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An analytical approach to engineer 
multistability in the oscillatory 
response of a pulse‑driven ReRAM
Alon Ascoli 1*, Nicolas Schmitt 2, Ioannis Messaris 2, Ahmet Samil Demirkol 2, 
John Paul Strachan 3,4, Ronald Tetzlaff 2 & Leon Chua 5

A nonlinear system, exhibiting a unique asymptotic behaviour, while being continuously subject to 
a stimulus from a certain class, is said to suffer from fading memory. This interesting phenomenon 
was first uncovered in a non‑volatile tantalum oxide‑based memristor from Hewlett Packard Labs 
back in 2016 out of a deep numerical investigation of a predictive mathematical description, known 
as the Strachan model, later corroborated by experimental validation. It was then found out that 
fading memory is ubiquitous in non‑volatile resistance switching memories. A nonlinear system 
may however also exhibit a local form of fading memory, in case, under an excitation from a given 
family, it may approach one of a number of distinct attractors, depending upon the initial condition. 
A recent bifurcation study of the Strachan model revealed how, under specific train stimuli, composed 
of two square pulses of opposite polarity per cycle, the simplest form of local fading memory affects 
the transient dynamics of the aforementioned Resistive Random Access Memory cell, which, would 
asymptotically act as a bistable oscillator. In this manuscript we propose an analytical methodology, 
based on the application of analysis tools from Nonlinear System Theory to the Strachan model, 
to craft the properties of a generalised pulse train stimulus in such a way to induce the emergence 
of complex local fading memory effects in the nano‑device, which would consequently display an 
interesting tuneable multistable oscillatory response, around desired resistance states. The last part 
of the manuscript discusses a case study, shedding light on a potential application of the local history 
erase effects, induced in the device via pulse train stimulation, for compensating the unwanted yet 
unavoidable drifts in its resistance state under power off conditions.

Keywords ReRAM, Nonvolatility, Fading memory, Local fading memory, Multistability

In their non-volatile physical realisations, resistance switching  memories1, also known as memristors, may com-
bine a number of functionalities within a compact nanoscale physical volume, operating alternatively as sensors, 
data storage devices, or signal processing units. Besides supporting multiple modes of operation, similarly as 
the biological synapses, non-volatile memristors also enable to exploit the third dimension in integrated circuit 
design, being typically arranged densely on top of Complementary Metal Oxide Semiconductor (CMOS) circuitry 
in the form of nanoscale oxide films, filling the gaps forming at the uniformly-spaced cross-points of arrays, 
employing two mutually-perpendicular sets of parallel lines, sitting along vertically-displaced yet adjacent metal 
layers, as rows and columns, respectively. Furthermore, memristive nanodevices allow to accelerate the execution 
of data detection, storage, retrieval, and processing tasks, while consuming a minuscule amount of power. The 
disruptive nanotechnologies, which enable the fabrication of these two-terminal bio-mimetic circuit elements, 
may thus allow to resolve the operating speed limitations of traditional purely-CMOS computing machines, 
built in accordance with the von Neumann architecture, where the separation between the physical locations, 
where data are respectively stored and processed, inevitably causes traffic congestion along the channel, which 
transfers data back and forth between memory and computing unit. Thus memristors offer the opportunity of 
foster progress in integrated circuit design beyond the Moore era. In fact, the aggressive rate, at which the size 
of CMOS transistors has been progressively shrunk over the past decades, cannot be continued much longer. 
Firstly, the minimum feature length is approaching atomic scales. Secondly, the ultra-high density of integration 
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in state-of-the-art process technology nodes on one hand increases the heat inside computing machines under 
operation to the point, which may jeopardise the life time of its constitutive components, and on the other hand 
induces leakage effects, whereby currents, flowing along additional transistors’ channels besides the expected 
ones, may prevent CMOS circuits from the successful execution of the computing tasks they were designed for. 
Moreover, non-volatile memristors are the most suitable device candidates for the development of miniaturised, 
portable, lightweight, low-power and high-speed technical systems, which implementing innovative in-memory 
sensing and processing paradigms, may address the stringent requirements of Internet-of-Things and Edge 
Computing applications.

Since memristive one-ports are inherently nonlinear, the development of a rigorous methodology to design 
time- and energy-efficient circuits and systems for Artificial Intelligence applications crucially requires the adop-
tion of concepts from Nonlinear Circuit and System Theory2, which has been unfairly overlooked in the recent 
past, as the typical approach of electrical engineers envisages the linearisation of the model of the device under 
study prior to its investigation, but this may dramatically hide fundamental aspects of its dynamics. Despite sig-
nificant advancements in memristor research over the past decade, a complete understanding of the nonlinear 
behaviour of resistance switching memories has not been gained yet. However, drawing a complete picture of 
their response to any input/initial condition combination of interest for a given application is a fundamental 
preliminary step before a conscious and systematic methodology may be set in place to leverage their peculiar 
dynamics for the design of integrated circuits, which may outperform state-of-the-art purely-CMOS electronic 
systems, while tolerating the detrimental effects of anticipated non-idealities.

Resistive Random Access Memory (ReRAM) cells constitute one of the most important class of non-volatile 
memristors. Especially when tantalum oxide (TaOx ) or hafnium oxide (HfOx ) is employed as switching layer, 
devices of this kind feature desirable properties for data storage applications, including long retention times, 
high endurance, large off-to-on resistance ratios, and even multi-level capability. Moreover, recent progress in 
material engineering has enabled to reduce significantly the variability, which affects the electrical behaviour 
of a stand-alone memristor during operation and prevents matched devices, subject to the very same stimulus, 
while embedded in identical circuits, from displaying equivalent dynamics.

The object of the research investigations, discussed in this manuscript is a Ta2O5−x ReRAM cell manufactured 
at Hewlett Packard (HP) Labs. Past research studies have already shed light into highly-nonlinear behaviour of 
this nano-device, in which, due to a complex interplay between ionic and electronic transport mechanisms, the 
resistance switching rate may vary across a multi-decade range under relatively-small changes in input strength 
and/or in memory state. As demonstrated through a rigorous  study3, complementing the analysis of a predictive 
 model4 from Strachan et al. (refer to section 2) with experimental tests on physical samples, the history of the 
nano-device under focus may be completely erased under suitable excitation. In particular, despite being able 
to retain the information, stored in its resistance, for a very long time under power-off conditions, an ad hoc 
periodic stimulus may induce the emergence of memory loss  effects5 across its physical medium. In these circum-
stances, the cyclically-forced device is found to feature one and only one oscillatory behaviour, irrespective of the 
initial condition, after transients decay to zero. This counterintuitive phenomenon, known as fading memory6 in 
Nonlinear System Theory, was later observed in various other non-volatile resistance switching  memories7. Very 
recently Pershin and Slipko pursued a rigorous bifurcation  study8 of the aforementioned differential algebraic 
equation (DAE)  set4 from Strachan et al. to reveal the emergence of bistability in the oscillatory response of the 
Ta2O5−x nano-device, under the zooming lens in this manuscript, to specific two-pulse-per-cycle square wave 
stimuli with zero or non-zero time average and 50% duty cycle. In this regard, it is important to point out that 
a dynamical system, which, subject to a certain stimulus, displays either of two admissible behaviours, depend-
ing upon the initial condition, after transients vanish, is said to be subject to the simplest form of local fading 
memory9,10. More recently, bistable oscillations have been observed also in the memory state of another ReRAM 
cell, manufactured at Forschungszentrum Jülich, upon its stimulation via an ad hoc periodic stimulus, composed 
of a couple of triangular pulses of opposite polarity per  cycle11. After revisiting powerful theoretical concepts, 
necessary for investigating the response of the ReRAM cell to periodic train stimuli, and inspired to the time-
averaging method (consult section “The time average state dynamic route technique”) and to the Poincaré map 
technique (see section “The state change per cycle map tool”)12 from Nonlinear Dynamics Theory, respectively, 
the oscillatory response of the ReRAM cell to basic two-pulse-per-cycle square wave stimuli with non-zero time 
average and 50% duty cycle is thoroughly explored by means of an in-depth numerical study in section 4. Tak-
ing inspiration from the bifurcation  analysis8 from Pershin and Slipko, the core part of this paper investigates 
the response of the Ta2O5−x ReRAM cell from HP Labs to a class of generalised rectangular pulse train voltage 
stimuli, each of which is composed of a tuneable number P ∈ N>0 of positive pulses and one negative pulse 
per cycle, as defined in section “Adaptation of the TA-SE to a generalised pulse train stimulus”. Importantly, we 
propose a systematic methodology, which, exploiting the geometrical properties of the dynamic routes of the 
device memory state under SET resistance switching transitions (refer to section “Extraction of key geometrical 
features from a Gaussian bell-shaped SET state evolution function”), employs analytical formulas and solutions 
to a linear system of equations for determining the heights and widths of the P positive input pulses, as well as the 
width of the only negative input pulse, whose height is preliminarily prescribed, so as to endow the ReRAM cell 
with P stable oscillatory operating modes around prescribed resistance levels at steady state (consult section “A 
systematic methodology to craft the pulse stimulus for enabling the ReRAM cell to support multiple oscillations 
around prescribed resistance levels”). The proposed methodology partitions the range of admissible values for the 
memory state of the ReRAM cell into P regions, referred to as basins of attraction. Each of these regions contains 
all the initial conditions, evolving asymptotically toward an oscillatory solution, featuring as mean value a specific 
user-definable stable equilibrium for the ordinary differential equation (ODE), which governs the evolution of 
the time average of the memory state of the nanodevice under the prescribed periodic excitation. Through the 
proposed system-theoretic methodology the parameters of the generalised pulse train stimulus may be massaged 
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in such a way to induce monostability or different forms of multistability (see section “Application of the theory to 
endow the ReRAM cell with three, four, or five oscillatory behaviours”) in the device oscillatory behaviour upon 
request. The capability of the ReRAM cell to act as a monostable or multistable oscillator under suitable periodic 
pulse train stimulation may be leveraged to develop novel forms of data detection and computation in memory 
for artificial intelligence applications in the years to come. For example, as revealed in section “Compensating 
for the drift in the resistance of crosspoint devices under power off conditions”, the regular application of a suit-
able generalised pulse train voltage signal across each crosspoint nanodevice may allow to correct an unwanted 
drift in its resistance state under power off conditions. Finally, the conclusions, summarising the most significant 
results of this research study, are drafted in section “Conclusions”.

Memristor Model
The Strachan  model4 falls in the class of first-order extended voltage-controlled  memristors13, defined via the 
DAE  set14

where the ODE (1), referred to as state equation, dictates the rate of change of the memory state x of the one-
port, as an input voltage signal v is let fall between its terminals. The algebraic constraint (2), known as state- and 
input-dependent Ohm law, defines how state and voltage affect the flow of the output current signal i through the 
device stack. In (1) ((2)) g(x, v) (G(x, v)) represents the state evolution (memductance) function. Let us assume 
x to be constrained to lie at all times within a closed set D � [xL, xU] . In the Strachan model the state evolution 
function reads as

where step(·) is the Heaviside function, while the SET gSET(x, v) and RESET gRESET(x, v) components of g(x, v), 
referred to as SET and RESET state evolution functions, and governing the evolution of the device memory state 
under positive and negative input voltages, respectively, are in turn defined as

in which p = i · v denotes the power dissipated in the memristor, as a voltage signal is applied between its ter-
minals. The formula for the memductance function in the Strachan model assumes the form

For any given voltage v, the higher is the memory state x, and the larger is the memductance. In the remainder 
of this paper, the ReRAM cell model, consisting of the ODE (1), with state evolution function (3), where the 
SET and RESET components are respectively expressed by equations (4) and (5), and of the algebraic relation 
(2), with memductance function (6), is referred for simplicity as Strachan DAE set. Table 1 reports the values 
assigned to the parameters in Eqs. (4), (5), and (6) so as to allow the resulting model to reproduce experimental 
data, extracted from a Ta2O5−x physical sample, to within a preliminarily specified degree of  accuracy3.

Theoretical tools
This section introduces the theoretical concepts applied in the research study discussed later on.

(1)ẋ =g(x, v), and

(2)i= G(x, v) · v,

(3)g(x, v) =gSET(x, v) · step(v)+ gRESET(x, v) · step(−v),

(4)gSET(x, v) � B · sinh

(

v

σon

)

· exp

(

−
x2

x2on

)

· exp

(

p

σp

)

, and

(5)gRESET(x, v) � A · sinh

(

v

σoff

)

· exp

(

−
x2off
x2

)

· exp

(

1

1+ β · p

)

,

(6)G(x, v) = Gm · x + a · exp
(

b ·
√

|v|
)

· (1− x).

Table 1.  Strachan model parameters fitted to a Ta2O5−x physical sample. The lower xL and upper xU bounds in 
the state existence domain D are respectively equal to 0 and 1.

A /s−1 σoff /V xoff β /(A−1
× V

−1)

10
−10

1.3× 10
−2

4 × 10
−1 500

B /s−1 σon/V xon

1 · 10−4 4.5× 10−1 6× 10−2

σp /(A
−1 × V−1) Gm /�−1 a /�−1

b /V−1/2

4× 10−5 2.5× 10−2 7.2× 10−6 4.7
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The time average state dynamic route technique
When a voltage signal vS falls across the ReRAM cell, as illustrated in Fig. 1a, the time average x̄ of its memory 
state x, referred to as time average state for short, evolves with time according to the formula

Taking the time derivative of both sides of Eq. (7) gives

where the last step follows from the integration of the state equation (1) for v = vS . In principle Eq. (8) could be 
employed to explore the response of the device to any periodic stimulus, but then recurring to some numerical 
integration method would be necessary for determining its solutions.

However, as explained shortly, for stimuli composed of rectangular pulses of suitable widths and heights, the 
study of the behaviour of the periodically-forced device may be considerably simplified, and some analytical 
developments, following from a simplification of Eq. (8), are possible. Let us first consider the excitation scenario 
analysed in the bifurcation study from Pershin and  Slipko8. With reference to Fig. 1b, the train voltage stimulus 
vS , applied across the memristor, features here a first τ+-long SET pulse of positive polarity and amplitude V+ 
and a second τ−-long RESET pulse of negative polarity and amplitude V− over each cycle of length T = τ+ + τ− . 
Equation (8) reduces then to

Assuming the positive (negative) SET (RESET) pulse induces a relatively small increase (decrease) in the 
device memory state over the first (second) τ+ ( τ−)-long part of each cycle, it is possible to substitute the state 
x with its time average x̄ in each integrand without introducing a large error in the resulting approximation. 
Equation (9) boils then down to

where

(7)x̄(t) =
1

T
·

∫ t+T

t
x(t′)dt′.

(8)˙̄x =
x(t + T)− x(t)

T
=

1

T
·

∫ t′=t+T

t′=t
g(x(t′), vS(t

′))dt′,

(9)˙̄x =
1

T
·

∫ t+τ+

t
gSET(x(t

′),V+)dt
′ +

1

T
·

∫ t+T

t+τ+

gRESET(x(t
′),V−)dt

′.,

(10)˙̄x ≈ ˙̄xSET + ˙̄xRESET,

(11)˙̄xSET =τ̃+ · gSET(x̄,V+), and

(12)˙̄xRESET =τ̃− · gRESET(x̄,V−),

Figure 1.  (a) Circuit employed to investigate the response of the Ta2O5−x ReRAM  cell15 to periodic square 
pulse-based voltage excitation signals. (b) Time course of a two-pulse-per-cycle train voltage stimulus. (c) Time 
waveform of a generalised pulse train voltage stimulus vS , including P positive SET pulses and one negative 
RESET pulse per cycle. The RESET pulse of height V− and width τ− follows the series of SET pulses. The i th 
SET pulse is V+,i high and τ+,i wide, with i ∈ {1, . . . , P} . The ordering of the positive pulses from the lowest to the 
highest in each input cycle follows the convention adopted in the systematic methodology to engineer multistability 
in the steady-state oscillatory response of the ReRAM cell to a generalised train stimulus (refer to section “A 
systematic methodology to craft the pulse stimulus for enabling the ReRAM cell to support multiple oscillations 
around prescribed resistance levels”. However, this has no effect on the simulations. In fact, to facilitate their 
convergence, in the numerical investigations, discussed in section “Conclusions”, the SET pulses were listed from 
the most narrow to the most wide before being applied in this order one after the other across the device.
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with τ̃+ � τ+/T and τ̃− � τ−/T . This ODE, referred to as time average state equation (TA-SE)8, governs the 
time evolution of the time average state x̄ of the memristor when a voltage source, generating a specific square 
pulse train voltage stimulus vS , belonging to the class illustrated in Fig. 1b, and characterised by the parameter 
quartet (V+, τ+,V−, τ−) , is connected between its terminals, as shown in plot (a) of the same figure. Equations 
(11) and (12) are respectively referred to as SET and RESET TA-SE components. The blue (red) trace in Fig. 2a 
illustrates qualitatively a ˙̄xSET ( ̇̄xRESET ) versus x̄ locus of the ReRAM cell subject to an arbitrary pulse train volt-
age stimulus. The SET (RESET) resistance switching process tends to increase (decrease) the time average state 
over each input cycle, as indicated by the arrows on the first (latter) single-valued curve. Plotting the RESET 
TA-SE component in modulus, as depicted in plot (b) of the same figure, allows to visualise clearly each point, 
at which the SET and RESET forces balance out. A point of this kind denotes an equilibrium x̄ = x̄eq for the 
TA-SE, as | ˙̄xSET |x̄=x̄eq = |˙̄xRESET |x̄=x̄eq implies ˙̄x = 0 . A TA-SE equilibrium is asymptotically stable if and only 
if | ˙̄xSET | > (<)| ˙̄xRESET | locally to the left (right) of its location, and unstable otherwise. A blue filled circle (red 
hollow circle) is employed to indicate the location of a stable (an unstable) TA-SE equilibrium. The ˙̄x versus x̄ 
locus, derivable by summing the ordinates of the vertically-aligned points, sitting along the SET and RESET 
traces from plot (a), for each x̄ , as dictated by Eq. (10) (refer to Fig. 2c), is the so-called time average state dynamic 
route (TA-SDR) resulting from the earlier arbitrarily specified pulse train stimulation of the  nanodevice16. A 
state dynamic route (SDR), namely the ẋ versus x locus, derivable from the state Eq. (1) for a given DC value 
V assigned to the voltage v, governs the time evolution of the memory state of a first-order memristor under 
the specified bias stimulus. In this regard, it is worth to observe that a number of research studies have recently 

Figure 2.  (a) Blue (Red) trace: SET ˙̄xSET (RESET ˙̄xRESET ) component of the TA-SE (10) of the ReRAM cell 
under an arbitrary pulse train stimulation. (b) Moduli of the SET and RESET TA-SE components. Their 
intersections identify the TA-SE equilibria. (c) TA-SDR of the ReRAM cell subject to the arbitrarily chosen 
pulse train stimulus. Arrows, pointing to the east (west), are superimposed along any TA-SDR branch, which 
visits the upper (lower) half plane, so as to indicate a progressive increase (decrease) in the time average state x̄ 
when ˙̄x is positive (negative). An equilibrium for the TA-SE exists at the abscissa x̄ = x̄eq of any point, at which 
the TA-SDR crosses the horizontal axis, as ˙̄x = 0 therein. The equilibrium is asymptotically stable (unstable), as 
indicated via a black filled (red hollow) circle, if and only if the slope ∂ ˙̄x/∂ x̄ of the ˙̄x versus x̄ locus is negative 
(positive) at its location. According to the TA-SDR analysis, the ReRAM cell is expected to act as a bistable 
oscillator under the given periodic excitation.
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reported laboratory measurements of SDRs acquired from memristive nanodevices, enabling to establish an 
important communication channel between theoreticians and experimenters. The interested readers are invited 
to consult works from  Messaris17,  Maldonado18, and  Marrone19 for the details. A TA-SDR can then be interpreted 
as an extension of the SDR, enabling the investigation of the response of the same device to a particular AC 
periodic square pulse train. On condition that the choice of the pulse train parameters does not jeopardise the 
accuracy of the approximation inherent in Eq. (10), the analysis of this new graphic tool enables to determine 
number, mean values, and stability properties of all the admissible asymptotic oscillations in the memory state 
of the periodically-forced device. Moreover the predictive capability of the TA-SDR technique may be verified by 
means of another more rigorous system-theoretic methodology, described shortly in section “The state change 
per cycle map tool”.

The state change per cycle map tool
The State Change Per Cycle Map (SCPCM) analysis  tool20 is inspired from the Poincaré map  technique12, a 
powerful method from Nonlinear Dynamics Theory, which facilitates the study of a nth-order non-autono-
mous periodically-forced continuous-time system, equivalent to a (n+ 1)th-order autonomous continuous-time 
system, where the time assumes the role of a state variable, through the analysis of a simpler n-dimensional 
discrete-time one. For the Strachan model, featuring order n = 1 , and continuously driven by an input signal 
v, forced to follow a generic periodic voltage stimulus vS , the Poincaré map assumes the one-dimensional form 
xk = P (xk−1) , where k ∈ N>0 , and xk stands for the sample x(k · T) of the solution of the ODE (1), with g(x, v) 
expressed by the formula (3), at the end of the kth input cycle. For k = 1 the map reduces to x1 = P (x0) , where 
x0 denotes the ODE initial condition x(0), and x1 is the state sample x(T) at the end of the first input cycle. The 
Poincaré map accurately provides the sequence of values x0, x1, . . . , also referred to as return points, extracted 
from the time series of the ODE solution at regular T-long time intervals from the initial instant t = 0 of the 
simulation. The one-dimensional discrete-time system is said to admit a fixed point x∗ if it maps such point into 
itself, which is mathematically formulated via the equality x∗ = P (x∗) . A fixed point of the map corresponds 
to a steady-state oscillatory solution for the original non-autonomous continuous-time system. However, the 
periodic attractor of the non-autonomous ODE (1) is asymptotically stable if and only if the fixed point of 
the map is also asymptotically stable, which implies the inequality |P ′(xk)|xk=x∗ < 1 to hold true. Figure 3a 
sketches qualitatively how the graph of the map may look like for an exemplary case study, where, similarly as 
assumed in Fig. 2, a periodic stimulus endows the memory state of the ReRAM cell with two locally asymptoti-
cally stable (LAS) steady-state oscillatory solutions. A black filled (red hollow) circle is employed to indicate the 
location of a stable (an unstable) fixed point of the map. For each k value in N>0 the SCPCM expresses the net 
change �xk;k−1 � xk − xk−1 = P (xk−1)− xk−1 , which the ODE solution x undergoes, over the time interval 

Figure 3.  (a) Exemplary illustration of a one-dimensional discrete-time system xk = P (xk−1) , referred to 
as Poincaré map, which admits three intersections with the identity map xk = PI (xk−1) = xk−1 , representing 
its fixed points, specifically x∗1 , x∗2 , and x∗3 , of which the outer ones (inner one) are stable (is unstable). A few 
coloured zig-zag trajectories, known as cob-web plots12,20 in Nonlinear Dynamics Theory, are also displayed to 
show the discrete-time evolution of the map from distinct initial conditions toward one of the two LAS fixed 
points. In our study a map of this kind can be extracted from the Strachan DAE set, when the input voltage v is 
enforced to follow a given periodic voltage stimulus vS , e.g. in the form of a rectangular pulse train, by recording 
samples of the memristor state x at regular T-long time intervals from the beginning of each of a large ensemble 
of simulations, differing in the initial conditions, and then plotting for each of the resulting time series the kth 
sample xk = x(k · T) versus the (k − 1) th one xk−1 = x((k − 1) · T) , with k ∈ N>0 . For k = 1 the SCPCM 
reduces to �1;0 = x1 − x0 = P (x0)− x0 , providing the change in the memory state over the first input cycle. 
(b) �xk;k−1 = xk − xk−1 versus xk−1 locus, illustrating the SCPCM of the ReRAM cell subject to the periodic 
stimulus, which induces a state motion resulting in the Poincaré map shown in plot (a).
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[(k − 1) · T , k · T] , i.e. within the kth input cycle, as a function of its value xk−1 at time t = (k − 1) · T , i.e. either 
at the end of the (k − 1) th input cycle, if k > 1 , or at the beginning of the simulation, if k = 1 . The SCPCM admits 
a graphical visualisation on the �xk;k−1 versus xk−1 plane, as sketched qualitatively in Fig. 3b, corresponding 
to the P (xx−1) versus xk−1 locus in plot (a) of the same figure. For any initial condition x0 from a set of values 
uniformly distributed across the state existence domain D , the net change �x(k; k − 1) in the state x over the 
time interval [(k − 1) · T , k · T] may be marked on this plane at the abscissa corresponding to the state value xk−1 
at t = (k − 1) · T for each k ∈ N>0 . A suitable interpolation method can then be employed to derive the curve, 
which best fits the sequences of return points collected for all the selected initial conditions. Arrows, pointing 
to the east (west), are then superimposed along the graph of a SCPCM in the upper (lower) half of the �xk;k−1 
versus xk−1 plane to indicate a progressive step-wise increase (decrease) in the discrete-time evolution of the 
Poincaré return point when �xk;k−1 is positive (negative). For each k value in N>0 , the k th return point xk of the 
Poincaré map for a given initial condition x0 may be obtained by adding the abscissa xk−1 , representing either the 
(k − 1) th return point, if k > 1 or the initial condition, if k = 1 , to the ordinate �xk;k−1 of the point of intersec-
tion between the graph of the SCPCM and the vertical line passing through the point(xk−1, 0) . A fixed point x∗ 
of the Poincaré map corresponds to the state value, at which the SCPCM crosses the xk−1 axis, as �xk;k−1 = 0 
therein. The stability of a fixed point of the map may be inferred by monitoring the direction of the arrows in 
its neighbourhood. Arrows, pointing toward (away from) a fixed point on both its left and right sides, provide 
clear evidence for its asymptotic stability (instability). Alternatively, the same information can be retrieved by 
inspecting the slope of the graph of the SCPCM at the fixed point. In fact, the fixed point is asymptotically stable 
(unstable) if and only if the slope of the �xk;k−1 versus xk−1 locus is negative (positive) at its location.

Remark 1 The vector field of the original non-autonomous ODE (1) maps a given state value into some other one 
over a T-long time span, irrespective of the number of input cycles, elapsed since the beginning of the simula-
tion. Therefore, a more efficient strategy to compute a SCPCM, in comparison to the method described earlier, 
envisages to test the response of the ReRAM cell to a predefined periodic stimulus across a T-long time span 
only, for each initial condition x0 from a set of values uniformly distributed across the state existence domain 
D . Specifically, in each iteration step, the state value x1 � x(T) at the end of a T-long simulation, and the state 
change �x1;0 , relative to the initial condition, would be recorded, allowing to identify a particular point on the 
plane, spanned by x0 and �x1;0 on the horizontal and vertical axes, respectively. Interpolating the data through 
some best-fit curve, and renaming the label on the horizontal (vertical) axis as xk−1 ( �xk;k−1 ) finally results in 
the graph of the SCPCM of interest.

All in all, the SCPCM technique enables to explore the response of a first-order nonlinear dynamic system 
to any periodic stimulus. It thus extends the applicability scope of the TA-SDR tool, which is employable solely 
in those case studies, where a periodic train of rectangular pulses stimulates a system of this kind. Furthermore, 
following the steps, described in Remark 1, it should be possible to acquire a SCPCM experimentally, provided 
access to the device state were possible. On the other hand, the measurement of a TA-SDR seems to pose harder 
challenges. Moreover, as elucidated in this section, no approximation is involved in the derivation of a SCPCM, 
which, as a result, may be used to verify the predictions of the TA-SDR investigation technique. Despite its weak 
points, however, the latter method allows the derivation of an analytical approach to engineer multi-stability in 
the oscillatory response of the nano-device to a generalised periodic pulse train voltage stimulus, as described in 
section “An analytical methodology to operate the pulse-driven ReRAM cell as a multimodal device with initial 
condition-dependent oscillatory behaviour”. Moreover, upon availability of a reliable model for the ReRAM cell, 
and for any given rectangular pulse train stimulus, the computation of the SCPCM takes a much longer time 
than the determination of the respective TA-SDR. In fact, while the latter task simply requires to plot the right 
hand side of the TA-SE (10), adapted to the excitation signal of interest, against the time average state, the first 
one requires the numerical integration of the state equation over one input cycle for an adequate number of 
initial conditions, as explained in Remark 1.

Insights into the model
Before introducing the analytical framework, allowing to induce mono- or multi-stability in the oscillatory 
response of the ReRAM cell to a generalised pulse train voltage stimulus, this section discusses numerical inves-
tigations, which shed light into the properties of the Strachan model equations as well as into its response to a 
square wave excitation signal from the class illustrated in Fig. 1b.

Dynamic route map
The Dynamic Route Map (DRM) of the first-order ReRAM cell under focus is a family of SDRs, each of which 
corresponds to the plot of the state evolution function (3) against the state for a particular DC value V assigned 
to the voltage v. When V is negative (positive), the resulting g(x, V) versus x locus is referred to as a RESET SDR 
(SET SDR). A number of RESET (SET) SDRs, obtained by sweeping |V| in 0.2V-long steps from 0.2V to 1V , are 
shown in plots (a), (c), (e), (g), and (i) ((b), (d), (f), (h), and (l)) of Fig. 4. As may be inferred by inspecting the 
graphs on the left (right) column of this figure, the choice of the negative (positive) DC value V has no significant 
(a strong) impact on the shape of the resulting RESET (SET) ẋ versus x locus. We may thus conclude that, toward 
the development of a strategy to massage the SET ˙̄x|SET and RESET ˙̄x|RESET components of the TA-SE (10) in 
such a way to enable a desired number of intersections between their graphs, the fine control of the position of 
the gaussian bell-shaped g(x, V) versus x locus across the horizontal axis through smooth changes in the positive 
DC voltage V is worth of exploitation.
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Figure 4.  (a), (c), (e), (g), (i) ((b), (d), (f), (h), (l)) gRESET(x,V) ( gSET(x,V) ) versus x locus, denoting the 
RESET (SET) SDR of the ReRAM  cell15 when V is chosen as the first, second, third, fourth, and fifth value 
from the set {−(+)0.2,−(+)0.4,−(+)0.6,−(+)0.8,−(+)1} V. Over a RESET (SET) resistance switching 
transition the device state undergoes a progressive decrease (increase), as the arrows, superimposed on top of 
the respective SDR, clearly indicate through their westward (eastward) direction. With reference to each graph 
along the first column, the red filled circle shows the location of the stable equilibrium xeq = xL , which the ODE 
(1) admits for any negative bias value V assigned to the input voltage v. On the other hand, the state equation 
admits no equilibrium under any positive DC stimulus.
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Numerical investigation of the ReRAM response to the basic pulse train stimulus
As uncovered by Pershin and Slipko through an in-depth bifurcation  study8 of the Strachan model, the ReRAM 
cell is expected to display one or two LAS oscillatory behaviours in response to the basic pulse train voltage 
stimulus of Fig. 1b, under the assumption of a unitary SET-to-RESET pulse width ratio r � τ+

τ−
 , depending upon 

the selection of the RESET V− and SET V+ pulse heights. This is clearly illustrated in Fig. 5a, visualising through 
a three-dimensional surface each admissible equilibrium x̄eq = x̄eq(V+,V−) , which the TA-SE (10) admits for 
r = 1 , endowing the pulse train with a 50% duty cycle, when V− and V+ are in turn chosen as the abscissa and 
ordinate of any point of the coloured map in plot (b) of the same figure. The dark blue domain from plot (a) 
contains the only globally asymptotically stable (GAS) equilibrium x̄eq , which the TA-SE features, upon selecting 
(V−,V+) anywhere within the green region from plot (b). On the other hand, the bottom and top violet domains 
(the cyan domain) from plot (a) include (includes) the leftmost and rightmost LAS equilibria x̄eq,1 and x̄eq,3 (the 
unstable equilibrium x̄eq,2 ) of the TA-SE corresponding to any choice for the input parameter pair within the 
red domain from plot (b). For the sake of completeness, the white area in the coloured map of plot (b) contains 
input parameter pairs, whereby there exists no state value, at which ˙̄x|SET = −˙̄x|RESET . In a scenario of this kind, 
if ˙̄x is found to be strictly negative (strictly positive), the memory state of the periodically-forced ReRAM cell 
shall progressively decrease (increase) toward the lower (upper) bound xL ( xU ) in its existence domain D . As 
the operation of the device around its fully-RESET or fully-SET state is not recommendable, the selection of 
input parameter pairs, belonging to the white region in the map of plot (b), shall be avoided in the analysis of 
exemplary excitation case studies to follow.

Monostability
Taking V− and V+ in turn as the abscissa and ordinate of the point (−0.4 V,+0.46V) , indicated as a black 
cross marker, and belonging to the green region in the map of Fig. 5b, as may be inferred from Fig. 6a, show-
ing the | ˙̄x|SET| and | ˙̄x|RESET| versus x̄ loci for the earlier specified (V−,V+) pair, the TA-SDR analysis predicts 
a monostable oscillatory behaviour for the periodically-forced ReRAM cell. Its memory state x is expected to 
experience a steady-state oscillation around the TA-SE equilibrium x̄eq = 0.308 . With reference to plot (a) of 
Fig. 5, the left vertical black dashed line crosses the blue domain of the three-dimensional surface in a single 
point, specifically (V−,V+, x̄eq) = (−0.4 V,+0.46V, 0.308) , as indicated through a green filled circle. Choosing 
sufficiently small values for the RESET τ− and SET τ+ pulse widths is instrumental to prevent the error in the 
approximation inherent in Eq. (10) to jeopardise the accuracy of its predictions. Fixing both τ− and τ+ to 1µs , 
the SCPCM of the ReRAM cell, shown in Fig. 6(b), confirms the conclusions drawn via TA-SDR analysis from 
plot (a) of the same figure. Figure 6c shows the progressive approach of the solution x to the state Eq. (1) toward 
the only possible asymptotic periodic waveform, revolving approximately around x̄eq = 0.308 , from either of two 
initial conditions, lying one well below the minimum and the other well above the maximum of the steady-state 
oscillation. Plot (d) of the same figure visualises both the periodic pulse train voltage stimulus vS (in blue) and 
the steady-state oscillation xss in the memristor state (in green) together with its mean value x̄ss , its prediction, 

Figure 5.  Three-dimensional illustration, showing each admissible stable or unstable equilibrium 
x̄eq = x̄eq(V+,V−) , which the TA-SE (10), associated to a train voltage stimulus, featuring two pulses of opposite 
polarity per cycle, may possibly admit, when the SET τ+ and RESET τ− pulse widths are identical, as a function 
of the SET V+ and RESET V− pulse heights, swept across the ranges [−2, 0] V and [0, 1.2]V , respectively. The 
dark blue surface includes all the GAS equilibria of the TA-SE in the monostable oscillatory operating mode of 
the ReRAM cell. The cyan (magenta) surface contains all the unstable (all the LAS) equilibria of the TA-SE in 
the bistable oscillatory operating mode of the ReRAM cell. (b) Projection of the surface from (a) onto the V+ 
versus V− plane. Choosing the pulses’ heights of the pulse train voltage stimulus, featuring a 50% duty cycle, 
according to the coordinates of any point in the green (red) region, the TA-SE features a single GAS equilibrium 
(two LAS equilibria) for r = 1 . The black cross marker (black plus sign) identifies the input parameter pair 
(V−,V+) , inducing the particular monostable (bistable) oscillatory response, illustrated in Fig. 6 (Fig. 7), in the 
nanodevice.
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namely the TA-SE equilibrium x̄eq , as well as the map fixed point x∗ , corresponding to the minimum value it 
assumes over each cycle.

Bistability
Setting the RESET V− and SET V+ pulse heights to −0.6V and +0.54V , respectively, which identifies a point, 
indicated through a black plus sign, and lying within the red region in the map of Fig. 5b, the TA-SDR analysis 
predicts the coexistence of two LAS steady-state oscillatory solutions for the memory state x of the periodically-
excited ReRAM cell, as may be inferred from Fig. 7a, revealing the existence of a triplet of crossings between the 
loci of the moduli of the SET and RESET TA-SE components. The abscissa of each of the two outer intersections 
x̄eq,1 = 0.106 and x̄eq,3 = 0.370 (of the inner intersection x̄eq,2 = 0.237 ) denotes a LAS (an unstable) equilib-
rium for Eq. (10). The right vertical black dashed line in Fig. 5a intersects the bottom and top violet domains in 
the green-filled points (V−,V+, x̄eq) = (−0.6V,+0.54V, 0.106) and (V−,V+, x̄eq) = (−0.6V,+0.54V, 0.370) , 
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Figure 6.  SET | ˙̄xSET| (blue trace) and RESET | ˙̄xRESET| (red trace) components of the TA-SDR of the ReRAM 
cell under the application of a two-pulse-per-cycle pulse train voltage stimulus vS , when its SET V+ and 
RESET V− pulse heights are in turn set to +0.46V and −0.4 V , and for r = 1 , irrespective of the choice of its 
SET τ+ and RESET τ− pulse widths. Note that scaling the widths of the 2 pulses in the train per cycle by the 
same factor does not affect the TA-SDR prediction. The only GAS equilibrium x̄eq of the TA-SE lies at 0.308, 
which is the abscissa of the black-filled circle. A marker, indicating the zero of the RESET component at 
x̄ = 0 , is omitted from the graph, so as to avoid clutter. (b) SCPCM of the ReRAM cell subject to a particular 
pulse train voltage stimulus vS , belonging to the class considered in (a), and characterised by parameters 
(V+, τ+,V−, τ−) = (+0.46V, 1µs,−0.4 V, 1µs) (refer to the blue signal of period T = τ+ + τ− = 2µs in plot 
(d)). The Poincaré map, from which it is extracted, features a GAS fixed point x∗ (see the black-filled circle). 
Differently from what is the case for the TA-SDR, scaling the widths of the 2 pulses in the train per cycle by 
the same factor may affect the SCPCM. (c) Brown (Green) trace: progressive approach of the solution x to 
the Strachan DAE set, when v is forced to follow the particular excitation voltage signal vS , employed for the 
derivation of the SCPCM, from the initial condition x0 = x0,1 = 0.15 ( x0 = x0,2 = 0.85 ) toward a unique 
steady-state oscillation. (d) Green trace: steady-state time series xss of the memristor state x, as extracted from 
the solution featuring the same colour in plot (c). Horizontal lines mark the locations of the map fixed point 
x∗ , of the TA-SE equilibrium x̄eq , and of the time average x̄ss of the steady-state time series. As the RESET pulse 
follows the SET pulse over each cycle of the input train, xss attains its minimum value at the end of any period. 
Therefore x∗ directly reveals the minimum of xss across one input cycle.
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Figure 7.  Decomposition of the TA-SDR into its SET | ˙̄xSET| (blue trace) and RESET | ˙̄xRESET| (red trace) 
components—plot (a)—for the ReRAM cell subject to a two pulse-per-cycle pulse train voltage stimulus vS , 
composed of one SET (RESET) pulse of positive (negative) amplitude V+ = +0.54 V (V− = −0.6V) over 
the first (second) τ+(τ−)-long half of each period of duration T = τ+ + τ− , irrespective of the common 
value assigned to τ+ and τ− . The TA-SE admits a triplet of equilibria, namely x̄eq,1 = 0.106 , x̄eq,2 = 0.237 , and 
x̄eq,3 = 0.370 . Each of the outer ones (The inner one), indicated via a black-filled (red hollow) circle, is LAS 
(unstable). (b) Time waveform of a particular pulse train voltage stimulus, belonging to the class assumed in 
(a), and identified via the parameter quartet (V+, τ+,V−, τ−) = (+0.54 V, 20 ps,−0.6V, 20 ps) . (c) SCPCM 
of the ReRAM cell in the case, where the excitation voltage signal vS from (b) is let fall continuously between its 
terminals. A black-filled (red hollow) circle denotes a locally-stable (an unstable) fixed point for the associated 
Poincaré map. (d) Cyan (Violet) trace: time course of the memory state x of the ReRAM cell, with voltage v 
forced to follow vS from (b) at all times, from the initial condition x = x0,1 = 0.2 ( x = x0,2 = 0.3 ). Unlike 
the latter solution, the first one takes a very long time to attain the steady state. (e, f) Locally-stable oscillatory 
solution x1 ( x3 ) for the state x of the ReRAM cell, as recorded in a numerical simulation of the Strachan DAE set 
under v = vS from (b) for x0 = x∗1 ( x0 = x∗3 ). In each of the two cases the choice of the initial condition ensures 
that no transients appear in the device response. The time average x̄1 ( ̄x3 ) of the solution x1 ( x3 ), as well as the 
corresponding LAS TA-SE equilibrium x̄eq,1 ( ̄xeq,3 ) and LAS map fixed point x∗1 ( x∗3 ) are also marked in plot (e, f).
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respectively, and the cyan domain in the red-filled point (V−,V+, x̄eq) = (−0.6V,+0.54V, 0.237) . Setting the 
RESET τ− and SET τ+ pulse widths to a relatively small value, specifically 40 ps , as shown in plot (b) of Fig. 7, 
visualising the time waveform of the resulting train voltage stimulus vS , allows to limit the change in the memory 
state over each cycle, which endows the TA-SDR graphic tool with predictive capability. In fact, as may be inferred 
from plot (c) of the same figure, the SCPCM of the ReRAM cell, subject to the stimulus from plot (b), validates the 
conclusions drawn through the analysis of the TA-SE (10). The cyan (violet) trace in Fig. 7d depicts the transient 
behaviour of a solution to the ODE (1), as it approaches the LAS oscillatory waveform revolving approximately 
around the leftmost (rightmost) TA-SE equilibrium x̄eq,1 ( ̄xeq,3 ). Due to the slow/fast dynamical effects, emerging 
in the nanodevice, it takes a rather long (rather short) time for the first (second) solution to attain the steady state. 
However, an ad hoc choice of the initial condition may allow to retrieve the asymptotic behaviour of the state of 
the periodically-driven ReRAM cell without the need to wait for transients to vanish. In fact, plot (e) ((f)) of the 
same figure illustrates the transient-free solution x1 ( x3 ) to the ODE (1), initiated from the leftmost (righmost) 
map fixed point x∗1 ( x∗3 ), corresponding to the minimum value the state assumes over each cycle, together with 
its mean value x̄1 ( ̄x3 ), and the respective approximation x̄eq,1 ( ̄xeq,3).

On the crossings between one scaled SET SDR and one scaled RESET SDR
In general, a single gaussian bell-shaped SET SDR may cross a single RESET SDR nowhere, which is of no 
practical interest, as elucidated in section “Numerical investigation of the ReRAM response to the basic pulse 
train stimulus”, in one point, endowing the resulting TA-SE with a GAS equilibrium x̄eq , or in three locations, 
specifically x̄eq,1 , x̄eq,2 , and x̄eq,3 , the outer of which denote LAS equilibria for the corresponding TA-SE. For a 
fixed choice of the negative pulse height V− , this depends upon the amplitude V+ of the positive pulse as well as 
upon the SET-to-RESET pulse width ratio r, as may be inferred from the coloured map, shown in Fig. 8a, which 
was derived by means of a numerical procedure for V− = −0.5V , and depicts through a white, a green, and a red 

Figure 8.  (a) Coloured map, depicting how the number of admissible stable or unstable equilibria for the 
TA-SE of the ReRAM cell, subject to a two-pulse-per-cycle pulse train voltage stimulus from the class illustrated 
in Fig. 1b is influenced by the SET pulse amplitude V+ as well as by the ratio r between the SET and RESET 
pulse widths, given a RESET pulse amplitude V− of −0.5V . The green and red regions respectively enclose 
input parameter pairs, which endow the TA-SE with one and only one GAS equilibrium (three equilibria, 
of which the outer ones are LAS). (b, c) Graphical illustration, showing the decomposition of the TA-SDR 
into its SET and RESET components for a scenario, where the input pair (V+, r) , lying at (+0.50V, 1× 108) 
((+0.75V, 1× 10−30)) (see the black cross marker (black plus sign) within the green (red) region of the map in 
(a)), determines the existence of one and only one GAS equilibrium x̄eq = 0.314 (three equilibria x̄eq,1 = 0.042 , 
x̄eq,2 = 0.516 , and x̄eq,3 = 0.725 , of which the outer ones are LAS) for the respective TA-SE.
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hue the regions of the r versus V+ plane, where, according to the TA-SDR analysis, the ReRAM cell is expected 
to admit no, a monostable, and a bistable oscillatory behaviour at steady state, respectively. Fig. 8b, c) illustrates 
the loci of the SET and RESET TA-SE components for a choice of the input parameter pair (V+, r+) , specifically 
(+0.50V, 1× 108) ((+0.75V, 1× 10−30)) (see the black cross marker (black plus sign) within the green (red) 
domain in plot (a) of the same figure), which is expected to trigger a monostable (bistable) oscillatory response 
in the ReRAM cell, when V− is fixed to −0.5V.

An analytical methodology to operate the pulse‑driven ReRAM cell as a multimodal 
device with initial condition‑dependent oscillatory behaviour
Despite an in-depth numerical investigation may allow to explore the response of the ReRAM cell to a rectan-
gular pulse train stimulus, the availability of an analytical strategy to craft the excitation signal so as to endow 
the memory state of the ReRAM cell with a prescribed number of steady-state oscillatory solutions, revolving 
around predefined levels, would be of greater interest for circuit designers. In order to address this point, this 
section first presents a thorough analytical investigation of the Strachan model, and then employs its findings 
to propose a systematic approach to engineer multistability in the oscillatory response of the ReRAM cell to a 
generalised pulse train voltage stimulus from the class defined in the section to follow.

Adaptation of the TA‑SE to a generalised pulse train stimulus
In fact, here the periodic voltage source vS in the test circuit of Fig. 1a is assumed to emit a generalised pulse 
train from the class illustrated in Fig. 1c. In each cycle the generalised train is composed of a tunable number 
P ∈ N>0 of positive SET pulses followed by a single RESET pulse. Let the ith SET pulse feature a height V+,i 
and a width τ+,i , with i ∈ {1, 2, . . . , P} . The height and width of the RESET pulse are indicated as V− and τ− , 
respectively. The input period is thus computable as T = τ+,1 + τ+,2 + . . .+ τ+,P + τ− . Under this hypothesis, 
Eq. (8) may be expanded as

Let us further assume each pulse in the train of Fig. 1c to induce a negligible change in the device memory 
state. This allows to approximate the state x, appearing in each integrand function from Eq. (13) with its time 
average state x̄ , allowing to derive the TA-SE of the ReRAM cell, subject to the generalised train voltage stimulus. 
In its approximate formula, still provided by Eq. (10), the RESET component keeps the expression reported in 
(12), while the SET component reads as

with τ̃+,i � τ+,i/T.

Extraction of key geometrical features from a gaussian bell‑shaped SET state evolution 
function
The proposed strategy to endow multistability in the oscillatory response of the ReRAM cell to a generalised pulse 
train envisages an ad hoc choice for the P + 1 stimulus parameters (V+,1, τ+,1,V+,2, τ+,2, . . . ,V+,P , τ+,P ,V−, τ−) , 
for P ∈ N>0 , so as to shape the locus of the SET TA-SE component ˙̄xSET in such a way to let it intersect the locus 
of the RESET TA-SE component ˙̄xSET , while keeping above (below) it to the left (right) of the crossing, in as many 
locations as specified in the design requirements. In fact, it is fundamental to devise an ad hoc linear combina-
tion between scaled gaussian bell-shaped SET state evolution functions for massaging the SET TA-SE component 
according to the design specifications. The derivation of a few key geometrical properties of a generic gaussian 
bell-shaped SET SDR, i.e. the gSET(x, v) versus x locus, resulting from assigning an arbitrary positive DC value 
V+ to the voltage v (recall the graphs along the right column of Fig. 4), is instrumental to accomplish this goal.

State value at the peak of a SET SDR
This section derives an exact closed-form expression for the state value, at which a generic gaussian bell-shaped 
SET SDR attains its peak level. Employing Eqs. (1), (3), and (4), the rate of change ẋ of the memory state x under 
the application of a positive bias voltage V+ across the device may be cast as

where

(13)

˙̄x =
1

T
·

∫ t+τ+,1

t
gSET(x(t

′),V+,1)dt
′ +

1

T
·

P
∑

j=2

∫ t+τ+,j

t+τ+,j−1

gSET(x(t
′),V+,j)dt

′ +
1

T
·

∫ t+T

t+T−τ−

gRESET(x(t
′),V−)dt

′.

(14)˙̄xSET =

P
∑

i=1

τ̃+,i · gSET(x̄,V+,i),

(15)ẋ = gSET(x,V+) = B · sinh

(

V+

σon

)

· exp (α(x,V+)),

(16)α(x,V+) � −
x2

x2on
+

G(x,V+) · V
2
+

σp
,
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with G(x,V+) expressing the dependence of the device conductance upon its state under the prescribed posi-
tive DC stimulus, according to Eq. (6). The abscissa of the maximum of the ẋ versus x locus for v = V+ may be 
analytically computed by employing Eq. (15), and finding the state value, at which ∂gSET(x,V+)/∂x vanishes. As 
the exponential function on the right hand side of Eq. (15) is a monotonically increasing function of its argu-
ment, it is sufficient to find the state value, at which ∂α(x,V+)/∂x vanishes. After some algebraic calculation, 
the formula for xmax(V+) is found to read as

where

Figure 9a shows the xmax versus V+ locus, extracted from the formula (17) (red trace) together with its 
numerical approximation (blue trace).

Positive DC voltage for programming the abscissa of the peak of a SET SDR
This section derives an approximate analytical formula for the positive bias voltage V+ to be assigned to the volt-
age v for the respective ẋ = gSET(x, v) versus x locus to feature the peak level at a preliminarily specified state 
value xmax . The function in Eq. (17) may not be inverted analytically, which explains the reason for the search 
of a suitable approximate formula. The solid blue trace in Fig. 9b shows the dependence of the function γ (V+) 
upon V+ , as it descends from the exact closed-form expression (18). Let us approximate the expression for γ (V+) 
with a quadratic polynomial of the form

where a0(V+,1,V+,2) and a1(V+,1,V+,2) are functions of two voltage parameters, specifically V+,1 and V+,2 , 
allowed to range between 0V and 1V , and shortly subject to an optimisation procedure. Importantly, a0 and a1 
are strictly positive- and negative-valued, respectively, since, as may be evinced by inspecting the blue trace in 
Fig. 9b, the original function γ (V+) features a positive polarity for V+ = 0V , and admits a downward concav-
ity, respectively. Replacing γ (V+) with γ̃ (V+,V+,1,V+,2) into the formula (17) for xmax delivers an approximate 
analytical formula for the abscissa of the peak of the gaussian bell-shaped SET SDR, reading as

Inserting now the second-order polynomial (19) in place for γ̃ (V+,V+,1,V+,2) into this equation yields the 
biquadratic equation

(17)xmax(V+) =
V2
+ · x2on
2 · σp

· γ (V+),

(18)γ (V+) � Gm − a · exp
(

b ·
√

V+

)

.

(19)γ̃ (V+,V+,1,V+,2) = a0(V+,1,V+,2)+ a1(V+,1,V+,2) · V
2
+,

(20)x̃max(V+,V+,1,V+,2) =
V2
+ · x2on
2 · σp

· γ̃ (V+,V+,1,V+,2).

Figure 9.  (a) Dependence of the abscissa xmax of the peak of the gaussian bell, illustrating a SET SDR, i.e. a 
gSET(x,V) versus x locus from the ReRAM cell DRM (refer for examples to plots (b), (d), (f), (h), and (l) of 
Fig. 4), upon the positive DC voltage V = V+ ∈ [0, 1]V . The exact analytical solution, descending from the 
formula (17), is illustrated in red. The numerical solution, depicted in blue, saturates abruptly to the unitary 
value at the first positive DC voltage V+ , specifically 0.957V , where xmax exceeds the upper bound xU of the 
state existence domain D , keeping unchanged for any larger V+ value. (b) Blue trace: Graph of γ as a function 
of V+ , according to the exact analytical formula (18). Red trace: approximation of the γ versus V+ locus via 
the analytical function γ̃ (V+,V+,1,V+,2) from Eq. (19) for (V+,1,V+,2) = (V

(opt)
+,1 ,V

(opt)
+,2 ) = (0.662, 0.923)V . 

(c) Positive value V+ to be assigned to the DC voltage V in order for the abscissa of the peak of the resulting 
SET SDR to lie at a pre-specified location xmax . The blue curve shows the V+ versus xmax locus determined 
numerically from the blue-coloured numerical solution in (a) by exchanging the data series reported along 
horizontal and vertical axes. At xmax = 1 the blue trace abruptly turns into a vertical segment stretching from 
V+ = 0.957V to V+ = 1V . The red curve is the Ṽ+ versus xmax locus, extracted from the analytical formula 
(22), proposed to approximate the inverse of the function (17), for V+,1 = V

(opt)
+,1  , and V+,2 = V

(opt)
+,2  . (d) Blue 

trace: graphical illustration of the exact analytical formula (17) for xmax . Red trace: x̃max versus V+ locus, 
obtained from the approximate closed-form expression (20) for (V+,1,V+,2) = (V

(opt)
+,1 ,V

(opt)
+,2 ) . (e) Peak value 

gSET, max(V+) of a SET SDR as a function of the positive DC voltage V+ across the ReRAM cell. The red trace 
shows the exact analytical solution, derived from the closed-form expression (27), while the blue trace depicts 
its numerical counterpart. (f) Impact of the positive DC voltage V+ on the width wk(V+) of the respective SET 
SDR, measured as the distance between the state values x+,k and x−,k , at which gSET(x,V+) appears to be scaled 
down by a factor k as compared to its peak value gSET(xmax,V+) , for each k value from the set {1.5, 2, 3} . The 
exact analytical solution, descending from the formula (35), (The numerical solution) is illustrated through 
a dashed (solid) trace with red (blue), magenta (black), and green (brown) hue for the first, second, and 
third k value from the triplet. When 1.5, 2, and 3 is assigned to k, the numerical solution deviates from the 
corresponding analytical one as soon as V descends below +0.184 , +0.211 , +0.237V (increases above +0.937 , 
+0.932 , and +0.925V ), since then x− ( x+ ) descends below (rises above) the lower (upper) bound xL ( xU ) in the 
state existence domain D.

◂
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which can be solved for V+ , resulting in an approximate analytical formula for V+(xmax) , featuring the form

in which the positive (negative) sign in front of the first (second) square root sign descends from the polarity of 
V+ (from the monotonic increase of V+ with xmax , as inferable from the graphs along the right column of Fig. 4), 
and where the functions a0(V+,1,V+,2) and a1(V+,1,V+,2) are in turn defined as

Let us define the error e between xmax and its approximation xmax(Ṽ+(xmax),V+,1,V+,2) as

in which the second addend on the right hand side calls for the use of the approximate formula 
Ṽ+(xmax,V+,1,V+,2) for V+(xmax) , as given in Eq. (22), into the closed-form expression for xmax(V+) , reported 
in Eq. (17), with γ (·) denoting the function in (18). For each voltage parameter pair (V+,1,V+,2) , we first com-
puted the maximum of the squared error e2 , as xmax was swept in D , and then found the minimum of the result-
ing list of numbers via

According to this optimisation procedure, assuming V+,2 > V+,1 , the best voltage parameter pair (V+,1,V+,2) , 
let us denote it as (V (opt)

+,1 ,V
(opt)
+,2 ) , was found to be equal to (0.662, 0.923)V , which delivered the lowest possible 

maximum squared error, amounting to 5.635× 10−8 . (see the rightmost red-filled circle in Fig. 10). The comple-
mentary hypothesis V+,2 < V+,1 results in an optimal voltage parameter pair (V (opt)

+,1 ,V
(opt)
+,2 ) = (0.923, 0.662)V , 

whereby once again the maximum squared error descends to its global minimum (see the leftmost red-filled 
circle in Fig. 10). Using these optimal values for V+,1 and for V+,2 , the formulas for γ̃ (V+,V+,1,V+,2) and for 
Ṽ+(xmax,V+,1,V+,2) are respectively plotted through red traces in Fig. 9b and c. In the latter plot the blue curve 

(21)V4
+ +

a0(V+,1,V+,2)

a1(V+,1,V+,2)
· V2

+ −
2 · σp · xmax

x2on · a1(V+,1,V+,2)
= 0,

(22)

Ṽ+(xmax,V+,1,V+,2) = +

√

√

√

√

−
a0(V+,1,V+,2)

2 · a1(V+,1,V+,2)
−

√

(

a0(V+,1,V+,2)

2 · a1(V+,1,V+,2)

)2

+
2 · σp · xmax

x2on · a1(V+,1,V+,2)
,

(23)a0(V+,1,V+,2) �
γ̃ (V+,1) · V

2
+,2 − γ̃ (V+,2) · V

2
+,1

V2
+,2 − V2

+,1

, and

(24)a1(V+,1,V+,2) �
γ̃ (V+,2)− γ̃ (V+,1)

V2
+,2 − V2

+,1

.

(25)e(xmax,V+,1,V+,2) � xmax − xmax(Ṽ+(xmax,V+,1,V+,2),

(26)min
V+,1,V+,2∈[0,1]V

{ max
xmax∈D

{e2(xmax,V+,1,V+,2)}}.

Figure 10.  Surface of the maximum squared error maxxmax∈D {e2(xmax,V+,1,V+,2)} as a function of the 
voltage parameters V+,1 and V+,2 under optimisation. At each of the points (V+,1,V+,2) = (0.662, 0.923)V 
and (V+,1,V+,2) = (0.923, 0.662)V , marked as red circles, and symmetrically located relative to the plane 
V+,2 = V+,1 , the surface assumes the minimum possible value, specifically 5.635× 10−8 . Without loss of 
generality, in the remainder of this paper V+,2 is assumed to be larger than V+,1 . As a result the optimal 
parameter pair is chosen as (V (opt)

+,1 ,V
(opt)
+,2 ) = (0.662, 0.923)V.
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illustrates the numerical approximation for the inverse of the function in Eq. (17). Figure 9d depicts the approxi-
mate analytical formula (20) for xmax under V+,1 = V

(opt)
+,1 , and V+,2 = V

(opt)
+,2  (red trace) together with the exact 

analytical closed-form expression for xmax from (17) (blue trace).

Peak value of a SET SDR
The maximum value attained by the ẋ versus x locus for a given positive bias level V+ assigned to the voltage v 
may be easily derived by inserting the analytical closed-form expression (17), with γ (V+) expressed via Eq. (18), 
in place for xmax on the right hand side of (15), which employs (16) for α(x,V+) . Algebraic manipulations allow 
to express the maximum gSET, max(V+) of the SET state evolution function gSET(x,V+) for a given choice of V+ as

where

Figure 9e shows the gSET, max(V+) versus V+ locus, as extracted from the exact analytical formula (27) (red 
trace) and by means of a numerical procedure (blue trace).

Width of the Gaussian bell-shaped SET state evolution function
For any positive DC value V+ assigned to the voltage v, the SET state evolution function gSET(x,V+) features a 
gaussian shape on the ẋ versus x plane. Let x−(V+) and x+(V+) denote two state values, lying to the left and to 
the right of the abscissa of the maximum xmax(V+) of the gaussian function, respectively. Assume x−,k(V+) and 
x+,k(V+) to hold the same distance from xmax(V+) , and the common value of the SET state evolution function 
at each of these points to appear scaled down by a factor k relative to the maximum level gSET,max(V+) , which 
may be expressed in mathematical terms as

For a given choice of k ∈ R , let us now define the kth-scale width wk(V+) of the gaussian function as the 
distance between x+,k(V+) and x−,k(V+) , i.e.

Using Eqs. (15) and (27), the condition (29) at either state value x∓,k(V+) ∈ {x−,k(V+), x+,k(V+)} can be 
recast as

Employing Eqs. (16) and (28), defining

and recalling the earlier specified formula (18) for γ (V+) , the constraint (31) reduces to the second-order 
polynomial

which can be easily solved for x∓,k(V+) , yielding

Inserting (34) into Eq. (30), the kth-scale width wk(V+) of the gaussian function gSET(x,V+) is then comput-
able via

which, as indicated, is surprisingly found to be independent of V+ . Fig. 9f depicts the kth-scale width wk(V+) 
of the gaussian bell-shaped SET state evolution function gSET(x,V+) against V+ for the first, second, and third k 
value from the set {1.5, 2, 3} , as computed through the exact analytical formula (35), delivering in turn the con-
stant values 0.076, 0.100, and 0.126 (red, magenta, and green dashed traces, respectively) as well as by numerical 
means (blue, black, and brown solid traces, respectively).

(27)gSET, max(V+) � gSET(xmax(V+),V+) = B · sinh
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+
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(
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+
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+
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A systematic methodology to craft the pulse stimulus for enabling the ReRAM cell to support 
multiple oscillations around prescribed resistance levels
Having acquired key geometrical properties of a gaussian bell-shaped SET state evolution function gSET(x,V) , 
and, particularly, the positive value V+ to be assigned to the DC voltage V to program its peak level at a prescribed 
state value xmax , as reported in section “Positive DC voltage for programming the abscissa of the peak of a SET 
SDR”, and its kth-scale width wk , as described in section “Width of the Gaussian bell-shaped SET state evolution 
function”, we are now in a position to present a systematic technique for choosing 2 · P − 1 parameters of a gen-
eralised pulse train from the class illustrated in Fig. 1c, specifically V+,1,V+,2, . . . ,V+,P , τ+,1, τ+,2, . . . , τ+,P , τ− , 
with V+,1 < V+,2 < . . . < V+,P , so as to induce the coexistence of a predefined number of asymptotic oscillatory 
solutions for the memory state of the ReRAM cell around prescribed levels ( P ∈ N>0 ), for a given RESET pulse 
height V− , chosen beforehand.

Our methodology envisages to endow the TA-SE (10) with as many stable equilibria as the number P of 
positive pulses over each cycle of the pulse train voltage signal, falling across the ReRAM cell. In particular, the 
proposed systematic procedure is calibrated so as to ensure that the graph of the leftmost scaled gaussian bell-
shaped state evolution function τ̃+,1 · gSET(x̄,V+,1) , corresponding to the first positive input pulse, which features 
the smallest height V+,1 , creates one and only one stable TA-SE equilibrium x̄eq,1 with the graph of the modulus 
of the scaled RESET state evolution function τ̃− · gRESET(x̄,V−) , appearing on the right hand side of Eq. (12). It 
also guarantees that the graph of the scaled gaussian bell-shaped state evolution function τ̃+,j · gSET(x̄,V+,j) , cor-
responding to the j th positive input pulse, which exhibits height V+,j , forms a pair of TA-SE equilibria, specifically 
x̄eq,2·j−2 and x̄eq,2·j−1 , featuring an unstable and stable nature, respectively, with the graph of τ̃− · |gRESET(x̄,V−)| , 
for j ∈ {2, . . . , P} . The target of the methodology is to massage the aforementioned 2 · P − 1 parameters of the 
generalised pulse train so as to endow the resulting TA-SE (10) with 2 · P − 1 equilibria, indicated as x̄eq,1 , x̄eq,2 , 
x̄eq,2·P−1.

According to the TA-SDR analysis, the stable ones, endowed with odd labels, and referred to as x̄eq,1 , x̄eq,3 , . . . , 
x̄eq,2·P−1 , are expected to denote the mean values of the P admissible stable oscillatory solutions x1,ss(t) , x3,ss(t) , 
. . . , and x2·P−1,ss(t) for the memory state x of the periodically-forced ReRAM cell.

In order for the ith scaled SET state evolution function, with i ∈ {1, 2, ·, P} , to dominate over the other P − 1 
terms in the sum, composing the SET TA-SE component ˙̄xSET from Eq. (14), locally, around the respective maxi-
mum, which is a necessary critical measure to ensure that the existence of TA-SE equilibria in the region around 
xmax,i is determined mainly by the interaction between the τ̃+,i · gSET(x̄,V+,i) and the τ̃− · |gRESET(x̄,V−)| versus 
x̄ loci, the P stable equilibria to be provided as a design specification to the input of the systematic procedure 
need to hold a suitable distance, which is at least one kth-scale width wk , one from any adjacent other. Moreover, 
for each i value from the set {1, 2, . . . ,P} , the abscissa xmax,i of the maximum of the gaussian SET state evolution 
function gSET(x̄,V) , sampled at the DC voltage V+,i , which corresponds to the height of the ith positive pulse 
within each period of the train stimulus, is placed to the left of the prescribed (2 · i − 1) th stable TA-SE equi-
librium x̄eq,2·i−1 , at an appropriate distance, amounting to one quarter of the kth-scale bell width wk , from its 
location. This step ensures that for each i ∈ {1, 2, . . . , P} the SET (RESET) forces win over the RESET (SET) ones 
to the left (right) of the (2 · i − 1) th TA-SE equilibrium x̄eq,2·i−1 , which, as a result, acquires a stability nature, as 
explained in section “The time average state dynamic route technique”. Having computed the state value, at which 
the peak of the ith gaussian bell should appear, via xmax,i = x̄eq,2·i−1 − wk/4 , for i ∈ {1, 2, . . . , P} , the approximate 
closed-form expression (22), with xmax = xmax,i , V+,1 = V

(opt)
+,1  , and V+,2 = V

(opt)
+,2  , is then employed to compute 

the positive value V+,i to be assigned to the DC voltage V in the expression for the SET state evolution function 
gSET(x̄,V) , appearing in the ith addend of the sum to the right hand side of Eq. (14), i.e. the height of the ith 
positive pulse over each cycle of the train excitation signal vS . P algebraic equations are then written down to 
enforce the TA-SE (10) to feature equilibria at x̄eq,1 , x̄eq,3 , . . . , and x̄eq,2·P−1 . More specifically, these constraints, 
imposing an equality between the moduli of the SET ˙̄xSET and RESET ˙̄xRESET TA-SE components at each of the 
stable equilibria, which Eq. (10) is expected to admit, read as

where r+,1 � τ+,1/τ− , r+,2 � τ+,2/τ− , . . . , and r+,P � τ+,P/τ− express the first, second, . . . , and Pth SET to 
RESET pulse width ratio, respectively. This set of P equations is then solved for the unknowns r+,1 , r+,2 , . . . , and 
r+,P . The last unknown parameter, specifically the RESET pulse width τ− , which automatically fixes all the SET 
pulse widths τ+,1 , τ+,2 , . . . , and τ+,P , is finally chosen so small as to guarantee the accuracy of the predictions, 
drawn from the TA-SDR analysis, as verifiable through the investigation of the SCPCM of the periodically-forced 
memristive system, as well as via numerical simulations.

Remark 2 Even though an adequate distance between adjacent TA-SE equilibria is preliminarily observed in their 
prescription, as specified above, for an arbitrary choice of the negative input pulse height V− , out of the theoretic 
methodology, presented in this section, the leftmost scaled gaussian bell-shaped τ̃+,1 · gSET(x̄,V+,1) versus x̄ locus 
may cross the graph of τ̃− · |gSET(x̄,V−)| as a function of x̄ a couple of additional times, for some choices of the 

(36)
r+,1 · gSET(x̄eq,1,V+,1)+ r+,2 · gSET(x̄eq,1,V+,2)+ . . .+ r+,P · gSET(x̄eq,1,V+,P) = −gRESET(x̄eq,1,V−,1),

(37)
r+,1 · gSET(x̄eq,3,V+,1)+ r+,2 · gSET(x̄eq,3,V+,2)+ . . .+ r+,P · gSET(x̄eq,3,V+,P) = −gRESET(x̄eq,2,V−,1), and

(38)

. . .

r+,1 · gSET(x̄eq,2·P−1,V+,1)+ r+,2 · gSET(x̄eq,2·P−1,V+,2)+ . . .+ r+,P · gSET(x̄eq,2·P−1,V+,P)

= −gRESET(x̄eq,2·P−1,V−,1),
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height V+,1 of the first positive pulse and of the first SET-to-RESET pulse width ratio r+,1 . However, ad hoc control 
measures can be set in place to ensure that the interaction between the first scaled SET SDR and the modulus of 
the only scaled RESET SDR forms one and only one GAS equilibrium at the prescribed location x̄eq,1 for Eq. (10). 
For example, with reference to the numerical study, discussed in section “On the crossings between one scaled 
SET SDR and one scaled RESET SDR”, and referring to the simple case, where a two-pulse-per-cycle pulse train 
stimulus is let fall across the ReRAM cell, choosing V− = −0.5V , the resulting TA-SE equation admits one and 
only one GAS equilibrium x̄eq , irrespective of the pulse width ratio r, if V+ is set to a value lower than the abscissa 
V̂+ = 0.494V of the cusp in Fig. 8a. The state value xmax , at which the gSET(x̄,V+) versus x̄ locus features a peak 
for V+ = V̂+ is 0.266. This directly sets the maximum value, which may be prescribed for the TA-SE equilibrium 

Figure 11.  Illustrations elucidating how to choose the design parameter k for a case study, where it is requested 
for the ReRAM cell to act as a bistable oscillator under the application of a three-pulse-per-cycle pulse train 
voltage stimulus between its terminals. Let the ith positive pulse in the input sequence over each cycle have 
amplitude V+,i and width τ+,i , for i ∈ {1, 2} . The negative pulse, following the two positive ones in each input 
cycle, is assumed to feature a fixed amplitude V− of −0.5V , while its width τ− is to be determined. It is further 
required for the left LAS TA-SE equilibrium x̄eq,1 to be located at 0.280. The right LAS TA-SE equilibrium x̄eq,3 
should be apart from the left one by one bell width wk . When k is set to 1.5, 2, and 3, x̄eq,3 is expected to lie at 
0.356, 0.380, and 0.406, respectively. (a) For k = 1.5 the application of the design methodology first employs 
the approximate analytical formula (22), with xmax set to xmax,1 = x̄eq,1 − w1.5/4 ( xmax,2 = x̄eq,3 − w1.5/4 ), 
V+,1 = V

(opt)
+,1  , and V+,2 = V

(opt)
+,2  , to fix the amplitude V+,1 ( V+,2 ) of the first (second) SET pulse to 0.483V 

( 0.550V ). It then specifies the values 0.815 and 2.687× 10−5 for r+,1 and r+,2 , respectively, by solving the linear 
system of equations (36)–(37). Regardless of the choice for the RESET pulse width τ− , which automatically 
fixes the values for the SET pulse widths τ+,1 and τ+,2 , the TA-SE is found to admit the triplet of equilibria 
(x̄eq,1, x̄eq,2, x̄eq,3) = (0.132, 0.28, 0.356) . Clearly, the design specifications are not satisfied here. (b) For k = 2 , 
applying the proposed methodology delivers first the SET pulse heights V+,1 = 0.478V , and V+,2 = 0.564V , 
and then the SET-to-RESET pulse width ratios r+,1 = 10.866 and r+,2 = 8.974× 10−7 . The TA-SE equilibria 
are then found to lie at x̄eq,1 = 0.251 , x̄eq,2 = 0.28 , and x̄eq,3 = 0.38 . Also in this case the systematic procedure, 
introduced in this paper, fails to fulfil the design tasks. (c) Recurring to the proposed design methodology with 
k = 3 , the pulse train voltage stimulus is crafted as specified by the parameters V+,1 = 0.472V , V+,2 = 0.580V , 
r+,1 = 54.759 , and r+,2 = 1.715× 10−8 . The TA-SE admits here the equilibria x̄eq,1 = 0.280 , x̄eq,2 = 0.309 , and 
x̄eq,3 = 0.406 . Therefore, choosing k = 3 , the combination between the two gaussian bells and the red curve, 
increasing monotonically with the time average state, allows to endow the TA-SE with two LAS equilibria at the 
desired locations, meeting the design requirements.
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Figure 12.  Graphs revealing the instrumental role of the TA-SDR analysis tool to guide the circuit designer 
toward an appropriate choice for the parameter k for a case study, where a pulse train voltage stimulus, 
composed of one negative and three positive pulses per cycle, is expected to induce tristability in the oscillatory 
response of the ReRAM cell. Let V+,i ( τ+,i ) indicate the pulse amplitude (width) of the i th SET pulse, for 
i ∈ {1, 2, 3} . The pulse amplitude V− of the RESET pulse is fixed to −0.5V , while its width τ− is an unknown 
variable. The leftmost LAS TA-SE equilibrium x̄eq,1 should lie at 0.275. The jth equilibrium x̄eq,j should appear 
to the right of the (j − 1) th equilibrium x̄eq,j−1 by as much as one bell width wk , for j ∈ {2, 3} . For k equal 
to 1.5, 2, and 3, the inner (rightmost) LAS TA-SE equilibrium x̄eq,3 ( ̄xeq,5 ) is expected to lie at 0.351 (0.428), 
0.375 (0.475), and 0.401 (0.527), respectively. (a) Choosing k = 1.5 , the proposed systematic design procedure 
first specifies the values 0.478V , 0.546V , and 0.606V for the SET pulse amplitudes V+,1 , V+,2 , and V+,3 , 
respectively, via the approximate analytical formula (22), for V+,1 = V

(opt)
+,1  , and V+,2 = V

(opt)
+,2  , and fixing xmax 

in turn to xmax,1 = x̄eq,1 − w1.5/4 , xmax,2 = x̄eq,3 − w1.5/4 , and xmax,3 = x̄eq,5 − w1.5/4 . It then solves the 
system of linear Eqs. (36)–(38) with P = 3 for r+,1 , r+,2 , and r+,3 , in turn found to equal 13.228, 2.375× 10−5 , 
and 5.399× 10−12 . Irrespective of the choice for τ− , which directly sets values for τ+,i , with i ∈ {1, 2, 3} , 
the intersections between the loci of the moduli of the SET and RESET TA-SE components, identifying the 
equilibria x̄eq,1 , x̄eq,2 , and x̄eq,3 , the outer (the inner) of which are LAS (is unstable), for Eq. (10), are found 
to lie at 0.275, 0.351, and 0.428, respectively. As the TA-SDR analysis predicts bistability in the memristor 
steady-state oscillatory behaviour, assigning 1.5 to k is not an appropriate design choice. (b) For k = 2 , out of 
the proposed design procedure, the input parameters V+,1 , V+,2 , V+,3 , r+,1 , r+,2 , and r+,3 , are respectively set 
to 0.473V , 0.560V , 0.636V , 31.913, 1.578× 10−6 , and 2.016× 10−16 . Correspondingly, the TA-SE admits 
the five equilibria x̄eq,1 = 0.275 , x̄eq,2 = 0.319 , and x̄eq,3 = 0.370 , x̄eq,4 = 0.375 , and x̄eq,5 = 0.475 , of which 
those labelled with odd numbers are LAS. Here the systematic parameter tuning procedure meets the design 
specifications. However the robustness of the design is questionable, given the non-ideal proximity between the 
TA-SE equilibria x̄eq,3 and x̄eq,4 . (c) With k = 3 , the application of the design procedure allows to choose the 
input parameters V+,1 = 0.467V , V+,2 = 0.576V , V+,3 = 0.668V , r+,1 = 1.115× 102 , r+,2 = 4.240× 10−8 , 
and r+,3 = 8.234× 10−22 . The | ˙̄xSET| versus x̄ and | ˙̄xRESET| versus x̄ loci feature the five crossings x̄eq,1 = 0.275 , 
x̄eq,2 = 0.315 , and x̄eq,3 = 0.401 , x̄eq,4 = 0.446 , and x̄eq,5 = 0.527 . Those, labelled with odd numbers, are LAS 
TA-SE equilibria, as desired.
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x̄eq , so as to ensure its GAS property, irrespective of r, to xmax + wk/4 , that equals 0.285, 0.291, and 0.297, for 
the first, second, and third k value from the set {1.5, 2, 3} . In principle, as is the case for the examples illustrated 
in Figs. 13, 14, and 15, assuming a P-pulse-per-cycle pulse train voltage stimulus were let fall across the ReRAM 
cell, it is also possible to set the first TA-SE equilibrium x̄eq,1 to a value larger than this upper bound, but then, 
after solving the system of linear Eqs. (36)–(38), it would be necessary to check that the selection of values for the 
first pulse height and for the first SET-to-RESET pulse width ratio would fall in the monostability green region of 
the coloured r versus V+ map, with r = r+,1 , under the specified value for V− . Finally, it is worth pointing out that 
a suitable change in the value, assigned to V− , may allow to move the abscissa V̂+ of the cusp, indicating the left 
bound of the red bistability domain, to the right, relative to its location along the horizontal axis in the coloured 
map of Fig. 8a. With reference to the proposed methodology, this would result in a corresponding increase in 
the maximum value, which may be prescribed for the stable equilibrium x̄eq,1 , that the leftmost scaled gaussian 
bell-shaped SET SDR would form with the graph of the modulus of the scaled RESET state evolution function 
over the time average state, irrespective of the first SET-to-RESET pulse width ratio r+,1.

Remark 3 The selection of the real-valued parameter k is a critical design choice. In order to gain insights into 
this important aspect, Figs. 11 and 12 illustrate two examples, where the methodological approach, presented 
in this section, is applied for different k values in the attempt to endow the TA-SE with two or three prescribed 
equilibria, respectively. In each of the two figures, plots (a), (b), and (c) show the loci of the moduli of the SET 
and RESET components of the corresponding TA-SE for the first, second, and third k value in the set {1.5, 2, 3} , 
revealing how only assigning the largest value in this triplet to the parameter under discussion allows to satisfy 
the design specifications (see the respective captions for more detail).

Importantly, under a proper selection for k, constraining the SET and RESET TA-SE components to comply 
with the set of P constraints (36)–(38), together with the imposition of a minimum distance between adjacent 
stable equilibria, prescribed for the TA-SE, as well as with a sufficient leftward shift of each SET SDR relative to 
the respective stable TA-SE equilibrium, the scaled gaussian bells, resulting from the application of the proposed 
algorithm, gracefully pass over the locus of the modulus of the scaled RESET state evolution function versus 
the time average state in the regions of the respective peaks only, as may be inferred from either of Figs. 11c and 
12c, which refer to a particular case study for P = 2 and for P = 3 , respectively, and where, as a result, the blue-
coloured single-valued curve, illustrating the TA-SE component, is found to oscillate around the graph of the 
modulus of the RESET TA-SE component as a function of the time average state, creating 2 · P − 1 equilibria, 
of which P stable, as prescribed, for the TA-SE. In each of the case studies, illustrating the application of the 
theory in section 6, keeping such a value for k, which implies a minimum distance between adjacent prescribed 
stable TA-SE equilibria of w3 = 0.126 , and a spacing between each prescribed stable TA-SE equilibrium and the 
abscissa of the peak of the respective gaussian bell of w3/4 = 0.031 , proves to be a suitable choice to accomplish 
a robust design.

Discussion
The first part of this section applies the rigorous system-theoretic methodology, presented in section “A systematic 
methodology to craft the pulse stimulus for enabling the ReRAM cell to support multiple oscillations around 
prescribed resistance levels”, to the Strachan  model4 for the determination of heights and widths of all the pulses, 
appearing cyclically across the ReRAM cell, so as to endow it with three, four, or five coexisting oscillatory operat-
ing modes around prescribed resistance levels. The second part of this section is devoted to show an interesting 
potential application, where the local fading memory effects, emerging across the nonvolatile resistance switching 
memory under periodic pulse train stimulation, could be leveraged to counteract certain non-idealities, which 
may be responsible for the corruption of the synaptic weights stored in a crossbar array.

Application of the theory to endow the ReRAM cell with three, four, or five oscillatory 
behaviours
The first, second, and third examples, illustrated in turn in Figs. 13, 14, and 15, result from the application of 
the theoretical method, presented in section “A systematic methodology to craft the pulse stimulus for enabling 
the ReRAM cell to support multiple oscillations around prescribed resistance levels”, to the Strachan  model4 
for the specification of suitable values for the 2 · P − 1 tuneable parameters of a generalised pulse train volt-
age stimulus, belonging to the class, visualised in Fig. 1c, namely V+,1,V+,2, . . . ,V+,P , τ+,1, τ+,2, . . . , τ+,P , τ− , 
with V+,1 < V+,2 < . . . < V+,P , when V− is preliminarily set to −0.5V , so as to induce the coexistence of P 
stable asymptotic oscillations with prescribed mean values x̄eq,1, x̄eq,3, . . . , x̄eq,2·P−1 in the memory state of the 
periodically-forced ReRAM cell, with P set to 3, 4, and 5, respectively.

Remark 4 The theoretical framework, presented in this manuscript, provides evidence for the support, which 
nonlinear system theory may provide to experimenters and circuit design engineers. The experimental validation 
of the theory is the aim of our future research efforts. There are several challenges to tackle in order to achieve 
this goal. 

1. Memristor devices available today can have limited endurance and their electrical behaviour may be subject 
to subtle drifts under operation, requiring much care and numerous repetitions to acquire convincing results.
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2. Intrinsic variability in memristors requires the procurement of significant statistics, regarding device-to-
device and cycle-to-cycle variability effects, for the provision of convincing experimental results.

3. The input pulse sequences, required in our programming schemes, are rather complex, requiring finely-
programmable high-frequency pulse generators to support the experimental validation activities. This calls 
for the need to adapt existing measurement routines, available in house, or to acquire new experimental 
setups.

In regard to the third challenge from the above list, it might finally turn out to be less problematic than it seems, 
as explained next. The application of the rigorous system-theoretic methodology, presented in this section, to the 
Strachan model results in the specification of input pulse widths, decreasing at exponential rate with increases in 
their heights. While this issue does not undermine the significance of the theoretical work, which is applicable 
mutatis mutandis to any other memristor model, it originates here as the Strachan mathematical  description4 
was not optimised for regions of the state-voltage space, where the ReRAM cell undergoes local fading memory 
effects, supporting multistable oscillatory operating modes. In fact, in these regions—refer to the order of mag-
nitude of the bell peak value in either of plots (f), (h), and (l) of Fig. 4, extracted from the DRM upon assigning 
the first, second, and third positive value V+ from the set {0.6V, 0.8 V, 1.0 V} to the DC voltage V—the Strachan 
model may overestimate the speed of the oxygen vacancies as they move across the longitudinal extension of the 
nanodevice during a SET resistance switching process. This issue points to the necessity to retune the Strachan 
model so as to reproduce more accurately the behaviour of the nanodevice in the state-voltage space domain, 
where it is subject to local fading memory effects. Importantly, research investigations, applying the proposed 
systematic methodology to a recent reformulation of the Strachan  model21, which employs ad hoc functions to 
limit to some extent the maximum admissible velocity, attainable by the ions under positive voltages, and was 
introduced to resolve some numerical issues, the original DAE set may suffer from, resulted in a dramatic increase 
in the minimum pulse width by several orders of magnitude relative to the case, where no upper bound was 
enforced on the rate of change of the memory state, in various scenarios, where the amplitudes assigned to the 
SET pulses were found to trigger local fading memory effects in the ReRAM cell. This provides proof-of-concept 
evidence that the application of our theory to a properly-optimised variant of the Strachan model might lead to 
the specification of widths and heights for the pulses, composing cyclically the train stimulus, which would be 
programmable in the control settings of existing physical AC voltage waveform generators.

Compensating for the drift in the resistance of crosspoint devices under power off conditions
This section presents a potential application, where the multistable oscillatory response of the ReRAM cell to 
periodic pulse train stimulation may provide benefits for nonvolatile memory crossbar array design. Let us 

Figure 13.  (a) Decomposition of the TA-SDR into its SET (blue trace) and RESET (red trace) contributions, 
here plotted together on the | ˙̄x| versus x̄ plane to visualise each possible equilibrium x̄eq of equation (10), 
where ˙̄xSET = −˙̄xRESET , for a case study, where the proposed methodology from section 5.3 set the values 
for the parameters V+,1 , V+,2 , V+,3 , r+,1 , r+,2 , and r+,3 of a four-pulse-per-cycle pulse train voltage stimulus, 
with V− preliminarily chosen as −0.5V , to +0.490V , +0.649V , +0.778V , 4.594, 1.489× 10−18 , and 
1.361× 10−47 , respectively, so as to endow the TA-SE with the 3 stable equilibria x̄eq,1 = 0.3 , x̄eq,3 = 0.5 , and 
x̄eq,7 = 0.7 , which in turn place the maxima of the first, second, and third gaussian bells at xmax,1 = 0.269 , 
xmax,2 = 0.469 , and xmax,3 = 0.669 . The TA-SE equilibria are found to lie at x̄eq,1 = 0.3 , x̄eq,2 = 0.427 , 
x̄eq,3 = 0.5 , x̄eq,4 = 0.635 , and x̄eq,5 = 0.7 , the odd numbered of which are LAS, as requested. (b) TA-SDR of 
the ReRAM cell under a voltage excitation signal from the class identified by the aforegiven parameter set of 
cardinality 7. (c) Time waveform of a particular generalised pulse train voltage stimulus vS , extracted from 
the class under focus by setting τ− to 1× 10−8 s , which directly fixes τ+,1 , τ+,2 , and τ+,3 to 4.594× 10−8 s , 
1.489× 10−26 s , and 1.361× 10−55 s , respectively. (d) SCPCM of the ReRAM cell, subject to the specific 
generalised pulse train from (c), confirming the predictions drawn from the TA-SDR analysis. (e) Transients 
in the memory state x of the ReRAM cell, as resulting from numerical simulations of the Strachan model, 
with v taken identically equal to the excitation signal vS from (c), for each initial condition x0 from the set 
{x0,1, x0,2, x0,3, x0,4, x0,5, x0,6} = {0.15, 0.415, 0.425, 0.620, 0.626, 0.8} . From either of the first two, of the second 
two, and of the last two initial conditions the memory state of the ReRAM cell asymptotically approaches the 
steady-state oscillatory solutions xss,1 , xss,3 , and xss,5 , which revolve approximately around x̄eq,1 , x̄eq,3 , and x̄eq,5 , 
respectively, as illustrated in turn in plots (f), (g), and (h), visualising also their time averages x̄ss,1 , x̄ss,3 , and x̄ss,5 , 
and the corresponding stable map fixed points x∗1 , x∗3 , and x∗5.

◂



24

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5626  | https://doi.org/10.1038/s41598-024-55255-7

www.nature.com/scientificreports/

assign the synaptic weights of the 195 ReRAM cells, arranged at regular positions across a nonvolatile memory 
crossbar array, featuring 15 rows and 13 columns, in such a way that the coloured image, coding them, may 
form the symbol of TU Dresden, as shown in plot (a) of Fig. 16. This is accomplished by properly programming 
the state xi,j of the identical ReRAM cell sitting in the position, identified by row index i and column index j, 
to either of the four values from the set {0.3, 0.45, 0.6, 0.75} ( i ∈ {1, 2, . . . , 15} , j ∈ {1, 2, . . . , 13} ). Under power-
off conditions, the state of each memristor may drift away from the value, it is supposed to store, due to some 
unwanted perturbation effect, modelled here as additive noise drawn from a uniform distribution defined over 
the range [−0.06,+0.06] . Suppose that at some time instant after the programming phase, the synaptic weight 
matrix appears as corrupted as visualised in the illustration from Fig. 16b. Applying the analytical methodology 
from section 5.3 to endow the TA-SE under V− = −0.5V with the 4 stable equilibria x̄eq,1 = 0.3 , x̄eq,3 = 0.45 , 
x̄eq,5 = 0.6 , and x̄eq,7 = 0.75 , corresponding to the levels programmed earlier on into the crosspoint nano-devices 
of the memory array (recall the exemplary case study illustrated in Fig. 14), the application of the five-pulse-per-
cycle pulse train voltage stimulus vS (refer to plot (d) from that figure) across each of the ReRAM cells allows 
to recover the original synaptic matrix after transients vanish, as depicted in Fig. 16c. In this example the noise 
perturbation is not as strong to cause any of the states of the 195 ReRAM cells to move away from the basin of 
attraction of the oscillation, among the four possible steady-state time waveforms xss,1 , xss,3 , xss,5 , and xss,7 (recall 
in turn plots (f), (g), (h), and (i) of Fig. 14), revolving around the TA-SE equilibrium, denoting the corresponding 
original value. Thus, as illustrated in plot (d) of Fig. 16, the state of each of the crosspoint nanodevices progres-
sively approaches the target value, oscillating around it asymptotically.

Conclusions
Memristor physical realisations are the focus of extensive and intensive research investigations worldwide as 
their adoption in integrated circuit design may allow to develop innovative technical systems, which exploiting 
their peculiar capability to combine data sensing, storage, and processing functionalities in a compact nanoscale 
volume, and leveraging the use of the vertical dimension to accommodate them densely within the oxide-filled 
gaps, which form at the cross-points between sets of perpendicular and vertically-displaced metal lines, on top 
of CMOS circuitry, promise to overcome the performance limitations of traditional technical systems, open-
ing a wide spectrum of opportunities for electronics in the post-Moore era. Due to the strong nonlinearity, 

Figure 14.  (a) Blue (Red) trace: | ˙̄xSET| (| ˙̄xRESET| versus x̄ locus resulting from the application of the theoretical 
methodology from section 5.3 to the Strachan model so as to endow the TA-SE with 4 stable equilibria x̄eq,1 , 
x̄eq,3 , x̄eq,5 , and x̄eq,7 at 0.3, 0.45, 0.6, and 0.75, respectively. First the maxima xmax,1 , xmax,2 , xmax,3 , and xmax,4 
of the four gaussian bells were in turn positioned at 0.269, 0.419, 0.569, and 0.719. The amplitudes V+,1 , V+,2 , 
V+,3 , and V+,4 of the four positive pulses were then chosen as 0.490V , 0.613V , 0.717V , and 0.807V , while V− 
was preliminarily fixed to −0.5V . Finally, the first, second, third, and fourth pulse width ratios r+,1 , r+,2 , r+,3 , 
and r+,4 were respectively taken as 4.312, 6.162× 10−13 , 8.667× 10−32 , and 1.802× 10−56 . The TA-SE admits 
equilibria at x̄eq,1 = 0.3 , x̄eq,2 = 0.372 , x̄eq,3 = 0.45 , x̄eq,4 = 0.532 , x̄eq,5 = 0.6 , x̄eq,6 = 0.684 , x̄eq,7 = 0.75 , of 
which those labeled with odd numbers are LAS, as desired. (b) TA-SDR of the ReRAM cell subject to any input 
train featuring the aforementioned 9 parameters. (c) Time course of a particular pulse train extracted from 
the class by fixing the RESET pulse width τ− to 1× 10−8 s , which automatically sets the the widths τ+,1 , τ+,2 , 
τ+,3 , and τ+,4 of the four SET pulses to 4.312× 10−8 s , 6.162× 10−21 s , 8.667 · 10−40 s , and 1.802× 10−64 s , 
respectively. (d) SCPCM of the ReRAM cell, when its voltage v is forced to follow the generalised pulse train 
stimulus vS from (c) at all times, validating the TA-SDR analysis. (e) Solution to the ODE (1), with state 
evolution function (3), under the periodic stimulus from (c), and for each initial condition x0 from the set 
{x0,1, x0,2, x0,3, x0,4, x0,5, x0,6, x0,7, x0,8} = {0.15, 0.365, 0.375, 0.52, 0.535, 0.67, 0.685, 0.8} . As may be evinced by 
monitoring the time course of the respective traces, the first, second, third, and fourth pair of initial conditions 
from this set respectively lie in the basins of attraction of the asymptotic memory state solutions x1,ss , x3,ss , x5,ss , 
and x7,ss , which in turn oscillate about the stable TA-SE equilibria x̄eq,1 , x̄eq,3 , x̄eq,5 , and x̄eq,7 , as may be inferred 
by inspecting plots (f), (g), (h), and (i), which also report their mean values x̄1,ss , x̄3,ss , x̄5,ss , and x̄7,ss , and the 
associated stable map fixed points x∗1 , x∗3 , x∗5 , and x∗7.

▸
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characterising the operating principles of these nanodevices, recurring to powerful concepts from Nonlinear 
Circuit and System  Theory2 is a necessary step for drawing a full picture of their dynamics. In fact the common 
approach of electrical engineers to linearise the model of a nonlinear device before commencing the investiga-
tion of its dynamics is insufficient to explore their global behaviour. As an example of the significant impact that 
this theory may have on the progress of memristor research, this paper reveals how the application of some of 
its powerful techniques to a predictive  model4 of a Ta2O5−x Resistive Random Access Memory cell from Hewlett 
Packard Labs may allow the development of a systematic strategy, supported by a rigorous analytical framework, 
to craft a generalised rectangular pulse train voltage stimulus, composed of P ∈ N>0 SET positive pulses and of a 
single RESET negative pulse, so as to endow the memory state of the nano-device with P of coexisting oscillatory 
solutions, revolving around mean values, prescribed as design specification, and observable at steady state for all 
initial conditions drawn from their basins of attraction. The availability of an algorithm, which, evaluating ana-
lytical formulas, and solving a linear system of equations, automatically massages the properties of a generalised 
pulse train stimulus for triggering a monostable (multistable) periodic response in a Resistive Random Access 
Memory cell, triggering the emergence of  global3  (local9,10) fading memory effects across its physical medium, 
and forcing it to oscillate around a specific resistance level, for any initial condition from the state existence 
domain (from a certain basin of attraction), may inspire the development and circuit implementation of novel 
in-memory sensing and computing paradigms in the years to come. As an example of a potential application of 
the theory, the local fading memory effects, emerging in the ReRAM cell according to the Strachan model, have 
been leveraged to propose a novel scheme to compensate for the unavoidable drift in the resistance of a crosspoint 
nanodevice under power off conditions. A similar theoretical approach, as the one, presented in this paper for 
the Strachan model, may be developed to investigate the response of the mathematical description of any other 
non-volatile22 or  volatile23 resistance switching memory to periodic pulse train stimuli.

Figure 15.  Moduli of the scaled SET (blue trace) and RESET (red trace) components of the TA-SE of 
the ReRAM cell subject to a six-pulse-per-cycle pulse train voltage stimulus from a class identified via 
the 11 parameters V+,1 = 0.490V , V+,2 = 0.598V , V+,3 = 0.690V , V+,4 = 0.772V , V+,5 = 0.847V , 
r+,1 = 3.764 , r+,2 = 6.651× 10−11 , r+,3 = 3.241× 10−26 , r+,4 = 6.156× 10−46 , and r+,5 = 5.530× 10−70 , 
and V− = −0.5V . While the last one was preliminarily chosen, the first 10 parameters were automatically 
determined via the analytical procedure outlined in section 5.3 so as to ensure Eq. (10) admits the 5 stable 
equilibria x̄eq,1 = 0.3 , x̄eq,3 = 0.43 , x̄eq,5 = 0.56 , x̄eq,7 = 0.69 , and x̄eq,9 = 0.82 , which consequently fixed 
the maxima of the positive gaussian bells at xmax,1 = 0.269 , xmax,2 = 0.399 , xmax,3 = 0.529 , xmax,4 = 0.659 , 
and xmax,5 = 0.789 . The TA-SE is found to feature 5 LAS equilibria at the earlier prescribed locations, 
and unstable ones at x̄eq,2 = 0.349 , x̄eq,4 = 0.491 , x̄eq,6 = 0.625 , and x̄eq,8 = 0.750 . (b) TA-SDR of the 
ReRAM cell under a periodic pulse train from the above defined class. (c) Time waveform of a particular 
voltage excitation signal vS , extracted from the aforementioned class by fixing the RESET pulse width τ− 
to 2.5× 10−9 s , which automatically set the widths of the five SET pulses τ+,1 , τ+,2 , τ+,3 , τ+,4 , and τ+,5 to 
9.410× 10−9 s , 1.663× 10−19 s , 8.103× 10−35 s , 1.539× 10−54 s , and 1.383× 10−78 s , respectively. (d) 
SCPCM of the ReRAM cell subject to the particular generalised pulse train voltage stimulus from (c), 
confirming the predictive capability of the TA-SDR analysis tool. (e) Time evolution of the memory state x 
of the ReRAM cell, as observed in numerical simulations of the Strachan model, where v was constrained 
to follow the voltage stimulus vS from (c) at all times, and for each initial condition x0 from the set 
{x0,1, x0,2, x0,3, x0,4, x0,5, x0,6, x0,7, x0,8, x0,9, x0,10} = {0.15, 0.34, 0.35, 0.485, 0.49, 0.62, 0.625, 0.745, 0.75, 0.9} . 
When initiated from either initial condition in the first, second, third, fourth, and fifth pair, the memristor 
state x converges progressively toward the steady-state waveforms xss,1 , xss,3 , xss,5 , xss,7 , and xss,9 , respectively, as 
illustrated in plots (f), (g), (h), (i), and (l), which further visualise in turn the mean values x̄1,ss , x̄3,ss , x̄5,ss , x̄7,ss , 
and x̄9,ss of the asymptotic oscillations, together with the corresponding stable map fixed points x∗1 , x∗3 , x∗5 , x∗7 , 
and x∗9.
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