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1 Introduction

Understanding the stress distribution around V-notches in dis-
similar material interfaces is crucial for various engineering applica-
tions, including (a) designing and optimizing mechanical joints
and interfaces, (b) assessing and preventing failure in structures
subject to heavy loads or repeated stress cycles, (c) developing
new materials and composite structures, (d) improving manufactur-
ing processes, and (e) enhancing safety in various industries such as
aerospace. Despite the availability of advanced numerical tools
capable of handling such scenarios, the analysis of large structures
often becomes impractical due to the requirement of high mesh res-
olutions. This becomes especially challenging in Mode III, where
3D simulations are required. In the following, a review of studies
related to this investigation is presented.

While extensive research has been conducted on mode I and
mode II, with notable contributions from Williams [1] and Bogy
[2,3], the exploration of mode III fracture mechanics, characterized
by out-of-plane shear stresses, has been relatively limited in the lit-
erature. This is primarily due to the challenges in experimental val-
idation of mode III phenomena, higher computational demands, and
possible overlaps and interactions between mode III and other
modes of loading. Nevertheless, pioneering works by Ma and
Hour [4] have provided analytical solutions for isotropic and aniso-
tropic bi-material V-notches under antiplane deformation.
Champion et al. [5] examined the stress singularity at the crack
tip in different power-law materials under mode III loading, reveal-
ing that stress singularities are identical in each material, equivalent
to a crack in a homogeneous material with the maximum hardening
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This study introduces a novel approach to analyze the stress and displacement fields around
blunt notches in bi-material media, focusing on mode Il loading conditions. The eigenfunc-
tion expansion method is used to derive a simplified yet accurate solution, satisfying the
boundary conditions for bi-material blunt V-notches. The robustness of the proposed
asymptotic solution is validated through several finite element analyses, encompassing a
range of notched geometries such as blunt V-notches, VO-notches, and circular holes.
Notably, it is demonstrated that when the notch tip radius approaches zero, the solution
coincides with the existing sharp V-notch model. [DOI: 10.1115/1.4064323]
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exponent. Moreover, they found that all the crack-tip energy is con-
centrated in the material with the largest hardening exponent.
Karganovin and colleagues [6] developed a solution for an isotropic
finite wedge, while Shahani [7] extended this solution to an aniso-
tropic monolithic wedge and later derived a solution for an isotropic
bi-material wedge [8]. Using matched asymptotic expansions,
Leguillon and Abdelmoula [9] obtained a solution for two different
elastic substrates connected by a thin adhesive layer with a crack
under antiplane loading. Their research defines two types of mode
IIT stress intensity factors based on crack location and considers
interface conditions and material properties. Tuyet et al. [10]
explored the impact of small defects, such as cavities or cracks,
on a linear-elastic material using a matched asymptotic expansion
method. A detailed analysis in an antiplane setting, particularly
for a small crack, was conducted, followed by a comparative
study with classical finite element method results. Mishuris et al.
[11] analyzed the stress and displacement fields near a crack tip
moving along a bi-material interface with a thin separating layer.
They also derived asymptotic formulae for displacement and
stress intensity factors under out-of-plane loading, validating the
results through numerical analyses.

Paggi and Carpinteri [12] presented a noteworthy contribution by
providing a formal solution for an isotropic multi-material wedge
subjected to mode III displacement. They showcased that the
problem solution does not necessarily rely on the Mellin transform
but can be achieved through the eigenfunction expansion method.
Similarly, Savruk and Kazberuk [13] and Frishter [14] derived a
near-vertex stress field solution for a symmetric isotropic mono-
lithic V-notch under remote mode I, mode II, and mode III loading.

To address the anisotropic bi-material wedge problem, Beom and
Jang [15] utilized a complex function to represent the homogeneous
wedge. By applying a linear transformation method to convert the
anisotropic bi-material wedge into an isotropic bi-material wedge,
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they transferred the boundary conditions and continuity equations
into complex space, deriving a characteristic equation for the singu-
larity. Eder and Sarhadi [16] introduced a semi-analytical solution
to correct the numerical near-singularity stress field near reentrant
corners in bi-material interface V-notches under mode III loading.
This method proves beneficial for fatigue lifetime analysis of
large structures as it reduces the computational costs associated
with high-resolution discretization in large-scale numerical engi-
neering models. In a recent study, Jiménez-Alfaro and Mantic
[17] investigated the mode III crack-tip solution for a semi-infinite
crack located in a straight spring interface within an infinite linear
elastic isotropic solid. They expressed the crack-tip solution as a
double asymptotic series consisting of main and associated
shadow terms, which includes logarithmic terms. The effect of
higher order terms for sharp V-notches in bi-material media was
demonstrated by Bahrami et al. [18]. They employed the overdeter-
ministic technique to determine the coefficients of higher order
terms, highlighting their significance in calculations.

Considering samples weakened by blunt V-notches under mixed
mode I/I loading, Mirzaei et al. [19] developed a new asymptotic
stress field solution using Kolosov—Muskhelishvili’s approach.
Their solution demonstrates higher accuracy for blunt V-notches
compared to previous methods and its applicability to various
blunt notch geometries. Furthermore, Mirzaei et al. [20] extended
the same approach to bi-material blunt notches, presenting the
first stress field solution for this type of notch under mixed mode
loading. This paper focuses on developing a novel approach to
obtain, for the first time, the stress and displacement fields
around blunt notches in bi-material media under mode III
loading. The paper is structured as follows: Sec. 2 presents a
detailed statement of the problem and the development of the solu-
tion. In Sec. 3, a brief analysis is conducted to determine the stress
intensity factor and higher order terms of the solution. Validation of
the proposed asymptotic solution through comparison with finite
element analysis is presented in Sec. 4. The results demonstrate
that the model is not only applicable to blunt V-notches but also
provides high accuracy for other types of notches, such as
VO-notches and holes.

2 Statement of Problem

The present section addresses the mathematical modeling of the
problem. First, the fundamental equations are introduced, and sub-
sequently, by satisfying the boundary conditions, the asymptotic
displacement and stress fields around a blunt V-notch in a
bi-material medium are determined. It is assumed that both bodies
are homogeneous, and isotropic, following linear-elastic behavior.
Considering the fundamental equations of elasticity for out-of-plane
loading and neglecting both inertia and body force, the equilibrium
condition for a thin plate can be expressed in terms of the displace-
ment component w(r, 8). The resulting equation, given by the two-
dimensional Laplacian operator, is V?w(r, §) =0. The model
assumes small deflections and is applicable in scenarios where the
thickness of the plate is smaller than its other dimensions. By
employing the eigenfunction expansion method and assuming
w(r, ) = r’ 110, 4,), the solution for the Laplace’s equation can
be achieved:

w(r, 0) =Y (A, cos [4,0] + B, sin [1,0]) )

n=1

where 1 is called the eigenvalue of the problem and is greater than
zero.

By taking inspiration from Eq. (1), in order to satisfy additional
boundary conditions associated with the tip of the notch, we
assume w(r, 0) = £,(8, 1,) + r~* g,(6, A,). Substituting this
expression into Laplace’s equation yields the governing equation

051008-2 / Vol. 91, MAY 2024

for the problem:

w(r, 0) = % Z (A, cos [1,0] + B, sin [4,0])
n=1

+r7(Cy cos [4,0] + Dy, sin [4,6]) @

where u is the shear modulus. It is worth noting that Eq. (2) still ful-
fills the equilibrium equation. The selection of the second term in
Eq. (2) is designed strategically, such that it exerts a significant
influence in the vicinity of the tip, while gradually diminishing as
the distance from the notch tip increases. Then, considering
Hook’s law, shear stress components are as follows:

0 (r, 0) = 2200 Ga)
or
ow(r, 6
oatr, 0) =200 (3h)

21 Boundarky Conditions. In order to determine the eight free
parameters, Aﬁ, B, Cf‘,, and Df, (k=1, 2), boundary conditions need
to be applied. In this study, the superscripts 1 and 2 are representa-
tive of materials 1 and 2. In brief, according to Fig. 1, these bound-
ary conditions encompass the continuity of stress and displacement
components along the interface, as well as traction-free conditions
on the notch border, which includes the notch flanks and notch tip.

Continuity of the stress and displacement components along the
interface, @ =0, can be written as follows:

w! =w? (4a)

ol =02 (4b)

By satisfying the traction-free condition on the notch flanks, we
have:

6;9|0=y1—arcsin(’;’) = 6?9'9:—(y2—arcsin(’%)) = O, (}’ > /7) (5)

To simplify the mathematical complexity and obtain the eigen-
values, Eq. (5) can be satisfied at r—oo, which corresponds to far
distances from the notch tip. Consequently, arcsin(p/r) — 0 and
r~ = 0 (since 1>0, see Eq. (2)). The approach was previously
used in several investigations [19, 20]. Note that this simplification
results in an approximate solution, not an exact one.

To satisty the boundary conditions at the notch tip, the traction-
free condition must be imposed, which dictates that:

oll=,=0 (6a)

Fig. 1 A schematic view of the geometrical parameters related
to a blunt V-notch in a bi-material medium along with polar and
Cartesian coordinate systems. Note that the origin of both coor-
dinate systems is at the center of curvature of the notch tip.
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05lrep =0 (6b)
It is important to recognize that in this problem, there are eight
free parameters, denoted as A%,..., DX(k =1, 2), while there are
only six boundary conditions. The way to reconcile this disparity
will be elucidated by Eq. (7).
Equations (6a) and (6b), respectively, result in:

(=D, + B)p™") cos [04,] — (C) — A,p™)sin[04,]=0  (Ta)

(=D2 + B2p**) cos [04,] — (C2 — AZp*™)sin[02,] =0  (7b)

Note that Eqs. (7a) and (7b) must be satisfied for any ¢ and 1. As
sin[04,,] and cos[64,] are linearly independent over their period, the
only way for their linear combination to be exactly zero is for both
terms to be zero. In this case, two equations can be extracted from
each, resulting in the four following simple equations:

k — pk 22, k — Ak 24,
Dn_Bnp ’Cn_Anp ’

k=1,2 ®)

Considering Egs. (4) and (5), and by employing the eigenvalue
method [1-3]—which involves using m—1 equations from a
system of m linear equations to identify relationships between coef-
ficients—relations between A,,}, B,,%, B,> based on A, can be deter-
mined as follows:

Al =A? (Ya)
B! = cot[(z — a1)A,]A2 (9b)
B2 = —cot [(x — ay)A, A 9¢)

where a; = 7—y, and a, = 71—y, represent the notch opening angles
of materials 1 and 2, respectively, with respect to the interface.

To avoid trivial solutions for the system of equations presented
by Egs. (4) and (5), the determinant of the system (containing all
four equations) must be set equal to zero. This condition leads to
the following equation:

£2 cos [(m — an)n] sin [(z — az)i,]
1

+ cos [(x — ap)A,] sin[(x — a1)A,] =0 (10)

Equation (10) provides eigenvalues of the problem, 4,,, and it has
infinite solutions. Given that Egs. (4) and (5) are valid for sharp
V-notches, eigenvalues are identical to those of sharp V-notches.

Finally, by replacing all the free parameters based on one free
parameter, A,” the stress components in a polar coordinate
system located at the notch tip center of curvature are:

0

ol=> 4 2/1"—1( () )(cos[«%n]cot[(ﬂ @)yl +sin[64,])A,

n=1

(11a)

o2 = Z A2 -1( () )(—cos[a/ln]cot[(n @)A1 +sin[04, 1),

(11b)

S <1 + (g) %)(cos [02,]— cot[(z— a1 )Au]sin [04,1)A,

n=1
(11¢)

Y (1 + (‘;’) H’) (08 [0, 14Ot [(7— a2) Ay I8N [04 A

n=1

(11d)

Journal of Applied Mechanics

The displacement components are as follows:

1_ ZI: A2 ;’% <1 + (’5)”’)@05 [04,] cot [(x — a1 )A,] + sin [04,])

(12q)
W = iAzﬂ (1 + (3)%)(_ 08 [04,] cot [(x — a2)A,] + sin [04,])

s n 1y ’ n n n
(12b)

In Egs. (11) and (12), the effect of the notch tip radius on stress
and displacement fields is clear.

3 Stress Intensity Factor and Higher Order Terms

As mentioned earlier, Eq. (10) has infinite solutions, and the
eigenvalues and eigenfunctions of the problem are defined based
on a; and a, as well as the ratio between y; and u,. Note that dif-
ferently from the in-plane problem, the eigenvalues of mode III
loading are always real numbers. In order to simplify the calcula-
tions and consider only the first term in analyses which has the
highest impact in calculations, the first free parameter, A7, can be
determined by fitting either stress or displacement component
obtained from finite element analysis or experimental techniques
such as photoelasticity or digital image correlation (DIC).

By following the definition of the stress intensity factor for inter-
facial sharp notches and cracks, we can obtain it for the proposed
solution as follows [21]:

. 620190
Ky =lim, g —=—22 13
il r- 0(27”’)11_1 ( )
According to Eq. (13) the relation between Kj; and A? can be
expressed as follows:

e

mimH,,[l + (é)%]

Considering the case of bi-material blunt notches in mixed modes
I/Il where higher order terms play an important role, we employ
both the first and the second terms of the truncated series. Following
Refs. [22,23], the determination of the free coefficients by consid-
ering the higher order terms can be achieved through a fitting pro-
cedure, employing either a deterministic or an overdeterministic
system of equations. For the sake of brevity, the details of obtaining
the coefficients for higher order terms (specifically n=2 in this
paper) are not provided in this paper. Interested readers are referred
to Refs. [22,23] for further information.

Al = K (14)

4 Numerical Examples

The stress and displacement fields around blunt V-notches were
derived in an asymptotic form, incorporating one free parameter for
each term. In this part, it is shown that the proposed asymptotic
stress field is capable of determining the stress distribution around
some different blunt notches, with good accuracy. To verify this
claim and assess the precision of Eq. (11), various types of
notches with arbitrary geometries are considered and finite
element analysis (FEA) is employed to compare the results obtained
from both approaches.

For each sample, a 3D surface plot is constructed, illustrating the
stress field around the notch tip. This plot incorporates the first two
terms of the truncated series for both stress components and com-
pares these findings with results obtained via FEA. Additionally,
to more precisely show the accuracy of the proposed stress field
and to illustrate the calculations using not only the first two terms
but also the first term alone, the normalized stress component

MAY 2024, Vol. 91 / 051008-3
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h=80
(mm)

40

(mm)

w=50 (mm)

R | s

Fig. 2 The geometry, dimensions, and loading condition of the
samples which are used to simulate the specimens in finite
element analysis

along the circular path of r/p =2 is provided, except for the sharp
notch case where r=0.3 mm.

For simplicity in simulating and meshing the samples, a speci-
men resembling a single edge notch tension (SENT) test is
chosen. Mode Il is introduced by applying an arbitrary out-of-plane
load with a magnitude of F=1 N. A schematic view of the loading
condition is depicted in Fig. 2(a), while Fig. 2(b) illustrates the sim-
ulated sample of the blunt V-notch case within FEA.

It should be noted that the height, width, and thickness of spec-
imens, as well as the applied load, and location of the notch tip
center of curvature, remain constant throughout all simulations.
To present the results, data provided by the midplane of each
sample, indicated by the red dashed line in Fig. 2(a), are considered.
Furthermore, an arbitrary combination of material properties is con-
sidered for the upper and lower bodies: for Material 1 (upper body),
an elastic modulus of E=1 MPa and Poisson’s ratio v=0.25 are

(@)

0.5
T 5] 4 ip
0.0
-1 1
0
x(mm) ¢ y(mm)
1 -1
()
0.5
0.0
"lr/‘rrll.lip
=0.5
-1
0 1
x(mm)
0
1 v(mm)

chosen, while for Material 2 (bottom body), we employ the
elastic modulus of E=35 MPa and Poisson’s ratio v =0.35. These
intentionally contrasting material properties are chosen to empha-
size the accuracy of the proposed stress field and illustrate the influ-
ence of higher order terms. It should be noted that all the
components are normalized by the maximum out-of-plane hoop
stress at the notch tip, denoted as 6,9(0, 8) = 6,9 ip-

In Figs. 3-7, results are presented: parts (a) and (c) depict a
surface plot of the stress component, while parts (b) and (d) illus-
trate the corresponding stress component of parts (a) and (c),
respectively, on a circular path 1/p =2 traversing from one side of
the notch flank to another one. To help visualize the notch position
in parts (a) and (c¢), it should be noted that the line y =0 represents
the interface between the two bodies. Also, a schematic view of
each notch geometry is plotted in the part (a). It is worth mentioning
that the notch geometries in the numerical examples are
determined based on the notch opening angle (a,), which is
defined as oy=7n—1y;, k=1,2. In the following, we present the
results of the model validation for various notch geometries.

4.1 Sharp V-Notch. The proposed stress field can be applied
to sharp V-notches by setting p =0 in Eq. (11). Due to the selection
of suitable eigenfunctions and boundary conditions, this solution is
consistent with the solution provided by Qian and Hasebe [24] for
bi-material sharp V-notches and cracks. This claim is substantiated
by an illustrative example where the notch geometry parameters are
ay=nl3, ax =712, n=r/6. Figure 3 provides the corresponding
results for this particular notch geometry.

4.2 VO- and Key-Hole Notch. One practical method for
reducing the high stresses induced by sharp notches and cracks is
the introduction of stop-holes at their tips. This method modifies
the sharp V-notch and crack geometries, turning them into VO-
and key-hole notches. To evaluate the applicability of the proposed
stress field for this category of notches, a specimen with a specific
notch geometry a;=n/8, a,=n/8, n=0, p=0.25 (mm) is

(b) 0.5 /y'—'—"\
0.4 A
% A <
<03 ,.'/ \\
Xo2f g \
® j eieee Nad (’
0.1 /’ —— N=2 \
J Qian and Hasebe, N=2
00 /" oo FEM \
-135 -9 -45 0 45 90
f(degrees)
(d)
0.4 s
/}'
0.2 A\ /
s
i
- N=1
—— N=2
Qian and Hasebe, N=2
- FEM
—-45 0 45 90

6(degrees)

Fig. 3 Normalized stress field results obtained using the first two terms of Eq. (11) compared with FEA: (a) surface plot of o,
(b) 6, on a circular path r =0.3 mm, (c) surface plot of ,,, (d) o, on a circular path r=0.3 mm
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Twlo 0 tip

0.1)5
x/p
yip
s -5
(c)
0.2
0.0
el i vip
-0.2
-5

0
x/p

yip
-5

b) o5 o
< - T
/£ e,
0.4 £ N
= & N4
< 0.3 // S \\
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(@ o2 —
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-
0.1 L
- /,\V%'.
g 00 #F
% . ///’
5 =0. ) y
P -
i
-_—-/
-0.3L-
-135 -90 -45 0 45

o(degrees)

Fig. 4 Normalized stress field results obtained using the first two terms of Eq. (11) compared with FEA: (a) surface plot of o,
(b) 6, on a circular path rip =2, (c) surface plot of o, and (d) o, on a circular path rip =2

(@)

1.0
Ol 05
0.0
(©)
0.2
0.0
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-0.4
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yip
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------ \‘\
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03 A %
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R N7 X
b 02¢s N,
P \"‘
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O(degrees)
(d) 1.0
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£ 00 AL
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ST S
bn .o . '/
. / “
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Fig. 5 Normalized stress field results obtained using the first two terms of Eq. (11) compared with FEA: (a) surface plot of o,
(b) 6, on a circular path rip =2, (c) surface plot of o, and (d) o, on a circular path rip =2
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Fig. 6 Normalized stress field results obtained using the first two terms of Eq. (11) compared with FEA: (a) surface plot of o,
(b) o2 on a circular path r/p =2, (c) surface plot of ¢, and (d) o, on a circular path rip =2

examined. Figure 4 presents the results of this simulation, high-
lighting the efficacy of the proposed stress field in capturing the
stress distribution for these types of blunt notches.

4.3 Blunt V-Notch. To evaluate the accuracy of the
proposed solution in predicting the stress distribution around blunt
V-notches, an arbitrary notch geometry is examined. In this
example, the geometric parameters are set as a; =n/4, a, =0, n=
/8, p=0.3 (mm). The resulting stress components corresponding
to this problem are illustrated in Fig. 5.

4.4 U-Notch. By reducing the notch opening angle of blunt
V-notches to zero, while preserving the rounded tip, a well-known
category of notches known as U-notches is obtained. As U-notches
are widely used in various applications, it is essential to evaluate the
applicability of the proposed solution. To this end, a notch with
the following geometry parameters is considered: a; =0, a; =0,
n=n/6, p=0.2 (mm). Figure 6 showcases a comparison between
the stress field ahead of the U-notch using the proposed solution
and the results obtained from FEA.

4.5 Circular Hole. Given the significant influence of circular
holes on the load-bearing capacity of structures, particularly in
the context of drilling and rivet holes, it is crucial to investigate
the applicability of the asymptotic stress field in determining the
stress distribution around such holes in bi-material media. In
Fig. 7, a specimen similar to Fig. 2(b), featuring a centrally
located drilling hole, is analyzed to assess the proposed
stress field. The geometric parameters for this case are set as
follows: a; =#/2, ay=a/2, n=0, p=0.2 (mm).

This section provided insights into the effectiveness of the
asymptotic stress field in accurately characterizing the stress

051008-6 / Vol. 91, MAY 2024

distribution surrounding various blunt notches in different
bi-material configurations. The impact of higher order terms, as
indicated by Ref. [18], may vary depending on the notch geometry
and the differences in material properties between the bodies. Upon
analyzing several notch geometries, a noticeable influence of the
second term was observed, even at close distances to the notch
tip. However, a perfect match between the analytical and numerical
solutions was not achieved. For this reason, it is important to note
that the precision of Qian and Hasebe’s solution [24], when consid-
ering the first two terms, was also not particularly perfect for sharp
V-notches (Example 4.1). This discrepancy may be attributed to the
complexities involved in modeling a pure mode III problem in FEA
or the simplification of the governing equations. On the other hand,
the proposed solution for blunt notches approximates the descrip-
tion of the notch geometry (Eq. (5)). It is worth mentioning that
any asymptotic stress field has limited validity; i.e., it holds approx-
imate values of the stress field in a finite region surrounding the
notch. The extent of this region may differ from case to case; it is
difficult to determine the effect of geometry and loading onto the
region of validity of our analytical asymptotic solution. For
instance, in the simplest case of a sharp notch in an isotropic mono-
material, the accuracy of the analytical solution may decrease when
the notch depth becomes significant relative to the component’s
dimensions (due to boundary effects), or when the sample geometry
is complex (e.g., a Brazilian Disk with a rhombus hole, compared to
a Compact Tension specimen) [22,23]. In the case of blunt notches,
the radius at the notch tip plays a predominant role and should be
kept relatively small [19]. The complexity increases for bi-material
notches due to the elastic mismatch between the materials [20].
In these situations, the accuracy of an asymptotic solution may
diminish, and including additional higher-order terms could be
quite beneficial. Nevertheless, the proposed asymptotic solution
demonstrates an accurate representation of the stress field around
different notch geometries with arbitrary material properties.
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The findings presented in this study may have significant impli-
cations for the field of fracture mechanics and provide valuable
insights into the mechanical behavior of bi-material blunt notches
under mode III loading. Our rigorous methodology along with its
accurate results offers researchers and engineers a powerful tool
for predicting stress distribution and displacement fields in
complex fracture scenarios.

5 Conclusion

In this study, the eigenfunction expansion method was used to
derive the stress and displacement components in the vicinity of a
bi-material blunt V-notch under mode III loading. By satisfying
the boundary conditions, the free parameters of the stress and dis-
placement components were obtained based on a single free param-
eter for each term. No conformal mapping was used to describe the
notch geometry, resulting in a solution that is independent of the
accuracy of conformal mapping. By using appropriate eigenfunc-
tion and boundary conditions, the eigenvalues were shown to be
equivalent to those of sharp V-notches, making the solution easier
to use in calculating the stress field. To assess the accuracy and reli-
ability of the approach, a comprehensive comparative analysis was
conducted. Through the evaluations, remarkable agreement was
demonstrated between the analytical stress field results obtained
from the proposed method and the results obtained through finite
element analysis. This agreement was observed across various
cases of blunt notches, encompassing the geometries of VO- and
key-hole-notches, V- and U-notches, and circular holes in
bi-material media.
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