22 Lawy3
- (hcwrcw) [rtwlgj 3(sm o ) )] an

from which it is then possible to evaluate the position of the center of
gravity of the whole counterweight:

_ VIA Ay + y3A3

= 12
Yew A+ Ay + A a2

Finally, it is possible to derive the two angular parameters A and y
that appear within the equations from (3) to (12):

_ —1  hr+ll .l tané,, .
hewy = 20057 (Pl W00 ) 5 st (8) < e

) 13)
Ao =0 if By + el tan (8.,) > rep

Yew = 20571 (h”"> if hey <rey

cw

w=0 if hey > Few

14

From the Egs. (3) to (14), it is clear that the independent parameters
are only 5: R.,,, h.,» teys ., and é.,. These, therefore, are the only
parameters that an optimization algorithm should modify in order to
find the best geometry for a given crankshaft configuration. These
equations have, however, been implemented in a MATLAB® script,
which calculates all the remaining variables for each set of independent
parameters.

2.2. Optimization setup

The fact that a crankshaft, and more generally an internal com-
bustion engine, can have very different configurations and geometries
makes it very difficult to find an optimal solution for balancing. In fact,
as the number of cylinders, their arrangement, the order of ignition and
the geometric parameters vary, the configuration and the number of
counterweights to be applied also change. A MATLAB® tool, dedicated
to the evaluation of the optimal counterweight to balance different
crankshaft configurations has been presented in [27,28]. This tool is
based on a matrix approach that identifies where and how to place
counterweights on the crankshaft and calculates the individual force
and moment contributions of all rotating and translating elements.

The tool evaluates how a certain geometry of the counterweights
behaves with a view to balancing the crankshaft, automatically carry-
ing out all the necessary calculations. These calculations include the
evaluation of the maximum radial size of the counterweight, which
allows the optimized geometry to respect the dimensions dictated by
the architecture of the internal combustion engine, and the balancing
percentages, both for forces and for moments. These percentages are
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environment
tabular_data
tabular_data_file "tabular.data"
output_file "dakota.out”
error_file "dakota.err"
write_restart "dakota.rst"
results_output

hdf5
method
id method "methodl™
moga
model pointer "modell"
max_iterations = 150
max_function_evaluations = 5000
convergence tolerance = 0.1
model
id model "modell"™
single

interface pointer "interfacel”
variables_pointer "variablesl"
responses_pointer "responsesl”

variables

id variables "variablesl"

active
design

continuous_design 5
initial point 100 25 7.5 90 22.5
lower_bounds 0 0 5 0 0
upper_ bounds 200 50 12.6 180 45
descriptors "R_cw" "h_cw" "t_cw" "alpha_cw" "delta_cw"

interface
id interface "interfacel"
analysis drivers "CW_driver.py"”

parameters file = 'params.in'
results_file = 'results.out'
system
file_save
asynchronous
work directory directory_tag directory_save named 'workdir'
copy files = 'templatedir/*"'
evaluation concurrency = 4
responses

id responses "responsesl"
descriptors "m cw" "R cw_min" "K bilF" "K bilM"
objective_functions 2
sense "minimize"
nonlinear_inequality constraints 2
lower_bounds 90 90
upper_bounds 100 100
no_gradients
no_hessians

Fig. 3. Dakota file for setting up parsing.

fundamental in the optimization process as they assess how effective a
certain counterweight configuration is in balancing the shaft, without
imposing a fixed balancing performance that would be difficult for an
algorithm to respect.

Once the numerical simulation of the counterweight geometry has
been defined, the next step involves the formulation of the optimiza-
tion. This phase was implemented through the open-source Dakota
software, developed by Sandia Laboratories, which allows to carry
out a multitude of analyses, including parametric studies, Design of
Experiments and optimizations. The latter is the feature that has been
deepened here.

The logic of operation of Dakota is quite simple: it is based on the
creation of a file that defines the settings of the analysis, of which an
example is given in Fig. 3.

It can be noted that the file is divided into six sections, each
dedicated to a certain function; the most relevant for the analysis are:

» method, defines the nature of the analysis to be carried out, the
solver and its parameters;

» variables, defines the type and numerical limits of each variable
involved in the analysis;
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Start Input Insert
Optimisation Y'Y parameters parameters into
0 generation script

[Simulation script]
launch

Script
execution

Numerical results
extraction

|
NO m YES Stop
! ’ Optimisation

Fig. 4. Optimization loop followed by Dakota.

Table 1
Analysis input parameters with their respective limit values.
Parameter R, [mm] h,,, [mm] t,, [mm] a,, [deg] 8. [degl
MIN 0 0 5 0 0
MAX 200 50 12.6 180 45
Table 2
Constraint variables with their respective limit values.
Parameter R o iy [mm] Ky r [%] Ky [%]
MIN 0 90 90
MAX 75 100 100

« interface, defines the files useful for the analysis, including the
“driver”, which acts as a link between Dakota and the simulation
code;

» responses, specifies response variables, including any constraints.

Particular attention must be paid to the definition of the “driver”.
This file, in fact, is directly responsible for the pre-processing, sim-
ulation code launch and post-processing phases. The pre-processing
phase consists in replacing the input parameters (in the case presented
here, the 5 parameters previously indicated) with values generated by
Dakota, based on the constraints imposed and the analysis settings
defined by the user, within the simulation code. The file will continue
to launch the code itself, and then will retrieve and store the simu-
lation results for a certain set of inputs. Finally, the post-processing
will collect the results in a file readable by Dakota, used to assess
whether the study is proceeding and if the results are respecting the
constraints imposed. The driver for counterweight optimization consists
of a Python script, which, using well-defined commands, is able to
modify the original MATLAB® code, launch it, and collect the results.
Fig. 4 shows a representative diagram of this process.

It is possible to notice that different stages of optimization are han-
dled by different files, with the Dakota input file acting as a “master”.It
is also possible to observe how the optimization is regulated by “Ex-
ploration Criteria”: these are parameters that allow Dakota to evaluate
the goodness of the analysis. The primary criterion is optimization
convergence, which is different for individual algorithms, but a limit
on the number of iterations the code can perform may also be set.

Once all these aspects of optimization are established, the input
file must be prepared so that Dakota can perform the desired analysis.
First, it is crucial to indicate which optimization algorithm to employ,
many of which are already native to Dakota. Due to its importance, this
topic will be discussed later. The input parameters and the maximum
and minimum values for each of them were then defined, as reported
in Table 1. Similarly, the limits for the constraint variables, reported
in Table 2, may be defined according to prior knowledge on the case
study.

The variables K, r and Kj; ,, are defined as the balancing per-
centages of forces and moments respectively. They are derived by the
following equations:

F,

cw,res

Kyip = -100 (15)

cs,res

M

Ky = —=22.100 16)
" Mcs,res

where F,, ., and F, ., are the resulting force of the counterweights

and crankshaft, respectively, found as the sum of their respective x and

z components, as follows:

Fcuures = Fc2w,x + Fc2w,z ch,res = FCZS,X + ng,z a7)
where:
2Ner .
Fepx = Z,‘=1 mcwwzycwcw(laj)
2N, ) 18
ch,z = Zj:fr My, @ ycwCW(?’,j)
Ner ) ,
ch,x = Z,‘:] m,, @0 rCS(1,1) (19)
N, ,
Frsz = X, mu@?rCS(3,i)
while M, ., and M, are the resulting moment of the counter-

weights and the crankshaft, respectively, found in a similar manner:

M, =4/M2 + M:? M, =4/M2 _+ M? (20)

cw,res cw,x cw,z cs,res cs,x cs,z

where:

2N, . .
Moy = X2t Mew® Ve CW (L )HYCW (2. )

-~ . @D
My, = Zj=1" M, @Y,y CW 3, JCW (2, )

N, ) .
Mcs,x = Zi:l mrothrcs(]’ l)CS(27 1) (22)

M. = 37 my@?rCS(3,)CS(2.1)
In these equations, two terms can be seen, C.S and CW: they
represent the orientation matrices of the cranks and the counterweight,
respectively, of the crankshaft. They are composed by 3-component
vectors, one for each crank/counterweight, defined as follows:

CS(1,N,,) = [sin(@ + (i — )]
CSQ.Npp) =[Ny, = Da - P=a] @23)
€SB, Ny,) = [cos(0 + (i — )]

CW,j) = [5in(0 + (i — D + @)(=N,,,)

CWQ,j)= H(Nfo ~Da- “V—z‘”a] + ‘r] (N.,) (24)
CW@3,j)=I[cos(0+ (- 1+ a)l(—N,,)

where 7 = a/4 for j = 2i and © = —a/4 for j = 2i — 1, a is the distance
between cylinders axis, 0 is the crank angle, ¢ is the phase between
cranks, N, is the cylinder number based on the firing order, « is the
angle offset between counterweight and crankpin, N, is the number
of cranks, N, is equal to 1 if the crank-web has a counterweight,
otherwise is zero Finally, 1 <i < N, € Nand Vi N, = Y,,(j) with
j=2i—1Aj=2i

It can be noted that the values imposed for the balancing per-
centages of forces (K, r) and moments (K, )) are between 90%
and 100%: this will lead to a close-to-ideal shaft balance, allowing
acceptable algorithm calculation times. If a value of 100% were to be
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imposed, as already mentioned, the algorithm would have considerable
difficulty converging to a solution. The maximum radial dimension
R,y min> ON the other hand, has been imposed to avoid interpenetration
with the pistons. It is defined as:

_ top id
Rcw,min - MAX(Rcw,min’ Rilw,em[n) (25)
where R’C‘Z’, nin A0d Ri’;j‘in ., are derived from:
Ay
RO = hoy + L] tan(3,) + [Rcw (1= cos e )] (26)
R = A U+ re + Uy + e tan 8, @)

Another important information to be specified in the Dakota file is
the actual objective of the analysis. As a general rule, the most common
objectives in the counterweight design is to minimize its mass and/or
its radial dimension. Therefore, two possible optimization problems can
be defined:

min [mcw(Rcw’ hcw’ Tews ews (scw)] (28)

min [mcw(Rcw’ htw’ tcw’ Aeyps ﬁcw)’ Rew,min(Rcw’ hcw’ tcw’ Ay 5(‘1,4)] (29)

The problem in Eq. (28) is a single objective problem, where the
mass must be minimized, meanwhile the one in Eq. (29) is a multi-
objective problem, where both the mass and the radial dimension need
to be minimized; as such, in this optimization R is not a constraint
variable as described in Table 2.

The last step in setting up the analysis is to define the configuration
of the crankshaft that must be balanced, inserting in the MATLAB®
script the geometric and mass parameters of the crankshaft and the
other components of the crank mechanism.

cw,min

2.3. Choice of algorithm and approach

As already stated, the design of an engine can go through multiple
phases before the final solution is confirmed. Therefore, it may be
inefficient to perform a full optimization, which is generally time-
consuming, at the very beginning of the design process: in fact, if an
optimized counterweight design is found for a specific early engine
configuration, and then such configuration is modified, the counter-
weight may become incompatible with the current engine, wasting
development time and costs.

Therefore, the approach here proposed is a two-step optimization,
which can help in reducing the discarded incompatible solutions and
improving the flexibility of the design process. The first step involves
the use of multi-objective algorithms, which can be used with an early
configuration of the engine to find a wider range of possible ‘good-
enough’ solutions, thanks to the identification of the Pareto front [29].
The Pareto front, in fact, identifies a series of best possible solutions
based on two objective functions, based on the “weight” assigned to
each one. Thanks to this “front” it is possible to be more flexible
in the counterweight design, since, in case of changes in the engine
architecture or dimensions, another compatible solution on the Pareto
front can be readily identified. To this purpose, two algorithms will be
showcased:

+ MOGA (Multi-Objective Genetic Algorithm) [30];
« PARETO SET [31] with SOGA.

The second step, instead, is a more detail-centered optimization.
With this step, the goal is no longer to have a portfolio of viable so-
lutions to allow for flexibility, but to find the best possible solution for
a certain engine configuration. For this reason, it is important that this
step is carried out only when the configuration is being finalized, since
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Table 3
Numerical results of the extreme and best trade-off solutions obtained through the
MOGA optimization algorithm.

Best m,,, Best R, min Best trade-off

R,, [mm] 61.32 76.09 91.96
he, [mm] 47.16 28.10 47.16
t., [mm] 6.76 10.53 8.98

a,, [deg] 125.46 127.37 84.99
5. [degl 41.26 9.22 25.06
m, [gl 309.7 415.6 345.3
Reipmin [mm] 100.48 76.40 87.37
Ky p [%] 90.39 92.30 90.15
Ky [%] 100 100 100

this optimization uses the final constraints of the architecture to mini-
mize a specific counterweight parameter, usually its mass, that satisfies
the requirements of that engine. For this phase, three single-objective
algorithms were tested:

» SOGA (Single-Objective Genetic Algorithm) [32];
* COLINY DIRECT [33];
« PATTERN SEARCH [34].

The two-step optimization procedure is graphically represented in
Fig. 5. In order to test the approach, a two-cylinder in-line engine with
a crank angle of 360° was chosen a case study. Fig. 6 shows the CAD
of the entire unbalanced crank used for this analysis.

3. Results

With the optimization process laid out, it is now possible to proceed
with the execution of the counterweight optimization, performing the
multi-objective analysis first and then the single-objective one. Each
optimization was carried out on a laptop PC with 8 core 2.3 GHz CPU
and 16 GB of 3200 MHz RAM. The p density of the material was set at
8000 kg/m?3 for each simulation performed.

3.1. Multi-objective optimization

As previously introduced, the first step in designing a counterweight
should be to identify multiple possible solutions, starting from the
initial constraints imposed by the other engine components, in order
to be more flexible in the design process. In this chapter the MOGA
algorithm and then the PARETO SET will be show-cased.

The MOGA algorithm (or Multi-Objective Genetic Algorithm) is the
first method employed to search for the best solutions of the previ-
ously presented problem. In basic terms, MOGA is a genetic algorithm,
meaning that at every iteration it will create a new set of parameters
based on the results of the previous one [30,35]. Being a multi-objective
algorithm, the final results of the optimization will not be univocal, as
can be seen in Fig. 7, since it depends on the bias that each solution
has with respect to each objective function. As a matter of fact, for
the current optimization problem the best solutions found were 17. For
sake of brevity, in Fig. 8 only the geometries of the two “extremes”
and the best trade-off solutions are shown. Additionally, the numerical
results are reported in Table 3.

The geometric characteristics of the three counterweights are mark-
edly different: the one in Fig. 8(a) sacrifices the radial dimension to
reduce the mass of the counterweight, while the one in Fig. 8(b) is the
other way around. Finally, the best trade-off solution shown in Fig. 8(c)
represents a compromise between the two “extremes”.

As previously mentioned, a multi-objective optimization can give
the designer a wider view of the problem, allowing higher adaptability
functional to the ever-changing early design phase. Such flexibility
can be visualized through the Pareto front, which shows the trade-
off trend between the objective functions. Said front for the MOGA
optimization is shown in Fig. 9, derived from the results as reported
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Update on
constraints?

Single-obj.
optimization

Final design

constraints

Fig. 5. Flowchart representing the two-step optimization procedure.

Fig. 6. CAD model of the entire in-line 2-cylinder crank used as a case study, without
counterweights.

0,28 0,33

0,38

0,43 0,48

m,,, [kg]

0,53 0,58 0,63 0,68

Fig. 7. Plot of the radial dimension R
of the MOGA algorithm.

with respect to the mass for the solutions

cw,min

in Fig. 7. The front immediately shows the trend of the objective
functions with respect to each other, demonstrating that a smaller mass
of the counterweight requires a bigger radial dimension and vice versa.
Therefore, if the engine requirements change during development, the
designer can readily make decisions to accommodate them. An impor-
tant aspect to keep into consideration is with regards to the balancing
percentages: in fact, in all simulations, including the ones that will be
described later, Kj; ), = 100% has been obtained. This is due to the
natural balance of a 2-cylinder in-line engine with a 360° phase with
respect to centrifugal moments. Meanwhile, K,; p is always around
90%, due to the constraint on it imposed during the optimizations

< 4
(b) MOGA - Best Rew,min

[ — J
P> |

(c) MOGA - Best trade-off

Fig. 8. Geometries of counterweights obtained through the MOGA algorithm.
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Fig. 9. Pareto front of the best solutions found through the MOGA algorithm.

setup, as explained earlier, causing a tendency to maintain it on near

the minimum value.
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Table 4
Weights assigned to the objective functions for the
PARETO SET optimization.

R(w,mm m(w
Set 1 0.5 0.5
Set 2 0.75 0.25
Set 3 0.25 0.75

(a) PARETO SET - Best 1,

(b) PARETO SET - Best R, min

(c) PARETO SET - Best trade-off

Fig. 10. Geometries of counterweights obtained through the PARETO SET optimization
strategy.

Table 5
Numerical results of the three solutions obtained through the PARETO SET optimization
strategy.

Best m,,, Best R, nin Best trade-off

R,,, [mm] 50.81 62.07 82.07
h,,, [mm] 30.70 10.16 39.91
t, [mm] 11.96 12.11 12.05
a.,, [degl] 157.82 165.04 104.42
3., [deg] 24.09 16.95 4.82

m,, [g] 392.8 482.0 395.1
Reyymin [mm] 79.91 73.27 77.66
Ky p [%] 90.89 93.45 90.02
Ky [%] 100 100 100

The second multi-objective optimization strategy that was tested
was the PARETO SET optimization. This method differs quite a lot
form the previous MOGA algorithm: in fact, the PARETO SET performs
multiple optimization runs, each with different weights assigned to
the objective functions. It then employs a single-objective algorithm to
find the optimal solution, based on the assigned weights. Therefore, an
optimal solution will be found for each set of weights [36].

In the current contribution, the SOGA or Single-objective Genetic
Algorithm was used as the single-objective algorithm, which follows the
same logic as the MOGA but for only one objective function. in order
to contain the optimization time, it was decided to use three different
sets of weights for the two objective function, as reported in Table 4.

From the optimization, the three best solutions were found; in
Fig. 10 their respective geometries are reported, while in Table 5 the
numerical results can be seen.
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Fig. 11. Plot of the radial dimension R
of the PARETO SET strategy.
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Fig. 12. Pareto front of the best solutions found through the PARETO SET optimization
strategy.

We can notice a similar trend to the geometries obtained through
the MOGA algorithm, further confirming the relation between mass and
radial dimension of the counterweights. In this case, however, due to
the low number of optimal solutions found, the Pareto front would
not provide a reliable estimation of the trade-off between objective
functions. In order to circumvent this issue, it is possible to consider
all the solutions found by the optimization and therefore capture the
front from a much bigger set of data. In fact, if the plot R, ,;, Vs.
m,,, of all the found solutions is created, as visible in Fig. 11, a Pareto
front is easily identifiable. Hence, through a dedicated function for
the identification of the Pareto front data points, it was possible to
generate the front for the data obtained from the PARETO SET strategy,
as showecased in Fig. 12.

3.2. Single-objective optimization

Once the multi-objective optimization has been completed, the next
natural step is to perform a single-objective optimization in order to
find the best possible solution for the specific requirements of the
engine development. For this contribution, the optimization of the
counterweight mass has been performed, employing the three algo-
rithm previously introduced. As it will be showcased later, the MOGA
algorithm provided the overall better results in terms of quality. There-
fore, the results of this optimization has been used as the starting point
for the single objective optimization. In particular, the single-objective
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Table 6
Limits on the input geometrical parameters for the single-objective optimization found
form the MOGA optimization.

Parameter R, [mm] h,,, [mm] t,, [mm] a,, [deg] 8. [degl
MIN 62 28 6 84 8
MAX 92 49 11 128 42
1
0,9 .
0,8
0,7
io 0,6
‘_é 0,5
c04
0,3
0,2
0,1
0
0 200 400 600 800 1000 1200
ITERATIONS
(a) SOGA

0
0 200 400 600 800 1000 1200
ITERATIONS
(b) COLINY DIRECT
0,45
04 2. 2
0,35 PP
__ 03
Lo,2s
g 0.2
£ 0,15
01
0,05
0
0 200 400 600 800 1000 1200
ITERATIONS

(c) PATTERN SEARCH

Fig. 13. The solutions found by the three optimization algorithms, with the best
solution found highlighted in red.

optimization has been setup with limits on the geometric parameters
equal to the maximum and minimum values found with the multi-
objective optimization (reported in Table 6) and with the constraint
variables presented in Table 2. In Fig. 13 all the solutions found by the
three algorithms are reported, while Fig. 14 shows the geometries of
the individual counterweights obtained by each algorithm.
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(a) SOGA

(b) COLINY DIRECT

(c) PATTERN SEARCH

Fig. 14. Geometries of counterweights obtained through optimization algorithms.

Table 7
Numerical results obtained through the 3 single-objective optimization algorithms.
SOGA COLINY PATTERN

R, [mm] 76.64 72.64 76.87
h,,, [mm] 28.79 30.33 32.20
t,,, [mm] 11.00 11.00 11.00
a,,, [deg] 122.13 127.26 106.13
6., [deg] 10.08 8.44 25.11
My [g] 408.8 403.9 387.5
Ry [mm] 75.70 75.68 76.87
Ky p [%] 89.72 89.81 89.50
Ky [%] 100 100 100

It is noticeable how the geometries of the three single-objective
algorithms (SOGA, COLINY DIRECT and PATTERN SEARCH) present
very similar lateral geometry, confirming that all three algorithms,
each following their own logic, converge on a quasi-univocal solution,
demonstrating that, for a defined crankshaft and a certain set of con-
straints, the overall optimal solution is only one. Table 7 shows the
numerical results of the 3 optimizations, which were used to create
the corresponding sections of the counterweights. The only noticeable
difference is in the solution found by the PATTERN SEARCH algorithm,
which finds a lower value of the counterweight mass with a slight vari-
ation of the geometry. However, as it can be noticed in the numerical
results, this comes at the cost of a lower respect of the constraint on
the radial dimension.

On this aspect, it is noticeable that all three solutions tend to obtain
a radial dimension very slightly higher of the maximum imposed value.
This shows that the logic implemented by the three algorithm is setup
in a way that allows for a margin of error on the constraint, so that,
if the found value respects it, convergence is still reached. Addition-
ally, very importantly, it demonstrates that, although convergence is
reached, the constraints were actually very harsh, since, in order to
respect the balancing constraints, the radial dimension constraint was
not mathematically respected. In fact, if the plot in Fig. 9 is again
considered, it can be seen that R,,, ,;, = 75 mm is achievable on the far-
right section of the Pareto front, inevitably rendering the identification
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Fig. 15. Boxplots for the two objective functions for both multi-objective algorithms.

of a suitable solution quite harder on the algorithm. In any case,
the output of this phase can be considered as the one that could be
employed on the final configuration of the engine, since it is the most
optimal solution for that specific architecture.

3.3. Algorithms comparison

In the present work, multiple algorithms were employed in order to
obtain the best counterweight geometry for given engine constraints.
Each one has different characteristics, pros and cons, making each of
them more suited to a certain application than another. Therefore, it
is very interesting to draw a comparison between them. One approach
that could be used for this task is the generation of the Boxplots for
each data set of the algorithms.

First, in Fig. 15 the Boxplots for the two objective functions for
both multi-objective algorithm employed are reported. In the case of
the PARETO SET plot, only the results for the best trade-off run are
plotted. Meanwhile, in Fig. 16, the Boxplot of the three single-objective
algorithms results is reported. From these plots a few considerations
can be made. First of all, it is noticeable that by comparing the
two multi-objective algorithm the MOGA is overall more accurate in
finding the best solutions, since the dispersion of the data is narrower.
Additionally, the MOGA was capable of reaching convergence around
40% faster, as it can be seen in Table 8. This is due to the fact that the
PARETO SET effectively performs a new optimization for each set of
weights, while MOGA needs to reach convergence only once.

Another interesting point is found by comparing the Boxplots re-
garding the found mass of the counterweight. It is clear that the search
for the optimal solution is much more detailed in the single-objective
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Fig. 16. Boxplot for the results of the three single-objective algorithms.

Table 8

Optimization times for the multi and single-objective
algorithms.

Algorithm Time [min]
MOGA 117

PARETO SET 187

SOGA 65

COLINY DIRECT 66

PATTERN SEARCH 26

algorithms, confirming that the multi-objective optimizations are more
suited to a earlier design phase, granting the designer the possibility
to have a wider view of the problem. Meanwhile, the single-objective
algorithms are more useful in a more detail-oriented development
phase.

It is immediately clear how, between the single-objective algorithms
the one that yields the better results in terms of precision, showing
a much lower dispersion of the results, is the PATTERN SEARCH
algorithm. However, considering the set constraints, it is also the
algorithm that respects them with a lower stringency, obtaining a
overall radial dimension higher than the imposed limit. The other
two algorithms are basically equivalent in terms of results, with the
COLINY DIRECT algorithm showing a slightly lower dispersion of the
solutions. A final consideration is relative to the time required to
perform each optimization. As it can be noticed in Table 8, the multi-
objective optimization tend to have quite higher optimization times,
especially the PARETO SET. This is due to the higher complexity of the
optimization, requiring to find the best solutions for multiple variables,
often inversely proportional to each other. Moreover, since this kind
of optimization is performed in an earlier stage of the design, the
constraints are much less stringent: as such, the algorithm has to search
the best solutions in a much wider analysis space, unlike the single-
objective ones, which use the already found results to narrow the search
field. Among the single-objective optimizations, instead, the PATTERN
SEARCH shows a quite lower computational time, potentially making it
the best one for this kind of optimizations. However, the designer must
be mindful whether the algorithm is capable of respecting the project
requirements and adopt another one accordingly.

3.4. Validation of results

In order to verify that the counterweights obtained through opti-
mization are able to correctly balance the crankshaft, a multi-body
simulation was carried out in which the entire crank was simulated
with and without counterweights. For the sake of brevity and given that
the results obtained by the single-objective algorithms are similar to
each other, only the simulation with counterweights obtained through
the SOGA algorithm is reported here. In Fig. 17 the model used is
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Tx
Fig. 17. CAD model of the entire crank with counterweights (in blue) obtained through

the SOGA algorithm.

x10°

@

61
4
2
0

Resultant Force [N]

y-component
2z-component

40 50

-3

30 x 10
Time [s]

(a) With counterweights

©

Resultant Force [N]

y-component
--- z-component

-3

x10

Time [s]

(b) Without counterweights

Fig. 18. Curves of the components of the resulting force, with and without
counterweights.

visible, with each component distinct and, in particular, in blue the
counterweights obtained can be seen. The reference system used for the
simulation is also reported (the axis of rotation of the shaft coincides
with the x axis).

For the simulation, we set a shaft rotation speed of 2000 rpm, equal

to the speed set for the MATLAB® code. Fig. 18 shows the curves of
the components y and z of the resulting centrifugal force.

Comparing the curves of Fig. 18(a), where the counterweights were
applied, with those of Fig. 18(b), where the crankshaft was left without
counterweights (and therefore in an unbalanced condition), It can
noticed the positive influence of the counterweights on the amplitude of

10
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Fig. 19. Curves of the components of the resulting force with the omission of pistons

and connecting rods, with and without counterweights.

the curves, reducing the maximum values, and, in particular, allowing
a “flattening” of the z component. However, given that the entire
crank has been considered to generate these curves, a considerable
contribution of force is given by the reciprocating inertial forces, which
are not balanced by the counterweights of the crankshaft, thus making
the counterweights effect less evident.

The simulation was therefore modified, removing the pistons and
connecting rods (highlighted, respectively, in green and orange in
Fig. 17) and adding the rotational mass of the connecting rods to the
crank-pins. This way we obtain a crankshaft on which the translational
components have no effect while taking into account all the rotational
contributions of the crank, which must be balanced by counterweights.
The result obtained is reported in Fig. 19 where it is noted, first of
all, that the curves have become purely sinusoidal; this is perfectly in
line with what could be expected as the rotational forces have constant
absolute value and cyclically variable direction. It is therefore possible
to confirm that those reported are purely centrifugal force curves.

Much more relevant is that it can be confirmed that the application
of counterweights, and, above all, their optimized geometry, allows to
correctly balance the crankshaft. In fact, it is found that the amplitude
of the curves has gone from a value of about 3810 N, for both com-
ponents, to a value of about 360 N, corresponding to a reduction of
90.53% compared to the unbalanced configuration. This reduction is
in line with the balancing percentage obtained by the SOGA algorithm
equal to 89.72% (reported in Table 7), with an error that can be
considered insignificant.

4. Conclusion

The balancing of crankshafts for automotive applications is a com-
plex matter that requires the designer to take into account different
geometric and dynamic aspects at the same time. It is therefore be-
coming increasingly imperative to develop optimization methodologies
that allow to obtain, in a short time and at low cost, geometries and
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configurations of balancing systems that guarantee a high balance of
the engine, keeping dimensions and masses contained.

To this end, the optimization procedure developed in this contribu-
tion allows to obtain counterweight geometries that meet these require-
ments, providing the designer with the opportunity to try numerous
alternative configurations and obtain, for each, the optimal solution.
This process is ensured by the tight integration of the two tools,
MATLAB® and Dakota which, working in unison allow to effectively
find the optimal overall solution.

Currently, the methodology proposed here is still at an early stage
of development as optimization is guaranteed only for counterweights
directly applied to the crankshaft. The next step will be to extend the
optimization also to the balancing countershafts, which have the task of
balancing the reciprocating inertial forces deriving from the rest of the
crank. This will allow to have a complete optimization tool available
to the designer, which will enable the achievement of the optimal
configuration of the entire balancing system.

In parallel, it will also be necessary to extend the integration with
other available tools, first of all a multi-body analysis tool, which al-
lows automatic verification of the balancing performance configuration
obtained. All this to guarantee a reduction in development times and
the need for production of prototypes for experimental tests. Finally, a
deepening of the optimizations techniques to adopt is certainly neces-
sary, in order to guarantee a more comprehensive view on the whole
optimization process and to find the best procedures and strategies to
adopt based on the specific application requested by the designer.
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