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Abstract

Understanding the principles governing the electrical manipulation of magnetization
properties in materials is crucial for the advancement of magnetic memory devices.
This Dissertation investigates the direct and indirect effects of electric fields on mag-
netic interface phenomena, spanning scales from the atomistic to the micromagnetic
level.

In order to have a solid starting place to understand the results of this dissertation,
we spend some time to establish a theoretical background both on the microscopic
(atomistic) scale as well as on the micrometer scale.

Special attention is given to the pivotal role of spin-orbit coupling in contempo-
rary magnetism research landscape, with special emphasis on magneto-crystalline
anisotropy and chiral exchange interactions such as Dzyaloshinskii-Moriya interac-
tion. We also discuss current research into innovative electrical methods for altering
these crucial aspects of magnetism.

After having laid the theoretical foundations of magnetism on these different
length scales, we discuss some of the main numerical aspects of 2 pillars of modern
computational material science, namely density functional theory and micromag-
netism.

In the result section, we start by discussing some experimental observations
on the multilayer Ta/Co20Fe60B20/HfO2 and the discovery of so called “multiple
magneto-ionic regimes”, i.e. different reversibility regimes of the magnetization
reversal process in response to the application of an electric field at this particular
ferromagnet/oxide interface.

We follow up by showing ab initio calculations delving deeper in the micro-
scopic mechanism governing this behavior. We discuss a plausible explanation for
this behavior by closely inspecting the different effects Oxygen can have on the
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magneto-crystalline anisotropy of the material depending on its precise positioning
and penetration depth.

Departing from the atomistic approach, the thesis introduces a micromagnetic
formulation inspired by non-abelian field theories, facilitating a compact matrix
notation for DMI and Kitaev exchange interactions in arbitrary crystallographic point
groups.

In the final part of the thesis we implement the matrix notation of the DMI
tensors in collective coordinate models to efficiently describe the static and dynamic
properties of magnetic domain walls in nanowires with perpendicular magnetic
anisotropy. In doing so we discover a highly non trivial interplay of the different
DMI tensor components (diagonal, antisymmetric and symmetric traceless) in the
canting angle response of the domain wall to an in plane field. We also discover
a non-linear enhancement of the Walker breakdown field in the presence of some
combinations of Dzyaloshinskii-Moriya tensor components and propose systems
with S4 symmetry as promising candidates to experimentally display our theoretically
formulated predictions.
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Chapter 1

Introduction

1.1 How is memory stored today?

Nowadays, the vast majority of memory storage technology in computers relies
entirely on the physics of semiconductors and transistors. Memory, in its primary
form, exists as Random Access Memory (RAM), which is volatile and necessitates a
continuous power supply for data retention. At the core of computer memory lies the
memory cell, which serves as the fundamental unit for representing a single binary
bit of information (either 0 or 1).

There are two primary types of memory cells utilized in modern computers:
firstly, we have Dynamic Random Access Memory (DRAM) which constitutes the
prevalent form of main system memory in computer architectures. Each DRAM
memory cell comprises a transistor and a minute capacitor. The storage of informa-
tion is achieved through charge accumulation or depletion within the capacitor but
unfortunately, owing to the nature of capacitors, charge leakage occurs over time,
making periodic refreshing of the memory cells necessary to sustain data integrity.

Secondly, we have Static Random Access Memory (SRAM) which is employed
as cache memory or in limited quantities on the processor chip itself. SRAM
exhibits superior performance and reliability when compared to DRAM, albeit at
higher cost and power consumption. An SRAM cell is constructed using flip-flop
circuits and employs multiple transistors to retain a single bit of information. Unlike
DRAM, SRAM does not mandate regular refreshing, thereby enhancing speed and
responsiveness.
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It appears evident that the physics involved in memory storage revolves around
the manipulation of charge and voltage levels within these memory cells. By precisely
controlling the applied voltage across specific components within the memory cell,
information can be encoded as a pattern of electrical charges or their absence. These
patterns are subsequently interpreted as binary values, wherein charged components
represent logical "1" and discharged components represent logical "0".

1.2 What about tomorrow? The end of Moore’s Law

Moore’s law, originally formulated to describe the scaling of transistor sizes (see
Fig.1.1), has also found relevance in the realm of data storage technology where the
rapid growth in memory capacity per unit surface area (currently moving toward the 5
Tb/in2 mark), now faces 2 significant technological challenges: first of all, the higher
density of transistor elements has caused Joule heating to become a serious threat
to both performance and environmental impact of computing devices. Secondly, a
more fundamental barrier looms with the advent of quantum mechanical wave-like
behavior manifested by electrons when the feature size approaches the limits of the
mesoscopic scale (around the nanometer scale). This quantum barrier undermines
the traditional notion of a transistor as a binary element therefore signalling the
effective end of the Moore’s Law era.

At the same time, the rapid expansion of the IT industry has resulted in a
significant increase in demand for energy, with some estimates claiming that 20-30
% of the global energy production will be devoted to this growing sector by 2030.
We are faced with a major challenge to the IT ecosystem: on the one side we are
dealing with the presence of 2 major walls, Joule heating and quantum effects at the
nanoscale, while human development is moving at incredible speed towards them
with fundamental and applied research being the only possibilities to steer the wheel
and prevent the crash. To successfully move and thrive in the post-Moore era, we
need to rethink our computing architectures, starting at their very core: the physical
principles that we use to encode information.
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Fig. 1.1 Semi-logarithmic plot of the number of transistors on microchip as a function of
the years. We can easily see how it has roughly doubled every 2 years since the 1950’s.
Reproduced from https://ourworldindata.org/.

1.3 Tomorrows data storage technology

1.3.1 What is Spintronics?

Spintronics, also known as spin electronics, is a branch of solid-state physics that
explores the interplay between charge and spin transport in magnetic nanostructures.
While the concept of electron spin dates back to the early 20th century, exploiting
this intrinsic property of materials for technological applications has always been a
formidable challenge.

A significant milestone in the field of Spintronics can be attributed to Albert
Fert and Peter Grüenberg, who independently discovered the phenomenon of giant
magneto-resistance (GMR) [15, 16] which awarded them the Nobel Prize of 2007.
Their discovery involved observing changes in the resistivity of a magnetic multilayer
composed of a sequence of 2 ferromagnetic layers interspersed with a non magnetic
spacer layer. What they observed is that, when the magnetization in the layers is
parallel, the electrons encounter low resistance while in the case of antiparallel
alignment, electrons encounter strong resistance. This leads to the realization of two

https://ourworldindata.org/
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Fig. 1.2 Spin valve based on the GMR effect. The ferromagnetic layers are indicated by the
"FM" label and the non-magnetic spacer by the "NM" label. As can be seen, depending on
the relative orientation of the the magnetic layers, the spin polarized electrons experience
different resistances.

resistance states, namely, a low and high resistance state in immediate analogy with
the high (”0”) and low (”1”) resistive state of a CMOS transistor used in conventional
computing (Fig.1.2).

The discovery of GMR opened up new opportunities for research into novel
physics and innovative computational devices that could couple spin and charge
transport, as opposed to pure charge transport. As a result, countless spintronic de-
vices have been proposed, some even commercialized, and new discoveries continue
to emerge every day in high-impact research journals, indicating that Spintronics is a
fervent and growing scientific field.

1.3.2 Where is Spintronics in today’s memory storage market?

The conventional DRAM technology, despite its advantages, is being sought to be
replaced in the industry due to its volatile nature. While flash memory offers inherent
non-volatility as it does not rely on capacitors, it faces limited endurance posing
a challenge for long-term reliability. Spintronic concepts, on the other hand, hold
significant promise in the pursuit of alternative memory solutions as they couple
inherent non-volatility and theoretically infinite endurance, making them highly
desirable for next-generation memory technologies.
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Fig. 1.3 Log-Log plot reporting the total write access time (ns) vs. the total write access
energy (fJ) for different spintronics based device concepts: (SD) spin diffusion, (STT) spin-
transfer-torque, (SHE) spin Hall effect, (DW) domain wall motion (ME) magnetoelectric
switching, (IMA) in-plane magnetic anisotropy, (PMA) perpendicular magnetic anisotropy.
The red star on the bottom right designates the preferred corned (i.e. low write access time
and low energy requirements). Reproduced from [1].

Benchmarking the performance of spin-based or magnetic memories with high
endurance provides valuable insights into the trade-offs between write energy and
time costs associated with the physical principles at the base of the encoding mecha-
nism (Fig.1.3). In the following we provide a brief survey on some of the concepts
underlying the main ideas in today’s spintronics community: by observing the top
right of Fig.1.3 we first notice how the development of in plane anisotropy (IPA)
devices is being superseded by their perpendicular magnetic anisotropy (PMA) coun-
terparts as a consequence of faster operation speed, lower energy consumption and
higher storage density potential.

Spin diffusion (SD) writing and spin Hall Effect (SHE) mechanisms offer high
energy efficiency compared to Spin-Transfer-Torque (STT) methods because of their
lower resistance writing path, which enables operation at smaller voltages. Further-
more, domain wall (DW) memories exhibit the potential for even smaller driving
currents, pushing the boundaries of activation energies in memory switching. How-
ever, it is important to note that the thus far mentioned alternative memory concepts
still rely on (spin-polarized) currents for their operation: although the required cur-
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rents are significantly smaller compared to CMOS-compatible counterparts, concerns
regarding Joule heating persist.

In contrast, magneto-electric (ME) memories stand out as having the lowest
energy cost among the considered types. These memory concepts aim at altering
the magnetization state of a material (i.e. writing information) with purely electrical
effects and therefore rely solely on the charging and discharging of capacitors,
eliminating the need for current-induced torques.

Despite their potential, the industry has thus far successfully developed only
spin-transfer torque (STT) memories, which have been commercially available since
2007 (the first to introduce them to the market being Freescale.inc). The remaining
memory schemes mentioned are still at various stages of research and development.
Notably, memories based on magneto-electric effects are the least mature, despite
their significant promise due to their remarkably low power requirements.

1.3.3 Electric field control of interfacial magnetism

The coupling between electricity and magnetism in solid-state insulators was initially
proposed by Pierre Curie in 1894 [17], who based his reasoning on simple symmetry
considerations. Building upon this idea, in 1959 Landau and Lifshitz [18] postulated
the linear nature of this effect in magnetic crystals of specific symmetry classes,
thereby proposing the electric field control of magnetization with the relationship

µ0∆M = αE∆E, (1.1)

where ∆M represents the change in magnetization, ∆E denotes the applied electric
field, αE represents the magneto-electric coefficient and µ0 is the vacuum permeabil-
ity. The existence of this linear effect in the antiferromagnetic compound Cr2O3 was
predicted by Dzyaloshinskii [19] in the same year and subsequently confirmed by
experiments in 1960 [20].

Since the 1960s, the field of magneto-electrics has expanded significantly beyond
the realm of linear magneto-electric effects with experimental discoveries of both
linear and nonlinear magneto-electric effects in single-phase multiferroics [21–23].
The 1970’s have set the stage for new explorations in this field, witnessing many
new magneto-electric effects in piezoelectric-magnetic heterostructures [24]. The
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2000’s on the other hand, have seen a rise in the exploration of magneto-electric
effects in magnetic-dielectric heterostructures [25, 26], where the thin film mag-
netic components is electrically addressed through non piezoelectric gate dielectrics.
During these years of intense scientific development, the advent of ab initio simula-
tions has provided theorists with the capability to explain and predict experimental
observations in solid state systems with increasing precision.

The great scientific and technological pull factor of magneto-electric (ME) effects
lies in their ability to convert between magnetic and electric free energy without
the need for electrical current, thus minimizing heat dissipation. As mentioned
in the previous section, all competitive new data storage technologies that rely on
information encoding based on the direction of a magnetization vector (e.g. STT,
SD) still function based on current based manipulation. The converse ME effect,
observed in magnetic/dielectric heterostructures, revolves around the ability to switch
the magnetization of the magnetic layer by applying a voltage across the dielectric
layer and therefore presents an opportunity to address the issue of overheating: the
theoretical lower limit of energy dissipation for ME switching is in the attojoule range,
approximately four orders of magnitude lower than STT magnetization switching
[27].

In magnetic/dielectric heterostructures, ME switching can occur through various
physical mechanisms, including the transfer of voltage-induced strains [28–30],
voltage-modified interfacial spin polarized charge density [31, 32], voltage-induced
switching of interfacial exchange coupling/other exchange mechanism [33–36] and,
finally, voltage-induced surface chemistry manipulation [37–40]. In Fig.1.3 we report
and highlight some of the main application-relevant features of the 4 mentioned ME
switching mechanisms.

1.4 The approach used in this dissertation

Magnetism stands as one of the captivating domains in physics where the quantum
mechanical nature of our reality transcends the microscopic realm and manifests
itself at the macroscopic level, allowing for easily observable phenomena. It is
therefore natural to assume that this makes magnetism in the solid state a rich and
intricate field that can be explored across various length scales (see Fig.1.5), from
the very small atomistic scale to the macroscopic scale going beyond the mm.
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Fig. 1.4 Comparison of several application-related features between the four types of (ME)
switching. The terms in the first 2 rows represent, C: capacitance of the dielectric, V : the
applied voltage, R: electrical resistance of the dielectric, t0: duration of the voltage pulse.
In the voltage controlled exchange scheme (i.e. the second column from the left), the heat
dissipation arises from the leakage current and dielectric loss due to magnetic hysteresis. In
this context we have Ps: switched polarization, V : critical voltage for polarization switching,
A: electrode area. We highlight how charge accumulation effects, despite promising in
almost all aspects (fast, reliable, scalable), unfortunately display a very small ME coefficient
αE , therefore requiring very high fields for application. Figure re-adapted from [2].

From the theoretical and computational point of view, magnetism is a particularly
rich field where contributions can be made using a wide range of formalisms and
mathematical tools: while quantum mechanics lies at the heart of magnetism, we can
be largely oblivious of its principles while studying hysteretic properties of magnetic
materials, for example.

In this context, the influence of an electric field on the magnetic properties of
solid-state materials is indeed a topic that can be addressed across very different
length scales, spanning from atomic bonds to Weiss domains.

Within this dissertation, we have produced contributions to the understanding of
both the direct and indirect effects of an electric field on magnetic properties across
various scales. Specifically, the scientific contributions presented in this work pertain
to the phenomenology and mathematical models related to the first two levels of
the diagram in Fig.1.5—namely, the atomistic scale of ≈ Å to the scale of Weiss
domains ranging from 1-1000 nm.
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Fig. 1.5 Different length scales and corresponding salient features of magnetism. Reproduced
from [3]

1.5 Outline of the dissertation

In this dissertation we mainly focus on the study of 2 of the mentioned ME switching
mechanisms: we address the effect of electrically induced surface chemistry changes
on interfacial magnetization (magneto-ionics) and the effect of the electric field on
magnetic exchange interactions in magnetic thin films. The dissertation is structured
into three main parts: an initial theoretical section, a section on the computational
implementation of the theory, and a final results section.

In Chapters 2 and 3, we establish the theoretical foundation for understanding
magnetism in the solid state. Chapter 2 delves into the origin of magnetic ordering
at the atomic level, discussing modern models of magnetism and the crucial role
of Spin-Orbit Coupling (SOC) in dictating the appearance of magnetocrystalline
anisotropy and chiral exchange interactions. Chapter 3 focuses on transitioning
from the atomistic theory to micromagnetism through the continuum limit, a vital
component for studying magnetic phenomena at the scale of real devices. Special
attention is given to defining chiral interactions (see Chapter 4) in the continuum,
which is pivotal for some of the subsequent results.

Chapter 5 addresses two key pillars of modern computational material science:
density functional theory and finite element codes for micromagnetic simulations.
While not delving deeply into their implementations, we provide general information
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about these formalisms relating them to the approaches outlined in the preceding
theory section.

With the necessary theoretical and computational foundation, we then move on
to discuss the main results of the dissertation in Chapter 6. We begin by examining
an experimental observation related to magneto-ionic mechanisms in HM/FM/Oxide
multilayers, in which I participated as a co-author. Next, we delve into ab-initio
calculations designed to explain trends observed in the experimental setting. The
following two sections shift focus to chiral interactions in FM thin films and their
connection to symmetry breaking induced by an electric field. The first of such
works is of pure theoretical character and describes a locally covariant formulation
of micromagnetism in magnetic lattices that allows to easily derive all allowed forms
of chiral interactions. The second and final discussed work in this dissertation is of
computational nature and describes the behavior of magnetic domain walls in the
presence of arbitrary chiral interaction. It builds directly upon the previous work
as it uses the same compact formalism allowing for a remarkably simple analytical
derivation of some models for domain wall dynamics. We conclude the dissertation
by hinting at new avenues for research that have emerged from the results obtained.



Chapter 2

Theoretical Background

The observation of magnetic properties in solids can be traced back as far as
2500 years in the past. Despite its ancient observation, our comprehension of
the microscopic mechanisms underlying magnetism have only truly emerged
in the last century and a half. The challenge of capturing the intricate features
of magnetism through physical models has been formidable, and its enigmas
could only be truly unraveled with the introduction of quantum mechanics.
In the subsequent discussion, we present a concise overview of key models of
magnetism in solid state systems both on the atomistic and the micrometer scale,
emphasizing how diverse forms of magnetic interactions manifest in the solid
state as a consequence of many-body electron interactions.

2.1 Microscopic models for magnetic order

The understanding of magnetization in isolated atoms relies on the quantum mechan-
ics of the hydrogen atom, combined with the consideration of electron spin. However,
most of the intriguing aspects of magnetism occur in the solid state, where magnetic
atoms are arranged in lattices with long-range order. In a solid, the introduction of
chemical bonds between atoms disrupts the spherical symmetry that characterizes
the central potential of an isolated atom and, consequently, the nature of magnetism
undergoes fundamental changes in this context.

Creating effective models to describe magnetic ordering in solids has long been
a formidable challenge for physicists, which in its most advanced formulations, still
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persists to this day. The complex interplay of electronic interactions, lattice structures,
and other factors make the theoretical understanding of magnetic phenomena a highly
intricate pursuit.

We pick up the story from the early 20th century, when Werner Heisenberg
[41] in one of his many pioneering contributions, showed that spin-independent
Coulomb interaction, when coupled with the Pauli exclusion principle, can generate
an effective spin-spin interaction. In Heisenberg’s picture of ferromagnetism, the
founding assumption is that the electrons contributing to the magnetic order are
localized near the atomic nucleus and their spin “communicates” with neighbouring
spins via the so called “exchange interaction”.

While Heisenberg’s model provided fundamental qualitative insights, it failed
to make accurate quantitative predictions, suggesting that electron spins should
almost always align antiferromagnetically. This discrepancy necessitated further
refinements to the model.

An alternative perspective was later proposed by Felix Bloch [42], who con-
sidered the itinerant nature of electrons as crucial in determining ferromagnetic
ordering mechanisms. Bloch’s model led to a series of investigations that employed
band-theoretical methods and mean field approximations to make quantitative pre-
dictions. The basic strategy of these approximations involved treating electrons
with up and down spins as distinct particle species and imposing self-consistency
conditions. However, this approach introduces a fundamental limitation by breaking
the symmetry of the problem: treating electrons as distinguishable particles reduces
the continuous SU(2) symmetry to a discrete Z2 symmetry, posing a challenge in
capturing the full complexity of magnetic systems.

2.1.1 The Hubbard model

The Hubbard model emerges in the middle ground between these 2 points of view
and allows to treat the localization of the electrons as a parameter, rather than a fixed
assumption of the model. The central idea behind the Hubbard model is in fact to
explore the interplay between two competing energies in the formation of electronic
states in a multi-atom and multi-electron system. At its core, it is a tight-binding
model [43] of localized electrons hopping on a lattice (see Fig.2.1), with the key
assumptions underlying the validity this model being summarized as follows: the
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Hubbard Hamiltonian accounts for the magnetic ground state through the balance of
the hopping energy and the Coulomb energy under the assumption that the involved
particles (electrons) are Fermions and therefore follow the Fermi-Dirac statistics.

• The hopping energy is associated with the motion of electrons of like-spin
to move between neighboring atoms. It favors delocalization (large band
dispersion) and in second quantized form, the term describing such behavior
is given by

T =−∑
i̸= j

ti jc
†
jσ ciσ . (2.1)

• The Coulomb energy acts as a repulsive force only between electrons of
opposite spin located on the same atom. In second quantized form, the term
describing such behavior is given by

U = u∑
i

ni,↑ni,↓. (2.2)

The Hubbard Hamilotnian is then given by the sum of these 2 contributions, taking
into account all the atomic sites of the lattice (see Fig.2.1):

H =− ∑
i, j,σ

ti jc
†
jσ ciσ +u∑

i
ni,↑ni,↓ (2.3)

The Fermionic statistics are incorporated in the model by imposing the canonical
anti-commutation relations for the electron creation and annihilation operators

{ciσ ,c
†
jσ ′}= δi jδσσ ′. (2.4)

This model has three dimensionless parameters that determine the different
regimes at which it can operate:

• u/t → Coulomb energy vs. kinetic energy.

• T/t → Temperature vs. kinetic energy.

• Average electron occupation n = 1
N ∑iσ ⟨niσ ⟩ ∈ [0,2].

Furthermore, two trivial yet extremely important limits of this model are
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• n ≪ 1 i.e the particle inter-spacing is much larger than the lattice constant and
the electrons are essentially free to move. In this limit, we expect a metallic
behavior.

• n = 2 in this case all sites are occupied and electrons are not free to move
anymore (Pauli blocking). In this regime we expect an insulating behavior.

The non trivial physics of the Hubbard model occurs near half filling, i.e n ≈ 1, when
the ground state is determined by the interplay of kinetic energy, the Pauli exclusion
principle and Coulomb repulsion. In the following, we briefly discuss the features of
this regime in 2 distinct limits, namely the weak and strong interacting limits :

• u
t ≪ 1 : in the weak interacting limit we expect the nearly half filled model to
have similar properties to metallic systems. There are however some important
non perturbative contributions that can cause the behavior to stray from the
expectations.

• u
t ≫ 1 : In the strongly interacting limit, doubly occupied states actually cost
a large energy (due to the larger value of u). This means that the conduction
band is jammed and electron mobility is hindered: in this regime we have what
is known as a Mott insulating phase.

The Mott insulating phase

The way to study the Mott insulating phase is to start from the huge degeneracy of
the system at t = 0 , n = 1 (see Appendix A), where the energy of the system remains
unaltered upon spin flips at the individual sites. Using that as a starting point, we
can study degenerate perturbation theory and find out the effects of a small but finite
hopping amplitude, performing a Schrieffer-Wolff transformation of the Hamiltonian
(see Appendix B for an in depth discussion)

H = T +U → H ′ = e−A H eA. (2.5)

We use the Baker-Campbell-Hausdorff (BCH) formula to expand the exponential in
a series. The validity of the series expansion is guaranteed by the fact that we choose
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Fig. 2.1 Graphical representation of a Hubbard lattice. We display the 2 competing interac-
tions of kinetic energy (t) and Coulomb repulsion (U).

A ∝ t and we consider the limit t/u ≪ 1

H ′ ≈U +T︸ ︷︷ ︸
H

+T − [A,U ]− [A,T ]+
1
2
[A, [A,U ]]+O(t2). (2.6)

To eliminate first order terms in T , we select A such that [A,U ] = T

⇒ H ′ =U − 1
2
[A,T ]+O(t2). (2.7)

To determine the matrix elements of the new Hamiltonian we use the eigenbasis of
the operator U which is constituted (at half filling) by states having one electron per
atomic site.

U |n⟩= En |n⟩ (2.8)

⇒ ⟨n|T |m⟩= ⟨n|A |m⟩(Em −En) (2.9)

⟨n|H ′ |m⟩=−1
2
⟨n| [A,T ] |m⟩ (2.10)

=−1
2 ∑

l
⟨n|T |l⟩⟨l|T |m⟩

(
1

El −En
− 1

Em −El

)
. (2.11)
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Fig. 2.2 Schematic representation of the hopping mechanism in the half filled lattice (U/t ≪ 1
limit) of eq.(2.11)

Eq.(2.11) shows that, to second order, the action of the Hamiltonian on the eigenstates
of U can be visualized as a virtual hopping to intermediate states |l⟩ Since the ground
state of the unperturbed Hamiltonian has all sites occupied, the only allowed virtual
excitations are states with one doubly occupied state, i.e El −En = u , Em −El =−u
(see Fig.2.2). This allows us to simplify (2.11) to

⇒ ⟨n|H ′ |m⟩=−1
u ∑

l
⟨n|T |l⟩⟨l|T |m⟩ . (2.12)

Since the {|l⟩} states constitute a complete basis, we now have a way of expressing
the matrix elements of the perturbed Hamiltonian

⇒ ⟨n|H ′ |m⟩=−1
u
⟨n|T 2 |m⟩ . (2.13)

From Hubbard to the Heisenberg models

At this point we are in the position to analyze the behavior of the effective Hamil-
tonian derived from the half filled, strongly interacting limit of the Hubbard model.
Our goal here is to demonstrate that, indeed, in this limit the physics of the Hubbard
model is captured by the familiar Heisenberg Hamiltonian. To do so, we start from
the Schrieffer-Wolff approach described above and couple it with the more didac-
tic procedure followed by [44]. Since we are interested in obtaining the effective
Hamiltonian in operator form, we rewrite the effective Hamiltonian matrix element
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⟨n|H ′ |m⟩ of eq.(2.12) in operator form

H ′ = ∑
n,m

|n⟩⟨n|H ′ |m⟩⟨m| (2.14)

=−1
u ∑

n,m
|n⟩⟨n|T 2 |m⟩⟨m| (2.15)

We can now identify ∑n |n⟩⟨n|= ∑m |m⟩⟨m|= P0 with 2 projection operators that
ensure we are acting on the correct subspace, i.e the subspace spanned by the
degenerate eigenstates of the unperturbed Hamiltonian U . Recalling the form of
the hopping term T from (2.1), we are able to write the effective Hamiltonian of
eq.(2.14) as

H ′ = P0

(
−1

u ∑
i̸= j

∑
k ̸=l

∑
ση

ti jtklc
†
iσ c jσ c†

kη
clη

)
P0 (2.16)

The introduction of the projection operators P0 allows us to significantly simplify the
sum because of the following: P0 projects onto states where all sites are occupied by
exactly one electron, is acted upon the operator string c†

iσ c jσ c†
kη

clη , and is projected
on states of the same nature. Recalling i ̸= j and k ̸= l, one can see that the only non
vanishing terms are of the form

P0 c†
iσ c jσ c†

kη
clη P0 = c†

iσ c jσ c†
kη

clηδilδ jk (2.17)

⇒ H ′ = P0

(
−1

u ∑
ik

∑
ση

|tik|2c†
iσ ckσ c†

kη
ciη

)
P0, (2.18)

where we have used the fact tik = t∗ki. To proceed towards the desired result, we use
fermionic anticommutator relations yielding

= P0

(
−1

u ∑
lk

∑
ση

|tik|2c†
lσ clη(δση − c†

kη
ckσ )

)
P0 (2.19)

= P0
1
u

(
∑
lk
|Tik|2 ∑

σ

c†
lσ clσ −∑

ση

c†
lσ clηc†

kη
ckσ )

)
P0. (2.20)
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To establish a connection with the spin operators in second quantization, we notice

∑
ση

c†
lσ clηc†

kη
ckσ (2.21)

= ∑
σ

(c†
lσ clσ︸ ︷︷ ︸
nlσ

c†
kσ

ckσ︸ ︷︷ ︸
nkσ

+c†
lσ cl−σ c†

k−σ
ckσ ), (2.22)

allowing us to rewrite the effective Hamiltonian as

H ′ = P0
1
u

(
∑
l ̸=k

|tik|2 ∑
σ

(nlσ nkσ + c†
lσ cl−σ c†

k−σ
ckσ −nlσ )

)
P0. (2.23)

We are now finally in a position to introduce the spin operators in second quantization

Sz
i =

1
2 ∑

σ

niσ , (2.24)

Si
± = c†

i±ci∓ (2.25)

Sx =
1
2
(S++ iSy), (2.26)

Sy =
1
2i
(S+− iS−), (2.27)

SSSk ·SSSl = Sz
l S

z
k +

1
2 ∑

σ

Slσ Sk−σ . (2.28)

The first term of eq.(2.23) can be tackled by noticing that, on the subspace spanned
by the eigenstates of U , the 2 relations

P0

(
∑
σ

nkσ nlσ

)
P0 = P0(2Sz

kSz
l +1/2)P0, (2.29)

P0 ∑
σ

nkσP0 = P2
0 = P0, (2.30)

hold true, and therefore we can rewrite eq.(2.23) as

⇒ H ′ = P0
1
u

(
∑
l ̸=k

|tik|2
(
(2Sz

kSz
l +(1/2−1)+∑

σ

Slσ Sk−σ

))
P0 (2.31)

= P0
1
u

(
∑
k ̸=l

|tkl|2(2SSSk ·SSSl −
1
2
)

)
P0, (2.32)
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which, upon changing indices and dropping the projectors P0, corresponds to the
famous Heisenberg Hamiltonian:

H ′ = ∑
i ̸= j

−Ji jSSS j ·SSS j + const. (2.33)

where we define the exchange coupling as

Ji j =
2|ti j|2

u
. (2.34)

and a minus sign to make the notation consistent with the convention Ji j > 0 ⇒
ferromagnetic ground state Ji j < 0 ⇒ antiferromagnetic ground state (see Fig.2.6).
We have therefore successfully established that the ground state properties of the
spin degree of freedom in the half-filled Hubbard model in the strong interacting
limit u/t ≫ 1 are described by the Heisenberg model.

Up until now, all the considerations regarding magnetic ordering, while of
fundamental qualitative relevance, failed to capture one essential feature of magnetic
materials: even established that magnetic ordering exists in our system, how can
we predict in which direction the macroscopic magnetization is going to point in
an experimental setting? In other words, while we were able to build a model that
wants all spins to align (or anti-align) with each other in the ground state, we are still
completely oblivious as to which direction in space all these spins should be pointing
towards. It turns out that we are missing one key ingredient to describe magnetism
in real system: spin-orbit coupling.

2.2 Going beyond the Heisenberg model

2.2.1 Spin-orbit coupling: a small effect at the base of magnetism
as we know it

Spin-orbit coupling (SOC) describes the coupling of the spin degree of freedom
of electrons SSS with their orbital angular momentum LLL. The energy scale of this
interaction is typically about 10-100 times smaller than typical exchange energy
described in the previous section, nevertheless it is of fundamental importance
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in magnetism. Here we briefly outline the origin of this interaction, providing a
quantum mechanical interpretation of the effect and finally show how its introduction
in some models describing magnetic ordering, builds a much more realistic picture
of magnetism.

The physical origin of atomic SOC

We sketch the physical origin of SOC by using the simplified picture of an electron
orbiting around its static nucleus. When an electron of mass m and momentum ppp
moves across the electric field EEE generated by the central potential of the nucleus,
Lorentz invariance dictates that in the co-moving reference frame of the electron an
additional magnetic field of the form BBB ∝ ppp×EEE/c2 is present. The electron spin
SSS interacts with this magnetic field, which tries to align it along its direction. To
account for this effect in the Hamiltonian we introduce an energy penalty for the
electron spin misaligning from the effective magnetic field perceived by the orbiting
electron

HSOC =
eh̄

2m2
ec2 SSS · (ppp×EEE). (2.35)

At this point we express the electric field generated by the atomic core via a simple
central field Ansatz

EEE =−∇Φ =−∇
Ze

4πε0r
. (2.36)

Taking advantage of the central symmetry of the problem (i.e the potential only
depends on the radius) we can rewrite the differential operator as ∇Φ(r)→ rrr

r
dΦ(r)

dr ,
allowing us to recover the familiar SO coupling term

EEE =
Ze

4πε0r3 rrr (2.37)

⇒ HSOC =− eh̄
2m2

ec2 SSS · (ppp×∇Φ) =− eh̄2

2m2
ec2

1
r

dΦ(r)
dr

SSS ·LLL = ξnl(r)SSS ·LLL, (2.38)
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where we have used the fact that ppp× rrr =h̄LLL. To highlight the energy scale of SO
interaction, we define the expectation value ζnl = ⟨ξnl(r)⟩> 0

ζnl =
∫

∞

0
Rnl(r)ξnl(r)R∗

nl(r)r
2dr, (2.39)

where Rnl(r) represents the radial part of the hydrogen ground state wave function.
The spin-orbit parameter ζnl can be computed [45], revealing the following general
trends

• The SOC energy is of the order of 10− 100 meV in 3d transition metals,
making it considerably weaker than the exchange interaction ≈ 1 eV and
ligand field splitting effects.

• The strength of the SOC scales with Z4, meaning it becomes very strong for
heavier elements.

• It is of particular relevance for rare earth elements, which together with a
higher Z, possess partially shielded 4 f electrons that are less influenced from
ligand field effects.

Despite its modest strength in 3d systems, SOC has the fundamental role of
connecting the magnetic ground state of the system to the crystal lattice, introducing
the so called magnetocrystalline anisotropy phenomenon which is at the heart of a
lot of technological concepts involving magnetic materials.

SOC in solid state systems: Rashba SOC and Dresselhaus SOC

As described above, an electron with momentum ppp moving across an electric field EEE
experiences an effective magnetic field BBBe f f ≈ EEE × ppp/mc2 in its rest frame, which
induces a momentum-dependent Zeeman energy. In the presence of a central po-
tential, this yields the usual Russell-Saunders form of SOC of eq.(2.38). In systems
with structural inversion symmetry broken along the growth direction êz (such as
quantum wells or material interfaces), the spin sub-bands are split (see Fig.2.3),
and the spin degree of freedom appears to be bound to the linear momentum of
the electrons implying the spin is sensitive to his orbital environment. One could
attribute this splitting to the electric field resulting from the interface electric field,
i.e. set EEE = Ezêz in eq.(2.38) and obtain the famous Rashba SOC term
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Fig. 2.3 Basics of Rashba spin-splitting (a) Non spin polarized band dispersion in the absence
of Rashba SOC (b) Dispersion relation for a non-magnetic free electron gas in the presence
of Rashba SOC (see eq.(2.40)) The blue and red parabolas represent the spin split bands.

HR =
αR

h̄
(êz × kkk) ·σσσ (2.40)

which indeed yields the correct symmetry properties of the band structure. Relat-
ing the parameter αR to the experimental observations however immediately shows
the limits of this approach, as relating it to the interface electric field ends up vastly
underestimating the effect. The correct physical picture is indeed more intricate [46]
and reveals how the absence of inversion symmetry has the important additional
effect of distorting the Bloch Wave functions such that they acquire a finite, momen-
tum dependent orbital magnetic moment which is then coupled to the spin degree of
freedom via the intra-atomic Russell-Saunders SOC. One of the first microscopic
scenarios for Rashba spin splitting at the surface of Au was based on a minimal tight
binding model assuming only (s, p) orbitals being the drivers of the mechanism [47].
Indeed, going through the detailed calculations highlights how αR ∝ ξ · γ , where
ξ encodes the strength of the atomistic SOC and γ parametrizes the magnitude of
inversion symmetry breaking along êz . It was later shown how γ is determined
by the asymmetry of the Bloch functions in the vicinity of the nuclei and can in
principle be influenced by external electric fields [48]. We emphasize how the shape
of the Rashba SOC term is indeed a consequence of the symmetry properties of
the symmetry breaking at the surface and that more complex symmetry breaking



2.3 Microscopic origin of magneto-crystalline anisotropy 23

patterns found in e.g. bulk materials can indeed lead to richer forms of SOC, called
Dresselhaus SOC.

2.3 Microscopic origin of magneto-crystalline anisotropy

2.3.1 SOC as the source of magneto-crystalline anisotropy

A very clear and rigorous theoretical treatment of magnetocrystalline anisotropy
in 3d transition metals appears with Patrick Bruno [49], who derived his model by
computing the change in energy as a consequence of SOC in a tight binding model.
In the following we show the steps of the derivation of [49, 50]. The assumptions of
the model can be summarized as follows:

• The 3d electrons in the Bruno model are located on a lattice and do not interact
with each other via Coulomb repulsion. This situation is perfectly captured by
the non interacting limit of the Hubbard model (U = 0) discussed in Appendix
A. We emphasize how this actually implies that, in the Bruno model, magnetic
exchange interaction is not considered, i.e. it is a model purely addressing the
interaction of electrons with the crystal field as a consequence of spin orbit
coupling.

• Without SOC, the unperturbed Hamiltonian can be written in second quantized
form as follows

H0 =− ∑
<i, j>,n,σ

ti j(c
†
jnσ

cinσ +h.c.) (2.41)

or, in momentum space,

H0 =− ∑
kkk,n,σ

εn(kkk)c†
nσ (kkk)cnσ (kkk) (2.42)

Where n represents the energy level index, σ the spin index, i, j the lattice site
locations and kkk the crystal momentum.
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• The eigenstates with energies εn(kkk) of this Hamiltonian are Bloch functions of
the form

|kkk,n,σ⟩= ∑
µ

an,µ,σ (kkk) |kkk,µ,σ⟩ (2.43)

where µ indicates the sub-orbitals corresponding to the main quantum number
n. In the case of 3d elements µ ∈ {dyz,dzx,dxy,dx2−y2,d3z2−r2}.

• The system is perturbed by the presence of SOC which, in the Slater-Koster
(SK) basis (2.43), can be expressed as follows [49, 50]

HSOC = ξ ∑
µ1,µ2,σ1,σ2

⟨µ1,σ1|L ·S|µ2,σ2⟩×∑
k

c†
µ1,σ1

(k)cµ2,σ2(k), (2.44)

where we have used the fact that the SOC operator is diagonal in the momentum
index. The matrix elements ⟨σ1,µ1|L ·S|σ2,µ2⟩ are expressible analytically
and are reported in [51, 52].

At this point we can proceed and compute the second order energy correction
as a consequence of SOC. The validity of the perturbational approach is guaranteed
by the fact that in 3d metals, the energy scale of SOC, ξ , is indeed 10−100 times
smaller than crystal field splitting effects (≈ 1eV ). To second order in perturbation
theory the energy correction can be written as

δE = ∑
exc.

| ⟨gr|HSOC|exc.⟩ |2

Egr −Eexc
(2.45)

Where ⟨gr| indicates the metallic, unperturbed state of the system. Since the spin-
orbit coupling operator is a one body operator diagonal in k, we only need to take in
account excited states |exc.⟩ of the form

|exc.⟩= c†
n2σ2

(k)cn1σ1(k) |gr⟩ , (2.46)

as all the other ones would disappear in the evaluation of the expectation value by
means of the Wick theorem

⇒ δE = ∑
k,n1,n2
σ1,σ2

⟨gr|HSOCc†
n2σ2cn1σ1|gr⟩⟨gr|c†

n1σ1cn2σ2HSOC|gr⟩
εn1,σ1(k)− εn2,σ2(k)

. (2.47)
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If we change the basis to the SK basis according to (2.43) we have

c†
n2σ2

(k) = ∑
µ

an2µσ2c†
µσ2

(k), (2.48)

allowing us to rewrite (2.3.1) as

δE = ∑
k,n1,n2
σ1,σ2

∑
α,β
γ,δ

⟨gr|HSOCc†
ασ2cβσ1|gr⟩⟨gr|c†

γσ1cδσ2HSOC|gr⟩an2,α,σ2a∗n1,β ,σ1
a∗n2,δ ,σ2

an1,γ,σ1

εn1,σ1(k)− εn2,σ2(k)
.

(2.49)

We remark how the momentum k label is implicit since we assume spin orbit coupling
does not cause scattering to different momenta k′. We can now have a look at the
matrix element contraction

⟨gr|HSOCc†
ασ2

cβσ1|gr⟩⟨gr|c†
γσ1

cδσ2HSOC|gr⟩ . (2.50)

By expressing the spin orbit coupling operator in the SK basis (2.44) we have

(2.50) = ξ
2

∑
µ1···4
σ̄1···4

k

⟨gr|c†
µ2σ̄2

cµ1σ̄1c†
ασ2

cβσ1|gr⟩︸ ︷︷ ︸
:=A

⟨gr|c†
γσ1

cδσ2c†
µ4σ̄4

cµ3σ̄3|gr⟩︸ ︷︷ ︸
:=B

×

×⟨µ2, σ̄2|L ·S|µ1, σ̄1⟩⟨µ4, σ̄4|L ·S|µ3, σ̄3⟩ (2.51)

The summations are simplified by the delta functions produced by the A and B terms

A = δµ2,β δµ1,αδσ̄2,σ1δσ̄1,σ2, (2.52)

B = δµ3,γδµ4,δ δσ̄3,σ1δσ̄4,σ2 . (2.53)

Performing the summations and plugging in (2.49) we have

δE = ξ
2

∑
k,n1,n2
σ1,σ2

∑
µ1···4

⟨µ1,σ1|L ·S|µ2,σ2⟩⟨µ3,σ2|L ·S|µ4,σ1⟩a∗n1,µ1,σ1
an1,µ4,σ1a∗n2,µ3,σ2

an2,µ2,σ2

εn1,σ1(k)− εn2,σ2(k)
.

(2.54)
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To rid ourselves of the sum over n1,n2 , we can now introduce the generalized density
of states

nµ1,µ2,σ (k,ε) = ∑
n

a∗n,µ1,σ
(k)an,µ2,σ (k)δ (ε − εn,σ (k)), (2.55)

which allows us to introduce the notation

⇒ δE =−ξ
2
∫

ε2<εF<ε1

dε1 dε2

ε2 − ε1
∑

µ1···4
σ1,σ2,k

(
∑
n1

a∗n1,µ1,σ1
an1,µ4,σ1δ (ε1 − εn1,σ1(k))

)
︸ ︷︷ ︸

nµ1,µ4,σ1(k,ε1)

×

(
∑
n2

a∗n2,µ3,σ2
an2,µ2,σ2δ (ε2 − εn2,σ2(k))

)
︸ ︷︷ ︸

nµ3,µ2,σ3(k,ε2)

×⟨µ1,σ1|L ·S|µ2,σ2⟩⟨µ3,σ2|L ·S|µ4,σ1⟩

(2.56)

δE = ∑
λ ,σ1,σ2,k

∫
ε2<εF<ε1

dε1 dε2

ε2 − ε1
nµ1,µ4,σ1(k,ε1)nµ3,µ2,σ3(k,ε2)︸ ︷︷ ︸

A (θ ,σ1,σ2)

×⟨µ1,σ1|L ·S|µ2,σ2⟩⟨µ3,σ2|L ·S|µ4,σ1⟩ (2.57)

where we have condensed the µ index summation in the λ symbol, i.e.

∑
λ

≡ ∑
µ1···4

(2.58)

It can be shown [49], that the invoking the following properties of the SOC matrices

⟨µ1,σ1|L ·S|µ2,σ2⟩⟨µ3,σ2|L ·S|µ4,σ1⟩= ⟨µ1,−σ1|L ·S|µ2,−σ2⟩⟨µ3,−σ2|L ·S|µ4,−σ1⟩
(2.59)

⇒ ⟨µ1,σ1|L ·S|µ2,σ2⟩⟨µ3,σ2|L ·S|µ4,σ1⟩= Re(⟨µ1,σ1|L ·S|µ2,σ2⟩⟨µ3,σ2|L ·S|µ4,σ1⟩)
(2.60)

and

Re(⟨µ1,σ |L ·S|µ2,−σ⟩⟨µ3,−σ |L ·S|µ4,σ⟩) = const.−⟨µ1,↑ |L ·S|µ2,↑⟩⟨µ3,↑ |L ·S|µ4,↑⟩ .
(2.61)
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The notation can be simplified significantly. Plugging (2.61) in (2.57) and neglecting
the constant offset when we sum over the spin indices we have

δE =−ξ
2
∑
λ

⟨µ1,↑ |L ·S|µ2,↑⟩⟨µ3,↑ |L ·S|µ4,↑⟩×

× (A (↑,↑,λ )−A (↑,↓,λ )−A (↓,↑,λ )+A (↓,↓,λ )). (2.62)

By redefining (A (↑,↑,λ )−A (↑,↓,λ )−A (↓,↑,λ )+A (↓,↓,λ ))≡ G(λ ) we can
simplify the notation and obtain

δE =−ξ
2
∑
λ

⟨µ1,↑ |L ·S|µ2,↑⟩⟨µ3,↑ |L ·S|µ4,↑⟩×G(λ ). (2.63)

Explicitly evaluating of the matrix elements LLL ·SSS and exploiting the symmetry
properties of considered system, one can obtain different expressions for magneto-
crystalline anisotropy [49]. For a mono atomic thin film hosting 3d-orbitals (see
Tables 2.1 and 2.2 ) with (001) or (111) orientation one obtains the expression

δE = K0 +K1 sin2(θ), (2.64)

while for a (110) orientation we have

δE = K0 +K1 sin2(θ)+K2 sin2(θ)cos(2φ), (2.65)

where the Ki(ξ ,G(λ )) coefficients are all functions of the spin orbit coupling param-
eter ξ and the G(λ ) function which relates the anisotropy coefficients to the band
structure of the material.
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Relation between magneto-crystalline anisotropy and orbital magnetic moment
anisotropy

To elucidate the physical origin of magneto-crystalline anisotropy detailed above, it
is instructive to compute the second order perturbational correction of the angular
momentum as a consequence of SOC. We write the expectation value of the orbital
magnetic moment in the presence of SOC in second order perturbation theory

⟨LLL⟩= ∑
exc

⟨gr|LLL|exc⟩⟨exc|Hs.o|gr.⟩
Egr −Eexc

, (2.66)

where the orbital angular momentum operator in second quantized form can be
expressed as

LLL = 4 ∑
µ1,µ2,σ ,ζ

⟨µ2|LLLζ |µ1⟩∑
k

c†
µ2,σ

(kkk)cµ1,σ (kkk), (2.67)

with ζ representing the spin quantization axis. Since the angular momentum operator
is diagonal in the spin index (i.e. it cannot induce spin flipping), only matrix elements
of the spin orbit coupling operator that do not include spin flipping terms can survive
the summation over excited states. We can evidence them by decomposing the
spin-orbit coupling operator LLL ·SSS as

LLL ·SSS = Lζ Sζ +
1
2
(L+S−+L−S+) (2.68)

where S± and L± represent spin and angular momentum raising/lowering operators.
The only surviving terms of the ∑exc summation are the ones involving the term
Lζ Sζ . An analogous calculation procedure as the one described in Section.6.2.2 [50]
allows us to write the expectation value in (2.66) as

⟨LLL⟩=−4ξ ∑
λ ,σ

A (λ ,σ ,σ)⟨µ1|LLL|µ2⟩⟨µ3|LLL|µ4⟩⟨σ |SSS|σ⟩ (2.69)
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If we now project onto the SQA, we obtain

⟨Lζ ⟩=−4ξ ∑
λ ,σ

A (λ ,σ ,σ)⟨µ1|Lζ |µ2⟩⟨µ3|Lζ |µ4⟩⟨σ |Sζ |σ⟩ (2.70)

=−4ξ ∑
λ

[A (λ ,↑,↑)−A (λ ,↓,↓)]⟨µ1|Lζ |µ2⟩⟨µ3|Lζ |µ4⟩ . (2.71)

=−4ξ (⟨L↑
ζ
⟩−⟨L↓

ζ
⟩) (2.72)

From the decomposition of eq.(2.68), we can derive the useful identity

⟨µ σ |LLL ·SSS|µ ′
σ⟩= ⟨µ σ |Lζ Sζ |µ ′

σ⟩= σ

2
⟨µ σ |Lζ |µ ′

σ⟩ (2.73)

which allows us to rewrite the ⟨Lζ ⟩ of (2.71) as

⟨Lζ ⟩=−4ξ ∑
λ

A (λ ,↑,↑)⟨µ1 ↑ |LLL ·SSS|µ2 ↑⟩⟨µ3 ↑ |LLL ·SSS|µ4 ↑⟩− (2.74)

A (λ ,↓,↓)⟨µ1 ↓ |LLL ·SSS|µ2 ↓⟩⟨µ3 ↓ |LLL ·SSS|µ4 ↓⟩ . (2.75)

Having rewritten ⟨Lζ ⟩ in this form allows us to draw some similarities with the
energy correction due to spin-orbit coupling δE in (2.63). If we neglect spin flipping
terms ∝ ⟨µ (↑↓)|LLL ·SSS|µ ′ (↓↑)⟩ and assume that the majority spin channel is fully
occupied (i.e. we have a vanishing orbital momentum ⟨L↑

ζ
⟩= 0) we immediately see

how the energy correction δE becomes proportional to the orbital magnetic moment
component projected onto the spin quantization axis

δE = 4ξ ⟨L↓
ζ
⟩ , (2.76)

or, recalling the relationship between orbital magnetic moment and orbital moment
mmmo

ζ
=−µB ⟨Lζ ⟩ we have another important result from the Bruno model [49]

δE =−4ξ

µB
mo

ζ
. (2.77)

The explicit dependence of the orbital magnetic moment on the spin quantization
axis ζ clearly shows the anisotropic nature of this energy contribution. The relation
(2.77) tells us that in a 3d-transition metal where the majority spin channel is
completely occupied, the energy is minimized in the direction where the orbital
magnetic moment is the largest. We remark how this statement is in general only
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Fig. 2.4 Orbital momentum anisotropy in a crystal field with tetragonal symmetry. For
simplicity, we assume large exchange splitting and consider only the minority spin band.
The inclusion of SOC in lowest order perturbation theory (see 2.3.1) results in new states
with anisotropic orbital magnetic moment (units of h̄). The indicated orbital momenta for
SQA alignment SSS ∥ z-axis and SSS ∥ x− or y−axis results for only mixing spins in the minority
band. Reproduced from [4]

true given the mentioned assumptions and in the most general cases, spin flipping
terms also have to be taken into account [50].

2.3.2 Origin of orbital magnetic moment anisotropy in 3d transi-
tion metals

Thus far, we have successfully established a relation between the minimum energy
state of an electronic system with the direction in which the orbital magnetic moment
is maximized via eq.(2.77). We emphasize however, that the underlying causes of
the anisotropic orbital magnetic moment in 3d magnetic transition metals remain to
be cleared. In order to provide an intuitive picture of the underlying physical picture,
we illustrate the textbook case of a Co monolayer [4].

In the context of 3d transition metals, the otherwise degenerate energy levels
of the d-shell experience a splitting due to the bonding environment created by the
crystal field [4]. This splitting results in the emergence of new d-orbitals that possess
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a significant energy separation ( ≈ 1 eV): e.g. in the case of Co, the tetragonal bond-
ing environment imposes a crystal field that uplifts the degeneracy of the d-orbitals
(dxy,dxz,dyz,d3z2−r2,dx2−y2) (see Fig.2.4). However, the symmetry of the crystal
field environment imposes constraints on the new eigenstates of the Hamiltonian,
mandating them to be strictly real and thereby prohibiting the presence of any orbital
angular momentum [53]. According to eq.(2.77), this would imply a vanishing
orbital moment anisotropy and, consequently, no MCA. As easily imaginable at this
point, the missing ingredient to recover the correct answer lies in the key role played
by SOC in 3d transition metals. Although the magnitude of SOC is considerably
smaller than that of the crystal field effects (ξ ≈ 1% of the crystal field splitting), this
effect plays a crucial role by modifying the eigenstates as linear combinations of the
pure d-orbitals allowed by the crystal field environment. Importantly, the broken time
reversal symmetry resulting from SOC allows for the reinstatement of the orbital
magnetic moment that had been suppressed by the crystal field environment. The
expression for the orbital moment of a perturbed state |n⟩ in the presence of SOC
can be now be written as

⟨Ln
ζ
⟩= ξ ∑

m ̸=n

| ⟨d↑
n |Lζ |d

↑
m⟩ |2

∆nm
(2.78)

where the sum runs over all zero-order spin-up states |d↑
m⟩ and ∆nm represents the

energy separation of the 2 states. From the right side of Fig.2.4, we see that the
orbital magnetic moment for each of the perturbed orbitals is different depending
on orientation of the spin quantization axis, i.e. it is anisotropic. This anisotropy as
well as the orbital moment however, vanishes if we sum over all the states implying
that a partially filled d-shell is necessary to display finite orbital magnetic moment
anisotropy and by consequence, magnetocrystalline anisotropy. By use of the crystal
field concepts described above, we can now discuss the results for a Co ML: the
crystal field in the tetrahedral bonding environment of a Co monolayer induces the
energy splitting of the molecular d-orbitals with the characteristic V∥ >V⊥ [4], which
implies

2V∥ = ∆(xy)(x2−y2), (2.79)

2V⊥ = ∆(yz)(3z2−r2). (2.80)
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where ∆(n)(m) denotes the difference between orbital states dm and dn. Assuming a
completely filled spin-down band and a partially filled spin-up band, we obtain

mo
ζ=x = µB

(
3ξ

∆(xz)(3z2−r2)

+
ξ

∆(xz)(x2−y2)

)
=

ξ µB

2V∥

(
3
R
+

2
R+1

)
, (2.81)

mo
ζ=z = µB

4ξ

∆(xy)(x2−y2)

=
2ξ µB

V∥
, (2.82)

where we have defined R = V⊥/V∥ and used the fact that ∆(xz)(x2−y2) = V∥+V⊥ as
can be seen from Fig.2.4. Plugging these expressions in eq.(2.77), we immediately
see that the easy axis imposed by the magneto-crystalline anisotropy lies out of plane
for the case R > 1 and in plane for R < 1.

2.3.3 Interfacial perpendicular magnetic anistoropy at ferromag-
net/oxide interfaces

Interfacial perpendicular magnetic anistoropy (iPMA) was first observed in FM
metal/Oxide interfaces in 2002 [54] where the experimental setup consisted of a
Platinum underlayer surmounted by 0.6 nm thick layer of Co and an Aluminum layer
of varying thickness. The experiment aimed to investigate the changes in magnetic
properties of Co resulting from controlled oxidation of the Aluminum layer, both in
ambient air and in the presence of an oxygen plasma. The key observations were as
follows:

• Following brief exposures to oxygen, the hysteresis loop of the Co layer
displayed a slanted shape, accompanied by the absence of an anomalous Hall
signal for the out-of-plane (OOP) magnetization component. This indicated
the presence of an in-plane (IP) magnetic anisotropy, despite the Platinum
underlayer’s expected induction of SOC effects.

• With longer exposures to oxygen, two notable changes occurred: a square
hysteresis loop with 100% remanence emerged, and an anomalous Hall signal
appeared for the OOP component of the Co layer, indicating a transition from
IP to OOP magnetization. Importantly, the 100% remanence suggested that
the Co layer itself had not been oxidized.
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To shed light on the underlying physical explanation of oxygen control of interfacial
magnetic anisotropy, we examine a toy model with similar characteristics, namely
an Fe/MgO thin films which has been investigated thoroughly both experimentally
[55–57] and with first principles calculations [58, 59]. A key difference from the
textbook case described previously in 2.3.2 is the presence of oxygen atoms in the
vicinity of 3d ferromagnetic Fe atoms on the surface which result in a more complex
bonding environment. The physical understanding of the observed phenomena can
nonetheless be effectively captured, at least qualitatively, by the Bruno model outlined
in eq.(2.77). Far away from the surface, the crystal field environment of the Fe atoms
results in an very small orbital magnetic moment anisotropy (we remark that because
of the presence of SOC, an anisotropy contribution is present, albeit roughly 100
smaller that the surface contribution) (see Fig.2.5-(a)) At the surface however, the
bonding environment is significantly different due to the absence of neighboring Fe
atoms and the presence of oxygen species coming from the MgO layer. In particular,
the geometric positioning of O induces a strong hybridization between the Opz and
OOP 3d orbitals of iron which significantly reduces the electronic occupation of 3d
orbitals with out-of-plane (OOP) character (d3z2−r2 ,dxz,dyz) compared to those with
in-plane (IP) character (dx2−y2 ,dxy). This can be easily seen in Fig.2.5-(b), where the
DOS integrated over all occupied states in the presence of SOC is calculated and
reveals a difference of about 3% between the OOP and IP orbitals for Fe atoms at the
interface with MgO. The resulting undercompensation of IP orbitals, coupled with
the presence of SOC, results in a magnetic anisotropy energy that favors an OOP
magnetization easy axis.

2.3.4 Magneto-ionic control of interfacial magnetism

As theoretically motivated (see 2.3.3 and 2.3.2), the properties of metal/oxide bilayers
are heavily influenced by the oxygen stoichiometry and defect structure at the
interface between these materials. Therefore, the ability to electrically tune these
properties presents a promising new way for dynamically controlling magnetism with
low-power and high-efficiency. The magnetism community has long been exploring
the concept of inducing electric field effects on magnetization through direct field
effects, aiming to induce band shifting or charge accumulation effects [60, 61]. More
recently however, a novel approach to manipulating the magnetic properties of thin
films involves harnessing the ionic transport in metal oxides driven by an electric
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Fig. 2.5 (a) Layer-resolved orbital moment anisotropy (∆µ) and magnetic anisotropy (MA)
energy. Middle: Schematic representation of the crystalline structures calculated. Fe, Mg,
and O are represented by large, medium, and small balls, respectively. (b) DOS with SOC for
averaged out-of-plane (dz2−r2 +dxz +dyz) and IP Fe-3d orbitals (dx2−y2 +dxy) for Fe at the
interface (Fe5). Inset: a simple picture showing that PMA is produced by the hybridization
of Fe out-of-plane orbitals (d3z2−r2 ,dxz,dyz) and O pz orbitals. This hybridization leads to
an uncompensated charge occupation in Fe in-plane orbitals (dx2−y2 ,dxy) and results in an
enhanced out-of-plane orbital moment. Reproduced from [5]

field, which has led to the emergence of a new branch of nanomagnetism called
"magneto-ionics".

A notable example of magneto-ionic control of magnetization was reported in
2015, where a Co/Oxide bilayer demonstrated direct in situ voltage-driven migration
of O2− ions, resulting in a toggle switch effect on the interfacial magnetic anisotropy
already with 2V [38]. Subsequent developments revealed that the switching speed
and stability of the switching process are heavily influenced by the material properties
of the capping layer atop the magnetic one. For instance, the insertion of H+-ions at
Co/GdOx interfaces has shown reliable switching with no degradation after > 2000
voltage cycles [39], while the use of yttria-stabilized zirconia (YSZ) [40] as a
capping material exhibited a 100× acceleration of the switching process. These
results suggest that further advancements in engineering proton-conducting materials
could lead to even more substantial improvements in switching speed.

Another crucial aspect that requires attention is the seemingly unreliable re-
versibility of the switching process depending on the specific oxide employed. In a
study by Fassatoui et al.[62], reversible voltage induced magnetization switching was
observed in Pt/CoFe/AlOx and Pt/CoFe/TbOx samples, while the reversibility was
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absent in the case of Pt/CoFe/MgO setup. The authors attributed this phenomenon
to the distinct ionic mobility properties of the oxides in contact with the metallic
ferromagnetic material, where AlOx and TbOx exhibited predominant ionic mobility
from mobile oxygen species [62], while MgO displayed a significant ionic mobil-
ity component from Mg under the effect of a gate voltage. Furthermore, a study
by Gilbert et al. (2016) [63] analyzed the ionic penetration of oxygen species in
polycrystalline AlOx/GdOx/Co(15 nm) samples, revealing that oxygen species can
penetrate through the entire magnetic layer with a sufficiently long application of
gate voltage. The study also demonstrated that the reversibility of the magnetization
switching depends on the depth of oxygen penetration, with shallow oxygen con-
centration near the surface resulting in fully reversible switching and deeper oxygen
penetration leading to the loss of reversibility.

2.3.5 Recent advances in magneto-ionic research

One of the main strengths of magneto-ionic manipulation of interfacial magnetism
is its potential to operate devices at significantly low energy levels compared to
traditional current-based methods (magneto-ionic manipulation requires only 10
aJ/bit of energy [64] against the typical 10 fJ/bit [65] of VCMA). Another crucial
advantage from a material perspective is the ability to induce non-volatile changes,
offering functional plasticity and allowing for the creation of devices that can retain
their magnetization state without the need for continuous power input.

However, despite these strengths, the field of magneto-ionics is still in its growth
phase, and numerous challenges remain to be addressed:

• Magneto-ionic processes are slow in nature, which hinders their practical
implementation.

• The driving factors at the basis of reversibility and robustness of induced
magnetization changes are still debated in the community.

• Oxygen-based magneto-ionics, which has received considerable attention in
the past decade, requires additional thermal assistance to enhance mobility
and efficiency of magnetization change [63]. Furthermore, the penetration
of oxygen ions into materials through ionic conduction channels can lead to
irreversible changes and lattice distortion in the magnetic layer.
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In response to these challenges, research groups are actively exploring various
solution strategies. One such approach involves the use of N ions instead of O
ions as the drivers of magneto-ionic changes [37]: the study compares nitrogen
magneto-ionics in CoN to oxygen magneto-ionics in Co3O4 and shows that nitrogen
transport occurs uniformly, creating a plane-wave-like migration front, without assis-
tance of diffusion channels. Moreover, the use of N ions can reduce the threshold
voltages required for effect, also indicating that this approach significantly reduces
the timescales needed for magnetization changes, from hours to seconds. Another
successful step forward involves the use of H+ ions (protons) for magneto-ionic
manipulation [39]. Although fast, the reduced size of the protons makes it chal-
lenging to identify the penetration depth in the magnetic layer. Furthermore, a
deep implantation of the protons in the magnetic material has severe consequences
regarding the reversibility of the magneto-ionic changes, presenting a new set of
considerations for practical implementation. A third interesting path being pursued
is the so called the "structural-ion" approach [66]: this approach aims at incorpo-
rating the migrating ions into the target material in its as-deposited state, therefore
reducing structural distortions and leading to improved endurance of magneto-ionic
manipulations. These research directions hold promise for overcoming the existing
challenges and advancing the field of magneto-ionic manipulation towards practical
applications.

2.4 Chiral interactions: Extended Heisenberg model

When magnetic systems display inversion symmetry breaking, the presence of spin-
orbit coupling triggers the appearance of new forms of magnetic exchange that favor
perpendicular alignment of neighboring spins, in contrast to Heisenberg exchange
which only favors parallel or anti-parallel alignment. The Dzyaloshinskii-Moriya [67,
68] interaction (DMI) was first predicted by Igor Dzyaloshinskii, who hypothesized
the presence of such an interaction to motivate weak ferromagnetic signatures in
the antiferromagnet α−Fe2O3. Tôru Moriya later formulated a robust mathematical
derivation of this type of interaction by introducing a spin-orbit coupling term in a
tight binding model and obtaining an effective Hamiltonian via a Schrieffer-Wolff
transformation similar to the one discussed in 2.1.1.
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While first discovered in 1958, the DMI has gained exponentially growing atten-
tion in the scientific community over the last 13 years due to its strong influence on
many exotic spintronics phenomena. Nowadays the DMI has become essential for
understanding and predicting many magnetism phenomena, such as weak ferromag-
netism, spin glasses, cuprates, multiferroics, chiral and topological magnetism in
heterostructures, thin film and bulk materials. Furthermore, this particular form of
interaction is of great importance for future applications in the IT industry because
it’s at the heart of many physical phenomena relevant for novel computing architec-
tures: to mention a few instances, DMI is a fundamental ingredient for stabilizing
topological magnetic structures such as skyrmions and antiskyrmions [69–71], while
at the same time being very important for the significant enhancement of magnetic
domain wall velocity.

Tailoring the DMI in magnetic materials is of great importance for the future of
material science, but despite much research, many challenging questions regarding
the origins of DMI in magnetic materials still remain open to this day. In this section
we first provide a derivation of DMI from a microscopic point of view, following the
derivation by Tôru Moriya [67]. We then continue by describing some of the systems
where DMI can be found, highlighting how contradicting discoveries are still being
made to this day. We conclude by providing an overview of some of the methods
used to manipulate chiral interactions in magnetic materials, paying special attention
to the role of chemisorbed oxygen [7, 6] and of electric fields [58] in magnetic thin
films.

2.4.1 Microscopic origin of DMI

In order to show how the presence of SOC can induce the appearance of chiral
interactions in magnetic systems lacking inversion symmetry, we show the results of
the pioneering work of Tôru Moriya [67]. Moriya successfully adapted Anderson’s
superexchange model [72] to account for SOC, showing how an effective spin model
with these characteristics indeed resulted in the appearance of a spin-spin interaction
favoring a canted magnetic order. Since it is based on the a superexchange model,
Moriya indeed based his model on a tight-binding approach [43] rather than the
Hubbard model approach we showed in 2.1.1. Despite this apparent discrepancy, the
2 approaches are very similar and can indeed be brought in contact as was done later
[73].
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We introduce atomic orbitals |n, i,↑↓⟩, which are eigenfunctions of the Hamilto-
nian H1

H1 =
ppp2

2m
+V (rrr)+

h̄
2m2c2 SSS · (∇V (rrr)× ppp) (2.83)

at one single isolated atom and are characterized by n: the orbital state of the
electron, i: the atomic site and ↑↓: the spin state. Correspondingly we define the
creation and annihilation operators c†

ni↑↓,cni↑↓ of the electron in the state |ψn,i,↑↓⟩.
The one electron Hamiltonian written in terms of annihilation and creation operators
is expressed as follows

H = H0 +HSOC = ∑
n

∑
i

εni[c
†
ni↑cni↑+ c†

ni↓cni↓] (2.84)

+∑
i ̸= j

∑
n,n′,σ

b ji,n′n

(
c†

n′ jσ cniσ + c†
niσ cn′ jσ

)
+

+C x
ji,n′n

(
c†

n′ jσ cni−σ − c†
niσ cn′ j−σ

)
−

− iC y
ji,n′ n

(
c†

n′ j−σ
cniσ + c†

niσ cn′ j−σ

)
+

+C z
ji,n′ n(2σ)

(
c†

n′ jσ cniσ − c†
niσ cn′ jσ

)
, (2.85)

where the C and b coefficients represent the following one body Hamiltonian matrix
elements1

C±
ji,n′ n = ⟨0|cn′ j∓H1c†

ni±|0⟩ , (2.86)

b ji,n′n ±C z
ji,n′ n = ⟨0|cn′ j±H1c†

ni±|0⟩ . (2.87)

In order to find the effective Hamiltonian via the Schrieffer-Wolf transformation, we
proceed with a method similar to the one employed in 2.1.1, assuming an unperturbed
ground state that is highly degenerate in the spin variable but not in the orbital index.
Following the procedure to derive an effective Hamiltonian via the Schrieffer-Wolff
transformation (see Appendix B), we write

H ′ =
1
u
P0T 2P0, (2.88)

1here the spin index ↑↓ is converted to ± because it needs to be related to some algebraic
operations.
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where the projector P0 acts on an arbitrary state and projects it on the subspace
spanned by the eigenstates of H0 (a perfectly insulating state where each site is
occupied by an electron). In analogy to before, u represents the energy cost of a
doubly occupied site. Moriya showed that the terms ∝ b2 of eq.(2.88) yield the
symmetric spin exchange part already seen in the Heisenberg Hamiltonian (see
2.1.1), the terms ∝ C b yield spin-spin interaction terms that promote perpendicular
alignment of the spins (this later became known as the Dzyaloshinskii-Moriya
interaction) and, finally, the terms ∝ C 2 generate effective spin-spin interactions that
can be interpreted as a 2-site anisotropy terms

∝ b2 ⇒ Ji jSSSi ·SSS j, (2.89)

∝ C b ⇒ DDDi j · (SSSi ×SSS j), (2.90)

∝ C 2 ⇒ SSST
i

↔
Γ i j SSS j, (2.91)

where the effective spin model parameters Ji j,DDDi j,
↔
Γ i j are related to the tight binding

parameters via

Ji j =
2|bi j,nn′|2

u
, (2.92)

DDDi j = DDDα( j, i) :=
4i
u
[b ji,n′nC i j,nn′ −C ji,n′nbi j,nn′], (2.93)

↔
Γ i j =CCCi j,nn′ ⊗CCC ji,n′n +CCC ji,n′n ⊗CCCi j,nn′ − I⊗ (CCCi j,nn′ ·CCC ji,n′n) (2.94)

A rigorous derivation of the DMI term is provided in Appendix C. The so-
obtained effective spin model can finally be expressed in the familiar form

H ′ = ∑
<i, j>

−Ji jSSSi ·SSS j +DDDi j · (SSSi ×SSS j)+SSST
i

↔
Γ i j SSS j. (2.95)

which is also known as the extended Heisenberg model for magnetic interactions.
This model is at the basis of an incredibly vast wealth of physical phenomena, many
of which are sill being explored today. The ordinary Heisenberg exchange term
∝ Ji j favors either parallel or antiparallel alignment, with the easy axis of the global
alignment being decided by other sources of magnetic anisotropy (such as MCA as
described in sec.6.2.2 - see Fig.2.6).
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Fig. 2.6 Schematic representation of the favored magnetic order promoted by the different
terms of the extended Heisenberg model of eq.(2.95). Ji j ≶ 0 represents antiferromagnetic
or ferromagnetic order. DDDi j ̸= 0 represents canted magnetic order as a consequence of DMI

and
↔
Γ i j represents 2 site anisotropy.

The DMI term ∝ DDDi j instead favors perpendicular alignment of neighboring
spins as depicted in Fig.2.6 and the direction in which this perpendicular alignment
is favoured is indeed dependent on the direction of the DM vector, which is also
constrained by the crystal symmetry as discussed in the following 2.4.1.

Finally, the term ∝
↔
Γ i j favors the alignment of neighboring spins according to

an easy axis different from the one dictated by magnetocrystalline anisotropy. We
emphasize that this term is highly non-trivial and can be interpreted as a 2-site
anisotropy as opposed by the single-ion anisotropy addressed by the Bruno model
(see Fig.2.6): the underlying mechanism is very different. In the Bruno model, the
electrons on the single atom interact with the crystal field and acquire an anisotropy
due to SOC: the electron-electron interaction is completely neglected. In this case,
the magnetic moments in the effective spin model align as a consequence of spin-spin
interactions coupled with the presence of SOC: this 2 site anisotropy is a consequence
of electrons interacting. This last term is very often neglected because the strength
of this interaction goes with the square of spin orbit coupling terms ∝ C 2 and is
therefore negligibly small in most (but not all) systems.

Crystal symmetry and allowed DMI vectors: the Moriya rules

As noted by Moriya himself in his seminal paper of 1960 [67] and inspired by
the Neumann Principle of crystallography, the symmetry of the crystal can reveal
in which cases the DM between neighboring magnetic atoms is present or not.
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We emphasize however 2 important points: firstly, in the microscopic case, the
symmetries relevant for the determination of the DM vector are not the global
symmetries of the crystallographic point group but the local symmetries of the atomic
environment around the relevant atom; secondly the (local) crystal symmetry can
only predict the direction of the DM vector and not it’s strength. In the following we
report the 5 Moriya rules useful for determining the direction of the DM vector. Given
2 selected atoms positioned at sites A and B, with the point bisecting the straight line
segment denoted AB, we can in general formulate the following statements:

• When a center of inversion is located at C, the DM vector DDDAB = 0 on that
given bond (2.7-(a)).

• When there is a mirror π̂ including A and B, DDDAB ⊥ π̂ .

• When a mirror plane π̂ perpendicular to AB passes through C, DDDAB ∥ to π̂ or
DDDAB ⊥ AB (2.7-(b)).

• When a 2-fold rotation axis C2 is perpendicular to AB and passes through C,
DDDAB ⊥C2 (2.7-(c)).

• When there is an n-fold axis Cn (n ≥ 2) along AB, DDDAB ∥ AB. (Fig.2.7-(d))

• When there is a 2-fold axis C2 along ⊥ AB, DDDAB ⊥ AB (Fig.2.7-(e)).

• In the case that the magnetic interaction between neighboring atoms is me-
diated by a third one via a superexchange mechanism ([74]) the orientation
of the DM vector is obtained from the relation DDDAB ∝ rrrA × rrrB, where rrrA and
rrrB represent the position vectors of the magnetic ions relative to the 3rd ion
mediating the superexchange interaction (see Fig.2.7-(f) and Fig.2.10 ).

For some exemplary cases demonstrating the Moriya rules, please refer to Fig.2.8.

2.4.2 An overview of DMI materials

In general, DMI exists between any pair of magnetic atoms with local inversion
symmetry breaking and is therefore a quite common feature in magnetic materials.
We remark however, how in general it is a second order effect compared to ordinary
Heisenberg exchange and magneto-crystalline anisotropy, making it quite elusive to
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Fig. 2.7 Schematic representation of the Moriya rules relating the local symmetries of a pair
of spins SSSA and SSSB and the direction of the DMI.

detect experimentally. In the following we provide a brief overview of the typical
DMI materials, paying special attention to bulk and thin film systems, which have
gained significant scientific interest in recent years.

B20-chiral magnets

B20-type chiral magnets, such as MnSi [75], Fe1−xCoxSi [76], and FeGe [77],
are historically significant as they were the first compounds to demonstrate sta-
ble skyrmionic states. This is due to the fact that these alloys belong to the non-
centrosymmetric space group P213 (see Fig.2.9), which allows for the emergence of
Bulk DMI. Ab initio calculations reveal that the strength of the DMI in these systems
is determined by the SOC of the 3d atoms and strong 3d-p hybridization with the p
atoms of Si or Ge, mediating magnetic interactions [78].

Experiments have shown that the chirality of the spin spirals (which is linked to
the strength of the DMI) in these systems can be adjusted by altering the relative
concentrations of 3d and p elements [79] in the compound. These systems are partic-
ularly interesting because they show excellent agreement between experimental data
and ab-initio calculations, which remarkably reproduce the mentioned composition
dependence of the DMI strength.
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Fig. 2.8 Relationship between crystal symmetry and microscopic DM vector. Sketch of the
DM vector in a C2v (a,c), C4v (b) C3v (d) and a C4 symmetric unit cell (e). Mirror planes are
indicated by the black dashed lines. Atoms in the top layer are indicated by blue circles
while atoms in the bottom layer are indicated by smaller red circles. The green arrows on the
bonds represent the DM vector while the orange arrows represent an effective micromagnetic
DM vector (discussed at length later in 3.1.1) . We highlight how the C2v case (a,c) is of
particular interest as the Moriya rules in this case would allow for multichiral magnetisation
configuration, i.e. winding magnetic structures with opposite Néel-type chirality. We also
emphasize how the centrosymmetry of structure (e) forbids the presence of DM interaction.

Fig. 2.9 Unit cell of MnSi which is part of the P213 space group.
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Magnetic thin-film heterostructures

The interesting combination of intrinsic inversion symmetry breaking and strong
SOC provided by the interplay of heavy metal (HM) atoms located at the interface
of HF/FM heterostructures has made these systems an ideal platform for the study
of chiral magnetism. Layer resolved ab-initio calculations have proven of central
importance in revealing some general features of interfacial DMI in a variety of
heterostructures [80]. It was found that the predominant contribution to DMI in these
systems is localized in the interfacial ferromagnetic layer, while the dominating SOC
contribution is located in the adjacent HM (heavy metal) layer.

These findings confirm the validity of the assumptions of the Fert-Levy model [81,
74], which considers interface DMI as a consequence of anisotropic superexhcnage
mediated by heavy metal atoms in heterostructures. Moreover, the ab-initio analysis
has also highlighted the great importance of 3d/5d orbital hybridization at the
interface in determining the strength and sign of DMI in heterostructures and further
contributes to improving our understanding of interfacial magnetism. Recent studies
have revealed that ferromagnetic interfaces exhibit interface DMI even in the absence
of heavy metal (HM) atoms, which has been attributed to the Rashba effect. Similarly
to interface DMI, the dominant DMI contribution in these systems is mainly located
in the first FM layer. In contrast to ordinary interface DMI observed in the Fert-Levy
model, the spin orbit contribution of Rashba-DMI is also located in the first FM
layer.

This discovery was first established through ab-initio investigations of Co/graphene
[82], while at the same time unveiling a linear correlation between Rashba-DMI and
the Rashba splitting parameter αR in close quantitative agreement with experimental
data. The electric field provides an interesting gateway for low energy manipulation
of chiral interactions in FM thin films as it has been demonstrated to modulate the
interfacial DMI induced by the Rashba effect [83–86]. Recent research has shown
that electric field control of Rashba-induced DMI allows for efficient current-driven
domain-wall motion and magnetization switching, highlighting its potential in the
development of advanced spintronic devices [80, 87–91].
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Fig. 2.10 Diagrammatic representation of a typical system displaying interfacial DMI. The
exchange interaction between neighboring spins ŜSSi and ŜSS j is mediated by a heavy metal ion
which introduces a strong SOC in the interfacial region. In accordance with the 5th Moriya
rule, the DM vector DDDi j lies parallel to the vector rrri × rrr j.

2.4.3 Direct and indirect electric field control of DMI

As established in 2.4.1, DMI is an important magnetic interaction that has been
attracting significant attention in the scientific community due to it’s central role
in many exotic phenomena of magnetism, as well as being a key parameter for the
manipulation of topological magnetic structures in future spintronics based devices.

While some of the key ingredients to stabilize sizable DMI seem to have been
established (inversion symmetry breaking and the presence of SOC), some other
very important properties of this exotic magnetic interaction are still under intense
scrutiny. Most notably, a clear correlation between the strength of DMI and the band
structure of materials has not been ultimately identified yet, making the choice of
good DMI materials more a matter of experience rather than the result of a choice
based on hard data from a large database.

Even without a clear view on all the facets of this interesting magnetic parameter,
several strategies to improve and control DMI in magnetic thin films have been
demonstrated. In particular we highlight ref. [80] where the authors describe
three approaches to efficiently tune the DMI in ultrathin magnetic films. The first
approach involves using NM/FM/Pt trilayers with inverse stacking of FM/Pt and
FM/NM structures characterized by DMI with opposite chiralities, which allows the
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enhancement of DMI up to 50% as compared to the corresponding FM/Pt bilayers.
The second approach is to cap Co/Pt structure with an oxidized layer, which can
cause a dramatic DMI enhancement due to the Rashba type DMI. Finally, the paper
demonstrates that DMI magnitude can be modulated using an electric field with an
efficiency factor comparable to that of the electric field control of perpendicular
magnetic anisotropy in transition metal/oxide interfaces.

Among the various strategies to manipulate DMI suggested in [80], the use of
an electric field is of particular interest for applications because of the promise of
fast operations times and low energy costs. There are several ways in which an
electric field might be employed to tailor this magnetic interaction. One additional
way to address DMI via electric field resides in the possibility to piezoelectrically
manipulate the strain properties of a material as shown in ref. [92]: there the
authors present experimental results and micromagnetic simulations that demonstrate
electric-field control of skyrmions through strain-mediated magnetoelectric coupling
in ferromagnetic/ferroelectric multiferroic heterostructures. The paper also shows
the process of non-volatile creation of multiple skyrmions, reversible deformation
and annihilation of a single skyrmion by performing magnetic force microscopy with
in situ electric fields.

Another interesting way to control DMI in magnetic thin films has been shown to
be the controlled oxidation of FM surfaces [6]. It was shown via ab-initio simulations,
that the magnitude and sign of DMI can be controlled by tuning the oxygen coverage
of the magnetic film. The origin of this mechanism is to be identified in the efficient
modulation of surface electric dipoles via strongly electronegative ions such as
oxygen (see Fig.2.11). This concept has also been recently followed up in an
experimental setting [7], where the controlled oxidation of a CoFeB layer was shown
to successfully switch the sign of DMI (See Fig.2.12).

2.4.4 Conclusion

In the preceding sections, we have explored the emergence of various types of
magnetic order arising from electron many-body interactions. These models hold
fundamental significance and their predictive capacity is greatly enhanced by ab-
initio methods, which allow the calculation of energy in magnetic systems, conse-
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Fig. 2.11 Correlation between DMI and the electric surface dipole moment. In panel (a), the
planar averaged charge density difference ∆ρ(z) is illustrated for O absorption on Fe/Ir(011)
across various oxygen coverages. The dashed red, blue, and gray lines depict the approximate
equilibrium positions of the O, Fe, and topmost Ir atoms on the fully relaxed surface. In panel
(b), the relationship between O coverage and the alterations in the surface dipole moment,
DMI, and (c) relative Fermi energy is explored. (d-e) Isosurface plot of the charge density
difference ∆ρ(z) for a coverage of 0.25 (d) and 0.75 ML (e), with blue and red isosurfaces
indicating areas of charge accumulation and depletion respectively. Reproduced from[6].
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Fig. 2.12 (a) Schematic representation of the setup composed of a Ta/CoFeB/TaOx trilayer
with the additional ZrO2 layer and Indium Tin oxide (ITO) electrode. (b) Schematic cross
section of the sample. (c) iDMI measured with Brillouin light scattering (BLS) vs. top
Ta-thickness. (d,e) MOKE images of current skyrmion induced motion (CIM) at zero applied
gate voltage. (g,h) MOKE images of skyrmion current induced motion (CIM) at Vg =+3.5V
applied gate voltage. The in plane current density is represented by the white arrow and the
out of plane magnetic field of µ0Hz = 80 µT. In the initial state (d,e), skyrmions move in the
direction of the current indicating CW chirality (D < 0). Under positive gate voltage, the
skyrmions move against the current density direction, indicating a CCW chirality (D > 0).
(f,g) Schematic representation of CW and CCW skyrmions. Reproduced from [7]
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quently enabling the extraction of crucial parameters such as anisotropy constants
and exchange tensor components through energy mapping techniques (see 5.1.6).

However, when investigating material characteristics observable at larger scales,
such as the dynamics of magnetic domain walls or the expansion dynamics of
magnetic bubbles, microscopic models alone are insufficient in providing conclusive
answers. To fully comprehend and analyze these other facets of magnetism in
the solid state, we require a formalism that disregards many microscopic degrees
of freedom and selectively retains the relevant ones necessary for modeling the
prominent features at the scale of micrometers rather than individual atoms.

In the next chapter we introduce micromagnetism, a formalism that aims to
elevate the microscopic theory of magnetism to a continuum theory thereby unlocking
a wealth of valuable tools for studying the dynamics of magnetic materials on the
micrometer scale.



Chapter 3

The continuum limit:
Micromagnetism

In the previous chapter, we have spent some time setting the stage for a theory of
magnetism that works on the atomic scale. The dynamical behavior of magnetic
moments on the experimental scale is however something that is impossible
to capture with purely atomistic ab-initio approaches: at nano- and micro-
scales we therefore have to implement other theoretical predictive models which,
while keeping some of the essential features of atomistic magnetism, adopt
some fundamental approximations. As an example for the necessity of multi-
scale approaches, atomistic theories regarding magnetic systems do not take
in account the presence of the dipolar interaction and therefore fail to capture
many of the features of experimental systems such as the formation of Weiss
Domains and other magnetization patterns.

Micromagnetism [93, 94] is a theoretical framework used to describe the behavior
of magnetic materials at the micrometer scale, i.e. on length scales where the material
consists of regions that are large enough to be treated as continuous, but small enough
to reveal details of magnetic domains (see Fig.3.1).

One of the key advantages of micromagnetism is its ability to model large-
scale systems with a good degree of accuracy, while still being computationally
efficient. This makes it an ideal tool for studying the behavior of magnetic materials
in applications such as magnetic storage devices, spintronics, and magnetic sensors.
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Within micromagnetism, magnetic materials are not considered as ensembles of
atoms with interacting electrons, but rather as an ensemble of interacting magnetic
moments. Ferromagnetic materials allow for a big simplification because of exchange
interactions, which, up to a characteristic length scale := λ favor parallel alignment
of magnetic moments. Averaging the microscopic magnetization inside of regions
of the material smaller than d3rrr < λ 3 allows us to formally define the macroscopic
magnetization MMM(rrr) as a continuous function of space, effectively promoting our
theory of magnetism to a continuum theory. It is also assumed that the magnetic
moments inside the volume d3rrr reach their thermodynamic equilibrium value on a
time scale much smaller (i.e. much faster) than the system as a whole reaches its
equilibrium configuration.

Within this framework, the label quantifying how likely a configuration is going
to manifest itself is provided by the internal energy, which is promoted to a functional
of the magnetization E[MMM(rrr)]. The ground state of the system is identified via the
variational principle

δE[δMMM(rrr)] = 0, (3.1)

where δE[δMMM(rrr)] indicates the variation of the energy functional for a variation of
the magnetization field δMMM(rrr) under the constraint |MMM|/Ms = 1m where Ms indicates
the saturation magnetization of the sample.

Despite these differences, micromagnetism and ab-initio methods can be comple-
mentary approaches, as they can provide different levels of detail and insights into
the behavior of magnetic materials. For example, DFT can be used to calculate the
magnetic properties of a material, which can then be used as input for micromagnetic
simulations to study the dynamics of the magnetization under different external
conditions.

In the following we are going to provide a brief overview of the different energy
contributions composing the energy functional E[MMM(rrr)]

3.1 Exchange energy density

The exchange interaction is an energy contribution associated to the relative ori-
entation of spins in the system and is directly related to the Heisenberg exchange
interaction discussed 2.1.1. In the following we consider a lattice in which the state
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Fig. 3.1 Schematic representation of them micromagnetic limit. The magnetization inside the
cells is averaged and considered constant. The details of the atomic structure are neglected.

of the electrons in the unit cell is identical except for the relative orientation of their
spin. Let SSSi ≡ SSS(rrri) represent the unit vector pointing in the direction of the average
magnetization of the i−th unit cell located in rrri, the total Heisenberg exchange
energy in the system can be quantified as follows

Eexch =− ∑
⟨i, j⟩

Ji jSSSi ·SSS j, (3.2)

where Ji j represents the energy cost of misalignment of spins SSSi,SSS j per unit cell
volume. Despite the similarity to the quantum mechanical version of the Heisen-
berg model discussed in Chapter 2, this expression treats the localized spins as
vectors quantities and not as a quantum mechanical operators acting on electron
wave-functions. In the micromagnetic approximation we suppose the changes in
magnetization occur on length scales much larger than the lattice constant, therefore
we can assume that the spins are misaligned by a small amount and we can Taylor
expand as follows

SSS(rrr j)≈ SSS(rrri)+∑
A

∂SSS(rrri)

∂xA

[
∆rrri j

]
A +

3

∑
A,B

∂ 2SSS(rrri)

∂xA∂xB

[
∆rrri j

]
A

[
∆rrri j

]
B, (3.3)
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where we have defined
[
∆rrri j

]
A :=

[
rrri − rrr j

]
· êA. The assumption of small misalign-

ment also allows us to write

SSSi ·SSS j = cosθi j ≈ 1−θ
2
i j, (3.4)

which, together with the assumption of unit length |SSS(rrri)|2 = 1, yields

θ
2
i j ≈ ∑

A,B

∂SSS(rrri)

∂xA
· ∂SSS(rrri)

∂xB

[
∆rrri j

]
A

[
∆rrri j

]
B (3.5)

which finally allows us to write the exchange energy as

Eexch =
1
2 ∑
⟨i, j⟩

Ji j ∑
A,B

∂SSS(rrri)

∂xA
· ∂SSS(rrri)

∂xB

[
∆rrri j

]
A

[
∆rrri j

]
B (3.6)

= ∑
i,A,B

ΞAB(rrri)
∂SSS(rrri)

∂xA
· ∂SSS(rrri)

∂xB
, (3.7)

where we have defined

ΞAB(rrri) =
1
2 ∑

j∈N.Nrrri

Ji j
[
∆rrri j

]
A

[
∆rrri j

]
B (3.8)

as an anisotropic exchange tensor. The sum over j is restricted to all the nearest
neighbors (N.N) of SSS(rrri) and therefore depends on the crystalline structure of the
material. We can now let the unit cell volume shrink to d3rrr in order to convert the
sum over i to a volume integral and the atomic spins to a continuous magnetization
field mmm(rrr), obtaining

Eexch =
∫

V
∑
A,B

ΞAB
∂mmm(rrr)

∂xA
· ∂mmm(rrr)

∂xB
d3rrr (3.9)

Using graph theory to sum over nearest neighbors

The derivation of the continuum exchange energy density from Döring [93] which we
reformulated above, although fairly straightforward, faces an issue: computing the
elements of ΞAB for symmetric anisotropic exchange is neither easy nor systematic,
especially when dealing with crystallographic point groups that go beyond the
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simplest cases. This difficulty arises from the challenge of easily identifying the ∆rrri j

terms in equation (3.8)

Since crystal structures are nets, which are special sub-classes of graphs, an
interesting trend emerging in recent years has been to use the toolkit of graph theory,
an important branch of mathematics, to treat similar problems. In the following we
provide an overview of the basics of graph theory, keeping the discussion focused
on the parts that can help us understand how a crystal can be analyzed with this
formalism.

A graph G = (X ,U) consists of a set of vertices labelled X = {v1,v2, · · ·vi, · · ·vn}
and edges corresponding to pairs of vertices (i, j), · · · labelled U = {l1, l2, · · · , l j, · · · , lm}.
If a pair of vertices (i, j) is distinguished from a pair ( j, i), then we are talking about
a directed edge and the graph as a whole is referred to as a directed graph. Vertices
connected by an edge or more are called neighbors and the set of neighbors of that
vertex is called its neighborhood. The coordination of a vertex is the number of edges
incident on it and if all the vertices of the graph have the same coordination, e.g.
n, the graph is called n-regular. To formulate predictions and perform calculations
it is useful to associate different matrices to the graphs of interest. The undirected
incidence matrix B̂ of an undirected graph G = (X ,U) is as n×m matrix where n is
the number of vertices and m is the number of edges respectively, such that

Bi j =

1 if vertex vi is incident with edge l j

0 otherwise
. (3.10)

If the graph G = (X ,U) is directed, then the incidence matrix Ĉ becomes

Ci j =


+1 if edge l j leaves vertex vi

−1 if edge l j enters vertex vi

0 otherwise

. (3.11)

We report an exemplary case in Fig.3.2. We now proceed and show how, using
some of the basics of graph theory introduced above, it is possible to streamline the
process of performing sums over nearest neighbors such as the one in eq.(3.8) by
mapping it onto a simple matrix multiplication. First of all, we notice how ∆rrri j in
eq.(3.8) represents the vector connecting sites i and j, making it an object that can
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Fig. 3.2 Depiction of the incidence matrix of an undirected graph (left) and the edge-node
incidence matrix of a directed graph (right)

be easily related to an edge-node incidence matrix as the one reported in (3.11). To
show how such a connection can be made, we demonstrate the case of a simple cubic
(SC) lattice.

First of all, we identify the cluster of nearest neighbors surrounding atom i as a
directed graph with vertex set

X = {v1,v2,v3,v4,v5,v6}

and edge set

U = {(v1,v2),(v1,v3),(v1,v4),(v1,v5),(v1,v6)}= {l1, l2, l3, l4, l5}

which allows us to determine the edge-node incidence matrix for the SC lattice of
the present example as follows (see Fig.3.3)
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Ĉ =



1 −1 0 0 0 0 0
1 0 −1 0 0 0 0
1 0 0 −1 0 0 0
1 0 0 0 −1 0 0
1 0 0 0 0 −1 0
1 0 0 0 0 0 −1


. (3.12)

If we are interested in extracting ∆rrri j from the incidence matrix, we first have to
extract the jth line of Ĉ by multiplying from the left side with the jth edge vector

l j ·Ĉ = δ jγCγα (3.13)

which gives us a linear combination of vertex vectors. To convert these vertex vectors
in real space coordinates we define a matrix R̂ that maps the vertex vectors onto real
space coordinates. For a SC lattice, such a matrix has the form

R̂ =



0 0 0
1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1


. (3.14)

and ∆rrri j can be expressed as

∆rrri j = (l j ·Ĉ) · R̂ = (δ jγCγα)RαB. (3.15)
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Assuming we are interested in computing ∆rrr12. According to eq.(3.15), we have

∆rrr12 = (l2C2α)RαB =
(

1 0 −1 0 0 0 0
)
·



0 0 0
1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1


=
(

1 0 0
)
.

(3.16)
If we want to compute ∆rrr13 , using eq.(3.15) we would have

∆rrr13 = (l3C3α)RαB =
(
−1 0 0

)
. (3.17)

Using this notation, we can express (3.8) as

ΞAB =
1
2 ∑

k,k′
RAαCαβ δβkJkδkk′δk′γCγρRρB (3.18)

=
1
2
[R̂T ·ĈT · Ĵ ·Ĉ · R̂]. (3.19)

where we have introduced the matrix Ĵ = Jkδkk′ for dimensional reasons. In the case

Fig. 3.3 Simple cubic (SC) nearest neighbors cluster represented as a directed graph
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of a SC lattice, we can use the previously defined matrices R̂,Ĉ and, assuming (for
simplicity) that Jk = J is constant and independent of k, we obtain the known result
[93]

ΞAB = JδAB. (3.20)

Where ΞAB has the units of an energy density. This approach is indeed versatile in
that it can be easily adapted to situations where the crystal structure is not as trivial
as the SC lattice, as well as cases where the exchange coefficient is not constant. We
discuss some of these instances in 6.3.2.

3.1.1 The Dzyaloshinskii-Moriya Interaction

As discussed in Sec.2.4.1, the Dzyaloshinskii-Moriya interaction (DMI) in a micro-
scopic discrete form can be summarized as an energy contribution of the form

EDMI = ∑
⟨i, j⟩

DDDi j · (SSSi ×SSS j), (3.21)

where DDDi j is a vector quantifying the strength and chirality of DMI and SSSi represents
the the unit vector of spin moment at atomic site rrri. In the micromagnetic limit,
where the magnetization can be approximated by a smooth, slowly varying magnetic
field mmm(rrr), the DMI energy of (3.21) can be translated to [95]

EDMI =
∫

V
∑
A

dddA · (mmm×∂Ammm) d3rrr. (3.22)

Here ∂A is the spatial derivative in the direction êA and dddA is the micromagnetic DMI
vector which can be related to the atomic parameter DDDi j via the relation [95]

dddA =
1
V ∑

j∈N.Nrrr0

[
rrr0 − rrr j

]
ADDD0 j, (3.23)

where V is the volume of the magnetic part of the unit cell. While the form of
eq.(3.21) is more general and can describe a broader range of magnetic orderings
(e.g. short range spin canting in antiferromagnets), the micromagnetic limit of
eq.(3.22) is sufficient to study the statics and dynamics of so called "magnetic soft
modes" such as smoothly varying domain walls and topological structures such as
skyrmion. Much like in eq.(3.8), the sum over nearest neighbours in the magnetic
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Point Group (n > 2) DMI energy density EDMI

Cnv EDMI = D(L
(x)

zx −L
(y)

zy )

Dn EDMI = D(L
(y)

xz −L
(x)

yz )+D′L
(z)

xy

D2d EDMI = D(L
(x)

yz +L
(y)

xz )

Cn EDMI = D(L
(x)

xz −L
(y)

yz )+D′(L
(y)

xz −L
(x)

yz )+D′′L
(z

xy

S4 EDMI = D(L
(x)

xz −L
(y)

yz )+D′(L
(x)

yz +L
(y)

xz )

T,O EDMI = D(L
(x)

zy +L
(y)

xz +L
(z)

yx )

Table 3.1 The form of micromagnetic Dzyaloshinskii-Moriya energy density EDMI for all 11
non-centrosymmetric point groups

unit cell implies that the symmetry properties of the material play a fundamental role
in determining the shape of this form of interaction.

In the microscopic limit, the allowed directions of DDDi j are restricted by the
Moriya rules ( see 2.4.1 or [67]), while in the micromagnetic limit of (3.22), the
allowed forms of dddA are restricted by the von Neumann principle of crystallography
[96]. The allowed forms of micromagnetic DMI energy are related to the different
crystallographic point groups as reported in Table.3.1 [97, 98], where L

(C)
AB =

mB(∂CmA)−mA(∂CmB) are the so called Lifshitz invariants and the indices A,B,C
run over arbitrary Cartesian coordinated x,y,z.
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3.2 Magnetic Anisotropy

Magnetic anisotropy is a property of magnetic materials that determines the energy of
a magnet based on the direction of magnetization with respect to the crystal axes: it’s
at the basis of many fundamental phenomena in magnetic materials such hysteresis
and coercivity. One of the significant sources of anisotropy in magnetic materials
is magnetocrystalline anisotropy, which arises from the interaction of magnetic
moments and the crystal field via spin orbit coupling (see sec.2.3.1). Another
critical source of magnetic anisotropy is the long-range dipolar interaction of atomic
magnetic moments.

The dependence of energy on the magnetization direction is encoded by anisotropy
constants and the most general case may be described by a function Eanis = K f (mmm, n̂nn)
where f is a dimensionless function, n̂nn represents a direction unit vector and K
has the unit of an energy density J/m3. In principle, any set of angular functions
complying with the crystal symmetry of the material can represent a suitable basis,
with group theory used to determine the allowed terms. While spherical harmonics
Yl,m seem a natural choice as an orthogonal basis, simple trigonometric functions are
often more useful in practice. For a cubic material (point group T ) one finds

ET = K1(α
2
1 α

2
2 +α

2
2 α

2
3 +α

2
3 α

2
1 )+K2(α

2
1 α

2
2 α

2
3 )+K3(α

2
1 α

2
2 α

2
3 )

2 + · · · , (3.24)

where αi represent the direction cosines of the magnetization with the three axes.
A hexagonal symmetry (point group C6v) yields

EC6v = K1 sin2
θ +K2 sin4

θ + · · · , (3.25)

where θ represents the polar angle between the magnetization mmm and the c-axis. The
order of the magnetic anisotropy can be even higher (sixth order and beyond shown
in Fig.3.4), however experimental observations [8] demonstrate a sharp decrease of
magnitude upon increasing order. In many cases, the use of a second order uniaxial
energy

Eanis = Ku sin2
θ (3.26)
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Fig. 3.4 Magnetic anisotropy energy landscapes: (a) isotropic (b) easy-axis anisotropy along
z (c) easy-plane anisotropy in the x− y plane (d) easy-cone anisotropy (e-f) sixth order
anisotropy energy landscapes. Readapted from [8].
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is enough to describe the main features of the statics and dynamics of the studied
systems.

The physical interpretation of (3.26) depends on the sign of Ku: if Ku < 0 the
energy density is minimized by θ = π/2 and the magnetization is constrained to the
basal plane (easy-plane anisotropy), while if Ku > 0 we have two possible minima,
θ = {π,0}, implying that the easy axis is parallel to the symmetry axis of the material
( easy-axis anisotropy). The strength of anisotropy may be described in terms of
energy density (Ku) or in terms of a so-called "anisotropy field" Ha =

2Ku
µ0Ms

, the latter
being of particular use as it allows for a very quick comparison with other competing
fields (such as applied fields or the coercivity Hc).

The Zeeman Energy

The Zeeman energy is related to the interaction of the magnetic moments and an
external magnetic field HHHext . The energy is proportional to the dot product of the
local magnetization and the external magnetic field and has form

EZ =−
∫

V
Msµ0 mmm(rrr) ·HHHext d3rrr. (3.27)

It has a fairly simple structure and tries to align the magnetization vector in the
direction of the applied field HHHext .

Magnetostatic energy

Magnetostatic energy, also known as dipolar energy, represents the mutual Zeeman-
type interaction arising between all magnetic moments of a magnetic body through
their stray field. Due to its non local character, it is indeed the most difficult
energy contribution to handle in micromagnetism with only very few cases being
treatable analytically. Due to the non-uniformity of the generated effective field, it
is a contribution of fundamental importance for the stabilization of magnetization
patterns such as magnetic domains in large magnetic samples.

To visualize how this interaction may enter the energy functional, we write down
the Zeeman energy of a single magnetic moment mmmi = mmm(rrri) exposed to the stray
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field HHHd in a volume element ∆V

Ei =−µ0 mmmi · (HHHd −λλλ ), (3.28)

where HHHd is the stray field generated by all the other magnetic moments and λλλ is a
small correction given by neglecting the contribution of mmmi itself (this term is ignored
in the following). The total energy is given by the sum of all these contributions with
the factor 1/2 appearing to avoid double counting

Ed =−µ0

2 ∑
i

mmmi ·HHHd (3.29)

=−µ0

2 ∑
i

mmmi

∆V
·HHHd∆V. (3.30)

Performing the continuum limit (i.e lim∆V→0 Ed) we can write the demagnetization
energy as

Ed =−µ0

2

∫
V

MMM ·HHHd d3rrr. (3.31)

The stray field can be obtained by solving the Maxwell equations of magnetostatics
[99] 

∇×HHHd = 0,

∇ · (µ0HHHd +MMM︸ ︷︷ ︸
=BBB

) = 0
∀ rrr ∈ R3 (3.32)

We emphasize that these Maxwell equations are valid in the whole space R3 and not
only in the volume of the magnetic sample V . From eq.(3.32), we know that HHH is a
gradient field, therefore

HHHddd =−∇Φ ⇒ ∇
2
Φ = ρm = ∇ ·MMM, (3.33)

which shows that the magnetization MMM is the source of the stray field HHHd . The above
is a Poisson equation for which we have to consider particular boundary conditions.
We assume continuity and ρm = 0 outside the sample, allowing us to decompose the
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Fig. 3.5 Schematic representation of how the division in magnetic domains is a means to
minimize the presence of magnetic surface and volume charges. The demagnetizing field
stabilizes configurations displaying flux closure.

solution Φ(rrr) of the Poisson equation 3.33 in a volume and surface contribution

Φ(rrr) =− 1
4π

∫
R3

∇ ·MMM(rrr′)
| rrr− rrr′ |

d3rrr′ (3.34)

=− 1
4π


∫

V

ρm(rrr′)
| rrr− rrr′ |

d3rrr′+
∮

∂V

σm(rrr′)︷ ︸︸ ︷
n̂nn ·MMM(rrr′)
| rrr− rrr′ |

dΣ
′

 , (3.35)

where ∂V represents the surface of the magnetic sample and n̂nn the normal vector to
the surface element dΣ′. From this equation we see how the contribution of the stray
field aims at reducing ρm and σm which implicitly means that having surface and
volume charges has an intrinsic energetic cost that the demagnetization field tries
to minimize: magnetization configurations with vanishing magnetostatic energy are
those that achieve flux closure (see Fig.3.5).

Demagnetizing factors

The calculation of the demagnetization field is in general a very hard problem to solve
because of the long range nature of the dipolar interaction. For certain geometries
however, it is possible to calculate the surface charges generated by a uniform
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magnetization. In the case of a uniformly magnetized ellipsoid, the demagnetizing
field only depends on the shape of the sample and can be expressed as [99]

HHHd =−Ms
↔
N mmm (3.36)

where
↔
N is the demagnetizing tensor, which only depends on the geometry of the

system. In this case the ellipsoid axes
↔
N can be diagonalized to

↔
N=

Nx 0 0
0 Ny 0
0 0 Nz

 , (3.37)

and has to obey the constraint ∑
3
i∈{x,y,z}Ni = 1 [99]. The calculation of the demagne-

tizing factors can become quite cumbersome for certain geometries. We remark how
in the case of a magnetic thin film, which is of particular interest for the contents
of this dissertation, the demagnetizing factors can be computed analytically via a
quite involved formula [100] that we will not show here. As a consequence of the
presence of magnetostatic energy and the demagnetization field, the magnetization
aligns along directions that generate less magnetic charges (see eq.3.35), leading to
an anisotropic contribution linked to the shape of the sample, hence called "shape
anisotropy term".
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3.3 The micromagnetic energy functional and the vari-
ational principle

The total free energy of the system can now be written as the sum of the indi-
vidual contributions and has the form E[mmm,∇mmm] which is the object of variational
considerations to obtain equilibrium configurations as a function of the different
micromagnetic parameters

E[mmm,∇mmm] =
∫

V

[
Eexch(rrr)+EDMI(rrr)+Eanis(rrr)+Edmg(rrr)+EZ(rrr)

]
d3rrr (3.38)

=
∫

V

[
∑
A,B

ΞAB(∂Ammm) · (∂Bmmm)+∑
A

dddA · (mmm×∂Ammm) (3.39)

+ f (mmm, n̂nn)− µ0

2
Msmmm ·HHHd −µ0Msmmm ·HHHext

]
d3rrr, (3.40)

where we have considered contributions from exchange interaction ΞAB, DMI dddA,
magnetocrystalline anisotropy f (mmm, n̂nn), magnetostatic interactions HHHd and external
field HHHext . We remark how the energy functional of eq.(3.40) is extremely general
and is often found in a simplified form relative to the particular system of study.
For a cubic lattice with no DMI, the exchange stiffness tensor has diagonal form
ΞAB = AδAB and the energy functional can be cast in the simplified form

E[mmm,∇mmm] =
∫

V

[
Eexch(rrr)+Eanis(rrr)+Edmg(rrr)+EZ(rrr)

]
d3rrr (3.41)

=
∫

V

[
A|∇mmm|2 + f (mmm, n̂nn)− µ0

2
Msmmm ·HHHd −µ0Msmmm ·HHHext

]
d3rrr, (3.42)

where A|∇∇∇mmm|2 = A∑AB(∂AmB)
2. In the following we derive the variational

principle for the simplified functional of eq.(3.42), treating the DMI separately
in 3.3.1. Assuming we are at a sufficiently low temperature T ≪ TC (where TC

represents the Curie temperature) as to keep the magnetization per unit volume
constant, each energy minimum has to satisfy the variational condition δE[δmmm] = 0
under the constraint of |mmm(rrr)|= 1 ∀ rrr ∈ V . The variation of the energy functional
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of eq.(3.42) is

δE[δm(r)] =
∫

V

(
2A∇m ·∇δm+

∂ f
∂m

δm−µ0MsHM ·δm−µ0MsHa ·δm
)

d3rrr,

(3.43)
by using the identity ∇ · (φvvv) = φ (∇ · vvv)+ vvv · (∇φ), eq.(3.43) becomes

δE[δm(r)] =−
∫

V

(
2A∇ · (∇m)− ∂ f

∂m
+µ0MsHM +µ0MsHa

)
·δm d3rrr (3.44)

+2
∮

S=∂V
A
(

∂m
∂n

·δm
)

d2aaa (3.45)

=−
∫

V
(µ0MsHeff ·δm)d3rrr+2

∮
S=∂V

A
(

∂m
∂n

·δm
)

d2rrr. (3.46)

The first integral is performed over the volume of the sample while the second one
is performed over surfaces. We also highlight how ∂m

∂n represents the directional
derivative along the surface normal n̂nn. Finally, HHHeff is called the effective field and is
defined as

HHHeff =− 1
µ0Ms

δE [mmm]

δmmm
=− 1

µ0Ms

(
∇

∂E

∂ (∇mmm)
− ∂E

∂ (mmm)

)
, (3.47)

where E (mmm) represents the micromagnetic energy density, i.e. the integrand of
eq.(3.42). At this point we can exploit the normalization constraint on mmm, which
requires any variation δmmm to be perpendicular to mmm and implies δmmm = mmm×δθθθ . We
can rewrite eq.(3.46) as

δE([δm(r))] =−
∫

V
µ0Ms (Heff ×m) ·δθθθ d3rrr+2

∮
S=∂V

A
(

∂m
∂n

×m
)
·δθθθ d2rrr.

(3.48)
The variational principle states that the minimizing configuration must satisfy the
condition δE[mmm] = 0 for any arbitrary variation δθθθ , therefore eq.(3.48) yields the
following equations for the equilibrium magnetization (known as Brown’s equations)

m×Heff = 0 ∀ r ∈V, (3.49)

m× ∂m
∂n

= 0 ∀ r ∈ S. (3.50)
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The important message of the conditions expressed in eq.(3.49) is that the equi-
librium magnetization has to lie parallel to the local effective field HHHeff(rrr) in the
bulk of the material. The second equation is essentially a boundary condition on the
surface of the magnetized body. Notice that, since we impose a constant length of
the magnetization mmm, it’s derivative has to be perpendicular to mmm itself, which allows
to express the boundary condition in the simplified form

∂mmm
∂n

= 0 ∀ r ∈ S (3.51)

3.3.1 Variational principle for the DMI term

In the following we derive the additional equilibrium conditions for the chiral energy
term (DMI energy). As a first step, we observe the chiral energy term

EDMI[mmm,∇mmm] =
∫

V
∑
A

dddA · (mmm×∂Ammm) drrr3 (3.52)

can be rewritten as

EDMI[mmm,∇mmm] =
∫

V
mmm · (Q̂QQ∇×mmm) d3rrr, (3.53)

where Q̂QQ∇ = QAB∂B = ∑A QAB
∂

∂xB
êB. We now proceed and derive the boundary

conditions from the extremal requirement of the functional δEDMI[δmmm,δ∇mmm] = 0.
The derivation is as follows:

δEDMI[δmmm,δ∇mmm] = 0 (3.54)

⇒
∫

V
d3rrr
[
δmmm · (Q̂QQ∇×mmm)+mmm · (Q̂QQ∇×δmmm)

]
= 0 (3.55)

The first term of the sum represents a part of the effective field term while the second,
as we will show, results in the boundary conditions and has to be treated with some
care. First of all, we notice that the equality

∇ · (mmm×δmmm) = δmmm · (∇×mmm)−mmm · (∇×δmmm) (3.56)
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Also holds for ∇̃ := Q̂QQ∇ because Q̂QQ acts linearly on the partial derivatives. We can
therefore write the second member of (3.55) as∫

V
mmm · (Q̂QQ∇×δmmm) d3rrr =

∫
V
[δmmm · (∇̃×mmm)− ∇̃ · (mmm×δmmm)] d3rrr. (3.57)

At a first glance it appears as if we cannot apply the divergence theorem on the term∫
V ∇̃ · (mmm×δmmm) d3rrr, however we can transpose Q̂QQ and let it act on (mmm×δmmm) in the

integral. ∫
V

∇ · Q̂QQT
(mmm×δmmm) d3rrr (3.58)

We can now use the divergence theorem to convert the volume integral in a surface
integral ∫

V
∇ · Q̂QQT

(mmm×δmmm) d3rrr =
∮

S=∂V
n̂nn ·
[

Q̂QQ
T
(mmm×δmmm)

]
d2rrr (3.59)

Where n̂nn represents the normal vector to the infinitesimal surface element d2rrr. We
can again shift the action of the Q̂QQ

T
matrix on the n̂nn vector and use the cyclic property

of the scalar triple product to obtain

⇒
∮

S=∂V
δmmm · (Q̂QQT

n̂nn×mmm) d2rrr (3.60)

The boundary term coming from ordinary isotropic exchange has the usual form, so
the combined terms yield

∮
S=∂V

δmmm ·
[

2A
∂mmm
∂n

+(Q̂QQ
T

n̂nn×mmm)

]
d2rrr (3.61)

The total variational derivative (which here only considers ferromagnetic exchange
and DMI) therefore becomes:

δE =
∫

V
δmmm ·

[
2A|∇mmm|2 +2(Q̂QQ∇×mmm)

]︸ ︷︷ ︸
:=HHHeff

d3rrr−
∮

S=∂V
δmmm · [2A

∂mmm
∂n

+(Q̂QQn̂nn×mmm)]d2rrr

(3.62)

=
∫

V
δθθθ · (mmm×HHHeff) d3rrr+

∮
S=∂V

δθθθ ·
[

2A
∂mmm
∂n

×mmm+(Q̂QQn̂nn×mmm)×mmm
]

d2rrr

(3.63)
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where, once again, we defined the variation of the magnetization as δmmm = mmm×δθθθ .
Eq.(3.63) allows us to define some new boundary conditions that must be satisfied
by the equilibrium magnetization configuration mmm(rrr).

mmm×HHHeff = 0 ∀ rrr ∈V, (3.64)[
2A

∂mmm
∂n

+(Q̂QQ
T

n̂nn×mmm)

]
×mmm = 0 ∀ rrr ∈ S. (3.65)

Since the vector field in the square brackets of eq.(3.65) is required to be orthogonal
to mmm(rrr) ∀ rrr ∈ S , we can only achieve such configuration on the surface of the
magnetic body if [

2A
∂mmm
∂n

+(Q̂QQ
T

n̂nn×mmm)

]
= 0 , ∀ rrr ∈ S. (3.66)

3.4 Magnetism in lower dimensions: interfacial ef-
fects

3.4.1 Magnetic ordering in low dimensional magnetic systems

The interesting feature a of a ferromagnetic body is the spontaneous appearance of
long range order below a critical temperature (the Curie Temperature) TC. In the
following we provide a short and intuitive explanation regarding the behavior of
the ordering temperature as a function of the thickness of the magnetic body. One
famous argument is based on the mean field approach proposed by Pierre Weiss.
Weiss considered the atomic magnetic moments in the solid subject two an internal
magnetic field of the form

HHHI = nW MMMs +HHH, (3.67)

where HHH is the Zeeman field and nW MMMs is the so called "molecular field", i.e. the
mean field perceived by a magnetic moment as a consequence of the presence all the
other ones surrounding it. To bridge the gap between notions of ordering temperature
and this mean field approach, we need to find a way to relate the molecular field to
Heisenberg exchange described in 2.1.1

H =−1
2 ∑

i, j
Ji jSSSi ·SSS j, (3.68)
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Fig. 3.6 Schematic representation of a thin film system. As can be seen the coordination
number is decreased in the surface layers

where Ji j is the Heisenberg exchange parameter derived in 3.1 and SSSi,SSS j are dimen-
sionless spins located at sites i, j with magnitude S bound by S ∈ [−J,J] associated
with total magnetic moment µJ = gJJµB. we emphasize here that we are using a
semi-classical approach, and therefore the Hamiltonian in (3.68) does not repre-
sent a quantum-mechanical operator. We can relate the molecular field nW to the
Heisenberg exchange parameter Ji j via [45]

Ji j =
µ0µBnW ng2

J
2Z

, (3.69)

where Z is the number of nearest neighbors and n is the volume density of magnetic
sites. Based on this assumption, the ordering temperature TC can be derived via
standard methods of statistical mechanics [53], yielding

TC =
2ZJi jJ(J+1)

3kB
∝ Z. (3.70)

This simple equation highlights a fundamental point, namely that the ordering
temperature is proportional to the number of nearest neighbors which varies when
considering a bulk or a thin film system. If we consider a magnetic thin film
composed of N layers, the average number of nearest neighbors ZN < Z per definition,
implying a lower ordering temperature TC in eq.(3.70). If we define the average of
nearest neighbors in the layered system

ZN = Z +
2(Zs −Z)

N
, (3.71)

where Zs is the number of nearest neighbors on the 2 boundary layers (see Fig.3.6),
we see that the critical temperature scales with TC ∝ N−1, i.e with the inverse of
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the thickness. A more rigorous treatment [101] discovers a critical behavior for the
thickness dependent critical temperature TC ∝ t−λ , with λ = 1.27±0.20 representing
the critical exponent.

3.4.2 Magnetic anisotropy in low dimensions

Dipolar anisotropy

As introduced in 3.2, the intricacies of magnetostatic energy (i.e. dipolar interactions)
in magnetic samples can be formulated compactly via the demagnetization tensor
↔
N if we assume a uniformly magnetized sample. While the assumption of uniform
magnetization can be rather outlandish when considering large bulk systems, it
becomes more reasonable when considering low dimensional magnetic systems such
as thin films. We have seen how, after proper diagonalization of the demagnetization
tensor, the demagnetization field can be expressed as

HHHd =−Ms
↔
N mmm, (3.72)

where the demagnetization coefficients have to satisfy the constraint Nx+Ny+Nz = 1.
For thin films, Nx = Ny = 0 ⇒ Nz = 1 which implies the demagnetization field
becomes HHHd = −Msêz. The demagnetisation component of the micromagnetic
energy Edmg = Kdm2

z (rrr) is minimized by mz(rrr) = 0, i.e. a magnetization pointing in
the plane perpendicular to the êz direction. For more general cases where one of the
dimensions is much smaller than the other 2 we can extrapolate a general trend that
sees the magnetization pointing in the direction with the lowest demagnetizing factor.
We remark however, that the stated rule of thumb is only valid when no applied fields
or strong magneto-crystalline anisotropy are present in the system.

Interface magnetic anisotropy

An anisotropy contribution of particular interest in magnetic multilayers and thin
films is surface and interface anisotropy. As discussed and derived in 2.3.1, in
3d systems the Bruno model [49, 50] successfully links the appearance of finite
magneto-crystalline anisotropy with the anisotropy of orbital magnetic moment via

∆E ∝ ξ ∆µL, (3.73)
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where ξ represents the strength of the spin-orbit coupling term in the Hamiltonian
HSO = −ξ ŜSS · L̂LL and ∆µL represents the difference of orbital magnetic moment
between easy and hard axis. In cubic bulk 3d metals ∆E is small because because
electronic eigenfunctions in a cubic crystal field environment have nearly zero orbital
magnetic moment [102] and therefore ∆µL are typically of the order of 10−4µB per
atom (which roughly translates to K ≈ 104J/m3). In the vicinity of a surface however,
the crystal field symmetry changes because of the different bonding environment and
the orbital magnetic moment difference ∆µB can increase up to 3 orders of magnitude.
Both the direction and the strength of this effect however, obey the rules of crystal
field theory [102] and therefore entirely depend on the indexing of the surface. A
symmetry breaking surface is therefore a necessary but not sufficient condition
to yield a strong interface anisotropy: as an example, only the bcc (011) surface
supports a strong second order in plane anisotropy [8], while the corresponding (001)
and (111) only display 4th and 6th order in plane anisotropies respectively. Most
notably however, since bulk cubic anisotropies are usually 2 orders of magnitude
weaker than surface anisotropies we notice how these can easily dominate the bulk
anisotropy given a sufficiently large ratio of surface and bulk atoms (i.e a sufficiently
thin sample). The competition of a variety of bulk and surface anisotropies may
give rise to a spin reorientation transition as a function of sample thickness and
temperature. This behavior can be described by the phenomenological expression of
the total anisotropy as

Ktot =
Ks

t
+K0, (3.74)

where t is the film thickness, Ks is the surface anisotropy and K0 encapsulates the
bulk magneto-crystalline and magnetostatic (shape) anisotropy. The most substantial
consequence of surface magnetic anisotropy, also having deep consequences for
technological development, arises when Ks < 0 (i.e. surface anisotropy has an easy
axis out of the thin film plane) and K0 > 0 (i.e. bulk anisotropy has an easy plane
anisotropy in the plane of the film): in that case, a sample thickness t = tC = |Ks|

K0
will

trigger a spontaneous perpendicular magnetic anisotropy (PMA).

3.4.3 The interfacial Dzyaloshinskii-Moriya interaction

The discovery of DMI in thin magnetic multilayers with PMA has sparked significant
scientific interest in the possibility of stabilizing novel magnetization patterns [103,
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7, 104, 105] having the potential to expand the functionalities of memory storage
devices in new and unexpected ways. One area where the discovery of DMI is
particularly significant is in the context of ultrathin FM systems displaying PMA
in contact with HM because the intrinsic broken inversion symmetry coupled with
a strong SOC provided by the HM constitutes an ideal environment for DMI. One
type of unconventional magnetic state that has been attributed solely to magnetic
compounds with broken inversion symmetry is axisymmetric solitonic patterns, such
as vortices or skyrmions [97, 106, 104, 107] Both of these states are stabilized by
specific DMI arising in chiral magnets due to their crystallographic handedness.

The micromagnetics of chiral modulations

Topologically protected objects or states, such as quantum Hall states and chiral edge
modes of topological insulators, have garnered significant interest from both the
fundamental and applied research communities. In the realm of applied magnetism,
the study of topological objects such as solitons and vortices has attracted significant
attentions, due to the potential for small size, easy current-driven motion, and
topological stability. The community is actively investigating new device concepts
proposing integrated circuits based on magnetic skyrmions, but to transform them
in a viable option for practical electronics such as magnetic memories and logic
circuits, a profound understanding of the fundamental physics of skyrmions and
the development of suitable material platforms for their stable realization are of
paramount importance.

To understand why the DMI is essential in stabilizing new topological magneti-
zation textures, we will briefly show how to derive energy minimizing magnetization
configurations of the micromagnetic energy functional. As a model we consider a
semi-infinite thin slab of thickness L along the ẑ-axis with PMA and an out-of-plane
applied external field HHHZ =HZ n̂nn. The energy density of such a system can be inferred
by restricting the integrand of eq.(3.40) to 2-dimensions

E (mmm,∇mmm) = A|∇mmm|2 +EDMI(mmm)−Ku(mmm · n̂nn)2 −µ0MsHZmmm · n̂nn− µ0Ms

2
mmm ·HHHd,

(3.75)
Where A is the exchange stiffness, Ku is the uniaxial anisotropy constant, HHHZ is the
external applied magnetic field and HHHd is the demagentization field. We parameterize
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the reduced magnetization mmm = MMM/Ms in spherical coordinates

mmm = (cosφ sinθ ,sinφ sinθ ,cosθ)T . (3.76)

The DMI energy density is represented by the term EDMI(mmm) and is a function of the
Lifshitz-invariants defined in Table.3.1. To find the magnetization configurations
mmm(rrr) that minimize the energy functional (3.75) we have to solve the Euler equations

2A|∇mmm|2 + εDMI,V = 0 ∀ rrr ∈V, (3.77)

2A
∂mmm
∂n

+ εDMI,S = 0 ∀ rrr ∈ S, (3.78)

where εDMI,V and εDMI,S represent the DMI contributions to the Euler equations
related respectively to the volume (V ) and the surface of the magnetic body (S). The
specific form of these terms depends on the crystallographic point group and the
associated Lifshitz invariant combination repored in Table.3.1. To solve the problem
completely we must not forget that associated Maxwell equations

∇×HHHd = 0 , ∇ · (HHHd +µ0Msmmm) = 0, (3.79)

must also be accounted for. The added complication introduced by the magnetostatic
field HHHd can be partially overcome by noticing how in chiral magnetic materials,
DMI dominates over higher order dipolar interactions, allowing us to resort to
the demagnetization ellipsoid approximation discussed in 3.2. In the Cnv−case,
which is a point group symmetry group very well suited to describe HM/FM thin
film heterostructures, the stray field can be included by redefining the anisotropy
constants as follows

Ku → Ku +Kd , Kd = µ0M2
s /2. (3.80)

To simplify the notation and exploiting the fact that we expect rotationally sym-
metric solutions, we introduce cylindrical coordinates for the spatial variable rrr =
(ρ cos(ψ),ρ sin(ψ),z)T . We consider magnetization patterns anti-parallel to the
applied field for ρ = 0 and approaching parallel orientation as ρ → ∞. The magneti-
zation is now parameterized as

mmm(θ(rrr),φ(rrr))→ mmm(θ(ρ,ψ),φ(ρ,ψ)) (3.81)
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and the energy functional (3.75) becomes

E (ρ,θ) = A
[
(∂ρθ)2 +

1
ρ2 (∂ψθ)2 + sin2

θ

(
(∂ρφ)2 +

1
ρ2 (∂ψφ)2

)]
+

EDMI −K cos2
θ −µ0MsHZ cosθ −µ0Msm ·Hd/2. (3.82)

Since the DMI energy is dependent on the crystal structure, different crystal symme-
tries yield different ground state magnetization configurations. A list of the Lifshitz
invariants with transformed coordinates is reported in Appendix A.1 of ref.[107]. The
configurations of mmm solving (3.77)-(3.79) are rotationally symmetric by construction
and parametrized by

θ = θ(ρ) , φ = φ(ψ) , HHHd = HHHd(ρ). (3.83)

The solutions θ(ρ) can be obtained by minimizing the ψ−integrated energy density

F = 2π

∫
∞

0
[E (ρ,θ)−E0]ρdρ, (3.84)

where E0 is the energy density of a homogeneously magnetized state in the direction
of the applied field and the anisotropy E0 =−K −µ0MsHZ . Minimizing (3.84) with
the boundary values

θ(ρ → 0) = π , θ(ρ → ∞) = 0, (3.85)

yields the solution 1.

θ(ρ) ∝
e−R(A,D,D′,D′′,K)ρ

√
ρ

, (3.86)

Where R is a parameter dependent on the material parameters A,K and the general
form of DMI present in the system [107]. The solutions φ(ψ) can subsequently by
derived by minimizing the functional (3.75) with the solution (3.85) [97], yielding
the results of Table.3.2 The structures parameterized by the solutions of Table.3.2
are displayed in Fig.3.7 for different representative cases.

1In the original paper [97], the authors did not derive this form of the solution but instead proposed
a trial function ψ(ρ) = π(1−ρ/ρ0) that, while in principle wrong, provided the correct boundary
conditions and allowed the correct prediction of the form of φ(ψ)
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Fig. 3.7 Projection of the magnetization vector mmm on the basal plane of chiral skyrmions and
antiskyrmions in non-centrosymmetric ferromagnets. The m and γ parameters correspond to
the ones reported in Tab.3.2.
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Point Group (n > 2) φ(ψ)

Cnv φ = ψ

Dn φ = ψ + π

2
D2d φ =−ψ + π

2
Cn φ = ψ + arctan

( D
D′
)

S4 φ =−ψ + arctan
( D

D′
)

T,O φ = ψ + π

2

Table 3.2 φ(ψ) =mψ+γ solutions for the 11 different non-centrosymmetric crystallographic
point groups. D and D′ refer to the DMI forms reported in Table.3.1

3.4.4 Characteristic scales in micromagnetism

As discussed in subsection.3.3, the ground state of the system is given by the
magnetic configuration mmm(rrr) that minimizes the micromagnetic energy functional
(while complying with the system specific boundary conditions). It is a general
situation in physics that, given competing effects in determining the ground state
of a system, characteristic quantities such as energy scales, length scales or even
dimensionless numbers emerge which allow us to recognize some general trends
even before minimizing the energy functional.

In the present context, these scales are built out of combinations of the micro-
magnetic parameters such as: A exchange stiffness, Ms saturation magnetization,
applied fields |HHH| and anisotropy constants such as magnetocrystalline Ku and shape
anisotropy Kd . Characteristic length scales are of special importance in micro-
magnetism as they determine the size below which certain features appear. As an
example, let’s assume a situation where the competing energy contributions come
from A and Ku which have units, respectively, of J/m and J/m3. The only way to
combine these quantities yielding a length scale in ∆ =

√
A/Ku which is called the

anisotropy exchange length and is a direct measure domain wall width in systems
where the magnetization changes (the rate of change being limited by the exchange
interaction) between 2 domains whose direction is set by uniaxial anisotropy Ku.

In a situation where the competition is between exchange interaction A and
magnetostatic energy manifest through shape anisotropy Kd = µ0M2

s /2, the emergent
length scale has the form ∆d =

√
A/Kd which is called dipolar exchange length

which ranges from ∆d ≈ 1 nm in hard magnetic materials (large Kd) to several
hundred nm in the case of soft magnetic materials (small Kd). As an example for
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dimensionless quantities, we report the so called quality factor Q f = Ku/Kd which
encodes the competition between magnetocrystalline- and shape-anisotropy. In thin-
film systems with out-of-plane magnetocrystalline anisotropy, the occurrence and
types of domains are determined by the quality factor.

3.5 The Landau-Lifshitz Gilbert equation

We have so far explored which are the conditions that the magnetization mmm(rrr) has to
satisfy as to reach a stable energy minimum, but have no knowledge as to how this
minimum can be reached: we have discussed the statics of the system but not the
dynamics. The precession of a magnetic moment MMM in the presence of an effective
magnetic field HHHeff is classically presented as a consequence of the gyromagnetic
relation which links magnetism and mechanics via MMM = γLLL, where LLL represents the
angular momentum of the electron and γ is the gyromagnetic ratio. In the general
case, where the electron is considered as a particle having both orbital and spin
angular momentum, the value of the gyromagnetic ratio is given by γ = g q

2me
, where

g represents the Landée factor, q is the electron charge and me is the electron mass.

The simple application of Newton’s second law L̇LL=MMM×HHHeff immediately allows
us to recover the precession equation ṀMM = γMMM×HHHeff. This equation, while indeed
elegant, does not account for dissipation effects and therefore is in conflict with the
empirical evidence that the magnetization in magnetic material can be oriented in
the direction of an applied magnetic field and does not precess indefinitely. To fix
this shortcoming, Landau and Lifshitz proposed an equation for the dynamics of the
magnetization that empirically takes in account the effects of dissipation:

ṀMM = γMMM×HHHeff +αMMM× (MMM×HHHeff), (3.87)

where α is a phenomenological damping coefficient. At the core of the derivation
for this equation of motion is the assumption that the magnetization remains of
fixed absolute value during the dynamics, while around 20 years later, T.L Gilbert
derived an equivalent equation via a more rigorous mathematical treatment that
made use of the classical Lagrangian formalism with the addition of a dissipation
function accounting for the damping effects. In the following we provide a systematic
derivation of the Landau-Lifshitz-Gilbert equation that starts from the formulation
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of a Lagrangian and a Rayleigh dissipation function. We follow the approach
of Wegrowe and Ciornei [108] as it provides a modern take on this old problem
and allows for an interesting discussion of the inertial terms that are becoming
increasingly relevant for Terahertz (THz) dynamics.

We follow a mechanical analogy that identifies the magnetization vector as a
rigid stick of length Ms and direction mmm, i.e. MMM = Msmmm. We parameterize the rotation
around the vertical axis with the angular velocity φ̇ and the rotation around the
symmetry axis with the angular velocity ψ̇ (see Fig.3.8). The relation between
angular momentum LLL and angular velocity ΩΩΩ is given by LLL =

↔
I ΩΩΩ, where

↔
I is

the inertial tensor. In the body-fixed frame {ê1, ê2, ê3}, the inertial tensor can be
diagonalized revealing the principal moments of inertia:

↔
I =

I1 0 0
0 (I2 = I1) 0
6 0 I3

 , (3.88)

where we have used the magnetization vector is symmetric with respect to rotations
around the ê3-axis to set (I2 = I1). In the body fixed frame, the angular velocity as a
function of the Euler angles {θ ,φ ,ψ) is given by

ΩΩΩ =

Ω1

Ω2

Ω3

=

φ̇ sinθ sinψ + θ̇ cosψ

φ̇ sinθ cosψ + θ̇ sinψ

φ̇ cosθ + ψ̇

 . (3.89)

Since in this formalism the magnetization can be thought of as a rigid stick, one of
the Euler angles is unnecessary (rotating along the proper axis of the magnetization
vector has no effect on the energy of the system). Depending on the convention, we
can neglect one of the angles: we choose ψ = 0, whence

ΩΩΩ =

 θ̇

φ̇ sinθ

φ̇ cosθ

 , (3.90)

and the kinetic equation for a vector MMM of fixed length Ms reads

dMMM
dt

= ΩΩΩ×MMM. (3.91)
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Fig. 3.8 Illustration of the mechanical analogy of a spinning top of fixed length Ms pointing
in the direction mmm precessing around the z-axis. The coordinates of the vector in the space-
fixed reference frame are parameterized by the angles (θ ,φ ,ψ) and the body fixed frame
{ê1, ê2, ê3}
rotates with angular velocity ψ̇ and precesses around the z-axis with angular velocity

φ̇ .

By cross-multiplying (3.91) from the left and making use of the identity A× (B×
C) = (A ·C)B− (A ·B)C , while choosing the space-fixed reference frame such that
the magnetization is parallel to the ê3 axis, i.e MMM = Msê3, we can write eq.(3.91) as

ΩΩΩ =
MMM
Ms

× dMMM
dt

+Ω3ê3. (3.92)

The knowledge of the angular velocity allows us to write the kinetic part of the
Lagrangian function L describing the dynamics of the spinning top

L =
1
2
(
↔
I ΩΩΩ)ΩΩΩ−V (θ ,φ), (3.93)

where V (θ ,φ) represents the ferromagnetic potential that defines the effective field
HHHeff via HHHeff =−∇∇∇V (θ ,φ) and creates the connection with the different micromag-
netic energy terms discussed in 3.3. In order to account for the dissipation effects
that ultimately lead to the relaxation of the magnetization in the direction of the
effective fields, we must add a dissipation function

F =
α

2

(
dMMM
dt

)2

=
α

2
M2

s (Ω
2
1 +Ω

2
2), (3.94)
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Fig. 3.9 Schematic representation of the precessional trajectory of the magnetization mmm
around the effective field He f f for the case (a) undamped precession (b) damped precession
with Gilbert’s assumption (eq.(3.102)) (c) damped precession with additional nutation motion
as a consequence of inertial terms present in eq.(3.103)

where the coefficient α is strictly positive. The choice of a dissipation function
∝
(dMMM

dt

)2
is done in order to ensure the relaxation of the magnetization toward

the effective field direction in finite time. We can now proceed and compute the
Euler-Lagrange-Rayleigh equations as a function of the generalized coordinates
qi ∈ {φ ,θ ,ψ}

d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
+

∂F

∂ q̇i
= 0 (3.95)

Plugging in what we have leads to the differential equations in terms of Euler angles

d
dt
(I1θ̇)− I1φ̇

2 sinθ cosθ + I3φ̇ sinθ(φ̇ cosθ + ψ̇) =−∂θF −∂θV (3.96)

d
dt
(I1φ̇ sin2

θ + I3(φ̇ cosθ + ψ̇)cosθ) =−∂ψF −∂ψV (3.97)

d
dt
(I3(φ̇ cosθ + ψ̇)) = 0 (3.98)

We notice how for the moment these equations does not correspond to the LLG
equation (3.87) because of the presence of many non-linear terms of the form
φ̇ 2, φ̈ · · · . Gilbert realised that the issue can be circumvented [109] by making the
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assumption I1 = I2 = 0 which in turn simplifies the equations to

Ms

γ
φ̇ sinθ +∂θF +∂θV = 0 (3.99)

d
dt

Ms

γ
+∂φF +∂φV = 0 (3.100)

d
dt

Ms

γ
= 0. (3.101)

Noticing that in the rotating frame the effective field can be written as Heff,1 =

− 1
sinθ

∂φV , Heff,2 = ∂θV can be cast in the familiar form

ṀMM = γMMM×
(
HHHeff −αṀMM

)
. (3.102)

At this point, a brief discussion about Gilbert’s assumption on the inertial tensor
I1 = I2 = 0 should be made. If we stick to the mechanical analogy, this assumption
poses some problems because no physical object can possess such an inertial tensor.
If however, we keep the full set of equations with the inertial terms (3.96)-(3.98) and
use the the fact Ω̇ΩΩ · ê3 = 0, the LLG equation can be written in the form

ṀMM = γMMM×
(
HHHeff −α

(
ṀMM+ τM̈MM

))
(3.103)

where we have introduced the relaxation time τ = I1
αM2

s
which is the typical

nutation period around the effective field HHHeff. It is easy to observe that in the
limit τ → 0, eq.(3.103) converges to the ordinary LLG equation, i.e. the condition
I1 = I2 = 0 is replaced by the condition I1 ≪ αM2

s , a more physically consequential
assumption. In summary, the actual LLG equation has the form of (3.103), however,
as long as the frequencies we are studying are smaller than τ−1 (which for typical
material parameters is in the THz range), we are allowed to use eq.(3.102).

3.6 Magnetic domain walls

Making use of theoretical approaches based on energy minimization of the energy
functional in eq.(3.40) is possible to derive different stable magnetic structures.
Recalling what the discussion of 3.4.4, the competition of exchange ,magnetostatic
and magnetos crystalline anisotropy causes the ground state of the magnetic material
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Fig. 3.10 Magnetic domains observed via Kerr microscopy. (a) Perspective view of the
magnetic domains of an iron whisker. (b) Top view of the magnetic domains present in a
NiFe thin film. Reproduced from [3].

to collapse towards a state displaying regions of different magnetization, called
magnetic domains. The boundary regions between magnetic domains are called
domain walls (DWs) and are of particular interest both from a scientific and from an
applications point of view. In the following we study the structure of some simple
DWs, showcasing the effects of the different micromagnetic energy contributions
with special attention being devoted to the effect of DMI.

3.6.1 Collective coordinate models

In the context of magnetic DW motion, it is useful to reduce the complexity of
the problem by introducing the so called collective coordinates q (representing the
DW position), φ (internal DW magnetization angle) and ∆ (DW width). In the
following we show how to convert the solution of the LLG equation as a function
of the magnetization field mmm(rrr) to a solution of the LLG equation as a function of
{φ(rrr),q(rrr),∆(rrr)}, allowing for an efficient way to relate the results of numerical sim-
ulations or experiments to analytical results. As a first step, we exploit the rotational
invariance of the problem, by rewriting the LLG Eq.(3.102) in spherical coordinates.
By rewriting mmm = (sinθ cosφ ,sinθ sinφ ,cosθ)T (see Fig.3.8), eq.(3.102) becomes
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θ̇ +α sinθφ̇ =− γ0

µ0Ms sinθ

δE

δφ
, (3.104)

αθ̇ − sinθφ̇ =− γ0

µ0Ms

δE

δθ
(3.105)

where E is the micromagnetic energy density of the system and is built from the
contributions displayed in eq.(3.40). These contributions, which are functions of the
magnetization mmm(rrr) and its gradients ∇mmm(rrr) can be cast in spherical coordinates as
follows

Eexch = A(∇m)2 = A
[
(∇θ)2 + sin2

θ(∇φ)2] , (3.106)

Eanis = Ku

[
1− (m · ûz)

2
]
= Ku sin2

θ , (3.107)

Edmg =−1
2

µ0M2
s m·

↔
N m

=−1
2

µ0M2
s
(
Nxm2

x +Nym2
y +Nzm2

z
)

(3.108)

=−1
2

µ0M2
s
[
Nz +(Nx −Nz)sin2

θ +(Ny −Nx)sin2
θ sin2

φ
]
, (3.109)

EDMI = D
[

cosφ
∂θ

∂x
+ sinφ

∂θ

∂y
+ sinθ cosθ

(
sinφ

∂φ

∂x
− cosφ

∂φ

∂y

)]
, (3.110)

EZ =−µ0Ms (Hx sinθ cosφ +Hy sinθ sinφ +Hz cosθ) . (3.111)

where we have assumed a uniaxial anisotropy contribution along the z-axis and have
simplified the magnetostatic interaction to a local demagnetizing field HHHdmg =

↔
N

mmm(rrr). To simplify the notation, the magnetocrystalline anisotropy contribution Eanis

and the demagnetization contribution Edmg are usually combined

Eanis +Edmg =

[
Ku +

1
2

µ0M2
s (Nx −Nz)

]
︸ ︷︷ ︸

K0

sin2
θ +

[
1
2

µ0M2
s (Ny −Nx)

]
︸ ︷︷ ︸

K

sin2
θ sin2

φ .

(3.112)
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Fig. 3.11 (a) untilted DW configuration in semi-infinite nanowire geometry (infinite length
along x and finite width w along y). The collective coordinates needed to treat the dynamics
of such a system are reported on the bottom and are the DW position q, the internal DW
magnetization angle φ and the DW width ∆. (b) tilted DW configuration in a semi-infinite
nanowire geometry. An additional collective coordinate is needed to treat the dynamics of
such a system, namely the canting angle χ ,

3.6.2 The Bloch profile

At this point, we discuss some special cases for which the minimization procedure
can be performed analytically which allow us to derive some important DW models.
We make the following assumptions on the system

• We assume an infinitely long wire with 2 magnetic domains separated by a flat
DW (see Fig.3.11-(a))

• We neglect any edge effects, i.e. we discard any term dependent on the
derivatives in along the y-axis.

• We neglect DMI energy contributions.
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Fig. 3.12 Depiction of the Bloch profile θ(x) as reported in eq.(3.114)
. We show the effect of different DW width (∆) and an opposed Q value.

These assumptions allow us to combine the energy terms (3.106)-(3.111) as follows

E1D = A
(

∂θ

∂x

)2

+

(
Ku +

µ0M2
s

2
(
Nx cos2

φ +Ny sin2
φ −Nz

))
sin2

θ +
µ0M2

s
2

Nz

(3.113)
The static solution of this differential equation is found by setting the energy density
to a constant E = const.. The solution θ(x) is then given by the so called "Bloch
profile"

tan
(

θ

2

)
= exp

(
Q

x−q
∆

)
, (3.114)

where Q =±1 is a parameter describing the DW configuration ( Q = 1 ⇒ down-up
and Q =−1 ⇒ up-down configurations) and

∆ =

√
A

Ku +
µ0M2

s
2

(
Nx cos2 φ +Ny sin2

φ −Nz
) (3.115)

corresponds to the DW width. We remark how this parameter can directly be related
to the emergent length scale of this system discussed in 3.4.4, where the competing
interactions determining the DW structure are indeed exchange and anisotropy. To
derive the value of φ from eq.(3.113), we plug in the Bloch profile from eq.(3.114)
in the energy density eq.(3.113) and integrate along the x-direction to obtain a DW
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surface energy

σDW =
∫

∞

−∞

E1D dx =
−2A

∆
−2∆

(
Ku +

µM2
s

2
(
Nx cos2

φ +Ny sin2
φ −Nz

))
+

µ0M2
s

2
NzL

(3.116)

where L corresponds to the sample width along the y-direction. We remark how, to
perform the integration we employ the fact

∂θ(x)
∂x

=
sinθ

∆
(3.117)

which can be used to easily compute integrals of the form

∫
∞

−∞

sinθ dx =
∫

θ(∞)=π

θ(−∞)=0
sinθ

dx
dθ︸︷︷︸

∆/sinθ

dθ = π∆ (3.118)

∫
∞

−∞

sin2
θ dx =

∫
π

0
∆sinθ dθ = 2∆. (3.119)

At this point we can compute the static configurations of φ assuming an energy
minimum via ∂σDW

∂φ
= 0, while keeping in mind that the DW width ∆ in eq.(3.116)

also depends on the angle φ .

∂σDW

∂φ
= 0 ⇒−∆µ0M2

s (Ny −Nx)sin2φ = 0 ⇒ φ ∈
{

0,
π

2
,π,

3π

2

}
. (3.120)

We can see how, even in the context of this very simplified model, we are able to
extract some important information regarding magnetic DWs. Eq.(3.120) shows that
there are 2 main classes of magnetic DWs that can be stabilized. If φ = 0 , π we
have so called Néel DWs, which are characterized by a magnetization rotating along
an axis parallel to the DW and thus have a magnetization in at DW-center pointing
outside of the DW-plane (Fig.3.13-(a)). If on the other hand φ ∈ {π/2 , 3π/2} we
have so called Bloch DWs, which are characterized by a magnetization rotating along
an axis perpendicular to the DW and thus have a magnetization in at DW-center
pointing inside of the DW-plane (Fig.3.13-(b)).
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Fig. 3.13 (a) Néel DWs (b) Bloch DWs

3.6.3 Dynamical equations for the DW - the q−φ −∆ model

Having established an effective Ansatz for the static magnetization profile in the 1D
case (i.e. the Bloch profile of eq.(3.114)), we can now proceed and derive the dynam-
ical equations for the CCM. To do so we employ the Lagrangian approach derived
by Döring [93]. As mentioned in 3.5, the LLG equation in spherical coordinates can
be from a Lagriangian density L of the form

L = E (mmm)+
µ0Ms

γ0
φ̇ cosθ (3.121)

and an additional Rayleigh density function F to account for all dissipative processes

F =
αµ0Ms

2γ0
(ṁ)2 =

αµ0Ms

2γ0

(
θ̇

2 + sin2
θφ̇

2) , (3.122)

where E represents the energy density of the system built from the contributions of
eqs.(3.106)-(3.111) and α is a phenomenological dimensionless parameter called
damping parameter. The LLG equation can be obtained from the principle of least
action suitably modified by the presence of dissipative phenomena [93], i.e. form
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the Euler-Lagrange-Rayleigh equations

δL

δX
− d

dt

(
∂L

∂ Ẋ

)
+

∂F

∂ Ẋ
= 0, (3.123)

where X represents a set of suitably chosen generalized coordinates. Since we are
interested in narrowing down the problem to the dynamics of DWs, we can simplify
the set of equations (3.123) by plugging in the Bloch Ansatz of eq.(3.114) in eqs.
(3.121) and (3.122) and integrating out the x-variable as done in eq.(3.116). As
an example we show how the this procedure looks for the energy density E of
eq.(3.121). Summing all the energy contributions eq.(3.106)-(3.111) and integrating
the x-variable as done in eq.(3.116) we can write a DW surface energy density σDW

σDW =
∫

∞

−∞

[
Eexhc +Eanis +Edmg +EDMI +EZ

]
dx (3.124)

=
∫

∞

−∞

[
sin2

θ

∆2 +K0 sin2
θ +K sin2

θ sin2
φ +QDcosφ

sinθ

∆

−µ0Ms(Hx sinθ cosφ +Hs sinθ sinφ +Hs cosθ)

]
dx, (3.125)

we can perform the integration by using the 3 identities (3.117)-(3.119) and the fact
that Q2 = 1 to obtain the expression

σDW =
2A
∆

+2∆(K0 +K sin2
φ)+πQDcosφ −µ0Msπ∆(Hx cosφ +Hy sinφ)

−2Qµ0MsqHz. (3.126)

This change of variables reduces the complexity of the problem significantly and
now allows to derive the dynamics of the problem by writing the Euler-Lagrange-
Rayleigh equations for each of the DW coordinates X = {q,φ ,∆}
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∆̇ =
12γ0

µ0Msαπ2

[
A
∆
−∆(K0 +K sin2

φ)+µ0Ms∆
π

2
(Hx cosφ +Hy sinφ)

]
, (3.127)

q̇ =
∆γ0

1+α2

[
αQHz +QHK

sin2φ

2
− π

2
HDMI sinφ −Q

π

2
(Hy cosφ −Hz sinφ)

]
,

(3.128)

φ̇ =
γ0

1+α2

[
Hz −α

(
HK

sin2φ

2
−Q

π

2
HDMI sinφ − π

2
(Hy cosφ −Hx sinφ)

)]
,

(3.129)

where HK := 2Ku
µ0Ms

and HDMI := D
µ0Ms∆

. Eqs. (3.127)-(3.129) completely describe
the dynamics of the DW coordinates q,φ ,∆ as a function of an applied external field
HHHext .

3.6.4 Static configurations in the q− φ −∆ model with chiral
interactions

In the absence of applied external fields (Hx,y,z = 0), the static configurations of the
DW can be studied by analyzing the partial derivatives of the DW surface energy
density shown in eq.(6.94) which becomes

σDW =
2A
∆

+2∆(K0 +K sin2
φ)+πQDcosφ . (3.130)

and therefore yields the following partial static configurations for the collective
coordinates:

∂σDW

∂∆

∣∣∣∣
∆=∆0

= 0 ⇒ ∆0 =

√
A

K0 +K sin2
φ

(3.131)

∂σDW

∂φ

∣∣∣∣
φ=φ0

= 0 ⇒ φ0 =


0 |πD|> |4∆K| , QD < 0

π |πD|> |4∆K| , QD > 0

cos−1
(

πQD
4∆K

)
|πD|< |4∆K|

(3.132)
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The validity of the result depends on several factors such as the accuracy of the Bloch
profile as an Ansatz to write the DW energy density. In the following we show a
case in which another Ansatz has to be used because of the simultaneous presence of
chiral interactions and IP applied fields. This combination causes the emergence of
DW tilting [9] and therefore an additional coordinate describing the tilting angle χ

has to be taken into account.

Dynamical equations for the DW - the q−φ −χ −∆ model

As known from experimental observation [110],theoretical predictions and numerical
modeling [9], the presence of chiral interactions is known to produce an additional
canting of the DW in the presence of IP applied magnetic fields (see Fig.3.11-(b)
and Fig-3.14). The canting of the DW is of dynamical nature, and therefore in order
to correctly describe the equations of motion of such a structure in the presence of
chiral interactions, a slightly more sophisticated Ansatz for the DW profile has to be
formulated in comparison to the Bloch profile of eq.(3.114). We extend the Bloch
profile by an additional collective coordinate χ , namely the DW tilting angle

tan
θ

2
= exp

(
Q
(x−q)cos χ + ysin χ

∆

)
. (3.133)

To derive the dynamical equations for the collective coordinates which are
now {q,φ ,χ,∆} we must again write the Lagrangian density L and the Rayleigh
dissipation density function F . Some algebra shows

L =

Exch.︷ ︸︸ ︷
A
∆

sin2
θ +

DMI︷ ︸︸ ︷
D
∆2 cos(φ −χ)sinθ +

Anis.︷ ︸︸ ︷
KU sin2

θ (3.134)

+

dmg︷ ︸︸ ︷
µ0

2
M2

s
(
Nx sin2

θ cos2 (φ −χ)+Ny sin2
θ sin2 (φ −χ)

)
(3.135)

Zeeman︷ ︸︸ ︷
−µ0Ms [(Hx cosφ +Hy sinφ)sinθ +Hz cosθ ]+

Precessional︷ ︸︸ ︷
Ms

γ
φ cosθ (3.136)

F =
αMs

2γ

[(
−q̇

cos χ

∆
+ χ̇

y−∆sin χ ln(tan(θ/2))
∆cos χ

− ∆̇

∆

(x−q)cos χ + ysin χ

∆

)2

sin2
θ .

(3.137)
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Fig. 3.14 (a) Schematic of the tilted DW. (b) Micromagnetic configuration of a 100 nm wide
track with DM D = 2 mJ/m2 and a transverse magnetic field Hy = 100 mT. (c) DW tilt angle
χ as a function of Hy for several values of D and (d) as a function of D for Hy = 100 mT.
Dots are the results of micromagnetic simulations, whereas the continuous lines are the
results of the collective coordinates model. Reproduced from [9]

We can again, perform the integration along the length of the nanowire similarly to
what was done in eq.(3.126) keeping in mind that the newly introduced Ansatz of
eq.(3.133) modifies the identities (3.117)-(3.119) as follows

∂θ

∂x
=

sinθ

∆
cos χ ,

∂θ

∂y
=

sinθ

∆
sin χ (3.138)

∂θ

∂ t
=

(
− q̇cos χ +

χ̇

cos χ

(
y−∆sin χ ln

(
tan
(
θ/2

)))
− ∆̇

∆

(
(x−q)cos χ + ysin χ)

)
sinθ

∆
+ φ̇

2 sin2
θ (3.139)
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We can therefore obtain the Lagrangian DW density Lx =
∫

∞

−∞
L dx and the Rayleigh

DW dissipation density Fx =
∫

∞

−∞
F dx

Lx =
2A
∆2 cos χ +π

D
∆2 cos(φ −χ)+2

Ms

γ
φ̇ (q− y tan χ)

+
2∆

cos χ

[
KU +

µ0

2
M2

s
(
Nx cos2 (φ −χ)+Ny sin2 (φ −χ)−Nx

)]
−πµ0Ms [Hx cosφ +Hy sinφ +2Hz (q− y tan χ)] (3.140)

Fx =
αMs

γ

[
q̇2

∆
cos χ +

π2

12
∆̇2

∆cos χ
+

χ̇2∆

cos χ

((
y

∆cos χ

)2

+
π2

12
tan2

χ

)

+ φ̇
2 ∆̇

cos χ
−2y

q̇
∆

χ̇

cos χ
+

π2

6
∆̇

χ̇

cos χ
tan χ

]
(3.141)

at this point we have written the Lagrangian density and the Rayleigh dissipation
density function in the most general case. Several equations of motion can be
derived from the Euler-Lagrange-Rayleigh equation depending on the combination of
collective coordinates physically relevant to the problem. One situation of particular
relevance in experimental settings [9] considers the dynamics of the DW width
parameter ∆ much faster than the dynamics of φ ,χ,q, implying that the DW reaches
equilibrium width much faster than φ ,χ,q. A rather simple yet powerful assumption
applying in many cases of interest, is that the ∆ parameter is assumed to follow the
dynamics of the other collective coordinates adiabatically and therefore it can be
treated as a parameter rather than a dynamic variable. This allows to derive the set of
dynamical equations by performing the partial derivatives in eq.(3.123) with respect
to the collective coordinates {q,φ ,χ} [9]

φ̇ +
α cos χ

∆
q̇ = γ0Hz, (3.142)

−qcos χ

∆
+αψ̇ =

γ0Hk

2
sin2(φ −χ)+

πDγ0

2µ0Ms∆
sin(ψ −χ) (3.143)

−χ̇
αµ0Ms∆π2

6γ0

(
tan2

χ +
( w

π∆

)2 1
cos2 χ

)
= σDW tan χ +πDcos(φ −χ)+µ0HsMs∆sin2(φ −χ) (3.144)
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where w is the width of the sample (see Fig.3.11 and Fig.3.14) and σDW is the
DW surface energy density

σDW = 4
√

AK +πDsin(ψ −χ)+µ0HkMs∆sin2(ψ −χ)+π∆MsHy cosψ (3.145)

3.6.5 Field driven DW motion

By observing equation (3.142) we can immediately see that the application of a
field perpendicular to the plane where the DW exists can induce a finite velocity
of the structure , i.e. q̇ ̸= 0. This can be understood intuitively by noticing how
the Zeeman term stabilizes magnetic configurations aligned to it: since we are
studying magnetic domains, the application of a field in the z-direction is going
to shrink one of the domains and expand the other. In the CCM-picture, this can
only mean that the boundary between the regions (i.e. the DW) is moving. DWs
can be moved by several other means, i.e. spin-orbit torques [111, 112], spin-
transfer torques [113, 114] and even strain gradients [115]. DW motion is at the
heart of many concepts for novel memory storage architectures [116–118], therefore
understanding how to manipulate this process is of high relevance also for the field
of application. One of the fundamental limitations of field driven DW motion is the
so called Walker-breakdown phenomenon, which sets an upper limit to its maximum
attainable velocity.

In the following, we show how this threshold emerges from the equation of
motion 3.142 and how the presence of chiral interactions can partially improve DW
velocity in magnetic thin film systems. In the following, we only explore field driven
DW motion and for the time being, limit ourselves to the discussion of the q−φ

model. For simplicity, we impose ∆̇ = 0 and K/K0 ≪ 1 allowing us to fix ∆ = ∆0 =√
A
K0

. The assumption K/K0 ≪ 1 is justified in many thin film heterostructures where
the magnetocrystalline anisotropy dominates the magnetostatic contribution. We also
highlight how, if the geometry imposes a demagnetizing tensor with Nx ≈ Ny, the
assumption K/K0 ≪ 1 can be valid also in the absence of a pure magnetocrystalline
predominance of anisotropy contributions. The description of DW dynamic can
be further simplified by specifying the scope of our observations to the so called
stationary regime, where the DW propagates through the material while keeping its
internal magnetization angle φ fixed (i.e. φ̇ = 0 ). The relevant equation to solve is
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now

⇒ Hz = α

(
HK

sin2φ

2
− π

2
HDMI sinφ

)
. (3.146)

In the absence of chiral interactions (HDMI = 0), the equation is solved by

φ0 = arcsin
(

1
2

2Hz

αHK

)
. (3.147)

which represents the dynamical equilibrium angle, determined by the competing
interactions of the Zeeman- Hz and the anisotropy-field HK . There is a caveat though:
since the domain of the arcsin function is [−1,1], the dynamical equilibrium angle
φ0 is only defined as long as the condition

|Hz| ≤
∣∣∣∣α2 HK

∣∣∣∣ (3.148)

is met. While eq.(3.148) holds true, the DW moves at a constant speed given by

q̇ =
∆γ0

α
Hz. (3.149)

The limiting field of eq.(3.148) is called the Walker Breakdown field (HW ). After
Walker breakdown is reached, the DW enters the so called "precessional motion
regime" in which the anisotropy is not strong enough to counteract the torque of
the external field Hz. The DW indeed still moves, but the magnetisation inside of
it rotates according to the precessional dynamic described by the LLG equation
(3.102), thereby drastically reducing its overall speed (See Fig.3.15).

Chiral interactions as Walker breakdown enhancers

DW Walker breakdown indeed sets a strong natural barrier for the maximum attain-
able operational speed of hypothetical DW based magnetic memory devices. Finding
ways to enhance Walker breakdown is therefore an important challenge, still being
tackled today [115, 119]. From the material engineering perspective, the choice of
magnetic materials displaying chiral magnetic interactions can indeed improve the
WB threshold significantly. As an example we study the simple case of eq.3.128,
but now assume that HDMI ≫ Hk, which modifies the solution of the dynamical
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Fig. 3.15 (a) DW velocity as a function of the applied field in the presence (D = 0.5 mJ/m2)
and absence ((D = 0 mJ/m2) of DMI. A clear shift in the Walker (red dashed line ) field is
visible for the case with present DMI. After Walker breakdown is achieved, the DW velocity
drops down significantly (b) DW internal magnetisation angle ∆φ as a function of applied
field Hz in the presence (D = 0.5 mJ/m2) and absence ((D = 0 mJ/m2) of DMI. The dynamical
equilibrium angle φ0 is constant for higher values of the applied field in the case where DMI
is present in the system. After Hw is reached, the DW motion starts precessing. Reproduced
by [10].
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equilibrium angle as follows:

φ0 = arcsin
(

1
2

2Hz

παHDMI

)
, (3.150)

which in turn changes the Walker Breakdown to

|Hz| ≤
∣∣∣∣απ

2
HDMI

∣∣∣∣. (3.151)

Despite looking very similar to eq.(3.148), the significant advantage of this
expression is the fact that, depending on the material choice, the DMI effective field
HDMI can be much larger than the magenetocrystalline anisotropy field HK , implying
that precessional motion ensues later. In Fig.3.15, we can clearly see how the
inclusion of DMI (iDMI in this case) has the effect of increasing HW (Fig.3.15-(a)),
while at the same time keeping the dynamical equilibrium angle fixed (Fig.3.15-(b)).

As a side note, we remark how the presented explanation of the WB enhancement
is performed by only considering iDMI, which is indeed one of the more common
forms of DMI present is multilayered systems. Recent studies have however explored
the effect of bDMI (which is represented by energy terms of the form presented in
[119]) on the WB enhancement. The main difference in that case resides in the fact
that the bDMI tends to induce an effective field that stabilizes Bloch DWs rather that
Néel DWs. It can be shown that the dynamical equation previously used (eq.3.128)
simply changes to [119]

Hz = α

(
HK

sin2φ

2
− π

2
HbDMI cosφ

)
, (3.152)

where the preference for Bloch configurations from this new DMI term is encoded in
the angular dependence in the cos rather than the sin. In the large DMI limit, keeping
the assumption K0/K ≪ 1 we obtain a linear enhancement

|Hz| ≤
∣∣∣∣απHbDMI

2

∣∣∣∣, K0/K ≪ 1. (3.153)



Chapter 4

The geometrization of micromagnetic
exchange

As previously mentioned, the DMI is commonly introduced in micromagnetism
through the continuum limit of the exchange energy term (see 3.1). It can be however
shown, that the presence of chiral interactions is intricately linked to the geometric
properties of micromagnetism as a continuum theory.

Similar to the manner in which gravity arises from the curvature of space-time
in general relativity, the emergence of chiral interactions in ferromagnets can be
attributed to the intricate interplay of non-trivial spin-parallel transport within the
framework of the Heisenberg model [120].

In the following we develop a compact introduction to parallel transport and
gauge covariant derivatives, highlighting how these concepts can be applied to
micromagnetism yielding some interesting consequences and providing a seldom
explored, yet modern point of view of the theory of magnetic interactions in the
continuum. We deliberately avoid delving in the deep mathematical implications
and instead opt for a more intuitive approach which is then expanded and developed
in the results section 6.3.3.
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Fig. 4.1 parallel transport of a vector on a curved surface along the path A → B →C → A

4.1 A simple example of non trivial parallel transport

The Heisenberg model necessary to describe micromagnetic exchange, at its core,
revolves around the concept of the scalar product which simply provides a mathe-
matical tool for comparing vectors located at different points in space: it is therefore
implied that, in cases where parallel transport is not trivial, some extra care has to be
taken when describing magnetic exchange interaction.

While the comparison of 2 vectors is straight forward in ordinary "flat" space
(just carry 2 vectors on top of each other), things get more complicated as soon as
we try and imagine slightly more interesting manifolds. The classical example here
is the S 2 sphere immersed in R3 (see fig.4.1). We can imagine ourselves sitting at
the north pole of a sphere facing the horizon (point A), the notion of transporting a
vector along this surface is not trivial anymore: if we move along the surface with
the objective of pointing always in the direction of the horizon, after we reach the
equator of the sphere (point B), the vector we are holding in our hand looks very
different from the one we started with. Even more interesting is the case of a closed
path on the surface that transports us back to the north pole (path A → B→ C→ A).
We immediately see how the vector now has rotated by an angle. To try and translate
the notion of parallel transport in mathematical terms, suppose we define a vector
field on R3 (a simple manifold)

vvv(rrr) = vi(rrr)êi,rrr ∈ R3 (4.1)
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and would now like to compare the value of the field at 2 different but infinitesimally
close locations of the manifold rrr and rrr+drrr. According to the rules of differential
calculus for vector fields, at point rrr+drrr we have

vvv(rrr+drrr) = vvv(rrr)+
∂vvv
∂xi

∣∣∣∣
vvv
dri +O(drrr2) (4.2)

⇒ vvv(rrr+drrr)− vvv(rrr) =
∂vvv
∂xi

∣∣∣∣
rrr
dri (4.3)

Eq.(4.3) tells us that the notion of parallel transport is directly related to the concept

of partial derivative. The condition ∂ rrr
∂xi

∣∣∣∣
rrr
= 0 is implicitly establishing that for two

vectors vvv(rrr+drrr),vvv(rrr) to be identical , the partial derivative along the path connecting
them has to vanish.

If we now restrict the existence of the vector field the sphere S 2, the situation is
more complicated because the basis in which the vector field is expressed now also
depends on the location

vvv(rrr) = vi(rrr)êi(rrr),rrr ∈ S 2, (4.4)

therefore the Taylor expansion yields additional terms that have to be considered,

⇒ vvv(rrr+drrr)− vvv(rrr) =
[

∂v j

∂xi

∣∣∣∣
rrr
dri
]

ê j(rrr)+ v j

[
∂ ê j(rrr)

∂xi

∣∣∣∣
rrr
dri
]

︸ ︷︷ ︸
par. trasp.=0

(4.5)

The condition for parallel transport is now different, as evident from the right hand
side of eq.(4.5). In the following we discuss how redefining parallel transport in
physical theories is not a mere consequence of the real space curvature (we do
not need to rethink parallel transport only if we describe physics on a sphere or a
cylinder) but has much more fundamental and far reaching consequences.

4.2 Global symmetries vs. local symmetries

The need to redefine the concept of parallel transport in a theory is not necessarily
tied to the fact we are describing something happening on a curved surface in real
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space. In the following we show how parallel transport is actually linked to a very
fundamental aspect of the theory itself, namely symmetry.

In the realm of physics, systems are mathematically described using Lagrangians
or Hamiltonians, which often involve an excess of degrees of freedom: for example,
consider a physical problem where the choice of origin is entirely arbitrary or one
in which the orientation of the axis is arbitrary. Any transformation that preserves
the the system’s Lagrangian is referred to as a "symmetry" and any collection of
symmetries forms a mathematical structure known as a group.

Symmetry transformations can be classified into two categories: global symme-
tries and local symmetries. A global symmetry is such that it acts identically on the
fields at all space-time points x. As an example, let φ(x) be a scalar field, then a
global symmetry is such that

φ(x)→ φ
′(x) = eiθ

φ(x) ∀ x.

A local symmetry, on the other hand, is such that it acts differently on the fields at
different spacetime points.

φ(x)→ φ
′(x) = eiθ(x)

φ(x) ∀ x.

Requiring a Lagrangian to satisfy local vs. global symmetries has some extremely
deep consequences as we are going to demonstrate that it involves 2 different notions
of parallel transport. As an example relating closely to micromagnetism, we discuss
the illustrative case of a Lagrangian in which we promote the SU(N) symmetry from
global to local. Let ΦΦΦ = (φ1,φ2, · · · ,φN) represent a collection of N different free
complex scalar fields of the same mass m. The Lagrangian of such fields can be
written as

L = ∂µφ
∗
j ∂

µ
φ

j −m2
φ
∗
j φ

j. (4.6)

Let us now introduce the U matrices, which we take from the group of unitary N×N
matrices which form a group called U(N). We notice how the Lagrangian density is
invariant under a global symmetry transformation of the form

φ
j′(x) =U j

k φ
k(x) , φ

∗ j′(x) = (U†)k
jφ

∗
k (x), (4.7)
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or in the more compact notation where we collect the field in a vector of the form
ΦΦΦ = (φ1,φ2, · · · ,φN) ,

Φ
′(x) =UΦ(x), Φ

†′(x) = Φ
†(x)U†. (4.8)

Now we come to the crucial step, namely promoting the global symmetry of the La-
grangian to a local symmetry. To do so, we simply have to rewrite the transformation
eq.(4.8), assuming that now the matrices U →U(x) are allowed to depend on the
point in space-time x.

Φ
′(x) =U(x)Φ(x), Φ

†′(x) = Φ
†(x)U†(x) (4.9)

U(x) ̸=U(x′) , ∀ x ̸= x′. (4.10)

While the mass term of the Lagrangian (4.6) is indeed still invariant under the newly
introduced local transformations, the kinetic term depending on the partial derivatives
of the fields is not invariant with respect to these new transformations. It is easy to
check that the partial derivatives of the U(x) matrices yield extra terms upon applying
the transformation (4.9). The theory so as it stands, is therefore not invariant under
local transformations. Now we come the crucial point: we observe that to restore the
lost invariance, we need to redefine the partial differential operators as follows

∂µ → Dµ (4.11)

L = (DµΦ
†)(Dµ

Φ)−m2
Φ

†
Φ (4.12)

where the new covariant derivatives Di have to satisfy the following conditions

(DµΦ(x))′ =U(x)DµΦ(x), (DµΦ
†(x))′ =

(
DµΦ

†(x)
)
U†(x). (4.13)

To achieve such property of the Dµ , we have to introduce the matrix valued con-
nection Aµ(x) (often referred to as gauge field) which is required to transform
as

A ′
µ(x) =U(x)Aµ(x)U−1(x)+ i(∂µU(x))U−1(x), (4.14)
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when the fields transform according to the local transformation (4.9). With the new,
matrix valued connection we can finally specify the form of the covariant derivatives

DµΦ(x) = ∂µΦ(x)+ iAµ(x)Φ(x), (4.15)

DµΦ
†(x) = ∂µΦ

†(x)− iΦ†(x)A †
µ (x) (4.16)

Equipped with the newly defined covariant derivatives (4.15),(4.16) and the transfor-
mation law for the gauge field under local symmetry transformation (4.14), we can
rewrite the Lagrangian in a locally invariant form


L = (DµΦ†)(DµΦ)−m2Φ†Φ

DµΦ(x) = ∂µΦ(x)+ iAµ(x)Φ(x),

DµΦ†(x) = ∂µΦ†(x)− iΦ†(x)A †
µ (x)

Aµ(x)→ A ′
µ(x) =U(x)Aµ(x)U−1(x)+ i(∂µU(x))U−1(x)

(4.17)

The requirement of the redefinition of the partial derivative and the introduction
of the covariant derivative is indeed a consequence of our requirement to promote
the symmetry of our theory from global to local. In 6.3.3 we explore the application
of this formalism to our continuum theory of interest, namely micromagnetism. In
our context the object of which we require invariance is indeed the micromagnetic
energy functional, while the group transformation that we promote from local to
global is the group of 3D rotations, namely elements of the SO(3) group.

4.2.1 Local vs. global symmetries for magnetic interactions

What is the relevant symmetry in micromagnetism and why would we want to
promote it from local to global? In other words, what creates the need to redefine
parallel transport in the context of magnetic interactions?

Let us start dissecting the problem at its core, by recalling the essence and
central role of the SOC in interacting many electron systems. As elucidated in 2.1.1
(anti-) ferromagnetic interactions in interacting many electron systems arise as a
consequence of delicate interplay between Coulomb repulsion, Pauli exclusion and
kinetic energy. DMI appears as a consequence of the introduction of SOC in the
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Hamiltonians of interest, therefore it seems likely that the key missing ingredient
hides behind the symmetry properties of interacting spin-orbit Hamiltonians.

Let us spend a couple of words to give a hint as to what the relation between
SOC and symmetry of the electronic Hamiltonian is: the Pauli equation, which
describes the behavior of spin-1/2 particles (such as electrons) in the presence of
external electromagnetic fields exhibits a rich symmetry under local U(1)×SU(2)
transformations [121]. The U(1) symmetry transformations act on the spatial part
of the electronic wave function, while the SU(2) symmetry transformations act on
the spin part of the wave function. While the local U(1) symmetry is related to the
relativistic properties associated to the interaction of the electron charge and the
electromagnetic fields, the local SU(2) symmetry is tied to the interaction of the spin
degree of freedom with the same fields.

The important fact to highlight here however, is that the presence of SOC tacitly
implies that parallel transport is no longer trivial because it is making our theory
invariant with respect to local SU(2) transformations as opposed to global SU(2)
symmetry.

In the context of effective spin-models such as the ones explored in 2.1.1 and
2.4.1, however, the energy of our systems is not extracted from electronic wave spinor
wave functions, but rather from spin vectors SSS = (Sx,Sy,Sz) in a Cartesian reference
frame and their relative orientation. It turns out that the local SU(2) invariance of the
Pauli equation becomes a local SO(3) invariance of the Hamiltonian in the effective
spin model.

4.3 Non trivial parallel transport and Heisenberg ex-
change

At this point a short recapitulation is in order: we state that in the absence of SOC,
the equations describing the behavior of electrons are invariant with respect to global
SU(2) transformations. On the level of effective spin models, this means that parallel
transport is trivial and we recover the ordinary Heisenberg model of eq.(3.68). If
SOC is present, we need to employ a theory that on the level of the electronic
spinor wave function is invariant under local SU(2) transformations: on the level
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Fig. 4.2 Diagrammatic representation the concept of parallel transport in the Heisenberg
model while in the presence and absence of SOC.

of effective spin model, this translates to a theory requiring local SO(3) invariance
where parallel transport is no longer trivial.

To add a layer of intuition to the thus far presented explanation of local vs. global
symmetry in the theory of magnetic interactions, let us illustrate the consequences of
non-trivial parallel transport in the Heisenberg model

H =−J ∑
<i, j>

Si ·S j =−J ∑
<i, j>

S(rrri) ·S(rrr j) (4.18)

where the the classical spin vectors S(rrri) fulfill normalization |S(rrri)|2 = 1 ∀ i.
According to the thus far conducted line of reasoning, if we assume the presence
of SOC (therefore local SO(3) symmetry), the notion of dot product is ill defined
as it tries to compare vectors located at different points of the lattice (Fig.4.2). To
generalize the Heisenberg exchange with non trivial parallel transport, we can write

H =
−J
2 ∑

<i, j>
S(rrri) ·S′(rrr j) (4.19)

where S′(rrr j) represents the parallel transported version of SSS j at the location of SSSi.
Since we consider SSS as spin vectors, rotations that keep the length of the vectors
unchanged are elements of the SO(3) group, which can be represented as 3× 3
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orthogonal matrices with determinant +1. SSS′j can therefore be rewritten as

SSS′(rrr j) = GGG(rrri − rrr j)SSS j = Gα

β
(rrri − rrr j)Sβ (rrr j) (4.20)

where GGG(rrri − rrr j) ∈ SO(3) depends on the position of the spin vectors rrri,rrr j. This
subtlety allows us to uplift the ill-defined form of the dot product of the ordinary
Heisenberg model and automatically yields the generalized Heisenberg Hamiltonian
described in 2.4.1

H = ∑
<i, j>

Sα(rrri)Gα

β
(rrri − rrr j)Sβ (rrr j) (4.21)

To finally make contact with the interaction terms derived by Moriya [67], we can
resort to the Rodriguez formula to decompose an arbitrary SO(3) matrix as follows
[122]

Gα

β
(n̂,Ψ) = δ

α

β
cosΨ︸ ︷︷ ︸

diagonal

−ε
αγ

β
nγ sin(Ψ)︸ ︷︷ ︸

antisymmetric

+nβ nα(1− cosΨ)︸ ︷︷ ︸
symmetric

(4.22)

Where n̂ represents the axis of rotation and Ψ the angle. These 2 parameters of
course also depend on the positions rrri,rrr j, but impy their dependency in the following
to lighten the notation. If we substitute (4.22) in (4.21), we immediately see how the
different components of the matrix Gα

β
(rrri − rrr j) contribute to the interactions

H = J ∑
<i, j>

[
Sα(rrri)δ

β

α Sβ (rrr j)cosΨ

]
︸ ︷︷ ︸

Isotropic exchange

−
[
nγ sinΨSα(rrri)ε

αγ

β
Sβ (rrr j))

]
︸ ︷︷ ︸

DMI

+
[
nαnβ (1− cosΨ)Sα(rrri)Sβ (rrr j)

]
︸ ︷︷ ︸

Kitaev exchange

(4.23)

= ∑
<i, j>

Ji jSSS(rrri) ·SSS(rrr j)+DDDi j ·
[
SSS(rrri)×SSS(rrr j)

]
+SSST (rrri)

↔
Γ i j SSS(rrr j), (4.24)

where we have defined Ji j = J cosΨ, DDDi j = n̂sinΨ and
↔
Γ i j= n̂⊗ n̂(1−cosΨ). As

a consistency check, we see how in the absence of SOC, parallel transport becomes
trivial again and the rotation angle Ψ = 0 giving us the normal isotropic Heisenberg
model. In conclusion we have shown how writing a locally invariant SO(3) theory
of Heisenberg exchange automatically yields the terms of Dzyaloshinskii-Moriya
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interaction and Kitaev exchange (also known as 2 site anisotropy). In 6.3.3 we
expand on this concept to micromagnetism, showing how the same procedure can be
applied to the micromagnetic energy functional of eq.(3.40) yielding precisely the
analogous of DMI and Kitaev exchange terms in the continuum. We also highlight
how this approach applied to micromagnetism has the merit of allowing to treat
chiral interactions in a particularly efficient matrix notation that allows to extract a
lot of information about chiral interactions at a glance.



Chapter 5

Computational Methods

Having laid the theoretical foundations for magnetism both at the atomic and
micrometer-scale, it is apparent that the analytical solution of realistic systems
is impossible in all but the simplest cases. Magnetism is indeed a field where
numerical simulations are heavily employed to produce theoretical predictions
or motivate experimental findings. In this dissertation we have produced contri-
butions both at the atomistic level and at the micromagnetic level, mandating
us to introduce the foundational principles of some of the more common com-
putational methods employed to solve problems at these 2 different length
scales.

5.1 The basics of density functional theory

Paul Dirac’s famous quote of 1920 states "the fundamental laws necessary for the
mathematical treatment of a large part of physics and the whole of chemistry are
completely known has held true to this day. However, the difficulty lies in the fact
that the application of these laws often results in equations that are too complex to
solve." This challenge is particularly evident in the field of solid-state physics, where
the framework of the theory is straightforward to establish, but obtaining the actual
solutions has proven to be an ongoing and exciting puzzle for over a century.

A major breakthrough in this field occurred when John Hohnberg and Walter
Kohn laid the foundations of density functional theory (DFT) published 2 seminal
papers [123, 124] that essentially constitute the bedrock of modern computational
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material science. DFT is a powerful tool that allows researchers to predict the
properties of materials from first principles, without the need for experimental data.
It achieves this by approximating the behavior of the electrons in the system, which
govern the material properties of interest.

In this chapter, we provide an introduction to the basics of DFT and focus on
computing the magnetic properties of materials from first principles. Our approach
begins with the many-body electronic Hamiltonian and the Born-Oppenheimer
approximation to eliminate nuclear motion. We then shift our focus to solving the
ground state problem of the many-body Schrödinger equation, which involves the
Hohenberg-Kohn theorems and the Kohn-Sham equations.

Finally, we introduce spin-orbit coupling, which is a relativistic effect that couples
the spin and orbital angular momentum of the electrons in the system and show how
DFT can be used to calculate magnetic exchange parameters.

5.1.1 The many-body Schrödinger equation

Our starting point is a very general system composed of N electrons and M nuclei.
For the time being, we only assume that these objects are very small and thus follow
the rules of quantum mechanics. We also assume that they are very large O ∼ 1023

in number since they are related to realistic materials. All the physical properties
of this many body system can be inferred from the solutions of the time dependent
Schrödinger equation

i h̄∂tΨ(rrr1 · · ·rrrN ,RRR1 · · ·RRRM; t) = HtotΨ(rrr1 · · ·RRRN ,RRR1 · · ·rrrM; t), (5.1)

where Ψ represents the wave function of the N electrons labelled by rrri (i = 1 · · ·N)

and M nuclei labelled by RRR j ( j = 1 · · ·M). Htot represents the electron-nuclei
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Hamiltonian and in the absence of external fields has the form

Htot =−
M

∑
i

h̄2

2Mi
∇

2
Ri︸ ︷︷ ︸

Kinetic energy: ions

+
1
2 ∑

i̸= j

ZiZ je2

|RRRi −RRR j|︸ ︷︷ ︸
Coulomb repulsion: ions

−
N

∑
i

h̄2

2mi
∇

2
ri︸ ︷︷ ︸

Kinetic energy: electrons

+
1
2 ∑

i ̸= j

e2

|rrri − rrr j|︸ ︷︷ ︸
Coulomb repulsion: electrons

−
N,M

∑
i, j

Zie2

|RRRi − rrr j|︸ ︷︷ ︸
Coulomb attraction: electrons-ions

, (5.2)

where Mi represents the mass of the ions and mi the masses of the electrons. Since the
Hamiltonian (5.2) does not depend on time, we can factor out the time dependence
in the wave function

Ψ(rrr1 · · ·rrrN ,RRR1 · · ·RRRM; t) = Ψ(rrr1 · · ·rrrN ,RRR1 · · ·RRRM) f (t). (5.3)

Plugging in this Ansatz in the time dependent Schrödinger equation (5.1), yields the
eigenvalue problem

HtotΨ(rrr1 · · ·rrrN ,RRR1 · · ·RRRM) = EΨ(rrr1 · · ·rrrN ,RRR1 · · ·RRRM) (5.4)

f (t) = exp
(

E
ih̄

t
)

(5.5)

5.1.2 The Born Oppenheimer approximation

The Hamiltonian of eq.(5.2), while completely general, is far too intricate to solve
the associated eigenvalue problem. We can start to simplify things by arguing that
the electrons and the nuclei have radically different time scales in which they reach
their respective ground states since the mass of an electron is roughly ∼ 2000 smaller
that that of a nucleus. This means that, in the reference frame of an electron, the
motion of the nuclei appears essentially suppressed. Therefore the electrons reach
their ground state much faster than the nuclei making the nuclei specific part of the
Hamiltonian approximately constant and thus negligible. Discarding the pure ionic
contribution to the Hamiltonian turns out to be correct in many situations and yields
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the simpler form

HBO =− h̄2

2m

n

∑
i

∇
2
ri︸ ︷︷ ︸

:=T

+−
N,M

∑
i, j

Zie2

|RRRi − rrr j|︸ ︷︷ ︸
:=V

+
1
2

N

∑
i ̸= j

e2

|rrri − rrr j|︸ ︷︷ ︸
:=U

. (5.6)

This procedure is known as the Born-Oppenheimer approximation and allows to
rewrite the Eigenvalue problem of eq.(5.5) as

HBOΨ(rrr1 · · ·rrrN) = EΨ(rrr1 · · ·rrrN). (5.7)

Despite having greatly reduced the number of variables by transforming the wave
function from

Ψ(rrr1 · · ·rrrN ,RRR1 · · ·RRRM) : R3N+3M → C (5.8)

Ψ(rrr1 · · ·rrrN) : R3N → C, (5.9)

The eigenvalue problem is still far too large to solve numerically even with today’s
most advanced supercomputers. As a reference, one simple nichel atom (N = 28)
located on 10 discrete grid points would require us to store 103×28 complex numbers
with float-precision (i.e. 16 bytes per number). This simple system requires 16×1075

Gb of storage capacity. To put this absurd number in perspective, the total amount of
information contained on the internet today is estimated to be ∼ 5×109 Gb.

5.1.3 Density Functional Theory

DFT is a formalism used to study the behavior of interacting electronic systems. It
has emerged as an incredibly powerful tool that allows researchers to accurately
predict the properties of molecules and materials at the atomic level because it lends
itself to a quite straight forward numerical implementation. The basic idea behind
DFT is to reduce the interacting Hamiltonians of electronic systems to effective
one-particle problems. This is achieved by building a theory of interacting electrons
using the electronic density instead of many body wave functions as the central
object of inquiry. DFT is in fact based on the idea that the ground state electron
density n0(rrr) contains all the information needed to describe the behavior of the
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system.

n0(rrr) = N
∫

d3rrr · · · d3rrrN |Ψ0(rrr1 · · ·rrrN)|2, (5.10)

where Ψ0 represents the fully anti-symmetrized electronic wave function. We
immediately notice that the electron density n0 contains much less information
than the full wave function. Hohenberg and Kohn demonstrated that the ground
state energy is a unique functional of the electronic ground state wave function
E0 = E[n0(rrr)]. If the spectrum is non degenerate, there is only one wave function
corresponding to the electron density n0(rrr) ↔ Ψ0 meaning that, in principle, we
can avoid working with the highly complicated wave function and only perform
computations with the much simpler electron density.

5.1.4 The Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems, formulated in 1964, establish the fundamental
basis of DFT. The theorems state that the ground-state electron density uniquely
determines the external potential and energy of a many-electron system. This means
that the complex interacting Hamiltonians of electronic systems can be reduced
to effective one-particle problems by modeling the electronic density. We start by
declaring the theorems

• The ground state density n(rrr) of a many-electron system determines uniquely
the external one-body potential V (rrr) (up to a spatial constant), and vice versa.

• The density n0(rrr) minimizing the total energy is the exact ground-state density.

We now provide the (incredibly) short proof by contradiction: we start by taking a
system of interacting electrons in an external potential

H = T +U +V =
N

∑
i

pi

2m
+∑

i ̸= j
U(rrri − rrr j)+

N

∑
i

Vext(rrri) (5.11)

We assume that the spectrum is non degenerate

⇒ E0 = ⟨Ψ0|H|Ψ0⟩= ⟨Ψ0|T +U |Ψ0⟩+
∫

d3rrrVext(rrr)n0(rrr). (5.12)
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Suppose now we had a different ground state wave-function leading to the same
electron density, i.e

n0(rrr) = N
∫

d3rrr1 · · ·d3rrrN |Ψ0|2 = N
∫

ddr1 · · ·d3rrrN |Ψ1|2 (5.13)

Since both Ψ0 and Ψ1 are ground states, but the spectrum is assumed to be non
degenerate, they have to belong to different Hamiltonians. Since for fixed N the
interaction and kinetic energy the between the Hamiltonians has to be identical, the
only allowed parameter to change is the external potential Vext

H = T +U +V ; H ′ = T +U +V ′ (5.14)

⇒ E0 = ⟨Ψ0|H|Ψ0⟩< (5.15)

< ⟨Ψ1|H|Ψ1⟩= ⟨Ψ1|H ′+V −V ′|Ψ1⟩ (5.16)

= E1 +
∫

d3rrr (V (rrr)−V ′(rrr))n0(rrr) (5.17)

or the other way around

⇒ E1 = ⟨Ψ1|H ′|Ψ1⟩< (5.18)

< ⟨Ψ0|H ′|Ψ0⟩= ⟨Ψ1|H +V ′−V |Ψ1⟩ (5.19)

= E0 −
∫

ddx(V (rrr)−V ′(rrr))n0(rrr) (5.20)

E0 −E1 < E0 −E1 ⇒⇐ (5.21)

It follows that the assumption on the wave functions Ψ1 , Ψ0 having the same electron
density n0(rrr) must be wrong. We can therefore safely assume that the ground state
electron density is a unique minimum of the energy functional E[n(rrr)] under the
condition that

∫
d3rrrn(rrr) = N. In summary, we have shown that the ground state

density is uniquely related to the studied system and corresponds to the variational
minimum of the energy.

5.1.5 The Kohn-Sham equations

From the Hohenberg-Kohn theorems, 2 important corollaries emerge

• There exists a one-to-one relation between the one body potential V and the
ground state energy density n0(rrr)
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• Since the ground state wave function Ψ0 is uniquely related to the ground state
density n0, so is the expectation value of each observable ⟨Ô⟩= ⟨Ψ0| Ô |Ψ0⟩.

We remark how, until now, no approximations have been done (safe for the ele-
mentary Born-Oppenheimer approximation). The drawback of this exact approach is
that the relation between n0(rrr) and V (rrr) is not known and constitutes possibly one
of the most challenging and important problems of computational material science.
The knowledge of this exact relation (which should in principle exist), would allow
for the exact calculation of all electronic properties of all solids. In order to perform
some calculation with the developed formalism we must introduce some approxima-
tions. The original formulation of DFT dates back to 1965 and rests its foundation
upon considering an auxiliary system on N non interacting electrons, where all the
complexity of the interactions has been packed in an arbitrarily complicated (and
unknown) potential. Such an auxiliary system can be described by a one particle
Hamiltonian

H Φq(rrr) =
(
−∇

2
+VKS(rrr)

)
Φq(rrr) = εqΦq(rrr), (5.22)

Where, VKS(rrr) represents the so called Kohn-Sham potential, i.e. a space dependent
potential that has the same effect on the single electrons as the effect of correlations
and exchange in the interacting system. The power of this auxiliary system is
that, if we manage to build VKS such that nq(rrr) = n0(rrr), we can effectively solve
the interactive system using a non-interactive one. With this approach, the energy
functional of this auxiliary system can be written as

EKS[n(rrr)] = TKS[n(rrr)]+Eext [n(rrr)]+EHa[n(rrr)]+EXC[n(rrr)] (5.23)

where

• The Kohn-Sham (non-interacting) kinetic energy TKS[n(rrr)] has the form

TKS[n(rrr)] =−1
2

∫
∑
q

fq|∇Φq|2 d3rrr (5.24)

Where fq represents the Fermionic electron occupation function.
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• The energy of the external potential Eext [n(rrr)] has the form

Eext [n(rrr)] =−
∫ M

∑
j

Z j

|rrr−RRR j|
n(rrr) d3rrr (5.25)

• The energy of the electron-electron Coulomb repulsion EHa[n(rrr)] has the form

EHa[n(rrr)] =−
∫ n(rrr)n(rrr′)

2|rrr− rrr′|
d3rrr′ (5.26)

• Finally the so called exchange correlation energy functional EXC[n(rrr)]

EXC[n(rrr)] =
∫

VXC[n(rrr)] n(rrr) d3rrr (5.27)

This term accounts for all necessary many-body correlation effects and is
the great unknown of DFT calculations. This term is crucial for magnetic
properties in the solid state and many other material properties: much of the
theoretical efforts of the last 60 years have been devoted in trying to find
effective approximations of this term.

To find the minimum of the integro-differential eq.(5.23) we invoke the constrained
variational principle (the integrated electron density must give us the total number of
electrons N). The ground state density nKS(rrr) satisfies

δ

δφq(rrr)†

(
EKS[n(rrr)]− εq

(∫
n(rrr)d3rrr−N

))
= 0, (5.28)

where the normalization constraint is imposed by the presence of the Lagrange-
multiplier εq. By performing the variational derivatives on the terms (5.24)-(5.27)
we can write down the so called Kohn-Sham equations(

−1
2

∇
2 +Vext(rrr)+VHa[n(rrr),rrr]+VXC[n(rrr),rrr]

)
φq(rrr) = εqφq(rrr). (5.29)

This equation however, cannot be solved with ordinary methods since the differential
operator also depends on the eigenvector of the problem. This type of problems is
part of a broader class of problems dubbed self-consistent eigenvalue problems and
can be solved numerically with a so called "self-consistency loop". A conceptual
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algorithm to solve the self consistent problem of eq.(5.29) would proceed as follows
(see Fig.5.1):

1 We initialize the algorithm by providing a starting guess for the electron density
n(rrr)

2 We build the effective potential VKS with this initial guess and solve the
eigenvalue equation (5.29). The output of this calculation is a new set of
eigenfunctions {Φq} from which we can calculate an electronic density n1(rrr).

3 If the newly obtained density differs from the original one by a value smaller
than some user defined threshold, we have reached convergence.

4 If the newly obtained density does not differ from the original one by a factor
smaller than some user define threshold t, we build the effective potential VKS

with this new density and solve (5.29) again to obtain a new density n2(rrr).
This procedure is repeated until the computed density differs from the previous
iteration of the loop by a value smaller that the user defined tolerance.

At this point an important disclaimer is in order: the eigenfunctions {Φq} (called
Kohn-Sham orbitals) and eigenvalues {εq} derived from solving the Kohn-Sham
equation eq.(5.29) pertain to an auxiliary physical system and do not necessarily
relate to the real interacting system one wishes to simulate. Strictly speaking, only
the density derived from the set of eigenfunctions {Φq} translates to the electron
density of the real system. Luckily, for many applications (even in the case of
magnetic systems), the Kohn-Sham orbitals serve as a good enough approximation
for the calculation of the quantities of interest.

Relativistic DFT: the road to magnetism in computational material science

It is widely known that the magnetic properties of solid state systems originate from
finite spin angular momentum in the valence band of materials. Unfortunately, the
Hamiltonian of eq. (5.1) does not take in account the spin degree of freedom of
electrons and therefore would fail to many of the magnetic properties discussed in
the previous sections of this dissertation. Luckily for us, the hitherto developed
formalism can easily be re-adapted to the use of the Dirac Hamiltonian, which is
fully relativistic and therefore able to capture spin and spin-orbit related phenomena
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Fig. 5.1 Conceptual diagram showing the essential steps of the self-consistent calculation
(scf), which is at the heart of all main DFT codes.
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such as magnetism. The Dirac Hamiltonian in the above formulated KS-formalism
reads [125, 126]:

HDKS(rrr) =

(
σσσ ·BBBXC(rrr)+mc2III2 cσσσ · p̂pp

cσσσ · p̂pp −σσσ ·BBBXC(rrr)−mc2III2

)

+(Vext(rrr)+VHa[n(rrr),rrr]+VXC[n(rrr),rrr]) III4,

(5.30)

where σσσ = (σ1,σ2,σ3)
T is the vector of Pauli matrices, BBBXC(rrr) is he so-called ex-

change correlation field, p̂pp =−i h̄∇∇∇ is the quantum-mechanical momentum operator
and III4 is the 4× 4 identity matrix. The eigenvalue equation (5.29) (now dubbed
Dirac-Kohn-Sham equation) has an analogous form

HDKS(rrr)Ψq(rrr) = εqΨq(rrr), (5.31)

but we need to be wary of the fact that now the wave function Ψq(rrr) is a 4-component
object and that, as a consequence, the density also become a 4-component object

n(rrr)→ nnn(rrr) =

(
n(rrr)
mmm(rrr)

)
, (5.32)

where

n(rrr) = ∑
q

fqΨq(rrr)†
Ψq(rrr) (5.33)

mi(rrr) = ∑
q

fqΨq(rrr)†
σiΨq(rrr). (5.34)

Where fq represents the Fermionic electron occupation function and σi represents
the ith Pauli matrix. These additional densities define the exchange correlation field
BBBXC(rrr) of eq.(5.30) in analogy to how the ordinary density n(rrr) defines the exchange
correlation potential VXC in the non relativistic limit of eq.(5.29)

BBBXC(rrr) =
δEXC[n(rrr),mmm(rrr)]

δmmm(rrr))
(5.35)

As discussed in 2.3.1 and 2.4.1, the appearance of magneto-crystalline anisotropy
and Dzyaloshinskii-Moriya interactions in magnetic systems is due to spin-orbit
coupling, an essential ingredient of the relativistic treatment outlined here. Full-
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blown relativistic DFT calculations can however be extremely time consuming and
perturbational approaches such as scalar relativistic approximations with explicit
inclusion of spin-orbit coupling terms can help reduce the computational costs
severely [127, 128]. In this thesis we employ the scalar relativistic approximation
with spin orbit coupling as implemented by the FLEUR code [129, 130].

5.1.6 Ab initio methodology for magnetic exchange parameters

A detailed description of the implementation methods and solutions of the relativistic
KS equations introduced above is far beyond our scope in this dissertation. Here
we assume that the self consistent energy of solid state system with finite magnetic
moment can be computed and show how the results of DFT calculations can be used
to extract magnetic exchange parameters.

The starting point of our derivation is a general quadratic exchange spin Hamilto-
nian with single ion anisotropy

H = ∑
i ̸= j

SSSi · Ji j ·SSS j +∑
i

SSSi ·Aii ·SSSi. (5.36)

As extensively discussed in 2.1.1, the first term represents the magnetic exchange
interaction between atomic sites sites i and j, while the second term represent the
on-site anisotropy. As discussed in 2.1.1, we deal with classical 3×1 spin vectors of
the form SSSi = (Si

x,S
i
y,S

i
z).

Exchange parameter Ji j

In order to determine the exchange interaction between neighboring sites 1 and 2,
we have to compute all 9 elements of the matrix

J12 =

Jxx
12 Jxy

12 Jxz
12

Jyx
12 Jyy

12 Jyz
12

Jzx
12 Jzy

12 Jzz
12

 . (5.37)
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Having isolated our atoms of interest at atomic sites 1 and 2, we can rewrite the
summation of (5.36)

H = ∑
i̸= j

[
Sx

i · Jxx
i j ·Sx

j +Sx
i · J

xy
i j ·S

y
j +Sx

i · Jxz
i j ·S

z
j

+Sy
i · J

yx
i j ·S

x
j +Sy

i · J
yy
i j ·S

y
j +Sy

i · J
yz
i j ·S

z
j

+Sz
i · J

zx
i j ·S

x
j +Sz

i · J
zy
i j ·S

y
j +Sz

i · J
zz
i j ·S

z
j

]
. (5.38)

as

H = SSS1 · J12 ·SSS2 + ∑
j ̸=2

SSS1 · J1 j ·SSS jjj +∑
i ̸=1

SSSiii · Ji2 ·SSS2

+ ∑
i̸=1, j ̸=2

SSSiii · Ji j ·SSS jjj +SSS1 ·A11 ·SSS1 +SSS2 ·A22 ·SSS2

+ ∑
i̸=1,2

SSSiii ·Aii ·SSSiii. (5.39)

The sum is written in such a way as to emphasize the interaction of the selected
spins (SSS1 and SSS2) and the interaction of the selected spins with the "bath" of spins
surrounding them. The strategy to isolate a particular exchange matrix element
here is to select a set of states for SSS1 and SSS2 and compute 4 self consistent energies,
combining them in order to eliminate the interaction of the selected spins and the spin
bath surrounding them. Following ref.[131] , we show how to explicitly compute the
matrix element Jxz

12 and then provide a general recipe in order to extend the procedure
to arbitrary matrix elements Jαβ

12 . If one chooses 4 relative spin orientations of SSS1

and SSS2 as follows:

State 1 : SSS1 = (+S,0,0), SSS2 = (0,0,+S), (5.40)

State 2 : SSS1 = (+S,0,0), SSS2 = (0,0,−S), (5.41)

State 3 : SSS1 = (−S,0,0), SSS2 = (0,0,+S), (5.42)

State 4 : SSS1 = (−S,0,0), SSS2 = (0,0,−S), (5.43)

and chooses all other spins SSSi ̸=1,2 = (0,±S,0) composing the spin bath to lie perpen-
dicularly to SSS1 and SSS2 (see Fig.5.2), the 4 self consistent energies obtained from DFT
calculations can be mapped on the Hamiltonian (5.39) as follows
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E1 = S · Jxz
12 ·S+ ∑

j ̸=2
S · Jxy

1 j ·S+∑
i ̸=1

S · Jyz
i2 ·S

+ ∑
i̸=1, j ̸=2

S · Jyy
i j ·S+S ·Axx

11 ·S+S ·Azz
22 ·S

+ ∑
i̸=1,2

S ·Ayy
ii ·S, (5.44)

E2 =−S · Jxz
12 ·S+ ∑

j ̸=2
S · Jxy

1 j ·S−∑
i ̸=1

S · Jyz
i2 ·S

+ ∑
i̸=1, j ̸=2

S · Jyy
i j ·S+S ·Axx

11 ·S+S ·Azz
22 ·S

+ ∑
i̸=1,2

S ·Ayy
ii ·S, (5.45)

E3 =−S · Jxz
12 ·S− ∑

j ̸=2
S · Jxy

1 j ·S+∑
i ̸=1

S · Jyz
i2 ·S

+ ∑
i̸=1, j ̸=2

S · Jyy
i j ·S+S ·Axx

11 ·S+S ·Azz
22 ·S (5.46)

+ ∑
i̸=1,2

S ·Ayy
ii ·S,

E4 = S · Jxz
12 ·S− ∑

j ̸=2
S · Jxy

1 j ·S−∑
i̸=1

S · Jyz
i2 ·S

+ ∑
i̸=1, j ̸=2

S · Jyy
i j ·S+S ·Axx

11 ·S+S ·Azz
22 ·S

+ ∑
i ̸=1,2

S ·Ayy
ii ·S. (5.47)

The strategy now is to combine the energies E1 · · ·E4 in such a way that we cancel
out the interaction of the isolated spins and the spin bath surrounding them. This can
be achieved by combining them as follows

E1 +E4 −E2 −E3 = 4S2Jxz
12 (5.48)

⇒ Jxz
12 =

E1 +E4 −E2 −E3

4S2 . (5.49)
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This approach can be extended to all other exchange matrix elements, following
this recipe:

1 Assume one is interested in computing the exchange matrix element Jαβ

12

2 After having selected the reference spins SSS1 and SSS2, the 4 states to extract the
desired exchange matrix element have to be chosen according to the following
scheme

State 1 : SSS111 =+Sêα , SSS2 =+Sêβ , (5.50)

State 2 : SSS1 =+Sêα , SSS2 =−Sêβ , (5.51)

State 3 : SSS1 =−Sêα , SSS2 =+Sêβ , (5.52)

State 4 : SSS111 =−Sêα , SSS2 =−Sêβ , (5.53)

all other spins in the spin bath have to be chosen perpendicular to the 2 selected
spins Sk ̸=1,2 ·Si=1,2 = 0 ∀ k.

3 Once the energies E1 · · ·E4 associated with the 4 states mentioned in the
previous step have been computed, we can extract the matrix element via

Jαβ

12 =
E1 +E4 −E2 −E3

4S2 .

Once the desired exchange parameters have been computed, they can be combined
to evaluate the different components of the exchange. For example, we can combine
them to obtain the DMI vector components by expressing the antisymmetric part of
the exchange matrix

Dx
12 =

1
2
(Jyz

12 − Jzy
12) (5.54)

Dy
12 =

1
2
(Jxy

12 − Jyx
12) (5.55)

Dz
12 =

1
2
(Jxy

12 − Jyx
12) (5.56)

Of course, the symmetry of the crystal imposes some constraints on the symmetry
properties of the exchange matrix, e.g. in the case of a centrosymmetric crystal
we cannot have an antisymmetric component of the exchange matrix because the
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Fig. 5.2 Exemplary case of the 4 state method for the calculation of the Jzy
12 coefficient of the

exchange matrix of eq.(6.19)

Moriya rules [67] do not allow for the presence of DMI in such systems. A schematic
representation of the 4 states necessary to compute Jzy

12 is provided in Fig.5.2.

Single-ion anisotropy

The strategy to compute the matrix elements of single-ion anisotropy (we choose
site i = 1 without loss of generality)

A1 =

Axx
1 Axy

1 Axz
1

Ayx
1 Ayy

1 Ayz
1

Azx
1 Azy

1 Azz
1

 (5.57)

are fairly similar to the ones detailed for the exchange matrix elements, with the
significant difference that the matrix does not possess antisymmetric parts and that
the procedure to compute diagonal and off-diagonal elements is slightly different.
Since the procedure is very similar to the one detailed above, we state the recipe
necessary to compute the required matrix element of (5.57) and refer or [131] for the
detailed computations. If we are interested in computing the off-diagonal elements
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Aαβ

1 , α ̸= β one should choose the 4 states of SSS1 according to

State 1 : SSS111 =

√
2S
2

(êα + êβ ), (5.58)

State 2 : SSS1 =

√
2S
2

(êα − êβ ), (5.59)

State 3 : SSS1 =

√
2S
2

(−êα + êβ ), (5.60)

State 4 : SSS1 −
√

2S
2

(êα + êβ ). (5.61)

All the other spins composing the spin bath have to be chosen to lie outside of the
plane spanned by êα and êβ , i.e. parallel to êα × êβ . Once the energy of the 4 states
has been computed self-consistently, the anisotropy coefficient can be computed via

Aαβ

1 =
E1 +E4 −E2 −E3

4S2 . (5.62)

In the case of the diagonal elements of (5.57), the fixed length of the spin vector
|SSSi|2 = ∑α(Sα

i )
2 allows to rewrite the diagonal part of the single-ion anisotropy

component of (5.36) as

H dia
SIA = Sx

1Axx
1 Sx

1 +Sy
1Ayy

1 Sy
1 +Sz

1Azz
1 Sz

1 (5.63)

= Axx
1 S2

1 +
(
Ayy

11 −Axx
1
)(

Sy
1
)2 (5.64)

+
(
Azz

1 −Axx
1
)(

Sz
1
)2
. (5.65)

which shows that the terms Ayy
1 −Axx

1 and Azz
1 −Axx

1 already contain all the information
of the diagonal part of the SIA part of the Hamiltonian, allowing us to reduce the
number of simulations. The general recipe to compute these 2 combinations is as
follows: if we are interested in computing the SIA parameter Aαα

1 −Aββ

1 , we have to
chose the 4 reference states to isolate from the bath as follows

State 1 : SSS111 = Sêα , (5.66)

State 2 : SSS1 =−Sêα , (5.67)

State 3 : SSS1 = Sêβ , (5.68)

State 4 : SSS1 −Sêβ . (5.69)
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Fig. 5.3 Exemplary case of the 4 state method for the calculation of the Azy
1 and the Azz

1 −Ayy
1

coefficients of the single ion anisotropy matrix of eq.(5.57)

Once more all the other spins composing the spin bath have to be chosen to lie
outside of the plane spanned by êα and êβ . Once the energy of the 4 states has been
computed self-consistently, the anisotropy coefficient can be computed via (beware
the different ordering of the energy terms)

Aαα
1 −Aββ

1 =
E1 +E2 −E3 −E4

4S2 (5.70)

A schematic representation of the 4 states necessary to compute Azy
1 and is provided

in Fig.5.2.

5.2 Numerical principles for micromagnetic solvers

As discussed in 3.5, the power of the micromagnetic approach lies in allowing us to
explore the dynamics of large magnetic samples via the solution of the LLG equation.
Unfortunately, due to the non-local long range nature of the physical interactions
being described, the partial differential equations arising are analytically solvable in
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Fig. 5.4 Schematic representation of the material discretization used for micromagnetic
simulations

but a handful of selected cases; the full blown solution of the LLG is only accessible
via numerical treatment. In the following we very briefly go over the main principles
employed by one of the more popular open source micromagnetic solvers available
used in this dissertation: MuMax3 [14] .

5.2.1 Discretizing the magnetization field

The first step toward the numerical solution of the LLG equation is the discretization
of the magnetization field mmm(rrr)→ mmm(i, j,k), whereby the continuous field mmm(rrr) is
transformed into an array {mmm1,mmm2, · · · ,mmmi, , · · ·mmmN} where N is the total number of
cells. The total number of cells is given by the produce of number of cells in each
spatial dimension N = Nx ×Ny ×Nz. Within the cell, magnetization is considered
as a constant vector of length Ms and the number of cells in each spatial dimension
is a simulation parameter controlled by the choice of cell size (∆x,y,z) and sample
dimensions (Lx,y,z):

Nx,y,z =
Lx,y,z

∆x,y,z
. (5.71)

The cell size is therefore the upper bound to the magnetization volume that displays a
uniform value. As discussed in 3.4.4 the length scales that emerge in micromagnetism
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are a natural guide to the cell sizes one should consider. In general the dominating
length scales in micromagnetic simulations are determined by exchange and magneto-
crystalline anisotropy, therefore a good choice is

∆x,y,z ≤ min(lex, lw), (5.72)

where

lw =

√
A
Ku

(5.73)

is the length scale emerging from the competition of exchange and magneto-crystalline
anisotropy and

lex =

√
2A

µ0M2
s

(5.74)

is the characteristic length scale emerging from the competition of exchange and
magnetostatic contributions in the micromagnetic energz functional. If we were to
chose a cell size ∆x,y,z > min(lex, lw), we would not be able to distinguish the features
arising from the competition of exchange and anisotropy energies e.g. magnetic
domain walls. We should remark that the effective field HHHeff and the LLG equations
are also a function of space

ṀMM = γMMM×
(
HHHeff −αṀMM

)
. (5.75)

and therefore must also be discretized in order to be solved with numerical methods.
Taking in account the discretized form of the effective field we can write an LLG
equation fit for numerical solvers:

dmmm(i, j,k)
dt

=−γ0(mmm(i, j,k)×HHHeff(i, j,k))−γ0α(mmm(i, j,k)×(mmm(i, j,k)×HHHeff(i, j,k)))
(5.76)

In the following we discuss how to discretize the different terms of the effective field
discussed in 3.3
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5.2.2 Finite difference version of the effective field terms

Micromagnetic exchange

The effective field component related to micromagnetic exchange has the form

HHH(exch.)
eff (rrr) =

2A
µ0Ms

∇
2mmm(rrr). (5.77)

The discretized form of this vector field can be expressed by

HHH(exch.)
eff (rrr)→ HHH(exch.)

eff (i, j,k) =
2A

µ0Ms
∑

<l,m,n>

mmm(l,m,n)−mmm(i, j,k)
∆2

l,m,n
, (5.78)

where the indices < l,m,n > run over the nearest neighbours of the the cell identified
by (i, j,k) (see Fig.5.4).

Chiral interactions

Chiral interactions have a similar structure to the effective field relative to micro-
magnetic exchange, but only host fist order derivatives as visible from the table of
Lifshitz invariants (Table 3.1). The partial derivatives ∂x,y,z can easily be translated
in discrete terms as follows

∂xmmm(i, j,k) =
mmm(i+1, j,k)−mmm(i−1, j,k)

2∆x
, (5.79)

∂ymmm(i, j,k) =
mmm(i, j+1,k)−mmm(i, j+1,k)

2∆y
, (5.80)

∂zmmm(i, j,k) =
mmm(i, j,k+1)−mmm(i, j,k−1)

2∆z
. (5.81)
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According to these definitions, we can therefore write the ith component of the
effective field coming from DMI as

(HHH(DMI)
eff )i = (2Q̂QQ∇×mmm)i = 2Qαβ ∂β mγεαγi (5.82)

= 2Qαx
mγ(i+1, j,k)−mγ(i−1, j,k)

2∆x
εxγi

+2Qαy
mγ(i, j+1,k)−mγ(i, j−1,k)

2∆y
εyγσ

+2Qαz
mγ(i, j,k+1)−mγ(i, j,k−1)

2∆z
εzγi (5.83)

where we recall that Qαβ represents the components of the spiralization tensor (or
DMI tensor). In Appendix III we show how we implemented a DMI tensor of the
form

Q̂QQ =

D1 D2 0
D2 −D1 0
0 0 0

 (5.84)

in the MuMax3 code as an exemplary case.

Magnetocrystalline anisotropy

The magnetocrystalline anisotropy term is local as it does not depend on partial
derivatives of the magnetization field: this makes it trivial to handle in a discretized
form

HHH(an.)
eff =

2Ku

µ0Ms
[n̂nnu ·mmm(i, j,k)]n̂nnu, (5.85)

where n̂nnu represents the uniaxial anisotropy easy axis.

Magnetostatic energy

The effective field component coming from the magnetostatic interaction is indeed
the most computationally intensive to treat as it entails long range interactions. The
effective field component associated to the magnetostatic energy has the form

HHH(dmg.)
eff (rrr) =− 1

4π

∫
V

∇ ·MMMs(rrr′)︸ ︷︷ ︸
ρM(rrr′)

rrr− rrr′

|rrr− rrr′|3
d3rrr′+

1
4π

∮
∂V=S

n̂nn ·MMMs(rrr′)︸ ︷︷ ︸
σM(rrr′)

rrr− rrr′

|rrr− rrr′|3
d2rrr′.

(5.86)
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We now change our notation somewhat to make the discretization procedure more
easy to follow: instead of identifying a cell with the three indices (i, j,k) as before,
we identify it with a singe indexed vector rrr j. In this notation MMM(rrr j) indicates the
averaged magnetization inside the cell located at rrr j. With this new notation we can
write the demagnetizing field as

HHH(dmg.)
eff (rrri) =− 1

4π
∑

j

∫
V j

ρM(rrr′j)
rrr j − rrr′j
|rrr j − rrr′j|3

d3rrr′j +
1

4π
∑

j

∮
∂V j=S j

σM(rrr′j)
rrr j − rrr′j
|rrr j − rrr′j|3

(5.87)

where we have used the fact that inside Vj the magnetization is constant and therefore
ρM(rrr j)= 0 ∀rrr j ∈Vj . The assumption of constant magnetization inside the individual
volumes Vj allows us to use the demagnetization tensor approximation discussed in
3.2. We write the demagnetizing field in discrete form as

HHHdmg.
eff (rrri) = ∑

j

↔
N (rrri − rrr j)MMM(rrri), (5.88)

where
↔
N (rrri − rrr j) is the demagnetizing tensor which in this case depends on the cell

dimensions and on the distance from the other cells [100]. The actual calculation
of the demagnetizing field in MuMax3 is performed in reciprocal space, as the use
of Fast-Fourier-Transform FFT allows to reduce the operation count from O(N2) to
O(N logN).



Chapter 6

Results

After having laid the theoretical and numerical foundations for magnetic inter-
face phenomena and their interplay with some aspects of the electric field, we
proceed and discuss the main results obtained in this Dissertation. In 6.1 and
6.2 we explore some facets of the intricate reversibility patterns displayed by
magneto-ionic manipulations of MCAE. In particular, 6.1 deals with the exper-
imental evidence of multiple magneto-ionic regimes in Ta/Co20Fe60B20/HfO2

multilayers, while in 6.2 we investigate the displayed patterns on a microscopic
scale with the aid of atomistic simulations. In 6.3 and 6.4 we shift our focus
on electric field manipulation of chiral interactions such as DMI. In 6.3 we
present a theoretical study in which we demonstrate how, by building a gauge
covariant micromagnetic theory, we are able to correctly predict all manners
of possible different chiral interaction allowed by non centrosymmetric point
groups. We pose particular attention at the interplay between an electric field
low-dimensional forms of DMI. In 6.4 we apply our formalism to the field of
magnetic domain wall motion and characterization: we uncover several inter-
esting unexplored phenomena such a non-linear enhancement of DW velocity in
the presence of some particular forms of DMI, as well as discussing how domain
wall canting in the presence and absence of transverse IP magnetic fields is
affected. We conclude this section with a discussion of the possible new avenues
that the research of these 3 years has opened.
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6.1 Multiple magneto-ionic regimes in
Ta/Co20Fe60B20/HfO2

In Ta/(Co,Fe)B/HfO2 stacks, a gate voltage drives, in a nonvolatile way, the system
from an underoxidized state exhibiting in-plane anisotropy (IPA) to an optimum
oxidation level resulting in perpendicular anisotropy (PMA) and further into an
overoxidized state with IPA. The IPA → PMA regime is found to be significantly
faster than the PMA → IPA regime, whereas only the latter shows full reversibility
under the same gate voltages. The effective damping parameter also shows a marked
dependence with gate voltage in the IPA → PMA regime, going from 0.029 to 0.012,
and only a modest increase to 0.014 in the PMA → IPA regime. The existence of two
magneto-ionic regimes has been linked to a difference in the chemical environment of
the anchoring points of oxygen species added to underoxidized or overoxidized layers.
Our results show that multiple magneto-ionic regimes can exist in a single device and
that their characterization is of great importance for the design of high-performance
spintronics devices.

Acknowledgement: The content of this Section is readapted from the publi-
cation Pachat, R., Ourdani, D., van der Jagt, J. W., Syskaki, M.-A., Di Pietro, A.,
Roussigné, Y., Ono, S., Gabor, M. S., Chérif, M., Durin, G., Langer, J., Belmeguenai,
M., Ravelosona, D., & Diez, L. H. (2021). Multiple Magnetoionic Regimes in
Ta/Co20Fe60/B20/HfO2 In Physical Review Applied (Vol. 15, Issue 6). American
Physical Society (APS). https://doi.org/10.1103/physrevapplied.15.064055 [132] in
a paper in which I contributed as a co-author. Please use this paper for citations.

6.1.1 Introduction

Controlling magnetic properties using an electric field has garnered significant
attention due to its potential implications for applications with reduced power con-
sumption. The tuning of magnetic anisotropy through charge accumulation effects
has been successfully demonstrated in various systems [133–135]. However, a pri-
mary challenge associated with this mechanism is its volatility, as well as the strong
locality of the effect.
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As discussed in 2.3.4, magneto-ionic manipulation of magnetic properties has
emerged as a promising alternative: despite much efforts still needed to improve
aspects such as operation speed and cyclability, this technique offers a more uni-
form and extended effect over the volume of the magnetic film in addition to the
required non-volatility. It should be stressed however, that the non-volatile nature
of magneto-ionic manipulation is advantageous as long as the device can reliably
exhibit reversibility, ensuring consistent and predictable magnetic behavior. Unfortu-
nately, the factors influencing the reversibility of magnetization manipulation remain
unclear, prompting extensive investigations into the diverse reversibility behaviors
exhibited by different oxide-based systems [62].

In the following we show how the complexity of the reversibility issue can
display an additional degree of freedom. The present study conducted on a series of
Ta/Co20Fe60B20/HfO2 multilayers in fact reveals that both reversible and irreversible
behaviors can be displayed. The study identifies two magneto-ionic regimes in the
device, with access to each regime dependent on the duration of the applied gate
voltage. These findings underscore the intricate nature of magneto-ionic reversibility
and highlight the need for further research to elucidate the underlying mechanisms
and optimize device performance.

6.1.2 Experimental setup

In this study, the magnetic materials employed are amorphous Ta(5 nm)/CoFeB(1
nm)/HfO2(3 nm) films, grown using a magnetron sputtering technique. The choice
of these materials ensures a suitable magnetic system for investigating the effects
of magneto-ionic manipulation. To apply the gate voltage, an ionic liquid (IL) is
utilized instead of a solid-state gating method. Specifically, the IL employed in this
study is [EMI][TFSI], which has been demonstrated to generate an electric field of
sufficient strength to induce ionic motion in various materials [136]. The effective
thickness of the IL is estimated by considering only the distance over which electric
double layers are formed at the electrode edges, resulting in an estimated thickness
of approximately 1 nm [137].

A counter electrode composed by a 100-nm thick indium tin oxide (ITO) layer
deposited onto a glass substrate is positioned on top of the IL, enabling the application
of the gate voltage over an area of approximately 0.25 cm2. Hysteresis loops for the
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Fig. 6.1 Graphic representation of the magneto-ionic stack covered with the ionic liquid
[EMI]+[TFSI]− and the counter electrode made of ITO

OOP component of the magnetization, are measured using the anomalous Hall effect
employing a bias current of 400 µA. A scheme of the setup is presented in Fig.6.1.

6.1.3 Magneto-ionic Regimes I and II

In the initial state, prior to exposure to the gate voltage, the sample exhibits an
in-plane (IP) magnetic anisotropy (IPA) (Fig.6.2-(a)). Upon application of a negative
gate voltage, a first magneto-ionic regime is identified and a transition from IPA to
perpendicular magnetic anisotropy (PMA) is observed (Fig.6.2-(b,c)). By further
increasing the gate voltage, a second magneto-ionic regime is identified, where the
system undergoes another spin reorientation transition (SRT), driving it from PMA
back to IPA (Fig.6.2-(d)). Throughout the experiment, a gate voltage of GV =−2 V
is applied continuously for a total duration of t = 1380s.

It is well established that there exist optimal oxidation windows for ferromagnetic
materials, within which the promotion of PMA is observed [138]. Additionally, HfO2

has been recognized as an oxide in which the predominant ionic mobility contribution,
upon the application of a gate voltage, stems from oxygen ions [139]. Therefore, it is
likely that the manipulation of magnetic anisotropy observed in the experimental data
is driven by the mobility of oxygen ions and their interaction with the ferromagnetic
interface.

When comparing the two observed magneto-ionic regimes, several notable differ-
ences emerge. Firstly, the SRT occurs at a faster rate in regime I compared to regime
II (see Fig.6.3-(a)) suggesting that the continued application of the gate voltage
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Fig. 6.2 Hall voltage response to the progressive oxidation induced upon exposure to a gate
voltage GV = -2 V . Different exposure times t drive the system from the initial state (IPA-(a))
through regime I (b) into PMA (c) and back to IPA through regime II (d).
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causes alterations of the chemical environment that differ between the regimes. In
particular, it is speculated that the continued application of the gate voltage might
cause the new oxygen species approaching the FM surface to be more difficult to
bond, therefore leading to variations in the energy barrier , leading to an altered
disposition of the surface to bind new oxygen species.

Another interesting observation is the reduced SRT speed observed in samples
that have been annealed at 180 °C. The goal of the annealing process is to reduce the
presence of trapped moisture in the samples while avoiding sample crystallization to
gauge the relative importance of stoichiometric oxygen of the HfO2 and the additional
oxygen coming from atmospheric interaction. As can be seen from Fig.6.3-(a), the
speed of the magneto-ionic manipulation in these annealed samples is significantly
reduced therefore hinting at the fact that atmospheric oxygen indeed plays a central
role in the switching process.

Regimes I and II do not only display different speeds in the SRT process, but
also a fundamental difference regarding reversibility. The reversibility of the SRT
has been tested in Reg. I and II with gate voltages going from -2 V to + 4 V.
The effects of the application of +4 V for 10 min up to 60 minutes are shown in
Fig.6.4-(a). As can be seen, only minor changes to the hysteresis loop are observable,
indicating that the induced magnetization state cannot be reverted to the initial IP
configuration. Regime II shows a different behavior when exposed to the positive
bias voltage if GV = +4 V. In Fig.6.4-(b) we can indeed observe a fully reversible
transition between IPA and PMA. Fig. 6.4-(c) shows the remanence variation over
10 cycles of alternating gate voltage sign. It is interesting to notice that the transition
PMA → IPA in the first cycle is obtained after an application of -2V for t =1200 s
while for all subsequent cycles, the gate voltage application time is reduced to 240s.
This observation indicates that the magneto-ionic process most likely undergoes an
“activation” phase in which the diffusion of the oxygen ions is likely to require the
overcoming of some additional energy barrier. To summarize, Regime I displays
a faster dynamic than Regime II (Fig.6.4-(b)) under the application of GV = -2 V
and an irreversible SRT upon application of GV = +4 V. Regime II on the contrary
displays a full reversibility and a slower dynamic.
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Fig. 6.3 Remanence as a function of gating time in (a) non-annealed (as-grown) samples under
GV = -2.3 V (circles), GV = -2 V (squares) and GV = -1.7 V (triangles). (b) Remanence as
a function of gating time in samples annealed at 180 °C (half open square) and 350 °C (open
squares) under GV = -2 V.

6.1.4 Discussion

The magneto-ionic mechanisms underlying regimes I and II are illustrated in Fig.6.5.
In the presence of a negative gate voltage (GV < 0), mobile oxygen species within
the HfO2 layer (depicted as bright green dots in Fig.6.1) migrate towards the CoFeB
layer and, after the gate voltage is switched off, these species remain bound to
the FM surface (Fig.6.5-(a)), thereby inducing a gradual transition from in-plane
anisotropy (IPA) to perpendicular magnetic anisotropy (PMA). An optimal gate
voltage application time is observed, after which PMA is achieved (end of regime I).

If the negative gate voltage (GV < 0) continues to be applied, the magneto-ionic
manipulation of anisotropy progresses to regime II, in which the newly incorporated
oxygen species contribute to the PMA-to-IPA transition (Fig.6.5-(b)). Since regime
II begins with an optimally oxidized CoFeB surface, the continued application of the
gate voltage is likely to result in the binding of oxygen species to sites distinct from
those occupied by the oxygens in regime I. Furthermore, a longer duration of gate
voltage application increases the likelihood of oxygen species penetrating deeper
into the CoFeB layer [5, 63] (see Fig.6.5-(c)).
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Fig. 6.4 (a) Hysteresis loops for the (irreversible) IPA → PMA transition under the application
of GV =+4V in the first magneto-ionic regime. (b) First hysteresis loops for the PMA →
IPA transition (solid line) and subsequent 10 cycles (dotted lines) in regime II. (c) Magnetic
remanence as a function of the cycle number in regime II.
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Fig. 6.5 Proposed magneto-ionic mechanism for regimes I and II. (a) When GV < 0, oxygen
species migrate towards the ferromagnetic (CoFeB) layer. After a certain amount of time,
PMA is achieved, indicating that some optimum in surface coverage has been achieved. (b)
If GV < 0 keeps being applied, oxygen species continue to be incorporated in the CoFeB
layer, resulting in a gradual return to the IPA (Regime II), shown in (c). (d) If the voltage
sign is reversed GV > 0, mobile oxygen species can migrate back to the top electrode. For
the same applied voltage GV there is no reversibility in regime I ((b) towards (e)) while full
reversibility is achieved in regime II ((c) toward (f)).

Under sufficiently high positive gate voltages (GV > 0), it is anticipated that
mobile oxygen species will migrate back to the top electrode (Fig.6.5-(d)). However,
it is important to note that the reversibility of the anisotropy manipulation is highly
suppressed for oxygen species incorporated in regime I under the same positive
gate voltage (see Fig.6.5-(b) transitioning to Fig.6.5-(e)), while full reversibility is
observed in regime II (see Fig.6.5-(c) transitioning to Fig.6.5-(f)).

The fundamental difference in the reversibility of anisotropy manipulation is
attributed to disparities in the binding sites and associated anchoring strength of the
oxygen species bound to the CoFeB surface during the two regimes. This distinction
in binding behavior gives rise to varying degrees of reversibility, emphasizing the
role of binding mechanisms in governing the observed magneto-ionic effects. The
literature explores the surface and bulk components of the magneto-ionic effect
in various systems, notably Pt/Co/GdOx and Pt/Co/HfO2 [140, 63]. In these sys-
tems, complete irreversibility of anisotropy manipulation has been observed as a
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consequence of deep oxygen anchoring in the magnetic layer. The present system
however seems to show a different behavior, since our investigation reveals that in
regime I, irreversibility is suppressed even at low oxygen content, thus excluding the
possibility of deep oxygen anchoring in the CoFeB layer.

This claim gains further support by considering the total reversibility observed
in regime II after prolonged application of negative voltage, further challenging
the prevailing notion that irreversibility in magneto-ionic manipulation necessitates
profound oxygen anchoring.

The complex nature of oxidation processes in FM materials has been addressed
in studies exploring the incorporation of oxygen species from the gas phase into
crystalline Co and Fe samples. Notably, in Co, a distinct change in slope is observed
in the oxygen intake process, indicative of a two-step mechanism. This has been
linked to an initial formation of a CoO layer (up to a specific surface area coverage
threshold), followed by the subsequent formation of Co3O4 species at elevated
temperatures [141]. A similar behavior has been observed in Fe samples at room
temperature, where the oxygen sticking coefficient is reported to decrease sharply up
to a value of 0.5, after which a slower decrease is observed following an inflexion
point [142, 143].

In this case, the oxygen incorporation mechanism is speculated to gradually
develop from simple oxygen absorption to the the nucleation and expansion of
an FeO layer. Further oxygen incorporation, now happening in the presence of
FeO, appears to be significantly slowed down and leading to the formation of a
Fe2O3/Fe3O4 three dimensional oxide structure.

We underline the fact that the system under investigation exhibits an amorphous
nature, which may blur the distinction between different oxide phases. Neverthe-
less, prior studies have demonstrated the strong impact of varying Fe percentages
in Co20Fe60B20 films on the manipulation of interfacial anisotropy [144]. The
amorphous nature of the studied magnetic compound therefore does not seem to
undermine the core assumption of the magneto-ionic mechanism in place, which
views a multi-step oxidation process of the interface as the driver of reversibil-
ity/irreversibility in this system.

Regime I therefore likely corresponds to the initial absorption of oxygen and
the subsequent formation of a FeO layer, entailing a change in the valence state of
Fe from Fe0 to Fe2+. The development of full two-dimensional FeO layer may be
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associated with the attainment of an optimal oxidation state related to perpendicular
magnetic anisotropy (PMA). The continued supply of oxygen species beyond this
point, once a 2D FeO layer is established, should yield a less efficient absorption
process, thus leading to a decelerated dynamic of anisotropy manipulation, clearly
observed in regime II.

In regime II, the continued incorporation of oxygen leads to the formation of a
Fe3O4 oxide phase, characterized by a mixture of Fe2+ and Fe3+ valence states. We
propose that the gradual addition of oxygen promotes the generation of an increasing
proportion of Fe3+ states relative to Fe2+: this gradual increase in Fe3+ states is
expected to be reversible due to the low energy barrier for the inverse process,
allowing for the observed reversibility of anisotropy manipulation in regime II.

It should be noted however, that a complete conversion to Fe3+ valence states,
would result in a significantly high energy barrier for the inverse process, thus
suppressing reversibility of anisotropy changes once again. This observation is in
alignment with the experimental observation of a fully irreversible IPA state when a
strong negative voltage of GV = -3 V is applied for t = 120s.

6.1.5 Conclusions

In conclusion, we have shown the existence of two distinct non-volatile magneto-
ionic regimes in Ta/CoFeB/HfO2 stacks where oxygen species migrate under nega-
tive/positive gate voltages toward/away from the CoFeB layer. This voltage driven
ionic motion induces first an IPA → PMA transition in regime I corresponding to
a transition from an underoxidized to an optimally oxidized state. In regime II,
a PMA→ IPA transition occurs and it is correlated to a transition from optimally
oxidized to overoxidized state. Regime I shows much faster dynamics and highly
suppressed reversibility for positive gate voltages with respect to regime II. The
existence of regimes I and II is proposed to be the result of a difference in the
binding strength of the migrated oxygen species, that can be correlated with different
binding sites on the surface and inside the CoFeB layer, respectively. The results
presented here reveal the complexity of magneto-ionics and the importance of a
deep understanding of the ionic mechanisms involved in order to design robust and
reliable devices for spintronics applications.
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6.2 Ab-initio study of magneto-ionic mechanisms
in ferromagnet/oxide multilayers

The application of gate voltages in heavy metal/ferromagnet/Oxide multilayer stacks
has been identified as one possible candidate to manipulate their anisotropy at
will. However, this method has proven to show a wide variety of behaviours in
terms of reversibility, depending on the nature of the metal/oxide interface and its
degree of oxidation. In order to shed light on the microscopic mechanism governing
the complex magneto-ionic behaviour in Ta/CoFeB/HfO2, we perform ab-initio
simulations on various setups comprising Fe/O, Fe/HfO2 interfaces with different
oxygen atom interfacial geometries. After the determination of the more stable
interfacial configurations, we calculate the magneto-crystalline anisotropy energy
on the different unit cell configurations and formulate a possible mechanism that
well describes the recent experimental observations in Ta/CoFeB/HfO2.

Acknowledgement: The content of this Sections is published in "Di Pietro, A.,
Pachat, R., Qiao, L., Herrera-Diez, L., van der Jagt, J. W., Picozzi, S., Ravelosona,
D., Ren, W., & Durin, G. (2023). Ab initio study of magneto-ionic mechanisms in
ferromagnet/oxide multilayers. In Physical Review B (Vol. 107, Issue 17). American
Physical Society (APS). https://doi.org/10.1103/physrevb.107.174413" [145]. Please
use this paper for citations.

6.2.1 Introduction

The ever-increasing demand for memory storage in the modern IT industry has
made the need for new energy efficient storage alternatives all the more important.
Voltage control of magnetic anisotropy (VCMA) [146] has gained scientific interest
as one of the prime candidates to develop ultra-low energy memory storage devices
[147, 52, 59, 6] and is usually studied in two different variants: the first one aims at
modifying magnetic properties of thin films by pure charge accumulation/depletion
effects induced by voltage application [84, 148, 59, 56]. The second variant makes
use of voltage–induced ionic motion in heavy metal (HM)/ferromagnet (FM)/Oxide
(Ox) thin film multilayers to carefully tune the oxygen/ferromagnet chemical and
electrostatic interaction, enabling the control of magnetic anisotropy [54, 38, 52].
The main advantage of ionic manipulation in comparison to pure charge accumula-
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tion/depletion techniques is the non-volatility of the magnetization switching, while
the trade off is a more complex reversibility mechanism combining ion mobility and
chemical composition at the FM/Ox interface.

The work of Fassatoui et al. [62] clearly shows how the application of gate
voltages causes a reversible magnetization switching in Pt/Co/AlOx as well as in
Pt/Co/TbOx. At the same time, applying a gate voltage in Pt/Co/MgOx has the
effect of irreversibly pushing the anisotropy easy axis out-of-plane. This discrepancy
has been attributed to the result of the different character of the ionic mobility
of the oxides: TbOx and AlOx have the common property of being oxides with
a predominantly oxygen based ionic mobility [62, 149], while MgOx is known
to have Mg as the principal ionic carrier under the application of gate voltages
[150]. CoFeB/Oxide multilayer structures are of great technological interest as they
have shown promise for the design of non-volatile, high-density memory storage
devices thanks to their high tunneling mangeto-resistance (TMR), low damping and
perpendicular magnetic anisotropy (PMA) [151–153]. A recent work from Pachat
et. al [154] highlighted a more complex magneto-ionic behavior in Ta/CoFeB/HfO2

multilayers. The application of a gate voltage to the as-grown material with in-
plane anisotropy (IPA) initially causes a non-volatile, irreversible spin-reorientation
transition (SRT) to a perpendicular anisotropy state (PMA). Further application
of the gate voltage causes the transition to a fully reversible regime. This 2-step
process is in contrast with the picture presented in [62] because ionic mobility in
HfO2 is attributed to oxygen [139]. To formulate a hypothesis on the mechanism
governing these different reversibility behaviors in Ta/CoFeB/HfO2, we perform ab-
initio simulations using density functional theory (DFT) to determine the structural
and magnetic properties of two FM/Oxide interfaces.

The work is structured as follows: In Sec. 6.2.2, we provide the computational
details of our simulations and a brief overview of the theoretical framework used
to describe magnetic anisotropy in FM/Oxide interfaces. In Sec. 6.2.3 we analyze
the structural properties of two different FM/Oxide interfaces, displaying either
interstitial or frontal oxygen positioning (see Fig. 6.6 and Fig. 6.8-(c)). After having
determined the optimal oxygen configurations of these setups, we compute the
magnetic anisotropy energy of the Fe/HfO2 unit cells. We also explore the role
of ionic mobility in determining the magnetic anisotropy properties of Fe/HfO2

interfaces and highlight how the energy costs involved in ionic mobility is different
depending on the site occupied. In Sec. 6.2.4, we discuss the results and compare
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them to the experimental data [154] and theoretical predictions [148, 5] in order
to formulate a hypothesis for the appearance of different magneto-ionic regimes
in CoFeB/HfO2 multilayers. Finally, in Sec. 6.2.5 we provide a summary of the
findings and outline new possible systems to analyze to further probe our hypothesis.

6.2.2 Methods and computational details

Structural relaxations

We perform structural relaxation using density functional theory and applying the
full-potential linearized augmented plane wave (FLAPW) method [155], as imple-
mented in the FLEUR code [129, 130]. In particular, we rely on the generalized
gradient approximation for the exchange-correlation potential, as implemented by
the Perdew–Burke-Ernzerhof (PBE) functional [156].

Since the simulation of amorphous systems such as CoFeB is extremely challeng-
ing for ab-initio methods, we reduced the ferromagnetic component of the system to
the Fe atoms only. This approximation is justified on the basis of the composition of
the Co20Fe60B20/HfO2 stacks studied in the literature, which are iron rich [154]. Fur-
thermore, this approximation for CoFeB in ab-initio simulations is commonly used in
the literature [157]. We designed 5 different unit cells comprising: an Fe/O interface
(structures (I) and (II) in Fig. 6.6) composed of 5 magnetic layers (ML) of Fe sand-
wiched between 2 mono-atomic layers of oxygen on each side, an Fe/HfO2 system
(structures (III) and (IV) in Fig. 6.6) composed of 5 ML of Fe atoms sandwiched
between 2 ML of HfO2 on each side. Finally, to account for oxygen coming from
atmospheric interaction with the sample, we designed an Fe/HfO2 system displaying
both frontal and interstitial oxygen atoms [158] . This system is composed of 5 ML
of Fe atoms sandwiched between 2 ML of HfO2 on each side with an additional O-
layer located in the interstitial site of 2 Fe atoms (Fig. 6.8-(c)). We refer to this kind
of system as "mixed interface" throughout the work. The in-plane lattice constant
of the system is fixed to the value of body-centered cubic (BCC) Fe, i.e aFe = 2.87
Å. To perform structural relaxation, we selected a cutoff value for the plane wave
basis of Kmax = 4.5a−1

B . We select the following values for the Muffin-Tin sphere
radius of the atoms: RMT (Fe) = 2.18aB , RMT (Hf) = 2.54aB , RMT (O) = 1.19aB

and a k-point mesh of dimensions 10×10×1. These parameters allow us to obtain
self consistent energies converged to at least 0.009 eV/Atom. To determine the
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optimal interfacial configurations of oxygen atoms, structural relaxation performed
until the forces are smaller than 0.01 eV/Å.

Magneto-crystalline anisotropy energy (MCAE)

The ab-initio calculation of the MCAE [159] is performed according to the following
procedure [160, 158, 84]: after having determined the more stable interfacial geome-
tries via the structural relaxation as outlined in 6.2.2, spin orbit coupling (SOC) is
treated in second variation [161] in the Kohn-Sham Hamiltonian and the MCAE
is computed by comparing sums of one-electron energies via the magnetic force
theorem [127, 128]. This method is widely used and has been validated for transition
metal interfaces [162].

The measurement of magneto-crystalline anisotropy requires an increased preci-
sion compared to structural relaxation: we therefore increase the size of the k-point
mesh to 22× 22× 1. Both with and without spin-orbit coupling, the plane wave
cutoff is kept at Kmax = 4.5a−1

B . With these parameters, we are able to obtain self
consistent energies converged to at least 0.01 meV/Atom1.We remark how this
contribution to the total magnetic anisotropy of the system is solely due to SOC
and therefore neglects the contributions coming from dipole-dipole interactions (i.e.
shape anisotropy effects). We neglect these terms in our discussion as the SOC in
the presented system is lower than what can be found in actual multilayers (we do
not add a heavy metal layer at the bottom of our unit cell) and their inclusion could
unnecessarily hide the effects of oxygen on the anisotropy of the system.

Theoretical background

The origins of oxygen enabled anisotropy manipulation in FM/Oxide interfaces have
been discussed extensively in the literature [5, 158]. The underlying theoretical
frameworks have been developed by Bruno [49] and Van Der Laan [50], which suc-
cessfully linked a finite anisotropy in the orbital magnetic moment to an anisotropy
contribution in the total energy in the presence of spin-orbit coupling. These theoret-

1Some of the presented results, especially concerning equilibrium geometries, were benchmarked
with the Vienna Ab-initio Simulation Package (VASP) [163, 164]. The used simulation parameters
were: Energy cutoff of 500 eV and kmesh-size 11×11×1. The total energy convergence threshold
was set to 10−6 eV and the structural relaxation convergence was set to a maximum force on each
atom lower than 0.02 eV/Å.
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ical frameworks predict a heavy dependence of the anisotropy energy on the exact
shape and hybridization of the 3d orbitals.

In this framework, oxygen atoms, when posed at a specific distance, can have
dramatic effects in the disruption of the otherwise almost isotropic magnetic moment
distribution of the 3d orbitals of transition metal ferromagnets [158]. In particular,
the 3d-electrons of Fe tend to hybridize very effectively with the oxygen 2pz orbitals.
Therefore, depending on the relative position of Fe and O, the orbital character of
majority 3d-orbitals will change. If, for instance, we imagine an oxygen atom sitting
on top of an Fe atom, the atomic orbitals that are more likely to hybridize have
out-of-plane (OOP) character [165] {3dz2,3dxz,3dyz}. This results in a larger portion
of occupied atomic orbitals with in-plane character, i.e {3dx2−y2,3dxy } orbitals. The
orbital moment of the Fe atom will therefore point OOP and the anisotropy easy axis
will follow it [158] according to the approximate analytic relation[49, 50]

∆ESO = ξSO
∆µ

4µB
, (6.1)

where ∆ESO represents the anisotropy energy , ∆µ the orbital moment anisotropy
and ξSO the material–dependent spin-orbit coupling constant. We emphasize how
this is an approximate relation that reproduces the results semi-quantitatively but
correctly reproduces the sign the MCAE [166]. On the other hand, if the oxygen
atom is located in the same plane of the Fe atom, hybridization is going to involve
orbitals with in-plane (IP) character {3dx2−y2 ,3dxy}. Fe atoms now retain a larger
proportion of 3d-orbitals with {3dz2,3dxz,3dyz} orbital character which reverses the
trend and shifts the orbital moment and the anisotropy easy axis in-plane. Despite
the thinness of the FM layers, one should always consider that the contributions to
magnetic anisotropy are not limited to the first layer, but in fact often involve the
second layer and possibly beyond (as in the case of Fe/MgO MTJs [84]).

In addition, the appearance of magnetic anisotropy is still constrained by the
symmetries of the crystal field that is coupled to the spin of the electrons via SOC.
This implies that different lattice geometries have different angular dependencies
of the anisotropy energy [49]. Layered systems with cubic structure (SC, FCC or
BCC) and interfaces in the (001) direction ( i.e. the ones we are concerned with) are
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Fig. 6.6 Sketch of the different interfacial configurations. Unit cells (I) and (II) represent
Fe/O interfaces while unit cells (III) and (IV) represent the Fe/HfO2 interfaces.

E(II) - E(I) E(III) - E(IV )

6.4 eV/Cell 2.1 eV/Cell
Table 6.1 Total energy difference between the relaxed structures of Fig.6.6

predicted to have the uniaxial relation

∆ESO = K0 +K1 sin2
θ (6.2)

where θ is the spin quantization axis angle with respect to the ẑ−axis and K0,K1 rep-
resent material dependent constants of anisotropy. An in-plane magnetic anisotropy
(IPA) correspond to the minimum of ∆ESO for θ = π

2 , while perpendicular magnetic
anisotropy (PMA) correspond to the minimum of ∆ESO for θ = 0. This is the fitting
function that we are going to use in all our MCAE calculations presented in Section
6.2.3. We define our convention for MCAE as follows:

MCAE = ∆ESO = E(θ = 0)−E(θ = π/2) (6.3)
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6.2.3 Results

Pure interfaces

As a first step, we perform structural relaxation on 4 different unit cells where we
suppose that no interaction with atmospheric oxygen has taken effect (we refer to
these as “pure interfaces"). As can be seen by the plotted energies (Fig. 6.6), the
optimal oxygen configurations change depending on the system considered: a pure
Fe/O interface (structures (I) and (II) of (Fig. 6.6)) favours oxygen atoms to be
located in the interstitial site with respect to Fe atoms. This preference appears
to be reverted in the case of HfO2, where a frontal i.e. top positioning of oxygen
atoms with respect to the Fe atoms seems to be strongly favoured. After having
determined the optimal configurations for the different unit cells, we proceed and
include spin-orbit coupling to compute their magnetic anisotropy energy. In this case
we focus specifically on the Fe/HfO2 interface. By observing Fig. 6.7 we notice how
the more stable frontally aligned oxygen setup, (structure (IV) of (Fig. 6.6)) displays
IP magnetic anisotropy (Fig. 6.7-(a)), whereas an interstitial oxygen configuration
(structure (III) of (Fig. 6.6)) yields PMA (Fig. 6.7-(d)). At this point, we introduce
vertical ionic displacements (with respect to equilibrium configurations) on the
interfacial oxygen atoms and recalculate the magnetic anisotropy. For simplicity, in
all this analysis the Hf atoms are kept fixed. We notice that, by shifting the frontal
oxygen atom in order to reduce the O-Fe distance by ≈ 2 aB, we are able to achieve
PMA (Fig. 6.7-(b)). As a side note, we remark how shifting the interstitial oxygen
atom of structure (III) in Fig. 6.6 has the effect of recovering IP magnetic anisotropy
(Fig. 6.7-(e)).

Mixed Fe/HfO2 interface

The application of a gate voltage is known to cause the oxidation of the FM surface.
We model this effect by designing an Fe/HfO2 unit cell displaying both interstitial
and frontal oxygen alignment at the interface (see Fig. 6.8-(c)). By analyzing the
effect on the magnetic anisotropy of different oxygen species mobility, we can get
some hints on the microscopic mechanism governing magneto-ionic regimes in an
experimental, more disordered scenario.
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Fig. 6.7 Magneto-crystalline anisotropy energy (MCAE) comparison of the pure Fe/HfO2
interface (structures (III) and (IV)). The θ angle of the spin quantization axis (SQA) from
eq.(6.2) is shown in the inset of (a). (a,b) MCAE for the ground state of the Fe/HfO2 unit cell
with frontal O-Fe distance of (a) ∆z(O-Fe) = 5.76 aB (equilibrium) and (b) ∆z(O-Fe) = 3.76 aB

(shifted). ∆z(O-Fe) represents the interplanar distance of the interstitial oxygen species from
the Fe surface respectively (marked with the dashed line) (c) Fe/HfO2 unit cell with frontal
oxygen positioning. (d,e) Ground state of the Fe/HfO2 unit cell with interstitial interplanar
O-Fe distance of (d) ∆z(O-Fe) = 5.34 aB (equilibrium) and (e) ∆z(O-Fe) = 3.34 aB (shifted).
(f) Fe/HfO2 unit cell with interstitial oxygen positioning. The K1 represents the value of the
MCAE and is given by E(θ = 0)−E(θ = π/2).

As can be seen in Fig. 6.8-(a), the relaxed structure with both frontal and intersti-
tial oxygen displays OOP magnetic anisotropy. If we shift the frontal oxygens (while
keeping the interstitial species still) by a nominal distance of 1.16 aB, we notice little
effect on magnetic anisotropy (Fig. 6.8-(b) and Fig. 6.9-(a)). If on the other hand,
we shift the interstitial oxygen atom 1.96 aB from the FM surface, we notice how
the MCAE becomes sensitive to frontal oxygen shifts and displays switching for a
frontal shift of 0.74 aB (Fig. 6.9-(b)). Despite having checked the effect of oxygen
shifts on anisotropy manipulation in this mixed surface setup, we expect the ionic
mobility behavior of these two oxygen species to be different given their different
environment. By observing Fig. 6.10-(a), we can see that the energy cost of a frontal
shift is lower than the energy cost of an interstitial shift, in accordance with our
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Fig. 6.8 Magneto-crystalline anisotropy energy (MCAE) (θ from eq.(6.2)) in the Fe/HfO2
setup shown with shifted oxygen species at the interface. (a) MCAE of the mixed surface in
its ground state. (b) MCAE of the mixed surface with a frontal O-Fe distance of 5.78 aB . (c)
Side view of the Fe/HfO2 unit cell with the mixed setup. The ∆z(O-Fe)1 and ∆z(O-Fe)2 denote
the interplanar distance of the frontal and interstitial oxygen species from the Fe surface
respectively (marked with the dashed line).

expectations. The energy costs are obtained by comparing the energy of identical
unit cells that differ only by the position of the frontal/interstitial oxygen atom [167].

We point out how the disruption of PMA can also be obtained by only pushing
the interstitial oxygens deeper in the ferromagnetic layer (Fig. 6.10-(c)) [158]. From
Fig. 6.10-(c) we can however observe that once PMA is destroyed by this type of
oxygen incorporation, it cannot be restored by moving the frontal oxygen atoms
closer to the surface. This observation is also in agreement with the experiments
[154], where samples that were exposed to a negative gate voltage for long times
(for a reference of the field direction, see Fig. 6.11) did not display any reversibility
of the voltage induced SRT.

6.2.4 Discussion

Considering the results presented above, we propose the following hypothesis for
the appearance of different magneto-ionic regimes in Ta/HfO2/CoFeB. We once
more highlight how we are assuming that the SRT caused by magneto-ionic effects
in these systems is largely due to the MCAE changes (i.e. the part of magnetic
anisotropy due to spin-orbit coupling [49]). We do not discuss the effects of shape
anisotropy in the present study as oxygen migration effects are expected to cause
the most significant changes to magnetic anisotropy via the hybridization and SOC
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Fig. 6.9 Magneto-crystalline anisotropy energy (MCAE) as a function of the frontal and
interstitial oxygen atoms interplanar distance as depicted in Fig.6.8-(c). (a) Effect of frontal
oxygen shifts (∆z(O -Fe)2 variable) while the interstitial oxygen is kept fixed at a distance
∆z(O -Fe)2 = 2.53aB from the FM surface.(b) Effect of frontal oxygen shifts (∆z(O -Fe)2
variable) while the interstitial oxygen is kept fixed at a distance ∆z(O -Fe)2 = 1.96aB from
the FM surface. The initial interplanar distance of the frontal oxygen atoms is ∆z(O -Fe)2 =
6.94 aB in both (a) and (b)

effects described in Sec 6.2.2[49]. As can be seen from Fig. 6.7-(a) and Fig. 6.6, the
pure Fe/HfO2 surface with frontally aligned oxygens appears to be both the more
stable structure and the one displaying IP magnetic anisotropy (Fig. 6.11-(a)). This
is in accordance with the experimental observation, where samples in the as-grown
form displayed IP magnetic anisotropy [154]. As observed in [154], the application
of a negative gate voltage across Ta/CoFeB/HfO2 results in an irreversible SRT from
IPA to PMA caused by the diffusion of oxygen species towards the CoFeB layer. We
model this irreversible switching with the relaxed Fe/HfO2 surface with both frontal
and interstitial oxygens ((Fig. 6.8-(c)).

We hypothesize that in this first regime the frontal oxygen atoms are too far away
to contribute to the anisotropy manipulation (Fig. 6.8-(b)). In contrast, the oxygens
diffusing towards the surface and occupying the interstitial sites have a strong impact
on the anisotropy of the system and induce PMA (Fig. 6.8-(a)). We therefore suggest
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Fig. 6.10 (a) Energetic cost of shifting interstitial and frontal oxygen atoms in the mixed
interface setup displayed in panel (c) of Fig. 6.8. The starting positions are ∆z(O-Fe)1 = 2.53
aB for the interstitial oxygen atom and ∆z(O−Fe)2 = 6.94 aB for the frontal oxygen atoms (i.e.
the setup of panel (a) in Fig. 6.8) (b) MCAE at different frontal oxygen positions ∆z(O-Fe)2
represented in panel (d) of Fig. 6.8. The starting positions are ∆z(O−Fe)1 = −0.08 aB for
the interstitial oxygen atom and ∆z(O-Fe)2 = 6.94 aB for the frontal oxygen atoms (i.e the
setup of panel (c) in Fig. 6.8). Positive values on the y-axis indicate that the system has IP
magnetic anisotropy.

Fig. 6.11 Hypothesis for the mechanism governing the different magneto-ionic regimes in
CoFeB/HfO2 multilayers. (a) Ground state of the system. (b) Irreversible magnetization
switching via interstitial sites occupied by migrating oxygen species. (c) Reversible magneti-
zation switching via frontal oxygen shifts. The bottom cartoon in all three panels represents
the magnetization direction and the switching process.
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that the initial irreversible anisotropy change in Ta/CoFeB/HfO2 could be due to the
irreversible occupation of the interstitial interface sites (Fig. 6.11-(b)). Once PMA
is achieved, experimental observation [154] shows that the application of the gate
voltage beyond the PMA state has the effect of pushing the magnetic anisotropy easy
axis in-plane, albeit in a reversible way.

Our results suggest that this switch to a reversible behavior beyond PMA could
be explained by the following: the continued application of the gate voltage has
the effect of mobilizing frontal and interstitial oxygen species. As can be seen on
Fig. 6.8-(b), the MCAE is not sensitive to the frontal oxygen shifts at first. If on
the other hand we shift the interstitial oxygen closer to the Fe surface by 0.57aB,
we notice how the MCAE becomes sensitive to the shift of the frontal oxygen
atoms and can be switched (Fig. 6.9-(b)). Furthermore, from Fig.6.10-(a), we know
that mobilizing the interstitial oxygen atoms is more difficult than mobilizing the
frontal ones: this could be to due the stronger bonding of the interstitial oxygen
species with the superficial Fe atoms. This observation suggests that the reversibility
of the anisotropy switching beyond the initial PMA could be largely attributed to
frontal oxygen shifts (Fig. 6.11-(c)). As shown in Fig. 6.8-(b), the transition PMA
→ IPA can also be achieved by shifting the interstitial oxygens deeper inside the
ferromagnetic layer. We do not attribute the reversible manipulation of anisotropy
beyond initial PMA to these oxygen species because, once the anisotropy is shifted
in-plane by means of the interstitial oxygen species pushed deeper in the sample, it
is impossible to manipulate the magnetic anisotropy of the system by shifting the
frontal oxygen species closer to the Fe surface (as displayed in Fig. 6.10-(c)).

6.2.5 Conclusion

In this work we performed an ab-initio analysis of the interplay between oxygen ionic
mobility and anisotropy manipulation in two FM/Oxide interfaces in order to formu-
late a hypothesis for the appearance of magneto-ionic regimes in Ta/CoFeB/HfO2

stacks [154]. We found out that the different nature of the oxide at the interface
plays an important role in determining the optimal interfacial oxygen geometry. In
particular, we discovered how the pure Fe/HfO2 interface displays a preferential
frontal oxygen alignment which corresponds to an IP magnetic anisotropy. We
observed how frontal oxygen mobility can induce PMA [59].
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The inclusion of oxygen species in additional interstitial sites was investigated
in order to determine their role in the appearance of magneto-ionic regimes [154].
We have shown how in these so called mixed surfaces, the ionic mobility of frontal
oxygen species is energetically more favorable than the mobility of interstitial ones.
We have also shown how the interplay of mobility between these two different
oxygen species can change the magnetic anisotropy of the sample. We conclude that
the irreversibility of the transition between IPA (under-oxidised) and PMA (optimally
oxidised) could be mainly due to the interaction of the interstitial oxygen of the
mixed surface and that the reversibility of the second regime is due to the mobility
of the frontal oxygen species of the pure and mixed surface (Fig. 6.11).

We point out how the Ta/CoFeB/HfO2 multilayer in [154] is composed by
amorphous materials that do not display the ordered structure of our unit cells. In
spite of this difference, we find qualitative agreement between our results and the
ones reported in [154] and are therefore led to believe that anisotropy manipulation
in these kinds of systems may be a consequence of relative FM/oxygen positioning
localized at the interface.

To further probe the validity of the hypothesis, one could analyze the relative
range of magneto-ionic regimes in Ta/CoFeB/HfO2 samples with different degrees
of atmospheric oxygen interaction. We predict that the extreme case where there has
been little to no exposure to atmospheric oxygen should result in a purely reversible
system. In addition, a comparison between crystalline and policrystalline structures
could provide hints on the role played by the amorphous nature of the materials.
Understanding in closer detail the interplay between ionic mobility and magnetic
property tuning could prove very useful for the optimization of highly energy efficient
read/write mechanisms for next-generation memory storage devices.
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6.3 Gauge theory applied to magnetic lattices

Micromagnetic exchange is usually derived by performing the continuum limit of the
Heisenberg model on a cubic lattice, where the exchange integrals are assumed to
be identical for all nearest neighbors. This limitation normally imposes the use of a
microscopic theory to explain the appearance of higher order magnetic interactions
such as the Dzyaloshinskii-Moriya interaction (DMI). In this paper we combine
graph- and gauge field- theory to simultaneously account for the symmetries of the
crystal, the effect of spin-orbit coupling and their interplay on a micromagnetic
level. We obtain a micromagnetic theory accounting for the crystal symmetry con-
straints at all orders in exchange and show how to successfully predict the form of
micromagnetic DMI in all 32 point groups.

Acknowledgement: The content of this Section is published in "Di Pietro,
A., Ansalone, P., Basso, V., Magni, A., Durin, G. (2022). Gauge theory applied
to magnetic lattices. In Europhysics Letters (Vol. 140, Issue 4, p. 46003). IOP
Publishing. https://doi.org/10.1209/0295-5075/aca0ba". [13]. Please use this paper
for citations.

6.3.1 Introduction

The Heisenberg model [168–170] is a low energy limit of the more general Hubbard
model [44, 95] and it allows to translate the complexity of quantum mechanical
exchange in a geometrical framework where the degrees of freedom are localized
magnetic moments. Understanding the Heisenberg model beyond ordinary ferro-
magnetic/antiferromagnetc exchange is of central scientific relevance as higher order
interactions are at the core of most of the exotic physical phenomena that could be
harnessed in future spintronics devices [171, 172, 105, 173].

As an example, the Dzyaloshinskii-Moriya interaction (DMI) [67, 68] is known
to stabilize skyrmionic/antiskyrmionic structures [71, 70] which hold promise as
information carriers in novel spintronic memory devices. At the same time, mi-
cromagnetic solvers [14] that can then be employed to simulate the magnetization
dynamics on the micro-scale rely on continuum formulations making the general-
ization of the Heisenberg model and it’s higher order extensions to the continuum
[94] of central importance. On the microscopic scale the inclusion of higher order
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interactions in the Heisenberg model can be done by considering the low energy limit
of increasingly complicated multi-band Hubbard models [95]. On a micromagnetic
level, the traditional approach relies on phenomenological thermodynamic arguments
and spin wave expansions of the micromagnetic energy functional [106, 174, 175],
but disregards the underlying Heisenberg model in favor of a pure field theoretical
approach. The generalized expression of the micromagnetic energy functional that
one finds in the literature is [95, 176, 107]

Eex[m,∇m] =
∫

ΩV

{
A | ∇m |2 +Q̂QQM (mmm)

}
d3rrr, (6.4)

where Q̂QQM (mmm) =∑A,C Q̂QQACMAC constitutes the DMI energy of the system [177] and
is represented as the contraction of the DMI tensor Q̂QQAC and the chirality M (mmm) =

∇mmm×mmm of the material. The above mentioned approaches, while extremely powerful,
are phenomenological in nature and neglect the fact that higher order interactions
are intimately related lower order ones as they come from the low energy limit of
a more general energy functional [67]. A formulation of the continuum limit that
rigorously and organically keeps track of the coordination of the magnetic atoms
on the lattice and higher order interactions is still missing. In this work we propose
an alternative procedure to the continuum limit of the Heisenberg model [178] that
employs graph theory to systematically account for lattices of arbitrary point group
symmetry and local SO(3) gauge invariance of the micromagnetic energy functional
to account for the appearance of higher order interactions [179–181]. The outcome
is a continuum limit that naturally represents the exchange interaction energy in the
most general form at all orders, both in the bulk and in thin film geometries

Eex =
∫

ΩV

{
ΞAC ∂

AmB
∂

CmB −QAlM
lA}d3rrr (6.5)

where ΞAC is the anisotropic symmetric exchange tensor and QAl is the DMI tensor.
The structure of the paper is as follows: in the first Section, we reformulate the
continuum limit of exchange using graph theory and we rewrite exchange in a form
that keeps track of the lattice beyond the simple cubic case. In the second Section
we require local SO(3) gauge invariance to account for the appearance of the DMI
tensor [182]. The Neumann principle of crystallography allows us to derive the
non-vanishing components of the anisotropic exchange and micromagnetic DMI for
all 32 crystallographic point groups. In the last Section we discuss our result and
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validate our predictions by comparing them with the existing literature and several
experimental systems. In the Appendix we review the Taylor expansion on discrete
lattices and some key concepts of graph theory.

6.3.2 Continuum limit of Heisenberg exchange on arbitrary lat-
tices

We start by writing the Heisenberg exchange interaction in the usual way

H =− ∑
<i, j>

Ji jSSSi ·SSS j (6.6)

here J
(
rrri j
)
= Ji j are the coupling coefficients coming from the exchange integral, a

function of the distance rrri j from atom i to atom j. We can split the energy sum in
the contribution coming from each individual Wigner-Seitz (WS) cell of the lattice
labelled Rk (see Fig.6.12-b). The advantages of this decomposition are twofold:
firstly, the WS cell construction is based in the Voronoi tassellation [11], i.e. on the
location of nearest neighbours. Secondly, the WS cell (a primitive cell) for a given
lattice point inherits the full point group symmetry of the lattice by constructions
[43]

H =−
N

∑
k=1

∑
<α,β>∈Rk

Jαβ SSSα ·SSSβ ∆V (6.7)

here Rk represents the set of nearest neighbors used for the construction of the k-th
WS cell [183, 43]. We define Ek as the energy density cost due to spin misalignment
per WS cell with volume ∆V

Ek =− ∑
<α,β>∈Rk

Jαβ SSSα ·SSSβ (6.8)

we assume that sssα and sssβ are nearly parallel when nearest neighbours and have fixed
length |SSS|2 = 1 (see Fig.6.12-b), allowing us to write the exchange term as

Ek = − ∑
<α,β>∈Rk

Jαβ |SSS|2 cosθαβ , θαβ ≪ 1 (6.9)

≈ − ∑
<α,β>∈Rk

Jαβ δ
αβ − Jαβ |SSSα −SSSβ |2. (6.10)
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Fig. 6.12 a) Heisenberg model on a cubic lattice. We indicate the lattice sites with indices
i, j b) Decomposition of the cubic lattice in nearest neighbour clusters using the Voronoi
tassellation [11]. In this decomposed lattice we use the k index to identify the cell and α,β
indices to indicate the nearest neighbors. c) Continuum limit performed on the cell from
b). The cell index k becomes continuous d3rrr and the atomic moments become a continuous
function of space mmm(rrr) .

Since we are treating the ferromagnetic case (i.e Jαβ symmetric positive semi-
definite) we can rewrite the exchange matrix as Jαβ = GαnGnβ = ĜT Ĝ. We neglect
the first term of (6.10) as it’s simply a constant and we can rewrite the exchange
energy as

Ek = ∑
<α,β>∈Rk

GαnGnβ |SSSα −SSSβ |2 (6.11)

since for small θαβ ≈ |SSSα − SSSβ |, we assume that sssi can be fitted to a continuous
function, i.e. SSSi → mmm(rrr− rrri) of position in the lattice. Let us write down the general
expression for the Taylor expansion of the magnetization vector field for small ∆rrr

mmm(rrr+∆rrr)≈ mmm(rrr)+dmmm(rrr;∆rrr)+O
(
|∆rrr|2

)
(6.12)

where dmmm(rrr;∆rrr) represents the directional derivative of the vector valued function
mmm(rrr) along the vector ∆rrr, i.e.

dmi(rrr;∆rrr) = ∇mi ·∆rrr = ∂ jmi∆r j. (6.13)

We now formally define a nearest-neighbour cluster of atoms as a directed graph -
(see Fig.6.13 for an example of the cubic lattice) introducing the edge-node incidence
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matrix Ci j [184] defined as

Ci j =


+1 if edge l j leaves vertex vi

−1 if edge l j enters vertex vi

0 otherwise

. (6.14)

It can be shown [184] that the incidence matrix of a graph is the natural matrix
representation of the discrete differential. Let us now denote the edges of the directed
graph representing the lattice as llli (see Fig.6.13), we can generalize eq. (6.13) to

dmi(rrr;∆rrr) = (∇kmi)Ck jlll
j (6.15)

and finally write the components of the expansion (6.12) as

mmm(rrr+ rrri)≈ mmm(rrr)+Ciα lllα ·∇∇∇mmm(rrr) (6.16)

where Ciα represents the incidence matrix of the directed graph describing the nearest
neighbor cluster of magnetic atoms (see 6.3.2 for the case of a simple cubic lattice),
lllα = lα

A êA represents the edge vectors of the directed graph and ∇∇∇ = êA ∂

∂xA . With
this generalized notation we can write the exchange term of eq.(6.10) as

E (rrr) = ∑
<α,β>

[
GαnCα

γ lγ

A
∂mB

∂xA

][
GnβCρ

β
lρ

C
∂mB

∂xC

]
. (6.17)

We remark how by transforming the magnetization in a continuous function of space,
we automatically promote the energy per cell to a continuous function of space as
well, i.e. Ek → E (rrr). This also applies to the volume Rk of eq.(6.11) which is now
promoted to an infinitesimal volume element d3rrr. We store all the information related
to the symmetry of the lattice and the exchange Ji j in the (symmetric) anisotropic
exchange tensor ΞAC.

ΞAC := ∑
<α,β>

GαnCα
γ lγ

AGnβCρ

β
lρ

C . (6.18)

The total exchange energy is now obtained by integrating E (rrr) over the whole
volume

Eex[mmm,∇mmm] =
∫

ΩV

ΞAC
∂mB

∂xC
∂mB

∂xA d3rrr. (6.19)
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Fig. 6.13 Directed graph representing the nearest neighbors (n.n) on the cubic lattice. The
vertices are represented by vi and the edges by li.

In the case of a cubic lattice all the exchange integrals Ji j = J are constant and
we have ΞAC = −2JδAC. We refer to the Supplementary material for the detailed
calculation of the simple cubic case and the C6v case.

Exact calculation of ΞAC for the simple cubic lattice

In the following we provide a step-by-step calculation of the ΞAC tensor according
to the definition

ΞAC :=
(
∑

i
GinCi

γ︸ ︷︷ ︸
C̃n

γ

)
(lllγ)A

(
∑

j
Gn jC

ρ

j︸ ︷︷ ︸
C̃ρ

n

)
(lllρ)C. (6.20)

As a first step we compute the incidence matrix of the oriented graph representing
the nearest neighbors of the simple cubic lattice (Fig.6.13).

Ci j := Ĉ =



1 −1 0 0 0 0 0
1 0 −1 0 0 0 0
1 0 0 −1 0 0 0
1 0 0 0 −1 0 0
1 0 0 0 0 −1 0
1 0 0 0 0 0 −1


. (6.21)
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We can write the matrix denoting the edges of the graph (lllγ)A as

R̂ := (lllγ)A =



1 0 0
0 1 0
−1 0 0
0 −1 0
0 0 1
0 0 −1


(6.22)

The C̃ matrix can be interpreted as a weighted directed graph, where the weight on
each edge of the graph is determined by the magnitude of the exchange integral
Ji j. If we assume that the strength of the interaction is a function of the inter-site
distance, we have Ji j = J and C̃ acquires the simplified form

ˆ̃C = ω ·Ĉ , ω
2 = J. (6.23)

We can now write the the expression g̃AC in matrix form

ΞAC :=
(
∑

i
GinCi

γ︸ ︷︷ ︸
C̃n

γ

)
(lllγ)A

(
∑

j
Gn jC

ρ

j︸ ︷︷ ︸
C̃ρ

n

)
(lllρ)C (6.24)

= (lllρ)CC̃ρ
n C̃n

γ (lll
γ)A (6.25)

= J(R̂T ·Ĉ ·ĈT · R̂) (6.26)

with these definitions we can proceed and compute the ΞAC tensor

ΞAC =−2JδAC. (6.27)

Effect of the basis choice on the DMI tensor

The choice of the basis can have an effect on the form of the DMI tensor and should
therefore be treated carefully. As an example we show the case of C6v symmetry.
The edge-node incidence matrix is given by
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Fig. 6.14 Directed graph representing the nearest neighbors (n.n) on a C6v. The vertices are
represented by vi and the edges by li.

Ĉ =



1 −1 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0
1 0 0 0 −1 0 0 0 0
1 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 0 −1


. (6.28)

At this point we can write down the crystal vectors in 2 different bases depicted in
Fig.6.15

R̂â,b̂,ẑ =



1 0 0
0 1 0
−1 1 0
−1 0 0
0 −1 0
1 −1 0
0 0 c
0 0 −c̃


R̂x̂,ŷ,ẑ =



1 0 0
1
2

√
3

2 0

−1
2

√
3

2 0
−1 0 0

−1
2 −

√
3

2 0
1
2 −

√
3

2 0
0 0 c
0 0 −c̃


(6.29)

where c and c̃ represent the distance of nearest neighbors in the ±z direction. The
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Fig. 6.15 2 different basis choices to represent the lattice vectors in the C6v geometry. We
only depict the basis choice in the C6 plane as along the z-axis the choice is trivial.

different choice of basis yields different ΞAC tensors

Ξ̂ΞΞâ,b̂,ẑ =

 −4J 2J 0
2J −4J 0
0 0 −2(c− c̃)2J

 (6.30)

Ξ̂ΞΞx̂,ŷ,ẑ =

 −3J 0 0
0 −3J 0
0 0 −2(c− c̃)2J

 . (6.31)

This of course has implications for the shape of the DMI tensor

Q̂QQC6v,â,b̂,ẑ
=

 Q11 2Q11 0
−2Q11 −Q11 0

0 0 0

 (6.32)

Q̂QQC6v,x̂,ŷ,ẑ =

 0 Q12 0
−Q12 0 0

0 0 0

 . (6.33)

This discrepancy can be reconciled by recalling the definition of the DMI tensor
obtained in the main text of the article, namely

QAl = ΞAC∂
C

ψl (6.34)
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from which we have
(Ξ)−1

ACQAl = ∂
C

ψl. (6.35)

We notice how the two DMI tensor shapes can be connected one to another via

Ξ̂ΞΞ
−1
â,b̂,ẑQ̂QQC6v,â,b̂,ẑ

= Ξ̂ΞΞ
−1
x̂,ŷ,ẑQ̂QQC6v,x̂,ŷ,ẑ (6.36)

To avoid any confusion, we always chose the reference frame and the generators
reported in [12].

6.3.3 Gauge covariant derivatives and the DMI tensor

As discussed in [179, 182, 120], the appearance of DMI in a continuum theory of
magnetic interactions is a direct consequence of promoting the global SO(3) symme-
try of the micromagnetic energy functional to a local symmetry. The requirement
of invariance with respect to a local rotation of the magnetic moment requires the
inclusion of a non-Abelian Gauge degree of freedom encoded in the modification
of the ordinary differential operator ∂i := ∂

∂xi . Formally speaking, let R(xxx) be an
element of SO(3) acting on 3-component vectors such as the local magnetization
according to mmm′ = R(xxx)mmm. Enforcing invariance of the exchange energy density of
eq.(6.19) requires us to redefine the differential operator via the covariant derivative
D and the gauge field A in the following way [179]:

∂
im j → D im j = ∂

im j − (A i)kml
ε

j
kl (6.37)

Ak designates the k-th component of the non-Abelian gauge potential that transforms
according to the rule

A ′
k = RT AkR+RT

∂kR (6.38)

where the rotation matrices R can be represented via

R(xxx) = exp(iφ(xxx) n̂ · JJJ) (6.39)

where φ(xxx) is a space dependent rotation angle, n̂ in a rotation axis and the generators
of SO(3) are encoded in a vector JJJ such that [Jρ ,Jσ ] = iε ν

ρσ Jν . If we limit ourselves
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to the pure gauge case [182], we can restrict the gauge transformations to

A ′
k = RT

∂kR (6.40)

And obtain the gauge covariant derivative of the form:

D im j = ∂
im j −∂

i
ψ

l mk
εl jk (6.41)

where ψl quantifies the rotation of a vector around the axis n̂l . Inserting this definition
in eq.(6.17) yields the following expression for the energy density

E (rrr) = ∑
<α,β>

[
GαnCα

γ lγ

ADAmB][GnβCρ

β
lρ

CDCmB
]

(6.42)

and the following expression for the integrated total energy

Eex[mmm,∇mmm] =
∫

ΩV

d3rrr{ΞAC DAmBDCmB} (6.43)

=
∫

ΩV

d3rrr
{

ΞAC ∂
AmB

∂
CmB−

−ΞAC ∂
C

ψ
l
εlkB

[
(∂ AmB)mk −mB(∂ Amk)

]︸ ︷︷ ︸
L ABk

+ΞAC ∂
A
ψ

lmk
εlkB∂

C
ψ

rms
εrsB
}

(6.44)

where ΞAC is defined in eq.(6.18). We highlight how L Bk
A represents the usual Lif-

shitz invariant terms of DMI. We remark how this treatment of micromagnetic inter-
actions also gives rise to a factor of intrinsic anisotropy ΞAC ∂ Aψ lmkεlkB∂CψrmsεrsB

which represents an anisotropic term [120] normally neglected in the literature. If
we concentrate on terms of order O(∇ψψψ) we can rewrite the exchange in eq.(6.19)
as

Eex =
∫

ΩV

d3rrr
{

ΞAC ∂
AmB

∂
CmB −Γ

A
kBL Bk

A
}
+O((∇ψψψ)2) (6.45)

where we have introduced the compact notation

Γ
k
AB := ΞAC ∂

C
ψ

l
ε

k
lB. (6.46)
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We highlight how symmetric anisotropic exchange is contracted in the prefactors Γk
AB

of the DMI Lifshitz invariant, showing how the two orders of interactions cannot be
treated separately in accordance with the original microscopic treatment of [67]. We
can now apply the Neumann principle of crystallography [185] to the ΓA

kB prefactors
of the Lifshitz invariants in eq.(6.46) to reveal their independent components. Let
R(α) be the 3-dimensional representation of the point group symmetry associated
with the crystal system we are considering (α represents the index numbering the
generators of the group). The Neumann principle [185] imposes

Γ
i
jk =

(
R(α)

)i
i′
(
R(α)

) j′

j

(
R(α)

)k′

k Γ
i′
j′k′ , ∀ α. (6.47)

We can now extract the non-vanishing components of the DMI tensor QAl :=
ΞAC ∂Cψl by contracting Γk

AB with the Levi-Civita tensor ε Bk
l and using standard

identity εi jkεl jk = 2δil which yields

QAl =−1
2

Γ
k
ABε

B
lk . (6.48)

This formula now allows to systematically predict the shape of the DMI tensor for

Fig. 6.16 Symmetric exchange components Ξ̂ΞΞi j := Ξi j from eq.(6.18) as a function of all 32
non-centrosymmetric crystallographic point groups as imposed by the Neumann principle
(6.47). The generators are expressed in the basis used in [12].

all 32 crystallographic point groups. Using the generators for the crystallographic
point groups contained in [186] we arrive at DMI tensors QAl of the form shown
in Fig.6.17. With this we get the final form of the exchange energy functional of
eq.(6.64)
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Fig. 6.17 DMI tensor components (Q̂QQ)i j := Qi j from eq.(6.48) as a function of all 21 non-
centrosymmetric crystallographic point groups as imposed by the Neumann principle of
eq.(6.47). The 11 centrosymmetric point groups have a vanishing DMI tensor and are not
shown. The generators are expressed in the basis used in [12].

Eex =
∫

ΩV

{
ΞAC ∂

AmB
∂

CmB −QAlM
lA}d3rrr (6.49)

where the chirality is given by M lA = ε l
kBL ABk. We remark how the Neumann

principle can also be applied to the Ξ̂ΞΞ tensor from eq.(6.18)

Ξi j =
(
R(α)

)i′

i

(
R(α)

) j′

j Ξi′ j′ (6.50)

revealing the non vanishing components of symmetric exchange shown in Fig.6.16

6.3.4 DMI tensor decomposition and ground state selection crite-
rion

We now proceed to describe some of the physical consequences of the symmetry
properties of the DMI tensor written in the form of eq.(6.48) [182]. First of all
we note that the DMI tensor of eq.(6.48), much like any rank-2 tensor, can be
decomposed as a sum of symmetric and skew-symmetric components

Q̂QQ =
1
2
(Q̂QQ− Q̂QQ

T
)︸ ︷︷ ︸

Q̂QQA

+
1
2
(Q̂QQ

T
+ Q̂QQ)︸ ︷︷ ︸

Q̂QQS

. (6.51)
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A purely anti-symmetric DMI tensor yields Lifshitz invariant terms of the form

EA;DMI =−2DDD · [mmm(∇ ·mmm)− (∇ ·mmm)mmm] (6.52)

where one expresses the anti-symmetric tensor as (QA)i j = Dkεki j. This term cor-
responds to the continuum limit of the familiar microscopic interfacial DMI term
[71, 81]

HDMI = ∑
<i, j>

DDDi j · (sssi × sss j) (6.53)

where sssi represents a magnetic moment located at lattice site i and DDDi j is the DMI
contribution to the Heisenberg Hamiltonian. Lifshitz invariant terms of the form
eq.(6.52) correspond to the surface DMI term appearing in magnetic thin films [10].
The symmetric component of the DMI tensor yields an energy contribution of the
form

ES;DMI =−mmm · (Q̂QQS∇×mmm) (6.54)

Where Q̂QQS∇ = (QS)i j∂ j. The special case of a purely diagonal matrix yields an
energy term of the form

ES;DMI =−2(QS)ii(mmm ·∂immm)i (6.55)

which, in the case of a single independent component Qii = D ∀ i yields

ES;DMI =−2Dmmm · (∇×mmm). (6.56)

This energy contribution corresponds to a bulk DMI term responsible for stabiliz-
ing bulk chiral structures [177, 70, 182]. As discussed in [177], the shape of the
DMI tensor is a decisive factor in determining the appearance of skyrmionic or
antiskyrmionic structures in the ground state of magnetic materials. The main result
of [177] is the identification of the determinant of the DMI tensor as the relevant
quantity predicting the stability of skyrmions or anti-skyrmions as follows:

det(Q̂QQ)


< 0 Anti-skyrmions stabilized

> 0 Skyrmions stabilized

= 0 Coexistence

. (6.57)
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We can now apply this rule to the set of DMI tensors shown in Fig.6.17 and discuss
if the predicted ground state structure are compatible with experimental results
discussed in the literature.

6.3.5 Discussion

The structure of eq.(6.48) automatically implies that all centrosymmetric crystallo-
graphic point groups exclude the possibility to have DMI. Furthermore, we notice
how the above discussed method also correctly predicts the absence of DMI on
some non-centrosymmetric crystal systems such as Td,C3h,D3h which is in accor-
dance with the literature [176]. We can now proceed and discuss an example of a
non vanishing DMI tensor: MnSi is a magnetic material which has attracted a lot
of attention as it is one of the first materials in which the the presence of helical
magnetic order was detected. As known from the literature, at low temperatures
MnSi can be modelled using the extended classical Heisenberg model [187] and the
system is known to crystallize in a B20 structure [188]. If we isolate the magnetic
atoms of this material, i.e. the Mn atoms, the resulting sublattice displays T point
group symmetry [104]. From Fig.6.17. we can see how the T point group symmetry
allows the material to have a purely diagonal DMI tensor which can be linked to
the presence of bulk DMI, a form compatible with the appearance of bulk chiral
magnetism [70, 182, 188].

Q̂QQT =

Q11 0 0
0 Q11 0
0 0 Q11

 (6.58)

⇒ ES;DMI =−2Q11 mmm · (∇×mmm). (6.59)

If we want to consider only thin film geometries in which the growth direction lies
parallel to the ẑ-axis, we simply have to consider the top left submatrix

Q̂QQT [1,2;1,2] =

(
Q11 0

0 Q11

)
(6.60)

and the determinant of this submatrix is strictly positive. Recalling the selection
criterion of eq.(6.57) [177], we know that a strictly positive determinant of the DMI
tensor stabilizes skyrmions given the presence of a sufficiently high external Field
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[104]. Further examples of applicability of the present formalism concern Heusler
Alloys [189–191]. Despite the full Heusler structure displaying cubic symmetry (and
therefore no DMI), recent studies have shown how altering the Mn concentration
in inverse tetragonal Mn-based Heusler compounds such as MnxPtSn can lower the
symmetry of the material as much as reaching D2d [192] in thin film geometries.
Observing the DMI tensor of the D2d symmetry group from Fig.6.17, we notice it
has a symmetric trace less form:

Q̂QQD2d
=

 0 Q12 0
Q12 0 0

0 0 0

 . (6.61)

Much like in the case of MnSi, restricting the DMI tensor to a thin film geometry in
which the growth direction lies parallel to the ẑ-axis yields

Q̂QQD2d
[1,2;1,2] =

(
0 Q12

Q12 0

)
. (6.62)

We immediately notice how det(Q̂QQD2d
[1,2;1,2]) = −Q2

12 < 0. Again, according
to eq.(6.57) this DMI tensor can only stabilize antiskyrmions (given a sufficiently
high external field). It has in fact been experimentally shown that MnxPtSn thin
films can only support anti-skyrmions structures [190]. As a final case of interest,
we consider heavy metal/ferromagnet (HM/FM) multilayers such as Pt(111)/Co
which have been under intense scientific investigation for the development of energy
efficient magnetic memory storage devices [81, 193]. In such systems, one of the
effects of the inclusion/exclusion of the Pt layer is that of reducing the point group
symmetry of the Co layer from D6h to C3v which, in terms of DMI tensors from
Fig.6.17 means

Q̂QQD6h
=

0 0 0
0 0 0
0 0 0

→ Q̂QQC6v
=

 0 Q12 0
−Q12 0 0

0 0 0

 . (6.63)

This immediately highlights how the broken inversion symmetry can cause the emer-
gence of DMI interaction at Pt/Co(111) interfaces. At the same time, we notice how
det(Q̂QQC6v

)> 0 and therefore only skyrmions can be stabilized in systems displaying
this symmetry [81]. As an aside, we also remark how the applications of strain
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gradients [194] and electric fields [180] to materials displaying chiral interactions
can alter the properties of the DMI tensor. In particular, strong electric fields can
lead to the change of the antisymmetric components of the DMI tensor [179] and
could therefore constitute a way to manipulate skyrmions and antiskyrmions in an
energy efficient way.

6.3.6 Conclusions

In this work we presented a new perspective on the continuum limit of the classical
Heisenberg model to derive the micromagnetic exchange energy functional. Our
approach systematically keeps track of the crystal symmetries of the system and
reveals the importance of the interplay between symmetric anisotropic exchange and
DMI. We show a rigorous treatment of higher order interactions when promoting
the symmetry of the Hamiltonian from global to local via the introduction of gauge
covariant derivatives [179, 182]. As an example, we show how the symmetry
constraints imposed by the lattice can be implemented rigorously via the Neumann
principle of crystallography, revealing the independent components of the DMI
tensor for all 32 crystallographic point groups. We point out how the determinant
of the DMI tensor can be used as a tool to predict the stabilization of skyrmions
and antiskyrmions [177] and we observe how several experimental results behave in
accordance with our theoretical predictions.
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6.4 Domain wall statics and dynamics in the presence
of arbitrary Dzyaloshinskii-Moriya interaction
tensors

The influence of different Dzyaloshinskii-Moriya interaction (DMI) tensor compo-
nents on the static and dynamic properties of domain walls (DWs) in magnetic
nanowires is investigated using one dimensional collective coordinates models and
micromagnetic simulations. It is shown how the different contributions of the DMI
can be compactly treated by separating the symmetric traceless, antisymmetric and
diagonal components of the DMI tensor. First, we investigate the effect of all different
DMI components on the static DW tilting in the presence and absence of in plane (IP)
fields. We discuss the possibilities and limitations of this measurement approach for
arbitrary DMI tensors. Secondly, the interplay of different DMI tensor components
and their effect on the field driven dynamics of the DWs are studied and reveal a
non-trivial effect of the Walker breakdown field of the material. It is shown how
DMI tensors combining diagonal and off-diagonal elements can lead to a non-linear
enhancement of the Walker field, in contrast with the linear enhancement obtainable
in the usual cases (interface DMI or bulk DMI).

Acknowledgement: The content of this Section is published in A. Di Pietro, F.
García-Sánchez, and G. Durin, “Domain wall statics and dynamics in nanowires
with arbitrary Dzyaloshinskii-Moriya tensors,” Phys. Rev. B, vol. 108, no. 17, p.
174427, Nov. 2023, doi: 10.1103/PhysRevB.108.174427. [145]. Please use this
paper for citations.

Recent years have seen an increased interest in the study of magnetic domain
wall (DW) dynamics in perpendicularly magnetized nanowires as these are at the
core of many emerging spintronic device concepts in memory storage [117, 116],
sensing [195, 196] and logic [197–199]. To this day, many challenges still need to
be addressed in order to make such technologies viable for the industry. Among the
challenges to be faced is the phenomenon of Walker breakdown [200] field which
sets a strong upper limit to the velocity a DW can be efficiently moved through a
nanowire.
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It is a well established fact that magnetic DWs can be moved through a magnetic
nanowire either via applied magnetic fields or spin transfer torque induced by spin
polarized currents [201, 112]. For small enough values of the driving force, the
shape anisotropy of the material (which in thin film geometries favours Bloch walls)
is able to counter act the torque on the magnetization that would cause precessional
motion [202]. In the steady state regime, the DW is able to move rigidly and its peak
velocity displays a linear dependence from the driving force. As the driving force
increases, the competing torque becomes too strong and cannot be compensated
by the effective field inside the DW: once that threshold, called Walker Breakdown
(WB) field, is reached, the domain wall begins the so called precessional motion
regime [10, 202], in which the peak velocity of the DW drastically reduces.

Several strategies have been tried to counteract this phenomenon and increase the
maximum attainable DW velocity [115, 203]. For instance, the choice of materials
displaying chiral interactions such as the Dzyaloshinskii-Moriya interaction (DMI)
[67, 68] in perpendicularly magnetized nanowires is known to greatly enhance
the domain wall Walker breakdown [10] because of the effective field component
providing an additional restoring torque for the moving DW. While the effects of
interface DMI (iDMI) are well known and understood, the effects of different, more
exotic types of DMI [97, 107, 204] found in lower symmetry magnetic crystals are,
to our knowledge, not studied in detail. The study of the possible effects induced
by these additional DMI forms is becoming increasingly relevant as new deposition
techniques are making the production of thin films with the required low symmetries
a reality [205, 192, 206]. In the following we propose a micromagnetic study to
analyze the DW statics and dynamics with additional terms accounting for arbitrary
DMI tensors in magnetic nanowires.

The paper is organized as follows: in Section 6.4.1 we describe the energy
contributions of our system and show how to compactly treat more exotic DMI
tensors by decomposing them in antisymmetric, symmetric traceless and diagonal
contributions. In Section 6.4.2, we introduce the collective coordinate models
(CCMs) and derive the DW energy density for arbitrary DMI tensors both in the
q−χ −φ model [9] and the q−φ model [207, 10]. In Sections 6.4.3 and 6.4.4 we
show how the derived energy densities correctly predict the DW tilting both with an
without applied in-plane (IP) fields. In Section 6.4.5, we explore the applicability
of the canting angle method to measure forms of the DM tensor going beyond
the iDMI discussed in ref.[9]. Finally, in Section 6.4.6 we derive the dynamical
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equations for the DW in the q− φ model and show how the presence of certain
combinations of DMI tensor components can lead to non-trivial changes in the DW
Walker breakdown field. The derived analytical results are compared throughout with
Micromagnetic simulations performed with the MuMax3 [14] software. We conclude
by summarizing our results and providing an outlook for future investigations in
Section 6.4.7.

6.4.1 Energy density in the presence of arbitrary DMI tensors

We consider a magnetic ultrathin film of volume ΩV grown on a substrate and a
capping layer of a different material so that the symmetry is broken along the normal
to the plane. In addition to the usual energy terms, we add a contribution relative to
an arbitrary DMI tensor yielding a total density of the form [177, 13]

E =
∫

ΩV

{
A|∇∇∇mmm|2 −Qi jM

ji − 1
2

µ0Msmmm ·HHHd

−Ku(mmm · ûuuz)
2 −µ0Msmmm ·HHHz

}
d3rrr (6.64)

where mmm(x, t) = MMM(x, t)/Ms is the normalized magnetization vector, A is the symmet-
ric exchange coefficient (in this case a constant), HHHd is the magnetostatic field, HHHz is
the Zeeman field and Ku is the uniaxial anisotropy constant with the easy axis directed
along z. Finally, Qi j represents the DMI tensor and M ji = ∑k εik(mz∂ jmk −mk∂ jmz)

is the chirality of the magnetic configuration [177]. We remark how both the chirality
M ji and the DMI tensor Qi j treated here are already restricted to a 2 dimensional
system, i.e. M ji,Qi j ∈ R2×2 and are reported in Fig.6.18.

In the following we briefly outline some of the consequences of the symmetry
properties of the DMI tensor. First of all, we remark that the DMI tensor, much
like any other rank-2 tensor, can be decomposed in a sum of symmetric traceless,
antisymmetric and diagonal components as follows

Q̂QQ =

(
0 Da

−Da 0

)
︸ ︷︷ ︸

Antisymmetric

+

(
Db Ds

Ds −Db

)
︸ ︷︷ ︸

Symmetric-traceless

+

(
Dt 0
0 Dt

)
︸ ︷︷ ︸

Diagonal

. (6.65)
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A purely anti-symmetric DMI tensor (QA)i j = ∑k Dkεki j yields Lifshitz invariant
energy density terms of the form

EA;DMI =−2DDD · [mmm(∇ ·mmm)− (∇ ·mmm)mmm], (6.66)

which correspond to the interface DMI (iDMI) term often studied in the literature
[10, 90]. The symmetric component of the DMI tensor, on the other hand, yields an
energy contribution of the form

ES;DMI =−mmm · (Q̂QQS∇×mmm), (6.67)

where Q̂QQS∇ = ∑ j(QS)i j∂ j. A DMI of this form is related to the so called "anisotropic
DMI" in the discrete microscopic treatment [208–210]. The special case of a purely
diagonal matrix yields an energy term of the form

ES;DMI =−2(QS)ii(mmm ·∂immm)i (6.68)

which, in the case of a single independent component Qii = D yields

ES;DMI =−2Dmmm · (∇×mmm). (6.69)

This energy contribution corresponds to a bulk DMI (bDMI) term responsible for
stabilizing bulk chiral structures [70]. We emphasize that, since the micromagnetic
DMI tensor is related to the microscopic DMI vector via the following expression
[177]

Qi j =
1
V ∑

rrrb∈N.N rrra

[
rrra − rrrb

]
iDab, j, (6.70)

where Qi j corresponds to the micromagnetic DMI tensor and Dab, j represents the
j-th component of the microscopic DMI vector on bond a− b, V represents the
volume of the unit cell and the sum runs over all nearest neighbors of the reference
atom a. As can be seen, even though DDDab comes from the antisymmetric components
of the exchange tensor

↔
J ab in

H = ∑
<i, j>

SSSi
↔
J i j SSS j, (6.71)



6.4 Domain wall statics and dynamics in the presence of arbitrary
Dzyaloshinskii-Moriya interaction tensors 179

the corresponding micromagnetic DMI tensor Q̂QQ is not constrained to being antisym-
metric.

Fig. 6.18 DMI tensor components for all 21 non-centrosymmetric crystallographic point
groups as imposed by the Neumann principle [13]. The 11 centrosymmetric point groups
have a vanishing DMI tensor and are not shown. The components Da,Ds,Db,Dt are the ones
shown in the decomposition of eq.(6.65), while terms of the form Di j are combinations of
Da,Ds,Db,Dt .

6.4.2 Collective coordinate models with arbitrary DMI

Since the contributions of the iDMI terms (i.e. the Da part of eq.(6.65)) and bDMI
(i.e. the Dt part of eq.(6.65)) to ordinary collective coordinate models (CCMs) are
known [9, 119], to account for the complete DMI tensor we just have to compute the
energy density terms relative to the symmetric Ds and traceless Db components. To
this end, we consider a DMI tensor compatible with the S4 point group symmetry
which has the form

Q̂QQS4
=

(
Db Ds

Ds −Db

)
. (6.72)

Plugging this DMI tensor in eq.(6.64) and writing the magnetization in spherical
coordinates mmm = MMM/Ms =

(
sinθ cosϕ,sinθ sinϕ,cosθ

)T we can write the S4 DMI
energy density as follows

EDMI,S4 = Db(sinϕ ∂x θ + cosϕ ∂yθ)+

Ds(sinϕ ∂yθ − cosϕ ∂xθ). (6.73)
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To derive the CCM we must now substitute θ and φ with the Ansatz for the tilted
DW [9]

tan
(

θ(q,χ)
2

)
= exp

(
P
(x−q)cos χ + ysin χ

∆

)
(6.74)

ϕ(t) = φ(t), (6.75)

where q represents the DW position along the x-axis, χ represents the DW tilting
angle, ∆ the DW width and P =±1 represents the sense of rotation of angle θ ( i.e.
P =±1 ⇒ mz(−∞) =±1 and mz(+∞) =∓1 ). For a schematic of the system and
the angles, refer to Fig.6.19-(a). Noticing that the Ansatz of eq.(6.74) allows us to
compactly compute the derivatives of eq.(6.73) as

∂xθ = P
sinθ cos χ

∆
(6.76)

∂yθ = P
sinθ sin χ

∆
(6.77)

we can write the energy density EDMI,S4 of eq.(6.73) as

EDMI,S4 = P
sinθ

∆

[
Db sin(φ +χ)−Ds cos(φ +χ)

]
. (6.78)

To obtain the DW surface energy, we integrate out the x-degree of freedom of
eq.(6.78)

σDW,S4 =
∫ +∞

−∞

EDMI,S4 dx

= πP
[
Db sin(φ +χ)−Ds cos(φ +χ)

]
. (6.79)

We can now add this DW energy component to the other energy terms already used
in [9] to obtain a generalized DW energy density as a function of all the DMI tensor
components

σDW (φ ,χ) =2
A
∆
+πP

[
Da cos(φ −χ)−Ds cos(φ +χ)−Dt sin(φ −χ)+Db sin(φ +χ)

]
+

2∆(K0 +K sin2(φ −χ))−π∆Ms(Hy sinφ +Hx cosφ), (6.80)
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with K0 = Ku +
Msµ0

2 (Nx −Nz) and K = Msµ0
2 (Ny −Nx) being the effective and shape

anisotropy constants, respectively. Nx,Ny,Nz are the demagnetizing factors which
depend on the geometry of the sample [211, 100]. If the phenomenon of DW tilting is
not to be considered, the properties of the DW can be studied by considering the more
simple q−φ model [207, 10] which can be obtained by setting χ = Hx = Hy = 0 in
eq.(6.80),

σDW (φ) =2
A
∆
+πP

[
(Da −Ds)cos(φ)+(Db −Dt)sin(φ)

]
+

2∆(K0 +K sin2(φ)) (6.81)

Fig. 6.19 (a) Scheme of the system used in the micromagnetic simulations. We show the
dimensions Lx = 1 µm , Ly = 160 nm and Lz = 0.6 nm as well as the internal DW angle φ

and the DW tilt angle χ . (b) φ and χ angles in the case of χ > 0 (i.) φ and χ angles in the
case of χ > 0 (ii.) (c) Schematic representation of the internal DW angle (the colored arrows
in the middle of the domain wall indicate the orientation of the magnetization in the x− y
plane) stabilized by the presence of the different DMI tensor components of eq.(6.80) in the
presence of an applied IP field
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6.4.3 In plane field driven DW titling in the presence of arbitrary
DMI tensors

It is a well established fact, that the presence of iDMI induces a tilt in the DW profile
[9, 212] under the application of an external in-plane (IP) transverse field. The origin
of this phenomenon is explained by considering the relative energy balance of the
DW in presence of chiral interactions and Zeeman fields. In the absence of applied IP
fields, the DW reaches an internal equilibrium angle dictated by the relative strength
of DMI and demagnetizing contributions.

If we apply an external IP field along the positive y-direction, the DW magnetiza-
tion is going to feel the added competing interaction requiring it to align along the
direction of the external field. At the same time, the iDMI produces an effective field
component that stabilizes Néel walls. To try and accommodate both torques, the DW
tilts by an angle χ increasing the DW energy by a factor 1/cos χ . In the following
we try and extend what is known about DW tilting in the presence of iDMI to the
case of arbitrary DMI tensors (see Fig.6.18). As a first step, we analyze the new
DMI energy terms of the χ = 0 case

σDMI = π
[
(Da −Ds)cos(φ)+(Db −Dt)sin(φ)

]
(6.82)

and of the χ ̸= 0 case

σDMI = π
[
Da cos(φ −χ)−Ds cos(φ +χ)

−Dt sin(φ −χ)+Db sin(φ +χ)
]
, (6.83)

where we have set P = 1 for convenience. In the untilted case χ = 0, eq.(6.82)
suggests that the different DMI tensor components all simply induce either Néel or
Bloch wall stabilizing effective fields, however this intuitive picture is only valid
as long as no tilting is observable. If tilting is present (eq.(6.83)) in the system, we
need to take in account the fact that the Ds and Db components minimize the energy
of the DW as a function of φ +χ as opposed to φ −χ .

As a first step to understand the implications of this difference, we discuss
the equilibrium angles stabilized by all the different DMI tensor components of
eq.(6.80). The values of the physical parameters used in the micromagnetic sim-
ulation for the statics and dynamics of the DW represent the values measured in
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Pt/Co/AlOx nanowires [90]. We set the exchange constant A = 10−11J/m, the satura-
tion magnetization Ms = 1.09 MA/m, the effective anisotropy constant K0 = 1.25
MJ/m3, the damping coefficient α = 0.5. The chosen nanowire dimensions are
Lx = 1 µm , Ly = 160 nm and Lz = 0.6 nm (see Fig.6.19-(a) for the schematics
of the setup). By observing the Fig.6.19-(b)-i., (assuming χ > 0) we notice how
φ − χ represents the DW magnetization angle in the reference frame of the tilted
DW. φ + χ on the other hand, represents the DW magnetization in the reference
frame of a mirrored image of the tilted DW, i.e. with a canting angle of −χ (see
Fig.6.19-(b)-ii). As obtained from [119] and [9], the Da and Dt components of the
DM tensor stabilize, respectively, Néel and Bloch DWs in the reference frame of the
tilted DW (see Fig.6.19-(c)-i. and -ii.).

On the other hand, the dependence from the φ +χ angle of Ds and Db components
results in the stabilization of Néel or Bloch DWs in a reference located in a mirror
image version of the DW itself (see Fig.6.19-(c)-iii. and -iv.). To emphasize how the
effect of the Ds and Db components can only be distinguished from the Da and Dt

contributions in the presence of DW tilting (i.e. χ ̸= 0), we analyze the equilibrium
configurations obtained from the minimization of the untilted case and compare them
with micromagnetic simulations performed with a version of the MuMax3 code [14]
suitably modified to account for the new components of the DMI tensor of eq.(6.78).

By observing eq.(6.81), it is immediately apparent that in the case χ = 0, the
effect of Ds and Da (or Db and Dt) cannot be untangled as all these energy terms
contribute to the stabilization of an untilted Néel- (Ds and Da) or an untilted Bloch-
wall (Db and Dt). This effect is clearly visible in Fig.6.20-(a), where a DM tensor
composed only of a Da part stabilizes a Néel wall (Fig.6.20-(a)-ii.) while a DM tensor
composed of a Ds part stabilized a Néel wall with opposite chirality (Fig.6.20-(a)-i.).
In the presence of DW tilting (induced e.g. by the presence of an applied IP field
along the y-axis), the different energy contributions become distinguishable as can
be seen in Fig.6.20-(b)-i. and -ii., where the DW magnetization in the presence of
Ds =±1.5 mJ/m2, Da = Db = 0 and an IP field of Hy = 100 mT points in a direction
compatible with a Néel wall in a reference frame tilted in the opposite direction
−χ . (see the dotted line in Fig. 3(d-e)). In summary, all DMI-tensor contributions
that depend on cos(φ +χ) ( or sin(φ +χ)), rather than cos(φ −χ) (or sin(φ −χ)),
generate a tilting of the DW in order to maintain a Néel (or Bloch) configuration, but
use a fictitious DW tilted in the opposite direction (see the light blue dashed line in
Fig.6.20-(d,e)) as a reference instead of the DW itself. The simultaneous presence
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Fig. 6.20 a-c) Internal DW magnetization (the orange arrows in the middle of the domain
wall indicate the orientation of the magnetization in the x− y plane) angle stabilized by 3
different representative DMI tensors in the absence of an applied IP field (d-e) Internal DW
magnetization angle stabilized by 2 different representative DMI tensors in the presence of
an applied IP field. The mirrored image of the tilted domain wall in (d) and (e) is included
for clarity. The DMI tensor components are expressed in mJ/m2.

of all the different DMI contributions as well as their relative importance is more
complex and is studied both numerically, via the minimization of eq.(6.80) and with
micromagnetic simulations. In Fig.6.21-(a) we observe the tilting angle χ of the DW
in the presence of a DMI tensor compatible with C2v crystal symmetry [97], i.e.

Q̂QQC2v
=

(
0 D12

D21 0

)
. (6.84)

By observing the value of χ for D21 = 0 we notice a vanishing of the DW tilting while
a form of DMI (D12 ̸= 0) is still present. This phenomenon can be understood using
the intuitive picture of competing effective fields. As can be observed in the untilted
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model of eq.(6.81), the term stabilizing Néel walls has the form (Da −Ds)cos(φ).
In the C2v case of eq.(6.84), we have Da = (D12 −D21)/2 and Ds = (D12 +D21)/2
and therefore

⇒ Da −Ds = D21 (6.85)

implying that the component of the DMI tensor that stabilizes Néel walls (and is
responsible for tilting since it competes with the Hy torque) is the D21 component.
In Fig.6.21-(b,c) on the other hand, we observe the behavior or the DW tilting angle
χ in the presence of a DMI tensor compatible with S4 crystal symmetry [97, 107] in
2 different cases. In Fig.6.21-(b) we have

Q̂QQS4
=

(
0 Ds

Ds 0

)
, (6.86)

while in Fig.6.21-(c) we have

Q̂QQS4
=

(
Db Ds

Ds −Db

)
. (6.87)

By comparing the 2 graphs we can observe how the presence of Db terms emphasizes
the canting effect. This can be understood by recalling how the Db terms energetically
favors the formation of Bloch walls. In the presence of a transverse field along the
y-direction, the effective field coming from Db acts constructively and exacerbates
the canting one would normally observe without Db. In Fig.6.21-(d,e) we explore
the canting angle χ in the presence of a DMI tensor compatible with the point group
symmetry T (or others [13]) i.e.

Q̂QQT =

(
Dt 0
0 Dt

)
. (6.88)

In Fig.6.21-(d,e) we study the behavior of χ as a function of Dt in the presence
of a transverse field along the y-direction (Fig.6.21-(d)) and in the presence of a
transverse field along the x-direction (Fig.6.21-(e)). We observe how tilting is only
present in the case of an applied transverse field applied along the x-direction. This
can be explained observing eq.(6.80) where we notice that the DMI associated to Dt

tends to stabilize Bloch walls (Fig.6.20-(c)-ii.): as a consequence a transverse Hx

field tries to change the internal DW magnetization to a Néel configuration. Much
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like in the case of the Da and Ds (see Fig.6.19-(c)-i. and -iii.), the DW responds by
tilting to try and accommodate both the Zeeman- and the Dt effective field.

Fig. 6.21 Comparison of Micromagnetic simulations [14] and numerical minimization of the
energy density of eq.(6.80) for (a) The tilting angle χ as a function of the D21 DMI tensor
component of in the case of a C2v symmetric DMI. (b) Tilting angle χ as a function of the
Ds DMI tensor component of in the case of a S4 symmetric DMI in the case of Db = 0.
(c) Tilting angle χ as a function of the Ds DMI tensor component of in the case of a S4
symmetric DMI in the case of Db = 1.5 mJ/m2. (d) Tilting angle χ as a function of the
Db DMI tensor component of in the case of a T symmetric DMI with an IP applied field
in the y-direction of magnitude µ0Hy = 100 mT (e) Tilting angle χ as a function of the Db
DMI tensor component of in the case of a T symmetric DMI with an IP applied field in the
x-direction of magnitude µ0Hx = 100 mT.

6.4.4 Intrinsic DW tilting in the presence of Db and Ds

As mentioned in the discussion of Sec.6.4.3, the appearance of DW tilting in per-
pendicularly magnetized nanowires is a consequence of the internal equilibrium of
torques trying to orient the DW magnetization some preferred configuration. Ac-
cording to eq.(6.80), if the DMI tensor of the system displays both diagonal and
off diagonal components, the conflict of Néel- and Bloch-wall stabilizing torques
is expected to be present even in the absence of an applied IP field. By observing
Fig.6.22-(c), we can in fact see how the presence of a DMI tensor compatible with
the S4 point group symmetry (see eq.(6.87)), DW tilting occurs even in the absence
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of IP fields. In the thin film limit, considering a situation where the DMI strength
dominates the demagnetizing field, the magnetization angle in the reference frame of
the DW (i.e. φ +χ) can be easily derived by minimizing the simplified DW energy
density

σDW (φ ,χ) = 2
A
∆
+π
[
Db sin(φ +χ)−Ds cos(φ +χ)

]
, (6.89)

which yields the simple solution (Fig.6.22-(a))

φ +χ = arctan
(
−Db

Ds

)
. (6.90)

To obtain an approximate solution for the tilting angle χ in the Ds/Db ≪ 1 limit
as a function of the material parameters, we can follow the procedure outlined in
ref.[9] making the analogy between the Db DMI field and an applied field along
the y−axis. As discussed in Section.6.4.1, DW tilting is the result of an energy
balance between satisfying the internal constraints of the DW and the energy cost
due to its surface area increase. We imagine a scenario where the initial state of the
DW is a Néel configuration (large Ds hypothesis), i.e. σ0 = 2A/∆+πDs + 2∆K0.
The energy of the DW surface scales with ∼ 1/cos χ , while the energy gain of the
Db DMI component in the DW scales approximately with sin χ . If we assume a
small Db contribution (Db/Ds ≪ 1), we can approximate the DW energy in the Néel
configuration as fixed and the energy of the DW as

σDW ≈ σ0 −πDb sin χ

cos χ
, (6.91)

which is minimized by

sin χ =
πDb

σ0
=

πDb

2A/∆+πDs +2∆K0
. (6.92)

As we can see from Fig.6.22-(b), the above formula fits the simulations data rea-
sonably well for small Db, where the dependency of the tilting angle χ from the Db

component is approximately linear.
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Fig. 6.22 (a) DW angle φ +χ as a function of the off-diagonal DMI tensor components Ds in
the S4 symmetric case. (b) DW angles as a function of the diagonal DMI tensor components
Db ( Db/Ds ≪ 1 limit) in the S4 symmetric case. (c) intrinsic DW tilting in the presence of
simultaneous presence of Ds and Db for 3 representative cases.

6.4.5 Measuring Da and Ds DMI contributions with IP fields

According to the discussion of Sec.6.4.3 and Fig.6.20, it might seem impossible
to use the canting angle as a function of applied IP fields to measure Da and Ds

since in the untilted case of eq.(6.81), the Ds energy density component simply
contributes to the stabilization of a Néel wall and can either collaborate or compete
with the Da contribution depending on the relative sign. We can in fact observe how
in Fig.6.23-(a), the response of the tilting angle χ to an IP Hy field in the case of
Ds ̸= 0 is identical to the case −Da and cannot be distinguished. However, according
to eq.(6.80), Fig.6.20-(b)-i. and -ii., even when the canting angle χ is identical, the
equilibrium angle φ inside the DW in the presence of Ds is different when compared
to a system with Da. This implies that the simultaneous action of Hy and Hx IP fields
should induce a different response of the DW canting angle χ in the nanowire. In
Fig.6.23-(b), we show how the canting angle χ responds differently in the presence
of Da or Ds under the application of a rotating IP field of the form

µ0HHH = µ0H0

cos(ωt)
sin(ωt)

0

 , (6.93)
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where t ∈ [0,T ] , ω = 2π/T and µ0H0 = 100mT . We stress the fact that the variable
t does not have the unit of a physical time, since in the simulation the canting angle
χ in response to the applied field is recorded after the system has had time to relax
and not after a fixed time interval. In the x-axis of Figs-6.23-(a,b) we refer to this
variable as "steps". In Fig.6.23-(b) also shows how the form of these curves could in
principle be fitted to Eq.(6.80) to extract the Da,Ds coefficients, potentially allowing
for the magneto-optical measurements of different DMI tensor components with
the canting angle method. The fit is performed by calculating χ from a constrained
minimization of the DW energy density of eq.(6.80) using Hx,Hy as variables and
Da and Ds as fitting parameters.

Fig. 6.23 (a) DW tilting angle χ response to an Hy field sweep from −200 mT to +200 mT
in the case of pure Da (blue dots) and pure Ds (orange squares) contributions to DMI. As
can be seen the 2 responses overlap almost completely. (b) DW tilting angle χ response to a
rotating IP field with Hy and Hx components (see eq.(6.93) in the case of pure Da and pure
Ds contributions to DMI. The dashed curves are obtained by fitting the energy minimum of
eq.(6.80) onto the results obtained via micromagnetic simulations using Da and Ds as the
fitting parameters.
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6.4.6 Domain-wall dynamics in the presence of arbitrary DMI
tensors

After having studied the effects of the different components of the DMI tensor on
the static configurations of magnetic domain walls in nanowires, we now focus on
the effects on the dynamics. Given that in the field driven, steady state regime the
magnetization angle in the reference frame of the DW is only dependent on the
IP torques exerted by the driving field Hz, the anisotropy contributions Hk and the
various components of the DMI tensor, we can avoid considering χ as a collective
coordinate in the dynamical equations and work with the simpler q− φ model
[9, 212] whose DW energy density σDW (q,φ) with the generalized chiral interaction
tensor from eq.(6.65) can be written as

σDW (φ) =2
A
∆
+π
[
(Da −Ds)cos(φ)+(Db −Dt)sin(φ)

]
+

2∆(K0 +K sin2(φ))−π∆Ms(Hy sinφ +Hx sinφ). (6.94)

By explicitly writing the Lagrangian of the DW as L = σDW +(Ms/γ)φθ̇ sinθ

and the Rayleigh dissipation function to correctly account for damping effects
F = (αMs/2γ) ṁmm. We can derive the equations of motion from the Euler-Lagrange-
Rayleigh equation [207],

∂L

∂X
− d

dt

(
∂L

∂ Ẋ

)
+

∂F

∂ Ẋ
= 0, X ∈ {q,φ ,∆}, (6.95)

obtaining the following equations of motion
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q̇ =
∆γ0

1+α2

[
αHz +HK

sin2ϕ

2
− π

2
f̃ ′DMI(ϕ)

− π

2
(Hy cosϕ −Hx sinϕ)

]
, (6.96)

ϕ̇ =
γ0

1+α2

[
Hz −α

(
HK

sin2ϕ

2
− π

2
f̃ ′DMI(ϕ)−

π

2
(Hy cosϕ −Hx sinϕ)

)]
, (6.97)

∆̇ =
12γ0

µ0Msαπ2

[
A
∆
−∆

(
K0 +K sin2

ϕ
)
+

µ0Ms∆
π

2
(Hx cosϕ +Hy sinϕ)

]
. (6.98)

Where we define

HK =
2K

Msµ0
, f̃ ′DMI(φ) =

1
2∆Msµ0

∂ fDMI(φ)

∂φ
(6.99)

and fDMI(φ) represents the trigonometric function with all the different DMI contri-
butions (antisymmetric Da, symmetric Ds, traceless Db and diagonal Dt)

fDMI(φ) = (Da −Ds)cosφ +(Dt −Db)sinφ . (6.100)

If we assume an up-down initial configuration (P =+1) and an in plane (IP) field
free stationary case (i.e Hx = Hy = 0), imposing the stationary conditions φ̇ = ∆̇ = 0
yields the conditions [200, 115] for rigid motion of the DW magnetization

Hz = α

(
Hk

sin2φ

2
− π

2
(
(HDMI,a −HDMI,s)sinφ

+ (HDMI,b −HDMI,t)cosφ
))

, (6.101)

where HDMI,i∈{a,s,b,t} = Di/2∆µ0Ms is the effective field strength associated to the
different DMI components. In order to make the notation more compact, we define

κ :=
K
K0

, D̃′ :=
π(Da −Ds)

µ0HKMs∆0
, D̃′′ :=

π(Dt −Db)

HKµ0Ms∆0
(6.102)
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where ∆0 =
√

A
K0+K sin2

φ
represents the equilibrium DW width that can be obtained

by setting ∆̇ = 0 in eq.(6.98). These definitions allow us to rewrite (6.101) in the
form

Hz =
αHk

2

(D̃′′ cosφ − D̃′ sinφ)

√
1+κ sin2

φ

κ
+ sin2φ

 . (6.103)

For fixed κ, D̃′′, D̃′, the Walker field is identified as the largest Hz fulfilling eq.(6.103)
and is obtained by maximising the right hand side of eq.(6.103) [119], i.e.

HW :=
αHk

2
×

max
φ∈[0,2π)

(D̃′′ cosφ − D̃′ sinφ)

√
1+κ sin2

φ

κ
+ sin2φ

 (6.104)

The maximization of (6.104) is not possible in closed analytical form, however one
can treat the thin film limit, where the perpendicular magnetic anisotropy dominates
over the shape anisotropy , i.e. Nz ≫ Nx , Ny implying the condition κ ≪ 1 on
eq.(6.104). The asymptotic solution in that case has the following form

HW ∼


D̃′′ |D̃′′|+|D̃′| D̃′

κ

√
(D̃′′)2+(D̃′)2

if sign(D̃′′ · D̃′) = 1

D̃′′ |D̃′′|−|D̃′| D̃′

κ

√
(D̃′′)2+(D̃′)2

if sign(D̃′′ · D̃′) =−1

(as κ → 0). (6.105)

We validate the assumption of κ ≪ 1 approximation in our case by pointing out
how the demagnetizing factors in the case of a slab geometry can be calculated
analytically [100] and our geometry Lx = 1 µm, Ly = 160 nm and Lz = 0.6 nm
yields the following values for the demagnetizing factors

Nx = 0.0013 , Ny = 0.0082 , Nz = 0.990. (6.106)

We now proceed and discuss the obtained analytical result by comparing them with
numerical simulations. By observing eq.(6.105), we first of all notice how in the
limit of D̃′ → 0 (i.e. a DMI tensor with only elements on the diagonal) or the limit
D̃′′ → 0 (i.e. a DMI tensor with only elements on the off-diagonal) the asymptotic
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behavior of eq.(6.105) becomes

HW (D̃′ → 0)∼ D̃′′/κ (6.107)

HW (D̃′′ → 0)∼ D̃′/κ (6.108)

(6.109)

Fig. 6.24 Comparison of Micromagnetic simulations [14], numerical minimization (6.101)
and analytical estimate (see eq.(6.105)) for the DW Walker breakdown HW . (a) DW velocity
vDW as a function of an applied out-of-plane field Hz. The different curves show the velocity
profile for different values of the symmetric component of a C2v symmetric DMI tensor
(see inset of (c)). (b) DW velocity vDW as a function of an applied out-of-plane field Hz.
The different curves show the velocity profile for different values of the anti symmetric
component of a C2v symmetric DMI tensor (see inset of (d)). (c) Comparison of simulation
results, numerical maximization of eq.(6.103) and analytical estimate (see eq.(6.105)) of the
Walker breakdown as a function of the symmetric component of a C2v symmetric tensor.
(d) Comparison of simulation results, numerical maximization of eq.(6.103) and analytical
estimate (see eq.(6.105)) of the Walker breakdown as a function of the anti symmetric
component of a C2v symmetric tensor.

which shows a linear behavior compatible both with our numerical results (see
Fig.6.24) and, in the HW (D̃′ → 0)∼ D̃′′/κ case, with the results shown in [119]. We
emphasize how these limiting cases show a linear dependence of the WB field only
in the case of exclusive presence of diagonal or off-diagonal elements, but not both
at the same time. By observing Fig.6.25-(a,b) we point out how the presence of both
a diagonal and off-diagonal component of the DMI tensor results in a departure from
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the linear behavior also described by eq.(6.107) and eq.(6.108) hinting at the fact
that the components of the effective field counteracting precessional motion do not
cooperate additively but in a non-linear way. Furthermore, we emphasize how this
behavior of the WB field directly translates in the attainable peak DW velocity since,
in the κ ≪ 1 limit,

vmax ∼
∆0γ0α

1+α2 HW = (6.110)

∆0γ0α

1+α2


D̃′′ |D̃′′|+|D̃′| D̃′

κ

√
(D̃′′)2+(D̃′)2

if sign(D̃′′ · D̃′) = 1

D̃′′ |D̃′′|−|D̃′| D̃′

κ

√
(D̃′′)2+(D̃′)2

if sign(D̃′′ · D̃′) =−1

(as κ → 0). (6.111)

In Fig.6.25-(c) we report the peak velocities calculated with eq.(6.111) and show
how with Ds = 1.5 mJ/m2 and Db = −1.5 mJ/m2 even peak velocities as high
as vmax ≈ 1200 m/s are theoretically achievable. Furthermore, using experimen-
tally measured [205] parameters for the S4 symmetric Schreibersite compound
Fe1.9Ni0.9Pd0.2P (A = 8 pJ/m , Ku = 31 kJ/m3 , Ms = 417 kA/m) while keep-
ing the nanowire dimensions unchanged, eq.(6.111) predicts how peak velocities
vmax ≈ 1700 m/s can be achieved even with much smaller DMI tensor components
(i.e. Ds = Db = 0.2 mJ/m2).
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Fig. 6.25 (a) 3D plot of eq.(6.105) (b) Plot of the analytical formula for the WB field HW as
a function of the off-diagonal D̃′ component (see eq.(6.105)). The different curves represent
the behavior of the WB field for different diagonal DMI Db values. At Db = 0 (i.e the blue
curve) we recover the linear behavior. The peak velocities are reported on the second y-axis
shown in red. (c) Comparison of WB field calculated from a micromagnetic simulation with
a DMI tensor compatible with S4 symmetry (Dl = 1.3 mJ/m2 and free Db) and the analytical
estimate of eq.(6.105). The peak velocities are reported on the second y-axis shown in red.

6.4.7 Conclusion

In this work we modified to the existing CCM [207, 9, 212] to include and study
the effects of arbitrary DMI tensors on the statics and dynamics of domain walls in
magnetic nanowires. We discuss how the effects of a DMI tensors can be described
by inspecting how its symmetric traceless (Ds,Db), antisymmetric (Da) and diagonal
(Dt) components act on the effective field inside the DW. We first show how DW
canting is well described by the energy density of the q−φ −χ model (see Fig.6.21)
and discuss how the canting angle method is able to distinguish diagonal (Db,Dt)
DMI contributions and off-diagonal DMI contributions (Da,Ds). We also observe
how measuring the response of the canting angle χ to the simultaneous application
of an IP field with both Hx and Hy components could potentially be a means to
magneto-optically measure symmetric (Ds) and antisymmetric (Da) contributions
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(see Fig.6.23) to DMI. Other IP field applications schemes could be studied to further
enhance the resolution power of this technique. We then proceed and show how,
in the presence of both Ds and Db DMI components, DW tilting can be present
even in the absence of IP fields. We derive a simple analytic formula for the
canting angle χ as a function of Db valid in the Ds/Db ≪ 1 limit (see Fig.6.22).
We then study the effect of the different DMI tensor components on the the field
driven dynamic properties of DWs in magnetic nanowires. We discover that the
effects of the interplay of the Néel- and Bloch-Stabilizing DMI components on
the magnitude of the WB field is not trivial and determines a departure from the
simple linear dependency (Fig.6.25-(a)) in the case of pure interface- [10] of bulk-
DMI [119]. We then derive an analytic formula describing the dependency the of
the WB field on the different DMI tensor components (eq.(6.105)) in the thin film
limit, comparing its predictions with micromagnetic simulations (Fig.6.25-(b)). The
very high theoretically achievable DW velocities in the order km/s (Fig.6.25-(c)) is
confirmed by simulation and could open the way to a new wave of experimental
investigations in low-symmetry magnetic thin films. These results indeed hint at the
fact that materials displaying these more exotic forms of DMI combining both Bloch
and Néel stabilising effective fields, could be interesting candidates for novel DW
motion based technology concepts.



Chapter 7

Summary of results and future
outlook

7.1 Summary of results

In the following we provide a concise account of the main results obtained in these 3
years of research activity:

• Multiple magneto-ionic regimes: A combination of experimental efforts
and ab-initio calculations allowed us to propose a microscopic mechanism
for the different observed reversibility regimes in the magnetization switching
in Ta/Co20Fe60B20/HfO2 multilayers. In these systems, the geometry of the
oxygen-ferromagnet interaction seems to be of crucial importance for the
reversibility characteristics of magneto-ionic switching.

• Gauge field theory of chiral interactions in arbitrary crystals: the use of
gauge invariance, a tool borrowed from interacting field theories, led to the
development of a formalism for compactly describing chiral interactions in
micromagnetism taking in account arbitrary crystallographic point groups.
This formalism was successfully translated into computational tools by adapt-
ing the open source micromagnetic code MuMax3 [14], enabling the study
of magnetic domain wall behavior in crystals of arbitrary point groups under
chiral interactions.
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• Collective coordinate models with arbitrary chiral interactions: The previ-
ously developed formalism allowed us to expand existing collective coordinate
models to describe domain wall motion in nanowires displaying arbitrary chiral
interactions. We discovered a highly non-trivial behavior of magnetic domain
wall canting angles and a nonlinear enhancement of the Walker breakdown
field in the presence of certain types of chiral interactions.

• Electric Field Effects on Magnetostatic Spin Waves: In insulating materials,
we have shown through a micromagnetic theoretical analysis of the electric
field effect on the dispersion relation of magnetostatic surface waves, two main
contributions emerge: a purely macroscopic relativistic one and a contribution
that operates on the level of quantum mechanical magnetic exchange. We
speculate that since the physical origin of these two is drastically different, the
nature of the electric field itself must be carefully considered when analyzing
experimental data. We remark how these result, despite being in line with the
overall theme of the thesis, concern dynamical magnetization processes. In
the interest of brevity and to keep the presentation of the results as tight as
possible, we have decided not to include these result in the present version of
the dissertation.

• Observation of a phase transition triggered by the change of character
of chiral interactions in response to oxygen positioning: we were able
to register (via DFT calculations) a change from anti-skyrmionic DMI to
skyrmionic Dzyaloshinskii-Moriya interaction in response to the movement of
oxygen atoms in the 2D magnet VO2. Despite the observation of this transition,
the microscopic mechanism governing it is still under investigation. Because
of the open ended nature of these preliminary results, we have decided not to
include them in the present version of the thesis.

7.2 Future outlook

The obtained results have opened up several avenues for future research. Foremost
among these questions is the verification of whether the application of an electric field
perpendicular to the plane of a thin film hosting anisotropic Dzyaloshinskii-Moriya
interaction (DMI) could indeed induce a phase transition from an antiskyrmion to
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a skyrmion phase. This predicted phenomenon holds significant implications for
the control and manipulation of topological magnetic textures and warrants further
investigation to confirm its occurrence and understand its underlying mechanisms.

Furthermore, the idea of symmetry breaking along the ẑ-axis to trigger a phase
transition from antiskyrmion to skyrmion is not limited to the use of electric fields
but also appears promising in the context of magneto-ionic manipulation of magnetic
properties. The application of perpendicular electric fields has recently demonstrated
the ability to induce a change in the sign of interfacial DMI (iDMI) [7], indicating
that interfacial manipulations of this nature align with the predicted direction for
symmetry breaking. Exploring the interplay between electric fields, magneto-ionic
effects, and symmetry breaking in relation to DMI manipulation holds great potential
for advancing our understanding of the underlying mechanisms and establishing
practical techniques for controlling topological magnetic structures.

By addressing these open questions, future research can further explore the full
potential of electric field and magneto-ionic manipulation principles for control-
ling magnetic properties and topological structures in magnetic thin films, paving
the way for the development of next-generation spintronic devices with enhanced
performance and reduced environmental impact.

The exploration of the 2-site anisotropy term, as discussed in the theory section,
presents another intriguing avenue for future research. This interaction term has
garnered increased attention with the development of 2D magnetism, as it can
become relevant in such systems. The study of this term and its implications in
2D magnets offer a promising research direction to uncover new phenomena and
understand the underlying physics.

In particular, in the context of 2D magnets displaying Kitaev exchange, the addi-
tional symmetry breaking along the ẑ-direction presents an unexplored research fron-
tier, especialy when coupled with the possibility of stabilizing magnetic structures
with non-vanishing topological properties analogous to the role of Dzyaloshinskii-
Moriya interaction (DMI) in skyrmions and antiskyrmions [213]. The more delicate
nature of this interaction increases the hope to induce visible effects of a more modest
electric field compared to systems where the effects should emerge against much
larger energy scales such as DMI and MCA.

Addressing the role and effects of the 2-site anisotropy term within the framework
of micromagnetism also represents a research direction that has yet to be extensively
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pursued. Exploring the interplay between this term and other magnetic interactions
through theoretical modeling and numerical simulations can shed light on its impact
on the stability and behavior of magnetic structures, including the possible emergence
of non-trivial topological properties.
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Appendix A

The limits of the Hubbard model

A.1 The non-interacting limit U = 0

In the following we briefly discuss the non-interacting limit of the Hubbard Hamil-
tonian discussed in 2.1.1, i.e. a version of eq.(2.1) where we set U = 0 implying
that the electrons are free to hop on the lattice but their charge does not interact via
Coulomb repulsion. We proceed by calculating the free energy for the simplified
case of a SC lattice with n.n interaction and site-independent hopping ti j = t. For
simplicity we suppress the spin index.

H −µN =−t ∑
<i, j>

c†
i c j −µ ∑

i
c†

i ci (A.1)

We introduce this elementary model as it constitutes the starting point for many
effective spin models discussed both in this dissertation and in the broader literature.
Since the problem in this formulation is translationally invariant, we change to
momentum space and diagonalize

c†
i =

1√
V ∑

k
eikkk·RRRic†

k (A.2)

⇒− t
V ∑

<i, j>
∑
k,q

ei(kkk·RRRi−qqq·RRR j)c†
kcq −

µ

V ∑
i,k,q

eiRRRi·(kkk−qqq)c†
kcq. (A.3)
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Fig. A.1 (a) Nearest neighbors in the SC lattice (b) Dispersion relation εk. To allow for a 3D
visualization, the kz-component is set to 0.

We recall V δkkk,qqq = ∑i eiRRRi(kkk−qqq) and the fact that we are working on a simple cubic
(SC) lattice which allows us to rewrite RRR j (see Fig.A.1)

RRR j −RRRi =±aêα (A.4)

⇒=−t ∑
k

∑
α=x,y,z

(eiakkk·êα + e−iakkk·êα )︸ ︷︷ ︸
=2cos(kα a)

c†
kck −µ ∑

k
c†

kck (A.5)

⇒= ∑
k
(εk −µ)c†

kck ,εk =−2t ∑
α=x,y,z

cos(kαa) (A.6)

where we have defined the energy as εk =−2t ∑α=x,y,z cos(kαa). We have plotted the
dispersion relation εk in the simplified case of kz = 0 in Fig.A.1 and we immediately
recognize the valence band of a metallic material.

A.2 The non-hopping case t = 0

Another trivial limit of the Hubbard model is identified by the non-hopping case,
where we allow the electrons to interact via Coulomb interaction, but deprive them
of the freedom to hop around the lattice sites. This situation is described by the
Hamiltonian

H = ∑
i

Uini,↑ni,↓, (A.7)
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where ni,σ represents the number operator with spin σ on atomic site i. The Hamil-
tonian is already in diagonal form and a general eigenstate in occupation number
basis can be written in terms of Wannier functions [43] as follows

|xxx,σ⟩=
(

∏
i∈X

c†
i↑

)(
∏
i∈Y

c†
i↓

)
|0⟩ , (A.8)

where X and Y represent the lattice sites occupied by, respectively, ↑-spins and
↓-spins. The total number of electrons is fixed and is given by N = N(↑)+N(↓) .
The eigenenergies are given by the eigenvalue equation

H |xxx,σ⟩=
(

∑
i

Ui

)
|xxx,σ⟩=U |xxx,σ⟩ , (A.9)

where we have defined
(

∑iUi

)
:=U . As we can see the physical picture in this case

is of an ensemble of localized electron at atomic lattice sites. The fact that flipping
pairs of spins leaves the energy invariant generates a huge ground state degeneracy,
i.e. there are 2N equivalent ground states. As we discuss in 2.1.1, this is the precisely
the degeneracy that is broken by the perturbational inclusion of the hopping term t.
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Quasi degenerate perturbation theory

In the following we provide a brief introduction to the problems and solution strate-
gies of degenerate perturbation theory [214] as they are vastly used in the computa-
tion of effective spin models [95]. Assume we are dealing with a Hamiltonian of the
form

H = H0 +H ′, (B.1)

where H ′ is a perturbational term. We now make the assumption that the spectrum of
this Hamiltonian can be partitioned in 2 weakly overlapping subsets of eigenfunctions
A = {|ψn}⟩ and B = {|ψm⟩}. Perturbation theory states that it is possible to find
a unitary operator S such that the rotated matrix elements H̃nm = ⟨ψm|H̃ |ψl⟩ =
⟨ψm|e−SHeS|ψl⟩= 0 up to a desired order in S (see Fig.B.1). We start by writing the
Ansatz

H̃ = e−SH eS (B.2)

and expanding the exponential eS giving us the rotated Hamiltonian

H̃ = (1−S+
1
2

S2 − 1
3!

S3 + · · ·)H (1+S+
1
2

S2 − 1
3!

S3 + · · ·) =
∞

∑
j=0

[H ,S]( j)

j!
.

(B.3)
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Fig. B.1 Effect of the unitary operator S acting on the matrix H

Fig. B.2 Decomposition of a matrix H in a diagonal (H 0), block diagonal (H 1) and non
block-diagonal matrix (H 2) component

Much like any matrix, we can separate H in one diagonal (H 0), 1 block diagonal
(H 1) and 1 non block diagonal matrix (H 2) as represented in Fig.B.2

→ H̃ =
∞

∑
j=0

[H 0 +H 1,S]( j)

j!
+

∞

∑
j=0

[H 2,S]( j)

j!
. (B.4)

Given that the decomposition in B.2 can be performed for any matrix, we can also

perform it for the rotated matrix H̃ = H̃d +H̃n =

(
A 0
0 B

)
+

(
0 C
D 0

)
. Since

S is non block diagonal (this is justified a posteriori) we can expect H̃d to contain
the following powers of the nested commutator

[H 0 +H 1,S]( j) ∀ j even, (B.5)

[H 2,S]( j) ∀ j odd. (B.6)
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We begin by noticing that the structure of the jth nested commutator can be inferred
by simply multiplying the operators.(

A 0
0 B

)
·

(
0 C
D 0

)
=

(
0 A ·C

B ·D 0

)
⇒ even powers (B.7)(

A 0
0 B

)
·

(
C 0
0 B

)
=

(
A ·C 0

0 B ·D

)
(B.8)(

0 C
D 0

)
·

(
0 A
B 0

)
=

(
C ·B 0

0 D ·A

)
· (B.9)

Therefore

[H 0 +H 1,S] =

(
0 A
0 B

)
→ even powers →

(
C 0
0 D

)
(B.10)

[H 2,S] =

(
A 0
0 B

)
→ odd powers →

(
C 0
0 D

)
(B.11)

On the other hand, the non-block diagonal part of H̃ (i.e H̃n) must contain the
following powers of the nested commutators

[H 0 +H 1,S]( j)∀ j odd, (B.12)

[H 2,S]( j)∀ j even. (B.13)

We can therefore split the even/odd contributions and write

H̃d =
∞

∑
j=0

[H 0 +H 1,S](2 j)

(2 j)!
+

∞

∑
j=0

[H 2,S](2 j+1)

(2 j+1)!
, (B.14)

H̃a =
∞

∑
j=0

[H 0 +H 1,S](2 j+1)

(2 j+1)!
+

∞

∑
j=0

[H 2,S](2 j)

(2 j)!
. (B.15)

With the above we can formulate a constraint on S that allows to compute its elements
at the desired order in S. The requirement on S is that H̃n(S) = 0 at all orders of j.
Since we assume that S is proportional to the perturbation parameter, we make the
following Ansatz

S = ∑
n

s(n), (B.16)
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where O(s(n)) = tn. We now expand (B.15) and compare order by order in n

H̃d =
∞

∑
j,k=0

[H 0 +H 1,s(k)](2 j)

(2 j)!
+

∞

∑
j=0

[H 2,s(k)](2 j+1)

(2 j+1)!
. (B.17)

When comparing the orders we have to keep in mind

O([H 0,s(k)]( j)) = O([H 0,s(k)] · · ·s(k)︸ ︷︷ ︸
j-times

] = jk (B.18)

O([H 1,2,s(k)]( j)) = jk+1 (B.19)

Solving at any given order we have

[H 0,s1] =−H 2, (B.20)

[H 0,s2] =−[H 1,s1], (B.21)

[H 0,s3] =−[H 1,s2]− 1
3
[H 1,s1](2). (B.22)

If we now select a suitable basis in the 2 disjoint sub-spaces A and B introduced
above (see Fig.B.1) we have

⟨n|s(1)|m⟩=−⟨n|H (2)|m⟩
(En −Em)

(B.23)

The second order equation follows analogously

(En −Em)⟨n|s(2)|m⟩=−∑
l
⟨n|H (1)|l⟩⟨l|s(1)|m⟩−⟨n|s(1)|l⟩⟨l|H (1)|m⟩ (B.24)

= ∑
l

⟨n|H (1)|l⟩⟨l|H (2)|m⟩
El −Em

− ⟨n|H (2)|l⟩⟨l|H (1)|m⟩
En −El

(B.25)

Plugging these matrix elements in (B.14) we can recover the effective Hamiltonian.
This method can be employed to compute the magnetic interaction terms of the
Heisenberg Hamiltonian [95].
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Moriya’s derivation of DMI

In the following we present a detailed derivation of the DMI term in the framework
of the Anderson superexchange model as performed by Moriya in his seminal paper
[67]. The one electron Hamiltonian written in terms of annihilation and creation
operators is written as follows

H = H0 +HSOC = ∑
n

∑
i

εni[c
†
ni↑cni↑+ c†

ni↓cni↓] (C.1)

+∑
i ̸= j

∑
n,n′,σ

b ji,n′n

(
c†

n′ jσ cniσ + c†
niσ cn′ jσ

)
+

+C x
ji,n′n

(
c†

n′ jσ cni−σ − c†
niσ cn′ j−σ

)
−

− iC y
ji,n′ n

(
c†

n′ j−σ
cniσ + c†

niσ cn′ j−σ

)
+

+C z
ji,n′ n(2σ)

(
c†

n′ jσ cniσ − c†
niσ cn′ jσ

)
(C.2)

C.1 The x-component

Expanding the expression (2.88)

∑
σ

b ji,n′n

(
c†

n′ jσ cniσ + c†
niσ cn′ jσ

)
+C x

ji,n′n

(
c†

n′ jσ cni−σ − c†
niσ cn′ j−σ

)
×

∑
η

bi j,nn′
(

c†
niηcn′ jη + c†

n′ jηcniη

)
+C x

i j,nn′

(
c†

ni−η
cn′ jη − c†

n′ j−η
cniη

)
(C.3)
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By carrying out the multiplication and keeping the terms ∝ C xb, we have

∑
ση

b ji,n′nC
x
i j,nn′

(
c†

n′ jσ cniσ c†
ni−η

cn′ jη − c†
niσ cn′ jσ c†

n′ j−η
cniη

)
+

+(i ↔ j) (C.4)

where the notation (i ↔ j) indicates a term identical to the first one but with ex-
changed i and j. We can rearrange the creation operators in order to have j operators
first.

c†
n′ jσ cniσ c†

ni−η
cn′ jη = c†

n′ jσ cn′ jη(δσ ,−η − c†
ni−η

cniσ ) (C.5)

c†
niσ cn′ jσ c†

n′ j−η
cniη = (δσ ,−η − c†

n′ j−η
cn′ jσ )c

†
niσ cniη (C.6)

∑
ση

b ji,n′nC
x
i j,nn′

(
c†

n′ j−η
cn′ jσ c†

niσ cniη − c†
n′ jσ cn′ jηc†

ni−η
cniσ

)
+

+(i ↔ j) (C.7)

We used the fact that the term

∑
i ̸= j

∑
σ

c†
n′ jσ cn′ j−σ − c†

niσ cni−σ (C.8)

vanishes in the sum over i, j because it is antisymmetric under the exchange of these
two indices. We now introduce a new notation for the operator strings of the form

ΛA( j, i) := ∑
σ

c†
n′ jσ cn′ j−σ︸ ︷︷ ︸

positionA

c†
niσ cniσ (C.9)

Basically the index of Λ indicates the location of the spin index which appears with
an opposite sign in the summation. Using this compact notation we have

∑
σ ,η

c†
n′ j−η

cn′ jσ c†
niσ cniη = Λ1( j, i)+Λ4( j, i) (C.10)

∑
σ ,η

c†
n′ jσ cn′ jηc†

ni−η
cniσ = Λ3( j, i)+Λ2( j, i) (C.11)
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This change of notation allows us to write eq.(C.7) as

⇒ b ji,n′nC
x
i j,nn′ (Λ1( j, i)+Λ4( j, i)−Λ3( j, i)−Λ2( j, i))+(i ↔ j) (C.12)

Furthermore, we notice the following property of the Λ’s

Λ1(i, j)↔ Λ3( j, i) (C.13)

Λ2(i, j)↔ Λ4( j, i) (C.14)

Meaning the term with i ↔ j becomes

−bi j,nn′C
x
i j,nn′ (Λ1( j, i)+Λ4( j, i)−Λ3( j, i)−Λ2( j, i)) (C.15)

Meaning the x-component of our effective Hamiltonian has the form

(b ji,n′nC
x
i j,nn′ −bi j,nn′C

x
ji,n′n)(Λ1 +Λ4 −Λ3 −Λ2) (C.16)

where we have suppressed the i, j indices in the ΛA to lighten the notation.

C.2 The y-component

Performing the same steps as the x-component we obtain the following form for the
y-term

i(b ji,n′nC
y
i j,nn′ −C y

ji,n′ nbi j,nn′)(Λ3 +Λ4 −Λ1 −Λ2) (C.17)

C.3 The z-component

For the z component we cannot use the same Λ notation as for the other 2 components.
We can however perform the same steps as for the other 2 cases and obtain:

(b ji,n′nC
z
i j,nn′ −C z

ji,n′nbi j,nn′)×

×∑
σ

(2σ)(c†
n′ jσ cn′ j−σ c†

ni−σ
cniσ − c†

n′ j−σ
cn′ jσ c†

niσ cni−σ )

(C.18)
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One can now easily compare with the spin operators in second quantization and
notice

(SSS j ×SSSi)x =
i
4
(Λ1 +Λ4 −Λ3 −Λ2) (C.19)

(SSS j ×SSSi)y =
1
4
(Λ3 +Λ4 −Λ1 −Λ2) (C.20)

(SSS j ×SSSi)z =
i
4 ∑

σ

(2σ)(c†
n′ jσ cn′ j−σ c†

ni−σ
cniσ − c†

n′ j−σ
cn′ jσ c†

niσ cni−σ ) (C.21)

The effective Hamiltonian for the terms ∝ C b becomes

DDD( j, i) · (SSS j ×SSSi) (C.22)

Where
DDDα( j, i) :=

4i
U
[b ji,n′nC

α

i j,nn′ −C α

ji,n′nbi j,nn′]. (C.23)

This is indeed in accordance with the result shown in [67], and demonstrates how
the inclusion of SOC in the one electron Hamiltonain can indeed induce effective
spin models where the so called DMI is present. A completely analogous procedure
can be employed to calculate the expansion terms of eq.(2.88) that are ∝ C 2, yielding
the effective Hamiltonian term

SSST
j
↔
Γ ( j, i)SSSi, (C.24)

Where
↔
Γ ( j, i) is a 3×3 matrix of the form

CCCi j,nn′ ⊗CCC ji,n′n +CCC ji,n′n ⊗CCCi j,nn′ − I⊗ (CCCi j,nn′ ·CCC ji,n′n) (C.25)
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The finite difference code to compute
exotic DMI terms in thin films

In the following we provide the code used to alter the MuMax3 section in order to
include Lifshitz invariant terms of the form reported in eq.(3.53). As discussed in
6.3.2 any arbitrary DMI tensor can be decomposed in an antisymmetric part (iDMI),
a symmetric traceless part (anisotropic DMI part) and a diagonal part (bMDI part)
part. The additional term corresponding to the symmetric traceless part of DMI is
the missing one to allow the calculation of magnetization dynamics in the presence
of arbitrary DM contributions.

Q̂QQi j =

(
0 Da

−Da 0

)
︸ ︷︷ ︸

iDMI →implemented

+

(
Db Ds

Ds −Db

)
︸ ︷︷ ︸
not implemented

+

(
Dt 0
0 Dt

)
︸ ︷︷ ︸

bDMI→implemented

. (D.1)

According to the discussion of Sec.3.3.1, the effective field of a DMI tensor of
the form

Q̂QQ =

(
Db Ds

Ds −Db

)
(D.2)

has the form

HHH(DMI)
eff =

 D2∂xmz −D1∂ymz

−[D1∂xmz +D2∂ymz]

0

 (D.3)
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which can be translated in discrete form by considering the finite difference imple-
mentation of the partial derivative operators (see eqs.(5.79)-5.81)

H(DMI)
eff,x (i, j,k) = D2

mz(i+1, j,k)−mz(i−1, j,k)
2∆x

−D1
mz(i, j+1,k)−mz(i, j−1,k)

2∆y

(D.4)

H(DMI)
eff,y (i, j,k) =−D1

mz(i+1, j,k)−mz(i−1, j,k)
2∆x

−D2
mz(i, j+1,k)−mz(i, j−1,k)

2∆y

(D.5)

H(DMI)
eff,z (i, j,k) = 0 (D.6)

#include <stdint.h>
#include "exchange.h"
#include "float3.h"
#include "stencil.h"
#include "amul.h"

// Exchange + Dzyaloshinskii-Moriya interaction according to
// Bagdanov and Rössler, PRL 87, 3, 2001. eq.8 (out-of-plane symmetry breaking).
// Taking into account proper boundary conditions.
// m: normalized magnetization
// H: effective field in Tesla
// D: dmi strength / Msat, in Tesla*m
// A: Aex/Msat
extern "C" __global__ void
adddmi(float* __restrict__ Hx, float* __restrict__ Hy, float* __restrict__ Hz,

float* __restrict__ mx, float* __restrict__ my, float* __restrict__ mz,
float* __restrict__ Ms_, float Ms_mul,
float* __restrict__ aLUT2d, float* __restrict__ dLUT2d, uint8_t* __restrict__ regions,
float cx, float cy, float cz, int Nx, int Ny, int Nz, uint8_t PBC, uint8_t OpenBC) {

int ix = blockIdx.x * blockDim.x + threadIdx.x;
int iy = blockIdx.y * blockDim.y + threadIdx.y;
int iz = blockIdx.z * blockDim.z + threadIdx.z;

if (ix >= Nx || iy >= Ny || iz >= Nz) {
return;

}

int I = idx(ix, iy, iz); // central cell index
float3 h = make_float3(0.0,0.0,0.0); // add to H
float3 m0 = make_float3(mx[I], my[I], mz[I]); // central m
uint8_t r0 = regions[I];
int i_; // neighbor index

if(is0(m0)) {
return;

}
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// x derivatives (along length)
{

float3 m1 = make_float3(0.0f, 0.0f, 0.0f); // left neighbor
i_ = idx(lclampx(ix-1), iy, iz); // load neighbor m if inside grid, keep 0 otherwise
if (ix-1 >= 0 || PBCx) {

m1 = make_float3(mx[i_], my[i_], mz[i_]);
}
int r1 = is0(m1)? r0 : regions[i_]; // don’t use inter region params if m1=0
float A1 = aLUT2d[symidx(r0, r1)]; // inter-region Aex
float D1 = dLUT2d[symidx(r0, r1)]; // inter-region Dex
if (!is0(m1) || !OpenBC){ // do nothing at an open boundary

if (is0(m1)) { // neighbor missing
m1.x = m0.x - (-cx * (0.5f*D1/A1) * m0.z); // extrapolate missing m from Neumann BC’s
m1.y = m0.y;
m1.z = m0.z + (-cx * (0.5f*D1/A1) * m0.x);

}
h += (2.0f*A1/(cx*cx)) * (m1 - m0); // exchange
h.x += (D1/cx)*(- m1.z);
h.z -= (D1/cx)*(- m1.x);

}
}

{
float3 m2 = make_float3(0.0f, 0.0f, 0.0f); // right neighbor
i_ = idx(hclampx(ix+1), iy, iz);
if (ix+1 < Nx || PBCx) {

m2 = make_float3(mx[i_], my[i_], mz[i_]);
}
int r2 = is0(m2)? r0 : regions[i_];
float A2 = aLUT2d[symidx(r0, r2)];
float D2 = dLUT2d[symidx(r0, r2)];
if (!is0(m2) || !OpenBC){

if (is0(m2)) {
m2.x = m0.x - (cx * (0.5f*D2/A2) * m0.z);
m2.y = m0.y;
m2.z = m0.z + (cx * (0.5f*D2/A2) * m0.x);

}
h += (2.0f*A2/(cx*cx)) * (m2 - m0);
h.x += (D2/cx)*(m2.z);
h.z -= (D2/cx)*(m2.x);

}
}

// y derivatives (along height)
{

float3 m1 = make_float3(0.0f, 0.0f, 0.0f);
i_ = idx(ix, lclampy(iy-1), iz);
if (iy-1 >= 0 || PBCy) {

m1 = make_float3(mx[i_], my[i_], mz[i_]);
}
int r1 = is0(m1)? r0 : regions[i_];
float A1 = aLUT2d[symidx(r0, r1)];
float D1 = dLUT2d[symidx(r0, r1)];
if (!is0(m1) || !OpenBC){
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if (is0(m1)) {
m1.x = m0.x;
m1.y = m0.y - (-cy * (0.5f*D1/A1) * m0.z);
m1.z = m0.z + (-cy * (0.5f*D1/A1) * m0.y);

}
h += (2.0f*A1/(cy*cy)) * (m1 - m0);
h.y += (D1/cy)*(- m1.z);
h.z -= (D1/cy)*(- m1.y);

}
}

{
float3 m2 = make_float3(0.0f, 0.0f, 0.0f);
i_ = idx(ix, hclampy(iy+1), iz);
if (iy+1 < Ny || PBCy) {

m2 = make_float3(mx[i_], my[i_], mz[i_]);
}
int r2 = is0(m2)? r0 : regions[i_];
float A2 = aLUT2d[symidx(r0, r2)];
float D2 = dLUT2d[symidx(r0, r2)];
if (!is0(m2) || !OpenBC){

if (is0(m2)) {
m2.x = m0.x;
m2.y = m0.y - (cy * (0.5f*D2/A2) * m0.z);
m2.z = m0.z + (cy * (0.5f*D2/A2) * m0.y);

}
h += (2.0f*A2/(cy*cy)) * (m2 - m0);
h.y += (D2/cy)*(m2.z);
h.z -= (D2/cy)*(m2.y);

}
}

// only take vertical derivative for 3D sim
if (Nz != 1) {

// bottom neighbor
{

i_ = idx(ix, iy, lclampz(iz-1));
float3 m1 = make_float3(mx[i_], my[i_], mz[i_]);
m1 = ( is0(m1)? m0: m1 ); // Neumann BC
float A1 = aLUT2d[symidx(r0, regions[i_])];
h += (2.0f*A1/(cz*cz)) * (m1 - m0); // Exchange only

}

// top neighbor
{

i_ = idx(ix, iy, hclampz(iz+1));
float3 m2 = make_float3(mx[i_], my[i_], mz[i_]);
m2 = ( is0(m2)? m0: m2 );
float A2 = aLUT2d[symidx(r0, regions[i_])];
h += (2.0f*A2/(cz*cz)) * (m2 - m0);

}
}

// write back, result is H + Hdmi + Hex
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float invMs = inv_Msat(Ms_, Ms_mul, I);
Hx[I] += h.x*invMs;
Hy[I] += h.y*invMs;
Hz[I] += h.z*invMs;

} x
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