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Abstract

Rescheduling adds to deterministic scheduling the ability to respond to the occur-
rence of an unexpected event. While scheduling proposes methods to optimize
the execution of tasks on machines, rescheduling proposes methods to best update
known schedules when they become suboptimal for some reason. The unexpected
triggering event studied in this dissertation is the arrival of new jobs. The new goal is
to optimize the execution of all jobs, but also to avoid excessive deviations from the
original schedule on which other work may rely. Methods for rescheduling involve
the consideration of an objective function to be minimized and a disruption constraint
that limits the deviation from the original solution. The goal of this dissertation
is to study, from both a theoretical and algorithmic perspective, single-machine
rescheduling problems to minimize classical scheduling objective functions given a
disruption constraint measured as a function of the absolute deviation of completion
times. Since rescheduling for new orders has only been studied in a fragmented
and case-by-case manner in the literature, the work in this dissertation attempts to
provide a comprehensive analysis of the nature of rescheduling problems and ways
to solve them. First, the analysis considers the formulation of structural properties
of the problem and focus on demonstrating the computational complexity of the
problems. The structural analysis is followed by a detailed discussion of the tim-
ing problem arising from those problems where the problem formulation leads to
optimal solutions that may include unforced idle time on the machine. Algorithms
for the problems are proposed and their polynomiality is shown. The remainder
of the dissertation studies how to approach two computationally hard rescheduling
problems. The first problem is solved to optimality in pseudo-polynomial time using
dynamic programming, and then using approximation algorithms to obtain solutions
with a bounded performance ratio. For the second problem, a branch and memorize
algorithm is developed that exploits a generic structure and specific properties. The
algorithm is the first exact search tree algorithm for a hard rescheduling problem
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that exploits an efficient exploration of the solution space. Computational experi-
ments comparing the algorithm with a commercial solver for optimization problems
show that the algorithm does indeed succeed in exploiting problem-specific features
for solving the problem in a more efficient way. This concludes the discussion of
rescheduling problems analyzed and studied as combinatorial problems, with the
aim of providing a starting point for solving them from an application perspective.
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Chapter 1

Introduction

1.1 Machine scheduling

The practical importance of scheduling in the field of production planning and in
resource management has made scheduling theory an important area of Operations
Research. The literature on scheduling theory is vast and has been abundant since the
1950s. Some introductory reference works are those by Baker (1974), Lawler et al.
(1993), Tanaev et al. (1994b), Tanaev et al. (1994a). Pinedo (2012) gives an updated
version of most used definitions, problem descriptions and directions considered in
scheduling. A review on existing algorithms used in scheduling is given by Brucker
(2007).

Scheduling refers to the allocation of resources over time for the purpose of
executing a collection of tasks. A job consists of an ordered list of operations, each of
which requires a specific processing time. In general, each machine can only process
one job at a time and is available continuously from instant 0 onwards. Each job can
only run on one machine at a time. A complete scheduling plan indicates for each
operation of each job when and on which machine this operation is executed. The
objective is to determine a scheduling plan that optimizes some criterion normally
denoted by a function of the completion times of each job. In deterministic scheduling
problems, it is assumed that all specifications are unambiguously predetermined.

We introduce some standard notation and definitions used in scheduling in the
next section. In Section 1.2, we give an introduction to combinatorial optimization,
which studies solutions to complex problems, such as scheduling problems. In Sec-
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tion 1.3, we introduce the machine rescheduling problem, that adds to deterministic
scheduling the ability to respond to the occurrence of an unexpected event, which is
the topic of this dissertation.

Notation and definitions

We introduce in this section notations and definitions commonly used in scheduling.
There is a set J of jobs and a job represents a task to be processed on some machines
to minimize a certain objective function. Each job consists of a number of operations
that have to be performed on a specific machine or on a set of parallel machines.
The processing time of the j− th job on the i− th machine is p ji and is the time
requirement the job operation needs in order to be completed. Preemption is allowed
if a job operation can be interrupted at a certain point and completed for the the
remaining time afterwards. If each job is made of a single operation and there is one
available machine, we have single machine scheduling problems. If the jobs have
one operation per machine and the sequence of operations is the same for all jobs,
we have a flow shop. If the sequence of operations is not fixed, we call it an open
shop. Lastly, if the sequence of operations is fixed but different among jobs, then we
have a job shop.

Beside the processing time, each job j is usually characterized by a due date d j

and/or a weight w j. A job may additionally have a release date r j if it is available
only from r j onwards and a deadline d̃ j if the job has the strict requirement of being
completed by d̃ j. A schedule is an allocation of a time interval to each job. When
all time intervals allocated on a machine are consecutive, we talk of a compact
schedule with no machine idle time or a non-delay schedule; whereas when there
is some empty interval left, we call this interval an idle time. A schedule can be
represented as a Gantt chart that shows how operations are carried on with respect to
time on each machine. Given a schedule σ , C j(σ) (C j when there is no ambiguity)
is the completion time of job j, i.e. the time by which all operations of the job are
completed.

Each job in a schedule is associated with a function f j that depends on job
completion time. In standard scheduling, there are two types of total cost functions:
bottleneck objective functions and sum objective functions. Bottleneck objective
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functions are in the form fmax = max j∈J f j, while sum objective functions are in the
form ∑ f = ∑ j∈J f j.

Common bottleneck objective functions are:

• makespan Cmax = max j∈J(C j).

• maximum lateness Lmax = max j∈J(C j−d j).

Common sum objective functions are:

• total completion time ∑C j = ∑ j∈J C j,

• total number of late jobs ∑U j = ∑ j∈J U j,

• total tardiness ∑Tj = ∑ j∈J max(0,C j−d j),

• total earliness ∑E j = ∑ j∈J max(0,d j−C j),

The above objective functions are often considered also in their weighted versions,
where each job-related function f j is additionally multiplied by the job weight w j.

An objective function that is non decreasing with respect to job completion times
is said to be regular (e.g. all objectives above except the total earliness), otherwise it
is said to be non regular (e.g. the total earliness).

Scheduling problems are specified using the three-field classification α|β |γ
introduced by Graham et al. (1979). The α field denotes the machine environment
(e.g., 1 for single machine, P2 for two parallel machines, F3 for a three-machines
flow shop, . . . ). The β field gives additional information on job characteristics and/or
additional constraints, such as the existence of time windows and/or precedence
constraints. In particular, if jobs have time windows, we write r j and/or d̃ j to denote
release dates and/or deadlines. If there are general precedences between jobs, we
write prec, if the precedence between jobs is defined as a fixed sequence of jobs,
we denote it by seq. If schedules must be non-delay, i.e. machine idle times are
prohibited, we write no-idle. If preemption is allowed, then this is denoted with
pmtn. In the γ field, there is the objective function to be minimized.

Let us now define the following ordering rules for the jobs in a schedule:

• Earliest Due Date (EDD). With this rule, jobs are assumed to be ordered in
non-decreasing order of their due dates, i.e. d1 ≤ d2 ≤ ·· · ≤ dn.
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• Shortest Processing Time (SPT). With this rule, jobs are assumed to be ordered
in non-decreasing order of their processing times, i.e. p1 ≤ p2 ≤ ·· · ≤ pn.

• Weighted Shortest Processing Time (WSPT). With this rule, jobs are assumed
to be ordered in non-increasing order of the ratio w j

p j
, i.e. w1

p1
≥ w2

p2
≥ ·· · ≥ wn

pn
.

In the dissertation, we will make an extensive use of the following well-known
results for single machine scheduling:

1. Scheduling jobs according to EDD optimally solves the single machine schedul-
ing problem to minimize maximum lateness 1||Lmax.

2. Scheduling jobs according to SPT optimally solves the single machine schedul-
ing problem to minimize total completion time 1||∑C j.

3. Scheduling jobs according to WSPT optimally solves the single machine
scheduling problem to minimize total completion time 1||∑w jC j.

1.2 Combinatorial optimization and computational
complexity

Combinatorial optimization is the broad discipline that studies how to find solutions
to complex problems that can be expressed in mathematical models and where there
are a finite number of solutions. Formally, combinatorial optimization deals with
those problems where it is possible to uniquely define the set S of finite cardinality
of all solutions and, for each solution s ∈ S, an objective function with values in R.
In these terms, the objective is to find the element s ∈ S for which the value f (s) is
maximum or minimum.

Examples of classical combinatorial optimization problems are the knapsack
problem, the maximum flow problem, and the transportation problem. In the knap-
sack problem, there are a number of items with a weight and a profit, and the
objective is to fill the knapsack so as to maximize the total profit value of the items
taken, subject to the constraint that a given capacity is not exceeded. In the maximum
flow problem, there is a directed network with nodes connected by arcs, each with a
given capacity, and the objective is to determine the maximum amount of flow that
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can be sent from a given source node to another given sink node. In the transportation
problem, there is a network of supply and demand nodes, each with a given amount
of goods being supplied and demanded, respectively, and the objective is to find the
minimum transportation cost to match the supply and demand requests, given that
each pair of nodes corresponds to a cost per unit flow.

Solving an optimization problem can be computationally very expensive. There-
fore, when providing algorithms for solving a problem, an important goal of com-
binatorial optimization is to study the efficiency of such algorithms, which is often
referred to as the time complexity, or computational complexity. The time complexity
of an algorithm gives an indication of the time it will take to solve a problem, given
its size. Instead, the complexity of a problem is given by the time complexity of the
best algorithm that solves the problem. The effort spent into improving the efficiency
of algorithms to solve a specific problem is thus motivated by the information that
we get in return about that problem. The more we reduce the time complexity of
an algorithm, the more we tighten the complexity of the problem. Computational
theory, as we know it today, is mainly due to the contributions of Cook (1971), Karp
(1972), Garey and Johnson (1979), Ausiello et al. (1999).

The solution of a computational problem can be viewed as a function f that maps,
to each input x, an output f (x). Let be |x| the size of a vector containing all input
values given in some encoding. A problem is polynomial if there exists an algorithm
that finds an optimal solution to the problem with time complexity in O(|x|k), for
some constant k. The class of polynomial problems is denoted by P.

Let a decision problem be a problem that admits as a solution only a “yes” or
a “no” answer, for instance a problem that asks whether f (x) ≤ K. All decision
problems for which, given an input x̄, the answer to the decision problem f (x̄)≤ K
is found in polynomial time define the class of problems NP. Clearly, P ⊆ NP.
Let an optimization problem be a problem that requires finding the solution that
maximizes/minimizes a function f (x). If we consider any value K of its possible
output values, an optimization problem can be seen as a set of decision problems
that answer to whether or not exists a solution with f (x)≤ K.

A decision problem π is NP-complete if π ∈ NP and if any other problem in NP
can be reduced to it polynomially. A decision problem π can be reduced to a decision
problem π ′ if there exists a polynomial algorithm that transforms the input values of
π into the input values of π ′, and if a “yes” answer to problem π corresponds to a
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“yes” answer to problem π ′. The class NP-complete contains the hardest problems
of NP. Given the reducibility of any problem in NP to any other NP-complete
problem, if a polynomial-time algorithm existed for solving one of the NP-complete
problems, then all problems in NP would be solvable in polynomial time. The P
vs. NP problem is a major unsolved problem in theoretical computer science, but
it is a common assumption that P ̸= NP and no polynomial algorithm exists for
problems in NP. Many decision problems studied in combinatorial optimization are
NP-complete, in practice they are fast to check but slow to solve.

We can distinguish two types of problems: problems that are NP-complete in
the weak, or ordinary, sense, and problems that are NP-complete in the strong sense.
A problem is said to be NP-complete in the weak sense if it is NP-complete with
respect to the binary encoding of the input values, but there exists an algorithm that
solves the problem in polynomial time with respect to the unary encoding of the
input values. A problem is said to be NP-complete in the strong sense if the problem
is also NP-complete with respect to the unary encoding of the input values. The
difference lies in the fact that there is an exponential difference between the length
of a unary and a binary encoding.

This can be translated into the following definition (T’kindt and Billaut (2006),
Def. 11). Given the set of instances, with maximum input value xmax and input
length |x|, of an NP-complete subproblem π ′ of π , the problem π is NP-complete in
the strong sense if there exists a polynomial λ such that

xmax ≤ λ (|x|)

for any of the instances of π ′. If there is no polynomial λ , π ′ is a number problem
and we cannot decide whether π is strongly NP-complete.

A decision problem can be associated with an optimization problem by searching
for a solution which has a better value than a given bound K. If this decision problem
is NP-complete, then at least so is the optimization problem. A problem is NP-hard
if any problem in NP reduces to it, but is not necessarily in NP i.e., if its belonging
to the NP class cannot be verified. In fact, an optimization problem may have a
large number of solutions, and checking whether a given solution is optimal is often
non-trivial. A problem is at least weakly (resp. strongly) NP-hard if its decision
version is NP-complete in the weak (resp. strong) sense.



1.3 Machine rescheduling 7

1.3 Machine rescheduling

Generating high-quality production schedules is important in most manufacturing
facilities for the benefits that can be obtained in terms of productivity and cost effi-
ciency. Schedules specify the allocation of tasks to the available resources and thus
define the production plan, depending on production requests, system’s capabilities
or material availability. Schedules are built taking in account the amount of work that
needs to be carried out to satisfy the requests, and these may be known in advance
or estimated based on system-specific information. However in practice, sched-
ules must be often updated because of the inaccuracy of predictions or unexpected
changes in the available data. Typical disturbances frequently encountered in man-
ufacturing facilities include machine breakdowns, rush orders, order cancellations,
changes in priorities and due dates, labour unavailability, material arrival delays,
raw material shortages, transportation delays, rework, process time variation, setup
time variation, outsourcing, machine performance degradation, etc. If data at hand
change, schedules may become infeasible or inefficient. The scheduler must be able
to react quickly and in the most efficient manner in order not to lose too much in the
cost-efficiency of the schedule. Rescheduling refers to the dynamic approaches used
to update predetermined schedules to respond to such disruptions.

Rescheduling differs from predictive scheduling, as well as from online schedul-
ing methods (refer, for instance, to Aytug et al. (2005)). On the one hand, predictive
scheduling (e.g., robust or stochastic scheduling) considers a range of scenarios
representing the outcomes of different problem realizations to build schedules with
the goal of performing relatively well under a wide range of possible problem realiza-
tions. A drawback of these approaches is that they do not explicitly consider issues
that may raise during execution. On the other hand, online scheduling considers
providing schedules according to the currently available information. This approach
has many practical advantages: it has low computational cost, it is intuitive, and easy
to explain. However, these methods tend to provide localized or myopic scheduling.
Instead, rescheduling, also known as reactive scheduling, integrates changes in the
data based on the initial state to ensure a certain level of stability. The initial state,
which is assumed to be known periodically, takes into account global information.
Then, the reaction takes into account the updated information and combines the two.
Notice that this approach also differs from solving a production optimization problem
in a rolling horizon fashion, which aims to repeatedly solve a “local” problem of a



8 Introduction

larger time horizon, where the global information, which is aggregated to the current
information, does not represent in itself a fixed schedule.

Methods and policies for rescheduling allow flexibility and a proper capability
in the system’s reactiveness. In the literature, rescheduling methods have been
developed to respond to unforeseen disruptive events, such as the arrival of new jobs,
the delay of some, machine breakdowns, or periods of unavailability of machines due
to maintenance activities. This thesis studies, in particular, rescheduling strategies
when new orders, called new jobs, have to be scheduled in an already given optimal
solution made up of known jobs, called old jobs. This is typically called rescheduling
for new orders. These strategies seek a trade-off between limiting the perturbation of
the original schedule, called disruption of the schedule, and integrating the new jobs
to optimize an objective function.

1.3.1 Rescheduling classes

Variability in industrial systems may caused by several intrinsic and extrinsic fac-
tors. For instance, consider machine breakdowns that disrupt planned activities
and preventive maintenance can reduce the failure rate, but it is almost impossible
to completely eliminate this type of disturbance from the system. Similarly, other
parameters such as material availability and market demand are likely to change, so
it is essential to react quickly and produce new schedules that take into account the
new system parameters.

In the literature, several differences between theoretical models and real-life
scheduling problems when dealing with data uncertainty (Pinedo (2012)) are pointed
out.

1. New jobs are constantly added to the system and are not predetermined at any
point in time.

2. Assumptions, such as material or work force availability, on which a schedule
is based on may change over time.

3. The priorities of jobs may fluctuate over time.
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4. It is assumed that machines are available at all times, however, in practice
machines are usually not continuously available due to breakdowns or repair
operations.

5. Processing times may be subject to change due to learning or deterioration
effects.

Therefore, when designing a scheduling system, uncertainties need to be taken into
account, since, as time goes by, production schedules become suboptimal or even
infeasible and eventually a new updated schedule will be needed. Depending on
the source of disturbance, the problem settings change, in terms of data variations
and time constraints, introducing different rescheduling classes. We give a brief
description of main classes of rescheduling considered by the current literature in
the following paragraphs.

Rescheduling for new orders. It is very common in production planning, that
new unforeseen requests are received during time. They may be for instance rush
orders from customers, or job rework requests arising from the system itself. At any
scheduling stage, the scheduler considers the current information on the set of jobs
available for processing and makes a plan to optimize system performances. Since
scheduling performances rarely depend on the time a new request is received, the
scheduler may decide to revise the schedule of jobs that have not been processed yet
to integrate the new incoming orders. At any rescheduling point, a new schedule is
created that includes all jobs known at that time.

Rescheduling for machine unavailability. In many industrial settings, core opera-
tions are processed by machines and they guarantee efficiency and a proper execution
of the work plan. Well-defined plans for preventive maintenance may reduce the
number of unpredicted interruptions, however it is impossible to completely elimi-
nate temporary breakdowns as well as unpredicted maintenance periods imposed by
higher levels. As a result, the scheduler has to revise the initial schedule in order to
take in account the period in which the machine will be unavailable for continuing
processing the jobs. Hence, the new scheduling decision takes in account the same
set of jobs but different available time intervals to allocate them.
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Rescheduling for job unavailability. When the scheduler creates a plan for pro-
cessing jobs, he or she bases the decision on the availability of parts or components
used for processing jobs. The unavailability of some of them makes impossible to
process some jobs, that must be delayed, at their scheduled time, hence causing a
disruption in the schedule. As a result, additional constraints are added in the form
of updated release dates or new precedence relations between jobs. The new revised
schedule has to satisfy the newly added constraints.

1.3.2 Rescheduling for new orders

Rescheduling for new orders has been one of the most considered problems among
rescheduling problems. In a production setting, schedules for the known jobs must
be prepared in advance and must be available for the daily advance of manufacturing
operations. On the contrary, orders from customers can be received at any time. A
rescheduling strategy allows the advantage of an improved flexibility in operations
planning and customer orders acceptance. Its vast practical applicability explains
why many researchers have devoted their work in developing models and solution
methods for this problem.

The model that has prevailed over the others is one defined in the first place in
Hall and Potts (2004). Rescheduling is performed over an initial optimal schedule of
old jobs to allow the integration of a new set of jobs when these arrive. The initial
schedule is assumed to be known on a regular basis based on global information
about customer orders. The objective is to minimize a scheduling function over
both sets of jobs, while a constraint, the so-called disruption constraint limits the
disruption of the initial schedule. The disruption constraint is modelled in the form
of a function of the absolute time deviations of old jobs. In these terms, each time
shift of one of the original jobs causes a disruption cost, which represents the cost of
reorganizing the associated resources over time. Notice that both an anticipation or a
delay of a job enforce changes in the production line. We assume that all jobs incur
the same disruption cost per unit shift.

This dissertation discusses several aspects that should be taken in account for
solving rescheduling problems for new orders. The formal problem description as
well as the notation used will be given in the next section. Section 1.4 summarizes
the related literature.
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1.3.3 Notation, definitions and problem description

We introduce in this section the formal definition of the rescheduling problem for
new orders and give the notation that will be used throughout the thesis together with
classical scheduling notation (see Section 1.1).

We are given a set of jobs, called old jobs, that is scheduled to be processed
on a single machine, when a new set of jobs, called new jobs, arrives and create
a disruption. Let O be the set of nO old jobs. At the first stage, each job j ∈ O is
assumed to be optimally scheduled in a sequence π∗, with completion time C j(π

∗),
to minimize a given objective function f . Let N be the set of nN new jobs, that
appear in the second stage. After the arrival of jobs in N, the goal is to generate
a new schedule σ∗ of all jobs to minimize f while not disrupting too much the
initial schedule π∗. The disruption ∆ j of any job j ∈ O is measured as the absolute
time deviation from the initial completion time, i.e. ∆ j = |C j(σ

∗)−C j(π
∗)|. The

disruption of the schedule is modelled as the maximum or the sum of the absolute
time deviations of old jobs. We call ∆max = max j∈O(∆ j) the maximum disruption
and ∑∆ = ∑ j∈O ∆ j the total disruption. To limit the amount of schedule disruption,
we introduce a threshold Y and define two constraints ∆max ≤ Y and ∑∆≤ Y .

In this thesis, we consider minimizing a regular objective function over both set
of jobs. Among bottleneck objective functions fmax, we consider:

• maximum lateness Lmax = max j∈O∪N(C j−d j).

Among sum objective functions ∑ f , we consider:

• total weighted completion time ∑w jC j = ∑ j∈O∪N w jC j,

• total number of late jobs ∑U j = ∑ j∈O∪N U j, where U j = 1 if C j > d j and
U j = 0 otherwise,

• total tardiness ∑Tj = ∑ j∈O∪N(0,C j−d j).

Using the α|β |γ classification scheme, we denote the problems that we study
as 1|∆max ≤ Y | f and 1|∑∆≤ Y | f for problems that allow the presence of unforced
idleness on the machine, and 1|no− idle,∆max ≤ Y | f and 1|no− idle,∑∆≤ Y | f for
problems with non-delay schedules.
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Table 1.1 General Notation.

Notation Description

O = {1, . . . ,nO} set of old jobs
N = {nO +1, . . . ,nO +nN} set of new jobs
n = nO +nN total number of jobs
p j processing time of job j
w j weight of job j
d j due date of job j
π∗ optimal original schedule of old jobs

C j(σ)
completion time of job j in schedule σ ,
denoted as C j when there is no ambiguity

f (σ) objective function evaluated for schedule σ

∆ j disruption of old job j, as |C j−C j(π
∗)|

Y threshold on the maximum allowable disruption
PS total processing time of jobs in set S
WS total weight of jobs in set S

In Table 1.1 it is given a summary of the notation used throughout the dissertation.

1.4 Rescheduling for new orders: a literature review

Rescheduling is understood as a set of strategies to update schedules to face some
kind of variation in the workload that has to be scheduled. So, it refers to a set of
methods and models designed to be implemented in different contexts. The two
surveys by Vieira et al. (2003) and Aytug et al. (2005) give a general introduction to
rescheduling problems. The work by Vieira et al. (2003) describes a framework for
understanding rescheduling strategies, policies and methods, and presents definitions
that are appropriate for most applications of rescheduling manufacturing systems.
A variety of experimental and practical approaches described in the rescheduling
literature form the basis of the provided framework. The paper discusses studies
that show how rescheduling affects the performance of a manufacturing system, and
concludes with a discussion on how understanding rescheduling can bring some as-
pects of scheduling theory and practice closer together. The second survey by Aytug
et al. (2005) provides a framework for understanding the different issues involved in
developing effective scheduling and rescheduling methods for environments, where
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there is some execution uncertainty. A first relevant parameter is the source of
uncertainty. For this purpose, the paper introduces and discusses a taxonomy for
viewing and classifying production uncertainties. A number of different problem
formulations in the scheduling literature are presented and discussed to consider
the different factors. A focus is put on the case, where schedules are executed in
automated settings when uncertainty is present.

The two surveys show what are the general ideas and directions for models that
are commonly adopted in the manufacturing industry. Rescheduling is based on the
idea that disruptions create opportunities to improve shop performance based on
what happens after a disruption occurs. These opportunities can be exploited at a
cost, where the two main types of costs are those related to the performance of the
system in terms of conventional scheduling criteria, and those related to the cost of
reconfiguration, i.e. the cost of having schedule instability, or schedule disruption.
We will see in the remaining part of this section that disruption costs have been
modeled in several ways. The two most common models consider position and
time deviations as a cost. The first case is relevant, for example, for components
processed in sequence at later stages. Any change in the position of an order in the
sequence causes additional costs (e.g., increased buffer capacity). The time deviation
model is relevant for systems that organize resources and production flows based on
time, where any time shift of jobs causes a reorganization of the system. Regardless
of the type of cost, some consider only delays, while others consider both delay
and anticipation as disruptions. Another disruption cost, relevant in the case of
multi-machine scheduling, is given by the change in machine assignment. Again, a
change in machine assignment causes a reorganization in the system (e.g., jobs that
were ready to be processed on one machine must be transported to another). Given
the general purpose of rescheduling in the industry, we now turn to rescheduling for
new orders in the way it has been understood as an optimization model.

Rescheduling with a specific focus on addressing the unpredicted arrival of
new orders has received much attention and we show the related literature in the
following.

This family of rescheduling problems was first formalized by Hall and Potts
(2004) that introduce a setting with a single processing machine, on which it is
planned to process a set of so-called old jobs. These jobs are scheduled in order
to minimize one of the two scheduling functions among total completion time and
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maximum lateness. The processing of this optimal schedule is interrupted by the
arrival of a new set of jobs, that also need to be scheduled on the same machine. To
minimize the objective function, the old jobs are allowed to be re-arranged, causing
a disruption, that is measured as the, maximum or total, sequence or time disruption.
In this setting, authors study the different problems arising from the combination of
an objective function, among total completion time and maximum lateness, and the,
maximum or total, sequence or maximum disruption. The eight resulting problems
are examined for the cases, where the disruption is modelled as a constraint or
in a weighted sum with the scheduling function in the objective. They provide
polynomial-time algorithms or show NP-hardness for most problems. The problem
formalization and definition has been used in the following works.

Yuan and Mu (2007) studied four single machine rescheduling problems with
minimization of the makespan in the presence of job release dates and different dis-
ruption criteria. They consider both maximum and total sequence or time disruption
under the assumption that the initial schedule is optimal with respect to the objective
function. Complexity results are studied for the different scenarios. As a result,
the problems with the time disruption criteria are shown to be strongly NP-hard.
Whereas, an algorithm running in polynomial time O(n2

On) is given for the problem
with the maximum sequence disruption. The latter is solved using the fact that a
so-called weak Earliest Release Date ordering property applies and allows to solve
the problem in polynomial time. The remaining problem is left open.

The work was later extended in Yuan et al. (2007), where authors consider the
rescheduling problem for jobs on a single machine with release dates to minimize
total sequence disruption subject to a constraint on the maximum makespan. They
prove the considered problem can be solved in polynomial time and so does the
complementary problem to minimize makespan under a limit on the total sequence
disruption.

Zhao and Yuan (2013) show that finding all Pareto optimal solutions of the
bi-objective problem of minimizing the makespan and the total sequence disruption
can be done in polynomial time.

Yang (2007) consider rescheduling problems, where to reduce the negative
impacts of disruptions to the original schedule, the processing times of the new
jobs can be reduced at a time compression cost. The objective of the problem is
to minimize total cost after rescheduling, which includes schedule disruption costs,
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time compression costs, and a cost that depends on the schedule efficiency. The
two scheduling objective functions to measure schedule efficiency are the total
completion time and total weighted tardiness. First, they give a polynomial time
algorithm for the total completion time case. For the weighted tardiness, known to
be strongly NP-hard, they provide a very large scale neighborhood search heuristic.

Hall et al. (2007) consider rescheduling problems with multiple disruptions. The
setting here changes in the sense that there are multiple sets of new jobs arriving at
different times thus, the initial state does not necessarily imply optimal schedules.
They show that solving the problem to minimize the maximum lateness under a
constraint on the maximum time disruption is NP-hard even if there is no new job that
arrives. They provide approximation algorithms and a branch and bound algorithm
to solve large-size instances.

Zhao and Tang (2010) and Liu and Zhou (2015) consider the single machine
rescheduling problem in which jobs have time-dependent processing times. In
particular, Zhao and Tang (2010) study the problem to minimize total completion
time under a constraint on the maximum sequence or time disruption and provide
polynomial-time algorithms. In Liu and Zhou (2015), two problems are studied,
the first to minimize the makespan subject to a limit on the maximum sequence
disruption and the second to minimize a linear combination of the makespan and the
maximum sequence disruption. For each problem, they provide polynomial-time
algorithms.

Problems with family setup times are considered in Hoogeveen et al. (2012),
where the authors study rescheduling problems with job families. Each job belongs
to a family, and changing production from one family to another family f induces
a setup time s f . It is assumed that the total setup time is minimized, which equals
minimizing the makespan, by the initial schedule of the old jobs. The new jobs can
either be scheduled after the old jobs or inserted into the existing schedule, resulting
in a disruption cost among the maximum and total time deviation, and the difference
of positions before and after rescheduling, denoted as Pmax. The authors propose
optimal polynomial-time algorithms for enumerating the set of strict Pareto optima
for minimizing disruption cost and makespan, or provide NP-hardness proofs.

Teghem and Tuyttens (2014) study the same combinations of scheduling func-
tions and disruption criteria considered in Hall and Potts (2004) and provide algo-
rithms to solve the related bi-objective problems.
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In Pai et al. (2014), the problem investigated considers both learning and deterio-
ration effects. The disruption constraints are in the form of the maximum sequence
disruption and the maximum time disruption. The objectives are to minimize the
total completion time. The authors prove that the two problems can be solved in
polynomial time.

Gao et al. (2015) deal with the scheduling and rescheduling problem in remanu-
facturing. The problem is modelled as a flexible job shop scheduling problem and is
divided into two stages: scheduling and rescheduling when a new job arrives. The
authors consider both cases where the original jobs are not allowed to have any time
disruption or that any operation that has not started yet can be freely rescheduled.
The objective is to minimize makespan. A two-stage artificial bee colony heuristic
algorithm is proposed for this hard scheduling problem. Extensive computational
experiments are carried out and the results show that the heuristic is effective in both
scheduling and rescheduling.

Zhao et al. (2016) consider similar problems as in Hall and Potts (2004) but
introduce a generalization of the disruption criterion by imposing on each old job
j a maximum amount of allowed disruption k j. In this case, both the problems of
minimizing the sum of the completion times and the maximum lateness become
NP-hard.

Zhao and Yuan (2017) study the rescheduling on a single machine to minimize
the maximum lateness under a job-dependent sequence disruptions. Each old job
has a constraint disruption on how much its sequence position change with respect
to an original optimal schedule. They consider the three different cases of penalizing
disruptions: the case where only an increase in the sequence position causes a
disruption, the opposite case where a decrease in the sequence position causes a
disruption, and the case where both of them are considered as relevant disruptions.
The authors show that the three problems are equivalent and can be solved in
polynomial time.

Rahmani (2016) addresses a dynamic flexible flow shop environment considering
unexpected arrival of new jobs into the process as disruptions. A novel reactive
model is proposed to minimize a linear combination of total weighted tardiness and
total absolute time deviation of jobs. The proposed model is presented to generate a
stable schedule against any possible occurrences of mentioned disruption. Due to the
computational complexity, a variable neighborhood search algorithm is implemented
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to solve the problem. To show the performance of the reactive approach, a case study
in petrochemical industry is studied. Computational experiments and comparisons
of the proposed algorithm with three dispatching rule and an efficient rescheduling
approach show the efficiency of the presented reactive approach to reschedule the
jobs.

In Liu (2019), it is addressed the two-machine flow shop outsourcing and
rescheduling problem. Each job can be processed in the in-house shop or outsourced
to a single subcontractor. An efficient schedule is constructed for the in-house jobs,
and its performance is measured by the makespan. Each of the outsourced jobs
requires paying an outsourcing cost. The objective is to minimize the sum of the
in-house makespan and total outsourcing cost, subject to a limit on the number of
original jobs processed by the subcontractor after disruption. Initial optimal schedule
are obtained with Johnson’s rule. To solve this NP-hard problem, a mixed integer
programming formulation and helpful optimization properties are first established,
and then a hybrid variable neighborhood search algorithm is developed.

Guo et al. (2021) study a rescheduling problem motivated by energy savings in
the quartz manufacturing industry. Here, new jobs are rework jobs that need to be
added to the original sequence to minimize the total waiting time of the jobs, that we
denote as ∑(C j− r j). The relative sequence of the original jobs must be preserved
and, in addition, each original job is not allowed to deviate from its release time for
more than a given threshold. This constraint implicitly models a job-dependent time
disruption constraint.

Zhang et al. (2022) took into consideration the minimization of the maximum
weighted tardiness for rescheduling problems subject to job-specific and total time
disruption constraints. The authors provide complexity results for the problems and
several simulated annealing algorithms.

Finally, Fang et al. (2023) studied the rescheduling problem with rejection for
minimizing a linear combination of the total weighted completion time, the maximum
time disruption and the rejection cost. They first proved the NP-hardness of the
problem, and then solved it with an exact dynamic programming algorithm and a
fully polynomial time approximation algorithm. They showed the efficiency of the
proposed algorithms with several computational results.

Table 1.2 summarizes the articles of the literature that focus on rescheduling
for new orders, for single machine first, and multiple machines next, and the con-
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tributions of this dissertation. Each row first contains the information about the
authors and the reference to the articles. Then, the measure of disruption and the
objective functions considered are specified. We use ∆max, ∑∆, Dmax, ∑D respec-
tively for the maximum and the absolute time disruption, the maximum and the
total absolute sequence disruption. We use ∆ j (resp. D j) for the absolute time (resp.
sequence) disruption constraint in the form of ∆ j ≤ Y j (resp. D j ≤ Yj), where Yj

is a job-dependent threshold, and Pmax for the difference of positions before and
after rescheduling (where a negative difference is not considered as a disruption).
Then, the table gives information about whether the initial scheduled is assumed
to be optimal (π∗) or not (π), followed by the type of the main contributions given.
Among them, we use cmpx to denote complexity results, poly alg for polynomial
algorithms, heuristic for heuristic algorihtms, exact for exact algorithms, approx
for approximation algorithms. Finally, the last column shows if there are additional
features or characteristics considered.

Most of the above mentioned papers consider mainly a single machine envi-
ronment and focus on providing theoretical insights on the problems. Among the
few researches that consider algorithms for real-world applications, we mention
the works by Katragjini et al. (2013) and Valledor et al. (2018). While most of
the existing work addresses one type of disrupting event independently, their work
considers managing different types of disruptions at the same time.

Katragjini et al. (2013) adopts a managerial point of view, to address real-world
manufacturing scheduling. They consider flow shops and three types of disruptions
that simultaneously interrupt the original schedules, i.e. machine breakdowns, new
job arrivals, and job ready time variations. The authors propose rescheduling methods
that seek a good trade-off between the makespan and the schedule instability. The
latter is calculated as the sum of operations whose starting times have been anticipated
or delayed in the new schedule. The weighted sum method is used to recast the
bi-objective problem into a single objective optimization problem.

Valledor et al. (2018) consider rescheduling for minimizing three objectives:
makespan, total weighted tardiness and stability. The measure of stability is a
function depending on the average absolute time deviation of jobs and of the current
scheduling time. such that rescheduling a job that is to be scheduled soon is more
penalizing than one that will be scheduled far from the current scheduling time. Three
types of disruptions are considered: the arrival of new jobs, machine breakdowns
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and variations in job processing times. The adopted strategy is a predictive-reactive
strategy, and uses clustering algorithms on the Pareto frontier of the solution space
to find a representative solution at each point of rescheduling.

Peng (2019) considers a hybrid flowshop subject to three types of dynamic events
(i.e. machine breakdown, new job arrival and job release variation). The mathe-
matical model to minimize the weighted sum of makespan and system instability,
where the latter is measured as the sum of jobs that, at any stage, change starting
time. Lower and upper bounds of the two optimization objectives are developed. A
Multi-Start Variable Neighbourhood Descent algorithm is proposed for the hybrid
flowshop rescheduling. Extensive experimental results verify the effectiveness of the
algorithms.

If we turn our attention to the literature on rescheduling in general, the choice
is vast. Rescheduling for machine unavailability is considered for instance in Liu
and Ro (2014), and Luo et al. (2018) for single machine, and in Özlen and Azizoğlu
(2011) and Yin et al. (2016) for parallel machines.

Rescheduling for job unavailability, i.e. when a subset of jobs become unavailable
for scheduling at their scheduled time, is considered for instance in Hall and Potts
(2010) and Luo et al. (2020) for single machine, and in Wang et al. (2018) for parallel
machines.

Unal et al. (1997) study a rescheduling problem on a serial batching machine,
where new jobs must be included in the original schedule without leading to addi-
tional setups and without making any of the existing jobs late. Azizoğlu and Alagöz
(2005) study rescheduling on parallel machines to minimize the total completion time
and the number of jobs rescheduled. They consider the number of jobs scheduled on
different machines with respect to the original plan as a disruption measure. Liu et al.
(2018) investigate the rescheduling on a two-machine flow shop with outsourcing
solved by means of a hybrid variable neighbourhood search. They formulate the
problem as a scheduling game. Nicosia et al. (2021) consider rescheduling of a given
schedule to minimize classical objective functions in an automated system where
the re-sequencing of jobs is allowed by the usage of LIFO buffers. They provide
several algorithms and complexity results for a whole set of problems. A follow-up
paper considering exact algorithms for the NP-hard case of minimizing the weighted
number of late jobs can be found in Pferschy et al. (2022).
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1.5 Contributions and structure of the dissertation

We consider single machine rescheduling problems for new orders to minimize one
of several scheduling objective functions subject to a disruption constraint on the
maximum or total absolute time deviation. Rescheduling for new orders with a
constraint on the absolute time deviation has been the model that has attracted the
most research in this area. After the seminal work of Hall and Potts (2004), many
other papers have studied various special cases. However, the research has been
scattered and there are still a lot of open questions. The goal of the dissertation is
to provide an insight into the entire class of these problems in order to understand
the issues involved in solving them. Since solving a scheduling problem is a typical
combinatorial optimization problem, we use methods and techniques that come from
this field. The contributions are presented in three different chapters, each focusing
on one aspect.

In Chapter 2, we provide a systematic analysis of rescheduling problems, both in
terms of structure and complexity. The focus is on providing general properties for
rescheduling for new orders to give an overall understanding of this set of problems
with respect to structural properties and computational complexity. The first aspect
considers the ordering of the set of old jobs. There is a subset of problems in which
preserving a known valid ordering is enough to reach optimal solutions. Several
examples support the different behaviours of this set and the remaining problems.
The second aspect considers the need of idle time insertion in optimal solutions.
Based on this, we propose a classification of rescheduling problems according to
whether machine idle times have to be inserted in optimal solutions or not. The study
of the computational complexity is given in the third part of the chapter. The chapter
is based on the content of two submitted works, Rener et al. (2023) and Lendl et al.
(2023).

Chapter 3 is devoted to the study of the timing problem inherent in some
rescheduling problems. Structural analysis reveals the existence of some problems
in which the inclusion of idle time allows the decrement of the objective function. In
the chapter, the goal is to study the problem to understand the degree of complexity it
adds to rescheduling problems with idle time. Several algorithms are proposed, one
for each of the timing problems that arise in rescheduling, which show that timing in
rescheduling is a polynomial problem. The chapter is based on Rener et al. (2023).
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In Chapter 4, we study the special case of rescheduling to minimize the total
weighted completion time subject to a maximum disruption constraint. The problem
lies at the intersection between easy polynomially solvable problems and strongly
NP-hard problems, when the maximum disruption is considered, which makes it of a
particular interest. It obeys to the ordering property of old jobs presented in Chapter
2, but it is already NP-hard. Therefore, we devote the chapter to this problem and
we provide three algorithms: an exact algorithm running in pseudo-polynomial time,
that uses dynamic programming, a fully polynomial approximation scheme and a
bounded-ratio approximation algorithm. The chapter is based on Lendl et al. (2023).

In Chapter 5, we study the special case of rescheduling with a non-delay schedule
to minimize the maximum lateness under a total disruption constraint. The problem
is strongly NP-hard and is solved using techniques from combinatorial optimization.
In particular, a branch and memorize algorithm is developed that takes advantage of
a generic structure and specific properties. Using efficient exploration of the solution
space, the algorithm is the first exact search tree algorithm for a hard rescheduling
problem. Computational experiments in which the algorithm is compared with a
commercial solver for optimization problems show that the algorithm is indeed able
to exploit the specific features of the problem and to integrate them into a more
efficient solution of the problem. The chapter is based on the work found in Rener
et al. (2022).

The dissertation gives an introduction to some relevant topics to be considered
in rescheduling problems and leaves the door open for further developments. Thus,
chapter 6 summarizes the conclusions of the work presented and discusses several
future work directions that should be considered.



Chapter 2

Structural properties and complexity
of rescheduling problems

The focus in this chapter is on providing general properties to give an overall under-
standing of rescheduling problems for new orders with time disruption constraints.
The first section provides some considerations on the cases where there are ordering
rules that are valid for the set of old jobs in optimal solutions. Several examples
are provided for supporting the considerations done. The second aspect considers
the need of idle time insertion in optimal solutions, i.e. when the problem formu-
lation leads to unforced idleness on the machine in optimal solutions. Often in
single machine scheduling is enough to consider the job permutation problem to
find optimal solutions. As opposed to this, it is shown that for several rescheduling
problems idle time insertion is necessary to obtain optimal solutions. We propose a
classification of rescheduling problems according to whether machine idle times are
to be inserted in optimal solutions or not. Again, several examples support the results
obtained. Finally, in the last part of the chapter the problems are studied in terms of
computational complexity. The results show that most problems are intractable, with
few exceptions, and provide for these special cases polynomial-time algorithms.

2.1 Ordering properties

Old jobs are initially sequenced in a schedule π∗ to minimize an objective function f .
This order might be preserved in an optimal schedule of the rescheduling problem. In
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this section, we focus on establishing some properties of when this order is preserved,
as opposed to when a re-sequencing of old jobs is required.
The first two properties illustrated below serve a dual purpose. The first is to show
the source of the need for re-sequencing. The second, in a bi-objective perspective, is
to provide actual structural properties for problems 1| f ≤ Y |∆max and 1| f ≤ Y |∑∆.
The two disruption criteria lead to different behaviours. In fact, we first show that
problem 1| f ≤ Y |∆max never requires a re-sequencing to obtain an optimal solution,
if any feasible schedule exists with old jobs ordered as in π∗. On the contrary, we
show that problem 1| f ≤ Y |∑∆ may require a re-sequencing of old jobs, even if
there exists a feasible schedule with old jobs ordered as in π∗.

Property 2.1.1. If there exists a non-empty set of feasible schedules for problem
1| f ≤ Y |∆max with old jobs ordered as in π∗, there exists an optimal solution that
belongs to this set of schedules.

π∗ i j. . . . . . . . .
t0

σ ′ j i. . . . . . . . .
t0

σ∗ i j. . . . . . . . .
t0

Figure 2.1 Jobs sequencing for the 1| f ≤ Y |∆max problem.

Proof. Consider Figure 2.1. Schedule π∗ shows the original optimal schedule with
old jobs only. Schedule σ ′ is a schedule with old and new jobs, where at least two
old jobs i and j are swapped with respect to their ordering in π∗. Suppose that σ ′

is an optimal solution for the problem 1| f ≤ Y |∆max. Let i be the first old job that
has been moved after other old jobs that followed i in π∗, and let j be the old job
that precedes i in σ ′ with respect to old jobs only. Notice that in σ ′, before job j
there can be both old and new jobs, while between j and i there can be only new jobs
because j is the closest old job that precedes i in σ ′. Let σ∗ be the same schedule
than σ ′ but with i and j swapped, such that the starting time of j in σ ′ is the same of
i in σ∗ and Ci(σ

′) =C j(σ
∗). In σ∗, before job i there can be both old and new jobs,

while between i and j there can be new jobs only. Since σ ′ is assumed to be optimal,
∆max(σ

′)≤ ∆max(σ
∗).
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The proof is done by contradiction showing that, if there exists such a schedule
σ∗, with f ≤ Y , then ∆max(σ

∗)< ∆max(σ
′).

First, notice that ∆i ≥ 0 in both schedules by definition of job i and that ∆i(σ
∗)<

∆i(σ
′) since Ci(σ

′) > Ci(σ
∗). Given that C j(π

∗) > Ci(π
∗) and Ci(σ

′) = C j(σ
∗),

we have that ∆ j(σ
∗) < ∆i(σ

′). Next, we show that ∆ j(σ
′) ≤ ∆i(σ

′). If C j(σ
′) ≥

C j(π
∗), then this holds, since i is right-shifted in time more than j. If C j(σ

′) <

C j(π
∗), we have ∆ j(σ

′) ≤ C j(σ
′)−C j(σ

∗). For the disruption of job i it holds
∆i(σ

′) ≥ Ci(σ
′)−Ci(σ

∗) and since C j(σ
′)−C j(σ

∗) = Ci(σ
′)−Ci(σ

∗), we have
∆ j(σ

′)≤C j(σ
′)−C j(σ

∗) =Ci(σ
′)−Ci(σ

∗)≤ ∆i(σ
′).

Putting all together, we obtain

max(∆i(σ
′),∆ j(σ

′)) = ∆i(σ
′)> max(∆i(σ

∗),∆ j(σ
∗)),

and since all other old jobs do not change their starting and completion times,

∆max(σ
′)> ∆max(σ

∗).

Repeating the argument for any pair of old jobs i and j defined as above proves
the statement.

Going back to the rescheduling problems with the ∆max constraint, we use
Property 2.1.1 to derive valid ordering properties. It was shown that for objective
functions of total completion times and maximum lateness no re-sequencing occurs
(Hall and Potts (2004)). We extend this result to the case of total weighted completion
times.

Property 2.1.2. For problem 1|∆max ≤ Y |∑w jC j there exists an optimal schedule
where old jobs are sequenced by WSPT, as in the original schedule π∗.

Proof. Assume that there is an optimal schedule σ ′ where the old jobs violate
the WSPT property. Let Ω = ∑ j∈O∪N w jC j(σ

′) be the objective function value of
schedule σ ′. Restoring the WSPT order among old jobs never increases the objective
function value thus leading to an objective function value ∑ j∈O∪N w jC j(σ

∗)≤Ω. It
follows that if σ ′ is a feasible solution to the complementary problem 1|∑w jC j ≤
Y |∆max, then schedule σ∗ is it too. Then, by Property 2.1.1 ∆max(σ

′) > ∆max(σ
∗).

Hence, restoring the WSPT order is feasible and optimal.
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Property 2.1.2 states that beside the problems studied by Hall and Potts (2004),
also problem 1|∆max ≤ Y |∑w jC j answers to a known ordering, found in polynomial
time, of old jobs in optimal solutions. This makes the problem easier to solve and,
in particular, allows to identify a very specific structure of optimal solutions that
will be shown in Chapter 4 and exploited to show that the problem can be solved in
pseudo-polynomial time.

For the remaining objective function ∑U j and ∑Tj, there is no valid ordering
that applies to the old jobs. We show in Section 2.3 that this will make the problem
with f = ∑U j harder to solve. For f = ∑Tj there is no such result but despite there
is no stated proof for its higher complexity, the absence of such property makes hard
to believe that there exists a pseudo-polynomial algorithm for this problem.

Let us turn to the ∑∆ criterion and consider the complementary problem 1| f ≤
Y |∑∆. The following property holds.

Property 2.1.3. For problems 1| f ≤ Y |∑∆, an optimal schedule may have old jobs
scheduled in a different order with respect to π∗ even if swapping them keeps the
schedule feasible with respect to the constraint f ≤ Y .

π∗
0

i j

10
t

σ ′
0

i j. . .

10
t

σ∗
0

ij. . .

10
t

Figure 2.2 Jobs sequencing in the 1| f ≤ Y |∑∆ problem.

Proof. Consider the following example. Two old jobs i and j with pi = 8 and p j = 2
are scheduled consecutively in π∗ so that Ci(π

∗) = 8 and C j(π
∗) = 10 (Figure 2.2).

Let be di = Ci(π
∗) and d j = C j(π

∗). Schedule σ ′ is a feasible schedule with old
and new jobs, where job i precedes job j, as in the original schedule π∗. Let σ∗ be
another feasible schedule, with all jobs scheduled as in σ ′, except for jobs i and j,
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which are swapped. Assume that the starting time of job i in σ ′ as well as the starting
time of job j in σ∗ is t = 10. Computing the total disruption in the two schedules,
we obtain

∑∆(σ ′)−∑∆(σ∗) = 20−14 > 0

Since any other new job scheduled does not have an effect on the total disruption,
σ∗ is an optimal schedule.

2.2 Compact and non-compact schedules

Usually, minimizing a regular objective function allows to consider only the se-
quencing or permutation problem in scheduling. However, the constraint on the time
disruption in rescheduling problems implicitly models a second objective, which is
non regular. Therefore, unforced idleness on the machine may appear in optimal
solutions. Several considerations and examples are given in this section to provide
insights on when the insertion of machine idle times is required.

Consider the following example. Three old jobs are originally scheduled in
π∗ = (i, j,k) to minimize the total weighted tardiness ∑w jTj. Let be pi = 6, p j =

pk = 1, di = 6,d j = 7,dk = 8 and wi = 1,w j = wk = 2. Then, the minimum cost
schedule with no inserted idle times, that includes a new job h, with ph = 1, dh = 0
and wh = 1000, is σ∗no−idle = (h, j,k, i) as in Figure 2.3.In schedule σ∗no−idle, we
have C j(π

∗)−C j(σ
∗
no−idle) > Ci(σ

∗
no−idle)−Ci(π

∗) and Ck(π
∗)−Ck(σ

∗
no−idle) >

Ci(σ
∗
no−idle)−Ci(π

∗). In this case, constructing a schedule σ∗idle with one unit of
idle time before job j reduces both ∆max and ∑∆, while keeping the increase of

∑w jTj lower with respect to other job permutations. So, in this example, for the
∆max criterion and Y = 5, as well as for the ∑∆ criterion and Y = 14, schedule σ∗idle

makes this sequence of jobs feasible and optimal.

The example gives a first feeling of the correlation between the re-sequencing of
old jobs and the insertion of idle times to obtain optimal solutions. Notice that the
decrease of the disruption obtained by right-shifting jobs is due by the fact that there
are two jobs, j and k, that are scheduled before their original completion time and
for which a right-shift is beneficial in terms of disruption, and only one job, i, that is
scheduled after and for which a right-shift is disadvantageous. So, clearly, no job
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σ∗no−idle
0

ij k

∆i = 3∆ j = ∆k = 6
t

h

σ∗idle
0

ij k

∆i = 4∆ j = ∆k = 5
t

h

Figure 2.3 Decrease of schedule disruption via idle time insertion.

can be scheduled earlier with respect to its original completion time, if all jobs keep
their initial ordering.

In fact, when the old jobs are sequenced as in the original schedule, the following
property applies to an optimal schedule.

Property 2.2.1. If there exists an optimal solution in which old jobs are ordered as
in the original schedule π∗, then this solution is without inserted idle times.

Proof. Since jobs in O are in the same order as in schedule π∗, the disruption of any
job j in an optimal schedule σ∗ is given by ∆ j = ∑i∈N:i→ j pi, where i ∈ N : i→ j
denote the new jobs i that precede j in the schedule. By inserting an idle time
δ > 0 before job j, the disruption changes to ∆′j = ∑i∈N:i→ j pi+δ . Then, in this new
schedule σ ′, ∆max(σ

′)≥∆max(σ
∗) as well as ∑∆(σ ′)>∑∆(σ∗). Also, f (C j+δ )>

f (C j), ∀ j ∈ O∪N since the f j’s are regular functions. Then, fmax(σ
′)≥ fmax(σ

∗)

as well as ∑ f (σ ′)> ∑ f (σ∗). Therefore, neither the regular objective functions nor
the disruption criteria are reduced by inserting any idle time.

We saw in Section 2.1 that there are some problems for which the ordering of
old jobs is known and that is the same as in the original optimal schedule. We derive
the following property.

Property 2.2.2. There exists an optimal solution to problems 1|∆max ≤ Y | f , f ∈
{Lmax,∑C j,∑w jC j}, and 1|∑∆ ≤ Y |∑C j, where the jobs are processed consecu-
tively without inserted idle times.

Proof. It is shown that in optimal solutions for the cases with objective function
Lmax and ∑C j (Hall and Potts (2004)) and ∑w jC j (Property 2.1.2) no re-sequencing
is applied to the old jobs. Therefore, in all four cases, Property 2.2.1 applies and it is
not necessary to consider idle time insertion in optimal solutions.
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π∗
0

i j

8 9
t

σ∗no−idle
0

k hji

∑U j = 2, ∆max = 0

t
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σ∗idle
0

k h j i

∑U j = 1, ∆max = 5

1 2 4 12
t

Figure 2.4 Idle time insertion for the 1|∆max ≤ Y |∑U j problem

Conversely, for remaining problems where the order of old jobs is unknown, we
state the following property.

Property 2.2.3. An optimal solution to problems 1|∆max ≤ Y | f1, f1 ∈ {∑U j,∑Tj},
and 1|∑∆≤ Y | f2, f2 ∈ {Lmax,∑w jC j,∑U j,∑Tj} may contain inserted idle times.

Proof. To prove each of the stated results we provide, for each problem, an example
that shows the optimality of a schedule with inserted idle time.

We start with problem 1|∆max ≤ Y |∑U j. Consider the schedule π∗ in Figure 2.4,
with two old jobs i and j, with pi = 8, p j = 1 and di = 8, d j = 9 and two new jobs
k and h with pk = ph = 1 and due dates dk = dh = 8. Let be Y = 5. An optimal
solution for this instance is given by schedule σidle with ∑U j = 1, and where the
idle time enables to meet the disruption constraint. In contrast, restricting to the set
of schedules without inserted idle times leads to the optimal solution σno−idle with

∑U j = 2.

Next, we consider the problem 1|∆max ≤ Y |∑Tj. Consider jobs i, j,k,h from the
above example and Y = 5. Consider an additional old job ℓ with pℓ = 1 and dℓ = 10.
Schedule π∗ is shown in Figure 2.5. The optimal schedule reaches ∑Tj = 5. In
contrast, restricting to the set of schedules without inserted idle times leads to the
optimal solution σno−idle with ∑Tj = 7.
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Figure 2.5 Idle time insertion for the 1|∆max ≤ Y |∑Tj problem
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Figure 2.6 Idle time insertion for the 1|∑∆≤ Y |Lmax problem
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Now, we turn to the problem 1|∑∆ ≤ Y |Lmax. Let be i, j,h the jobs in O with
pi = 8, p j = ph = 1 and di = 12,d j = 13,dh = 14 and k a new job with pk = 7 and
dk = 1. Let us have Y = 10. As illustrated in Figure 2.6, we assume that π∗ = (i, j,h).
the optimal schedule is σ∗idle = (k, j,h, i) with Lmax = 10 with an idle time of 1 unit
before job j. In contrast, restricting to the set of schedules without inserted idle times
leads to the optimal solution σno−idle with Lmax = 14.

Next, we consider the problem 1|∑∆≤ Y |∑w jC j. Consider jobs i, j,h ∈ O and
k ∈N with pi = 6, p j = ph = 1, pk = 4 and wi = 7,w j = wh = 1,wh = 12. For Y = 7,
the optimal schedule is σ∗idle = (k, j,h, i) with ∑w jC j = 139 with an idle time of 1
unit before job j (Figure 2.7). However, by imposing that no inserted idle time is
allowed, the optimal solution becomes σ∗no−idle with ∑w jC j = 193.

π∗
0

i j h

6 7 8
t

σ∗no−idle
0

k hji

wC = 193, ∑∆ = 4

t
6 7 11 12

σ∗idle
0

k j h i

wC = 139, ∑∆ = 7

4 6 7 13
t

Figure 2.7 Idle time insertion for the 1|∑∆≤ Y |∑w jC j problem

Finally, we consider problems 1|∑∆≤ Y |{∑U j,∑Tj}. Set O is made up of the
three jobs i, j, ℓ with pi = 8, p j = pℓ = 1 and di = 8, d j = 9, dℓ = 10 and two new
jobs k and h with pk = ph = 1 and dk = dh = 8. Let be Y = 5 and the optimal solution
with ∑U j = 1 is given by schedule {k,h, j, ℓ, i} with one unit of idle time before j
(Figure 2.8). However, by imposing that no inserted idle time is allowed, the optimal
solution becomes σno−idle with ∑U j = 2.



32 Structural properties and complexity of rescheduling problems

The same counterexample holds for ∑ f j = ∑Tj, with a resulting objective

∑Tj = 5 of an optimal schedule with idle time and ∑Tj = 7 when imposing a
constraint of no inserted idle time.
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t
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t
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t

Figure 2.8 Idle time insertion for the 1|∑∆≤ Y |∑U j and 1|∑∆≤ Y |∑Tj problems

Table 2.1 summarizes the above results: for each pair of objective function and
disruption constraint, we indicate idle times when inserting machine idle times may
be necessary to compute optimal solutions. We indicate no idle times for problems
whose optimal solutions are without inserted idle times.

Table 2.1 Problem classification w.r.t. the insertion of machine idle times.

f ∆max ∑∆

Lmax no idle times idle times
∑C j no idle times no idle times
∑wC no idle times idle times
∑U j idle times idle times
∑Tj idle times idle times
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2.3 Complexity results

In this section we set the computational complexity of several open problems and
analyze some special polynomially-solvable problems.

We first introduce the definition of the partition problem (PARTITION) and the
three partition problem (3-PARTITION), two decision problems which we use to state
the complexity of rescheduling problems.

PARTITION is a decision problem that answers the following question: given a
set A = a1,a2, . . . ,am of positive integer numbers, is there a partition of the elements
into two subsets S1 and S2, such that ∑i∈S1 ai = ∑i∈S2 ai = B? PARTITION is weakly
NP-complete (Garey and Johnson (1979)).

3-PARTITION is another decision problem that answers to a different question:
given 3t elements a1, . . . ,a3t with ∑

3t
i=1 ai = ty and y/4 < ai < y/2 for i = 1, . . . ,3t,

is there a partition of the elements into t sets S1, . . . ,St such that ∑i∈Sk
ai = y, k =

1, . . . , t? 3-PARTITION is strongly NP-complete (Garey and Johnson (1979)).

The reductions from 3-PARTITION that will follow in the chapter will set the
complexity of some problems to strong NP-hardness. The reductions given from
PARTITION will instead prove some problems to be NP-hard at least in the weak
sense, leaving them open for setting weak or strong NP-hardness (when possible,
the matter will be investigated in the following chapters).

2.3.1 Minimizing the total weighted completion time subject to a
maximum time disruption constraint

The rescheduling problem 1|∆max ≤ Y |∑w jC j is next shown to be NP-hard in the
weak sense.

Theorem 2.3.1. Problem 1|∆max ≤ Y |∑w jC j is NP-hard.

Proof. The proof is given by reduction from PARTITION. Consider an instance of
the 1|∆max ≤ Y |∑w jC j problem with one old job indexed with 1 and nN = m new
jobs indexed with 2, . . . ,m+1 and the following weights and processing times.
w1+i = p1+i = ai, ∀ i = 1, . . . ,m,
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w1 = 1, p1 = 3B2−B−1,
Y = B, z = 3B2 +B+Bp1 + p1

We show that there is a solution of 1|∆max ≤ Y,∑w jC j ≤ z|−, i.e. with objective
value of at most z, with if and only if there exists a solution to the PARTITION

problem.

If solution sets S1 and S2 to PARTITION exists, then we claim that schedule σ in
Fig. 2.9 gives a positive answer to the decision problem 1|∆max ≤ Y,∑w jC j ≤ z|−.
The rescheduling constraint is fulfilled with equality. We compute an upper bound

B B+ p1 2B+ p1

σ
0

11+ i, i ∈ S1 1+ i, i ∈ S2
t

Figure 2.9 Schedule solving 1|∆max ≤Y,∑w jC j ≤ z|− when a solution to PARTITION exists.

on f (σ) as follows:

f (σ) = ∑
j∈S1

w jC j +B+ p1 + ∑
j∈S2

w jC j

≤ ( ∑
j∈S1

w j)B+B+ p1 +( ∑
j∈S2

w j)(2B+ p1)

= B2 +B+ p1 +2B2 +Bp1

= 3B2 +B+Bp1 + p1 = z

On the other hand, we show that if there is no solution to PARTITION, a positive
answer to the decision problem 1|∆max ≤ Y,∑w jC j ≤ z|− does not exist.

Consider an arbitrary feasible solution σ ′ of the rescheduling problem. Let set
L (resp. R) be the non empty set of new jobs scheduled before (resp. after) job 1
(the trivial case L = /0 can be ruled out by a simple calculation). In order to fulfill
the disruption constraint there must be WL = PL ≤ Y = B. Since there is no solution
to PARTITION, i.e. ∑ j∈L w j ̸= ∑ j∈R w j ̸= B, this implies ∑ j∈R w j ≥ B+ 1. Let us
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compute a bound on f (σ ′) based on C j ≥ 1 for j ∈ L and C j ≥ 2+ p1 for j ∈ R:

f (σ ′) = ∑
j∈L

w jC j +(∑
j∈L

p j + p1)+ ∑
j∈R

w jC j

≥ (∑
j∈L

w j)+1+ p1 +(∑
j∈R

w j)(2+ p1)

= 2B+1+ p1 +(∑
j∈R

w j)(1+ p1)

≥ 2B+1+ p1 +(B+1)(1+ p1)

= 3B+Bp1 +2p1 +2

= Bp1 +3B+ p1 +2+(3B2−B−1)

= 3B2 +Bp1 +2B+ p1 +1 > z

This shows that if there exist no sets S1 and S2 of elements a j solving PARTITION

then any feasible schedule σ ′ for 1|∆max ≤Y |∑w jC j has an objective function value
greater than z.

Complexity of Special Cases

We can directly extend the general NP-hardness result of theorem 2.3.1 to the case
with one old job and constant weight/profit ratios, since the proof uses an instance of
1|∆max ≤Y |∑w jC j where there is one old job and all new jobs have the same w j

p j
= k

ratio.

Corollary 2.3.1. The problem 1|∆max ≤ Y, |∑w jC j is NP-hard even when all the
new jobs have the same ratio w j

p j
and there is one old job.

Considering the NP-hardness of 1|∆max ≤ Y |∑w jC j, even for the special case
given above, it makes sense to identify polynomially solvable special cases. Recall
that the case with unit weights, i.e. 1|∆max ≤ Y |∑C j, has been shown by Hall and
Potts (2004) to be optimally solvable in polynomial time. We will extend this result
and consider the case of equal processing times and the case with a “strong ordering”
property. For the latter, we call two vectors w and p agreeable, denoted as agr(w, p),
if wi ≥ w j always implies pi ≤ p j for all pairs of indices i, j.

In the following we will introduce a straightforward Greedy algorithm, which
considers all jobs in WSPT order and produces a Greedy schedule σG as follows: old
jobs are immediately added to the sequence, new jobs only if their addition does not
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violate the rescheduling constraint. Otherwise, they are put aside and finally added
at the end of the sequence in WSPT order (see Algorithm 1).

Algorithm 1 Algorithm GREEDY for 1|∆max ≤ Y |∑w jC j

σG is the empty sequence
L := /0, R := /0
Order and index all jobs by WSPT.
for j = 1, . . . ,n do

if j ∈ O then
append job j to sequence σG

else if j ∈ N and PL + p j ≤ Y then
L := L∪{ j}
append job j to sequence σG

else
R := R∪{ j}

end if
end for
append all jobs of R to sequence σG

Clearly, this Greedy algorithm can be performed in O(n logn) time. We can show
the following statement.

Theorem 2.3.2. The greedy schedule σG is an optimal solution for problem 1|∆max ≤
Y,agr(w, p)|∑w jC j.

Proof. The Greedy schedule σG produces a set L of new jobs, scheduled before the
last old job, having largest weights and smallest processing times, and a set R of
new jobs scheduled in WSPT after old jobs. For agreeable weights and processing
times, jobs ordered by WSPT are also ordered by non-increasing weights as well as
by non-decreasing processing times. Notice that since old jobs are ordered in WSPT,
∆ j ≤ PL for any old job.

Assume that such a solution is not optimal, i.e. there exists a schedule σ ′ with a
lower objective function value.

If two jobs from O and L are swapped with each other, then the objective function
value does never decrease because of the violated WSPT order. If the swap is between
two old jobs, then the schedule is suboptimal with respect to the disruption constraint
by Property 2.1.2. If the swap is between an old job and a job in L, or between two
jobs in L, the disruption still satisfies ∆ j ≤ PL for any old job.
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If two new jobs from R are swapped with each other, then the objective function
value does never decrease because of the violated WSPT order and the disruption
stays unchanged therefore, the swap is again never optimal.

Otherwise, assume that there exists an optimal solution with a different set of
jobs L′. If L′ is a strict subset of L, this can not give a better solution, since the first
job in R must be a job in L\L′ and could be moved from R to L, thus improving the
objective function due to the WSPT ordering. Therefore, there must exist a new job
j ∈ L′ \L, and thus also a new job i ∈ L \L′, since p j ≥ pi for all i ∈ L and given
the maximality of L. We can write the schedule as σ ′ = α j β iγ with wi > w j and
pi ≤ p j, where α and β are sub-sequences made by old and new jobs and γ is a sub-
sequence made by new jobs only. Construct schedule σ∗ by swapping i and j, so that
σ∗ = α iβ j γ . Then f (σ ′)− f (σ∗) = wi(Pβ + p j)−w j(Pβ + pi)+Wβ (p j− pi) =

(wi−w j)Pβ +(wi p j−w j pi)+Wβ (p j− pi), which is positive, since all terms in
parentheses are positive by definition of i and j. Also, since pi ≤ p j there is
∆max(σ

∗)≤ ∆max(σ
′)≤ Y . By repeating the same argument for a finite number of

times we obtain schedule σG from σ ′ and the statement is proved.

If the processing times of the new jobs are all equal, then the WSPT order implies
an ordering by non-increasing weights. Trivially, the weights and processing times
are agreeable and therefore Theorem 2.3.2 implies the following corollary.

Corollary 2.3.2. The problem 1|∆max ≤ Y, pN
j = p|∑w jC j is optimally solved in

polynomial time by schedule σG.

For general instances, one can show that the output of Greedy can be arbitrarily
bad with respect to the optimal solution.

Property 2.3.1. Algorithm Greedy does not have a bounded performance ratio for
1|∆max ≤ Y |∑w jC j.

Proof. We define an instance related to the worst-case instance for the Greedy
algorithm for the well-known 0-1 knapsack problem (refer to Kellerer et al. (2004)).
The instance consists of one old job 1 and two new jobs 2 and 3 with p1 =M2,w1 = 1,
p2 = 1,w2 = 2, p3 = M,w3 = 2M− 1 and Y = M. We have w2

p2
> w3

p3
> w1

p1
. Then,

the schedule returned by Algorithm Greedy is σG = (2,1,3). The total weighted
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completion time of such schedule is

f (σG) = 2+M2 +1+(2M−1)(M2 +M+1)

= 2+M2 +1+2M3 +2M2 +2M−M2−M−1

= 2M3 +2M2 +M+2.

An alternative solution is given by schedule σopt = (3,1,2) with a total weighted
completion time of

f (σopt) = M(2M−1)+M2 +M+2(M2 +M+1)

= 2M2−M+M2 +M+2M2 +2M+2

= 5M2 +2M+2.

Clearly, the ratio f (σG)
f (σopt)

tends to infinity for increasing M.

For the 0-1 knapsack problem it is known that the unbounded approximation ratio
of Greedy can be easily limited by a factor of 2 if the singleton solution consisting
only of the single item with the highest profit is taken into account as a possible
alternative solution. A similar remedy could work for 1|∆max ≤ Y |∑w jC j, by con-
sidering an alternative solution where L contains only the single job with largest
weight. This would yield the optimal solution for the above worst-case instance.
However, it is easy to see, with simple calculations, that the following extension
of that instance from the above proof gives again an unbounded approximation
ratio also for this upgraded version of Greedy, while the analogous extension of the
worst-case instance for the knapsack problem gives a 2-approximate solution. The
extended instance follows:
p1 = M2,w1 = 1, p2 = 1,w2 = 2 and p3 = p4 = M,w3 = w4 = 2M− 1 and Y =

2M−2.

2.3.2 Minimizing the number of tardy jobs subject to a maximum
time disruption constraint

In this section, we study the complexity of problem 1|∆max ≤ Y |∑U j and show that
is NP-hard in the strong sense, closing a gap in the literature. When considering
the ∆max criterion, the problem differs from the two problems of minimizing the
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maximum lateness and the total completion time and the problem of minimizing
the total weighted completion time for the presence of idle times in optimal solu-
tions. This new complexity result helps to emphasize the different nature of these
rescheduling problems. In addition to this result, we show that the problem cannot
be approximated in polynomial time by a factor less than 2, unless P = NP.

Theorem 2.3.3. Problem 1|∆max ≤ Y |∑U j is strongly NP-hard.

Proof. The proof is given by reduction from 3-PARTITION. Consider the following
instance of the rescheduling problem. Let be Y = Kt + t +y+1 with a positive value
K such that K ≥ y. We will introduce 6t +1 jobs in total. First, there are 2t old jobs
1, . . . ,2t arranged in pairs. For any i = 0, . . . , t−1 we set:

• p2i+1 = Kt +2t +2+(i+2)y, d2i+1 = p2i+1 +2Yi

• p2i+2 = Kt− iy, d2i+2 = 2Y (i+1)

The construction implies that the sum of the processing times of each pair of jobs
is equal to 2Y , i.e., p2i+1 + p2i+2 = 2Kt + 2t + 2y+ 2 = 2Y for i = 0, . . . , t − 1.
Moreover, the odd-indexed longer jobs increase by y whereas the shorter even-
indexed jobs decrease by y, formally p2i+1 = p2i−1 + y and p2i+2 = p2i− y for
i = 1, . . . , t−1. Jobs are initially ordered in schedule π∗ according to their indices. In
this schedule each job is exactly on time as its due date coincides with its completion
time.

Secondly, there are 3t new jobs with indices 2t +1, . . . ,5t corresponding to the
elements of 3-PARTITION.

• p2t+i = ai, d2t+i = 2Yt for i = 1, . . . ,3t.

Finally, there are additional t +1 new jobs 5t +1, . . . ,6t +1 with

• p5t+i = 1, d5t+i = i for i = 1, . . . , t +1.

We show that there is a solution to the decision version of the rescheduling
problem 1|∆max ≤ Y,∑U j ≤ t|−, i.e. with objective function at most t, if and only if
there exists a solution to 3-PARTITION.
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t
5t +1, . . . ,6t +1

2t + i,
i ∈ S1

2 1 . . . 2t + i,
i ∈ St

2t 2t−1

Figure 2.10 Schedule solving 1|∆max ≤ Y, ∑U j ≤ t|− when a solution to 3-PARTITION

exists.

If 3-PARTITION is a “yes”-instance and allows a partition into sets Si, the follow-
ing schedule (Fig. 2.10) solves the decision problem 1|∆max ≤ Y,∑U j ≤ t|−. The
new jobs 5t +1, . . . ,6t +1 are scheduled in increasing order of due date, so that each
completes exactly at its due date.

All new jobs 2t +1, . . . ,5t complete before the last two old jobs 2t−1 and 2t. In
fact, for any i = 1, . . . ,3t, there is:

C2t+i ≤ t +1+ ty+
t−2

∑
ℓ=0

(p2ℓ+1 + p2ℓ+2) =

t +1+ ty+2Y (t−1) =

t +1+ ty−2(Kt + t + y+1)+2Yt =

−t−1−2y− t(2K− y)+2Yt < 2Yt = d2t+i

which is true, since K ≥ y. So, also the new jobs 2t +1, . . . ,5t complete on time.

The even-indexed old jobs 2i+2 complete on time for any i = 0, . . . , t−1:

C2i+2 = t +1+(i+1)y+ p2i+2 +2Yi =

t +1+(i+1)y+Kt− iy+2Yi =

t +1+ y+Kt +2Yi =

Y +2Yi < 2Y (i+1) = d2i+2

However, the odd-indexed old jobs 2i+1 are late for any i = 0, . . . , t−1:

C2i+1 = t +1+(i+1)y+2Y (i+1) =

t +1+(i+1)y+ p2t−1 + p2t +2Yi > p2i+1 +2Yi = d2i+1,

since p2t−1 ≥ p2i+1 for i = 0, . . . , t−1.

So, all together there are t late jobs, i.e., ∑U j ≤ t. In addition, the schedule
is feasible since the disruption of every old job is exactly Y . In fact, for any i =
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0, . . . , t−1, the odd-indexed old jobs 2i+1 have a disruption

∆2i+1 = t +1+(i+1)y+ p2i+2

= t +1+(i+1)y+Kt− iy

= Kt + t + y+1 = Y

and the even-indexed old jobs 2i+2 have a disruption

∆2i+2 = p2i+1− (t +1+(i+1)y)

= Kt +2t +2+(i+2)y− (t +1+(i+1)y)

= Kt + t + y+1 = Y

Next, we show that if there is a “yes” answer to the decision problem 1|∆max ≤
Y,∑U j ≤ t|−, then there is also a partition giving a “yes” answer to 3-PARTITION.

If there exists a schedule for 1|∆max ≤Y,∑U j ≤ t|−, at least one of the t +1 jobs
5t +1, . . . ,6t +1 must be on time and therefore scheduled in the interval [0, t +1].
Now consider job 1: Since p1 > t +1, the on time dummy job must precede job 1.
Therefore, job 1 must be late, because p1 = d1. If the given sequence of old jobs
π∗ is kept, then all old jobs will be late since their due dates exactly match their
completion times in π∗. So, we consider moving forward one of the old jobs. At first
we try to find an old job j that can complete before job 1. The disruption constraint
bounds the new completion time C j of job j by C j ≥C j(π

∗)−Y and C1 of job 1 by
C1 ≤C1(π

∗)+Y = p1 +Y and C j ≤C1. This implies that job j can precede job 1 if
the following condition holds:

C j(π
∗)−Y ≤ p1 +Y (2.1)

For any odd-indexed job j = 2i+1, i = 0, . . . , t−1, we can use p2i+1 = p1 + iy and
get for (2.1):

2Yi+(p1 + iy)−Y ≤ p1 +Y

(2Y + y)i ≤ 2Y

This holds only if i = 0, i.e., for none of the jobs j = 2i+1, j > 1.
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For any even-indexed job j = 2i+2, i = 0, . . . , t−1, we obtain for (2.1):

2Y (i+1)−Y ≤ p1 +Y

2Yi ≤ p1 = 2Y − p2

which holds only if i = 0, i.e., for job j = 2.

By repeating the same argument for trying to forward any higher indexed job
before a job 2,3, . . . ,2t, we show that we can only exchange every even-indexed old
job with its direct predecessor. This creates a new sequence 2,1,4,3, . . . ,2t,2t−1,
where all even-indexed jobs 2i+2, for i = 0, . . . , t−1 are on time (the reduction of
their completion times offsets the inserted dummy jobs) and the others are late.

After this pairwise interchange of old jobs, we can describe the time interval in
which each such pair (2i+2,2i+1) must be scheduled because of the disruption
bound. The earliest starting time for an even-indexed job 2i+2, i = 0, . . . , t−1, can
not be before

C2i+2(π
∗)−Y − p2i+2

= 2Y (i+1)−Y − (Kt− iy)

= 2Yi+Kt + t + y+1−Kt + iy

= t +1+(i+1)y+2Yi. (2.2)

For an odd-indexed job 2i+1, i = 0, . . . , t−1, the completion time is bounded by

C2i+1(π
∗)+Y

= 2Y (i+1)− p2i+2 +Y

= 2Y (i+1)− (Kt− iy)+Kt + t + y+1

= t +1+(i+1)y+2Y (i+1). (2.3)

Combining (2.2) and (2.3) we obtain a time interval

[t +1+(i+1)y+2Yi, t +1+(i+1)y+2Y (i+1)] (2.4)

for processing jobs 2i+2 and 2i+1. Observing that the sum of processing times of
each such pair of jobs matches exactly the width 2Y of its interval, it follows that the
jobs must be scheduled exactly in this interval.
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Summarizing, we have t pairs of old jobs, constrained to the intervals given by
(2.4), and among these 2t jobs t are late. Thus, for a feasible schedule with ∑U j ≤ t,
all dummy jobs 5t +1, . . . ,6t +1 must be scheduled on time, i.e., at the beginning of
the schedule in interval [0, t +1] in increasing order of their due dates.

Also, all new jobs 2t +1, . . . ,5t corresponding to the elements of 3-PARTITION

must be scheduled before the last old job to be on time, since their due date is 2Yt.
Considering any two successive intervals defined by (2.4), it is easy to see that
an idle time of length y remains available between them. These gaps of the form
[t + 1+(i+ 1)y+ 2Y (i+ 1), t + 1+(i+ 2)y+ 2Y (i+ 1)] are the only possibilities
for scheduling all new jobs 2t +1, . . . ,5t on time. Allocating all these 3t jobs with
processing times ai into the t gap intervals of length y gives a feasible solution and
thus a “yes” answer for 3-PARTITION.

In order to conclude the proof, we show that the problem is not a number problem.
The condition to show this result requires the existence of a polynomial λ of the size
of a vector containing all input values of the rescheduling problem that bounds the
largest number of the input, as follows:

max( max
j∈O∪N

(p j,d j),Y ) ≤ λ (2(|O|+ |N|)+1)

2t(Kt + t + y+1) ≤ λ (2(6t +1)+1)

Consider setting K = y, the condition then requires 2t(yt+ t+y+1)≤ λ (2(6t+1)+
1,3t +1). Since 3-PARTITION is not a number problem, there exists a polynomial
λ ′ such that y ≤ λ ′(t) which implies the existence of λ . Therefore, the statement
holds and shows that the rescheduling problem is not a number problem.

Corollary 2.3.3. Problem 1|no− idle,∆max ≤ Y |∑U j is strongly NP-hard.

Proof. Since problem 1|∆max ≤ Y |∑U j has been proven to be strongly NP-hard by
reduction from 3-PARTITION on a set of instances with no idle time in the optimal
schedule, the result follows.

Next, we derive a non-approximability result.

Theorem 2.3.4. Approximating problem 1|∆max ≤ Y |∑U j to a factor c < 2 is NP-
hard.
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Proof. To prove the result, we show that the c-gap problem, with c < 2, i.e. that to
distinguish between the two cases ∑U j ≤ 1 and ∑U j ≥ 2 is a NP-complete problem.

We show that by reduction from PARTITION to the decision version of the
rescheduling problem denoted by 1|∆max ≤ Y, ∑U j ≤ 1|−. Consider the following
instance of the decision version of the rescheduling problem:
There are two old jobs 1,2, with

• p1 = 2B+5, d1 = 2B+5 and

• p2 = 1, d2 = 2B+6,

two new jobs 3,4, with

• p3 = p4 = 1, d3 = d4 = 2,

and n additional new jobs 5,6 . . . ,4+n corresponding to the elements of PARTITION,
with

• p4+i = ai, d4+i = 4B+8 for i = 1, . . . ,n.

Finally, we set Y = B+3.

Schedule π∗ is constructed as follows to have both old jobs on time.

π∗
0

2B+6

1 2

If there exists a solution to PARTITION, there exist two sets S1 and S2 and schedule

σ

0
3 4

4+ i
i ∈ S1

2 1
4+ i
i ∈ S2

B B

Figure 2.11 Schedule solving 1|∆max ≤ Y, ∑U j ≤ 1|− when a solution to PARTITION exists.

σ in Fig. 2.11 solves the rescheduling problem 1|∆max ≤ Y, ∑U j ≤ 1|−, where job
1 is the only tardy job. Also,

∆1 = (2B+5)+2+1+B− (2B+5) = B+3≤ Y
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and
∆2 = (2B+5)+1−2−1−B = B+3≤ Y

On the other side, if the rescheduling problem has a solution with ∑U j ≤ 1,
the two jobs 3 and 4 must be scheduled at the beginning positions of the schedule,
otherwise at least two jobs will become tardy. But then, 1 and 2 must be swapped
and, to meet the constraint on the disruption, 2 must complete not earlier than B+3
and 1 not later than 3B+ 8. Given that, since the due date of jobs 4+ i for any
i = 1, . . . ,n, equals the sum of all jobs, the solution cannot contain idle times and
the only way to get that is to have a partition of jobs 4+ i, i = 1, . . . ,n, in two sets
such that the sum of the processing times of each set is equal to B, i.e. if a solution
to PARTITION exists.

This concludes the proof since, for any factor c = 2− ε , 0 < ε < 1, answering to
the c-gap problem, is NP-hard and so is approximating the problem to factor c.

2.3.3 Minimizing the number of tardy jobs or the total tardiness
subject to a total time disruption constraint

Theorem 2.3.5. Problems 1|∑∆ ≤ Y |∑U j and 1|∑∆ ≤ Y |∑Tj are strongly NP-
hard.

Proof. We first show that the rescheduling problem 1|∑∆ ≤ Y |∑U j is strongly
NP-hard, following the line of the proof of Hall and Potts (2004) for problem
1|∑∆ ≤ Y |Lmax. The proof is given by reduction from 3-PARTITION. Given any
instance of 3-PARTITION, we show that the problem reduces to the decision version
of 1|∑∆≤ Y |∑U j denoted by 1|∑∆≤ Y, ∑U j ≤ 0|−.

Consider the following instance of the rescheduling problems with 2t old jobs
and 3t new jobs.

• O = {1, . . . ,2t}

• N = {2t +1, . . . ,5t}

• p j = 1, j = 1, . . . , t

• p j = ty, j = t +1, . . . ,2t
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• d j = t(2ty+1), j = 1, . . . ,2t

• p j = ta j−2t , j = 2t +1, . . . ,5t

• d j = t2y+ t−1, j = 2t +1, . . . ,5t

• Y = t3y+ t(t +1)/2

It is shown below, that a solution to 1|∑∆≤Y, ∑U j ≤ 0|− exists if and only if a
solution of 3-PARTITION exists.

Schedule π∗ is constructed as follows.

π∗
0

ty+1 t(ty+1)

t +1 1 . . . 2t t

If a solution to 3-PARTITION exists, there exist index sets S1, . . . ,St . Then, schedule
σ of Fig. 2.12 solves 1|∑∆≤ Y, ∑U j ≤ 0|−.

σ

0
ty+1 t(ty+1) t(2ty+1)

2t + i
i ∈ S1

1 . . . 2t + i
i ∈ St

t t +1 . . . 2t

Figure 2.12 Schedule solving 1|∑∆ ≤ Y, ∑U j ≤ 0|− when a solution to 3-PARTITION

exists.

On the other hand, in order to have a schedule with ∑U j≤ 0, all jobs t+1, . . . ,2t have
to be scheduled after the new jobs, otherwise one of them would be late. Suppose that
exactly h jobs among jobs 1, . . . , t are scheduled after the first job among t +1, . . . ,2t
in σ∗. Each such job completes in σ∗ no earlier than time t2y+ ty+(t− h)+ 1,
whereas it completes in π∗ no later than time t(ty+1). Moreover, jobs t +1, . . . ,2t
are completed at times ty,(2ty+1), . . . ,(t2y+ t−1) in π∗ and are preceded by all
new jobs and t−h jobs of {1, . . . , t} and therefore are completed no earlier than times
(t2y+(t−h)+ ty),(t2y+(t−h)+2ty), . . . ,(t2y+(t−h)+ t2y) in σ∗. Computing
the total disruption, we obtain:

∑∆ ≥ t3y+ t(t−h)− t(t−1)/2+h(ty−h+1)

= Y +h(ty−h− t +1)
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Since y≥ 3, by definition of 3-PARTITION, we conclude that h = 0. Also, in order
to have the disruption constraint satisfied, jobs 1, . . . , t must be scheduled on time
with respect to their initial completion times and the new jobs in sets S1, . . . ,St

between them as shown in the figure above. The partition of the new jobs solves
3-PARTITION.

The same reduction also works for problem 1|∑∆ ≤ Y |∑Tj and shows that
3-PARTITION reduces to the decision problem 1|∑∆≤ Y, ∑Tj ≤ 0|−.

In order to conclude the proof, we show that the two problems are not a number
problem. The condition to prove this result requires the existence of a polynomial λ

of the size of the rescheduling problem that bounds the largest number of the input,
as follows:

max( max
j∈O∪N

(p j,d j),Y ) ≤ λ (2(|O|+ |N|)+1)

2t3y+ t2 + t ≤ λ (10t +1)

Since 3-PARTITION is not a number problem, there exists a polynomial λ ′ such that
y ≤ λ ′(3t) which implies the existence of λ . Therefore, the statement holds and
shows that the rescheduling problem is not a number problem.

Corollary 2.3.4. Problems 1|no− idle,∑∆≤Y |∑U j and 1|no− idle,∑∆≤Y |∑Tj

are strongly NP-hard.

Proof. Since both problems 1|∑∆≤ Y |∑U j and 1|∑∆≤ Y |∑Tj were proved to be
strongly NP-hard by reduction from 3-PARTITION, even if there is no idle time in the
optimal schedule, problems 1|no− idle,∑∆≤Y |∑U j and 1|no− idle,∑∆≤Y |∑Tj

are strongly NP-hard too.

2.3.4 Other complexity results

First, we derive a corollary to Theorem 3 in Hall and Potts (2004), which derives
from the fact that the reduction from 3-PARTITION used in the proof does not use
idle times.

Corollary 2.3.5. Problem 1|no− idle,∑∆≤ Y |∑Lmax is strongly NP-hard.
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Next, we turn to the problem of minimizing total tardiness subject to a maximum
disruption constraint. The result is a corollary to the weak NP-hardness proof given
by Du and Leung (1990).

Corollary 2.3.6. Problem 1|∆max ≤ Y |∑Tj is NP-hard.

Proof. Consider the well-known generalization of the problem, i.e. the scheduling
problem 1||∑Tj, which is known to be weakly NP-hard. It is enough to take Y =+∞

to show that 1||∑Tj is a particular case of 1|∆max ≤ Y |∑Tj. Thus, the rescheduling
problem is NP-hard.

Next, we derive a corollary to Theorem 2.3.1.

Corollary 2.3.7. Problem 1|∑∆≤ Y |∑w jC j is NP-hard.

Proof. Consider the special case with one old job j. Clearly, with one old job we
have ∑∆ = ∆ j = ∆max. Since problem 1|∆max ≤ Y |∑w jC j has been proven to be
NP-hard in the weak sense in Section 2.3.1, even when there is a single old job
and when there are no inserted idle times, problems 1|∑∆≤ Y |∑w jC j is NP-hard
too.

Again, this last complexity result originates from a polynomial reduction that
uses a schedule with no idle times. Hence, the following corollary holds.

Corollary 2.3.8. Problem 1|no− idle,∑∆≤ Y |∑w jC j is NP-hard.

2.3.5 Overview on complexity results of rescheduling problems

Given the new results obtained that were presented in this section, we give here
an overview of the main known computational complexity results of rescheduling
problems for new orders.

Table 2.2 summarizes the current state of known complexity results. Each row
contains the results for each different objective function. For each row, the results
for the ∆max criterion are shown first, and for the ∑∆ criterion next. All results hold
for both versions with and without the non-delay schedule constraint.

The first two rows contain the results from the literature (Hall and Potts (2004)),
while remaining results highlighted in bold are given in this thesis.
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Table 2.2 Computational complexity of rescheduling problems.

f ∆max ∑∆

Lmax O(n+nN log(nN)) strongly NP-hard

∑C j O(n+nN log(nN)) NP-hard

∑w jC j NP-hard NP-hard

∑U j strongly NP-hard strongly NP-hard

∑Tj NP-hard strongly NP-hard

The new complexity results obtained for several problems that were left open
in the previous literature give a better understanding of the intrinsic complexity of
most of rescheduling problems. The table also emphasizes the higher complexity
of rescheduling problems with the ∑∆ criterion, which is not surprising since the
∆max constraint is a kind of local constraint, i.e. it constrains the completion time of
each old job independently, while ∑∆ constrains the time deviation computed over
all jobs.

Despite the current characterization of rescheduling problems in terms of their
complexity, it is important to emphasize that there are two open problems. The
two problems are 1|∆max ≤ Y |∑Tj and 1|∑∆≤ Y |∑w jC j, for which we set weak
NP-hardness but for which no pseudo-polynomial algorithm is known. The structure
of problem 1|∆max≤Y |∑Tj has many similarities with problem 1|∆max≤Y |∑U j for
minimizing the total number of late jobs subject to a maximum disruption constraint.
These similarities should be investigated to see if the problem is also strongly NP-
hard. On the contrary, there is no similar result that suggests whether problem
1|∑∆≤ Y |∑w jC j can be solved in pseudo-polynomial time or not. However, the
problem does not answer to ordering properties for old jobs and it may lead to
unforced idleness on the machine, and these two facts make hard to identify valid
structures to help solve the problem. Thus, further analysis should prove whether
there is such a pseudo-polynomial algorithm or whether the problem is NP-hard in
the strong sense.



Chapter 3

Timing problems given a fixed
sequence of jobs

Timing problems require the determination of suitable task execution dates within
a given processing sequence, such that constraints and objectives are met. Their
efficient solution is critical in branch-and-bound and neighbourhood search methods
for vehicle routing, project and machine scheduling, and various other applications.
An overview of the applications, properties and methods of timing problems, derived
from various combinatorial optimization problems, is given in Vidal et al. (2015).
In scheduling, the best-known timing problem is the problem of minimizing total
earliness and tardiness of a given sequence (see for instance Garey et al. (1988),
Davis and Kanet (1993) and Croce and Trubian (2002)). In scheduling, especially in
manufacturing scheduling, this is one of the few scheduling problems, apart from its
variants, that requires solving a timing problem. In fact, scheduling often considers
regular objective functions that are non-decreasing in terms of job completion times,
because as completion times increase, costs and delivery times usually increase as
well, having a negative impact on the overall system. However, with the growing
interest in just-in-time policies, there has been an increasing interest in objective
functions in the form of (weighted) absolute deviations from given dates. In this
context, orders are penalized if they are both early and late. Several papers introduced
and revised existing work on single machine scheduling problems with earliness and
tardiness penalties (Sidney (1977), Bagchi et al. (1986), Garey et al. (1988), Baker
and Scudder (1990)).
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The timing problem in rescheduling arises because of the disruption constraint,
which introduces a measure of the absolute time deviations of old jobs, where the
target dates from which the deviation is computed are the original completion times
of the jobs. This chapter is devoted to understanding the complexity of the timing
problems in rescheduling problems for new orders studied in this dissertation, when
the job sequence is fixed, and to providing efficient algorithms.

3.1 Rescheduling with a fixed job sequence

In Section 2.2, two classes of problems were introduced, one where there are always
optimal solutions without idle times and the other where optimal solutions may
require the insertion of idle times. In this section, we study the timing problem,
that is underlying the second class of problems, i.e. the problem of determining
the completion times of jobs when the sequence is given and fixed (see Figure
3.1). Recall that so far we have considered several rescheduling problems with a
scheduling objective, which is given by a regular objective function, and a constraint
on the maximum or total absolute time deviation of the old jobs.

t
. . . i

C∗i ?

. . . . . . j

C∗j ?

. . .

Figure 3.1 The timing problem

Since the input of the timing problem is a sequence of jobs, we assume to start
with a compact solution, i.e. one without idle times between jobs. Since any regular
objective function is minimized in a schedule without inserted idle times, in this
chapter we assume that this schedule is infeasible with respect to the disruption
constraint. Otherwise, the timing in this schedule is already solved to optimality.
Since the starting solution is a compact one, we consider only right-shifting, i.e.
delaying in time, jobs or blocks of jobs. Since we have to evaluate a regular objective
function f and a non-regular disruption function among ∆max and ∑∆, this clearly
leads to evaluating the increase of f and the change in the disruption, which may be
both an increase or a decrease.

In this chapter, we first show that the timing problems can be formulated as
Linear Programs, and then develop dedicated algorithms, that set their polynomial
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Table 3.1 Notation for timing problems.

Notation Description

α schedule of jobs scheduled with no idle times
ω value of the objective function in α

dC
j original completion time C j(π

∗) of old job j
B any block of jobs scheduled consecutively without interruptions
A j a tail block starting with job j
CB completion time of block B
tB starting time of block B
EB set of jobs in B such that C j < dC

j
TB set of jobs in B such that C j > dC

j
OB set of jobs in B such that C j = dC

j
δ ∆

j decrease of ∑∆ if tail block A j is right shifted by one time unit

complexity. The algorithms will use the trade-off of limiting the increment of the
objective function and decreasing the disruption, which is necessary to obtain a
feasible solution.

In the chapter, we introduce and explain some additional notation. For easier
reference, we give a summary of main notation that will be introduced in Table 3.1.

3.2 Linear programming model

We present a linear program (LP) for the set of problems tackled in this chapter to
show that they fall into the category of problems that can be formulated as Linear
Programs.

We are given a fixed sequence of old and new jobs j = 1, . . . ,n and, for each of
them, we introduce the continuous variables C j ≥ 0 that represent the completion
times of jobs. Then, for any job j ∈O, we introduce variables ∆ j ≥ 0 as the disruption
of each old job.

We express the LP formulation as follows:
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Minimize f (C j)

subject to

C1 ≥ p1 (1)

C j ≥C j−1 + p j j = 2, . . . ,n (2)

∆ j ≥C j−dC
j ∀ j ∈ O (3)

∆ j ≥ dC
j −C j ∀ j ∈ O (4)

In addition, depending on whether we consider the ∆max or the ∑∆ criterion, we
have, respectively:

∆ j ≤ Y ∀ j ∈ O (5a)

or

∑ j∈O ∆ j ≤ Y (5b)

The objective function f (C j) can be any regular objective function considered so
far. Constraints (1) and (2) define the completion times of jobs, such that there is no
overlap between jobs. Constraints (3) and (4) define the disruption of each old job as
the absolute time deviation from the initial completion times. Finally, constraints
(5a) and (5b) define the disruption constraint.

3.3 Timing algorithms

From Table 2.1 and Table 2.2 we can see that rescheduling problems that belong to
the family of problems that need idle time insertion are all NP-hard. In this section,
we prove that the special case with fixed jobs sequence is polynomially solvable.
The problem with fixed sequence becomes a timing problem, i.e. the problem of
determining the exact starting times of the jobs. So, as soon as a sequence has to
be evaluated, the timing problem must be solved. Beside the interest in the field of
timing problems, these algorithms may be used for solution procedures such as in
branch-and-bound algorithms, where to each node is associated a specific (partial)
sequence of jobs.
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Assume we are given a fixed sequence of old and new jobs α = (1,2, . . . ,n)
that are initially scheduled with no inserted idle times. We also assume continuous
completion times since it is a standard assumption when considering timing problems
(see Chrétienne and Sourd (2003), Vidal et al. (2015)). In the following, we consider
that jobs are indexed following their order in the sequence.

In the remaining part of the section, we first address timing problems with the
maximum disruption constraint ∆max before turning to the case of the total disruption

∑∆ j. Since timing problems usually determine optimal starting times of jobs in terms
of time deviation from due dates, from now on we will call the original completion
time of old jobs as dC

j . So, we have dC
j =C j(π

∗).

3.3.1 Timing with the ∆max criterion

This set of problems is identical to the set of problems of minimizing a regular
objective function subject to time windows constraints. Given the value of the
maximum disruption Y , for each old job we can define a release dates and deadlines
as follows:

r j =

{
max(0,dC

j −Y ), j ∈ O

0, j ∈ N
(3.1)

d̃ j =

{
dC

j +Y, j ∈ O

+∞, j ∈ N
(3.2)

Clearly, processing a job outside the interval [r j, d̃ j] makes the schedule infeasible
with respect to the disruption constraint. The problem at hand is solved by the
minimum idle time policy (Vidal et al. (2015)) as follows. Each job of the sequence
is scheduled at its earliest feasible execution date, i.e. when the previous job in the
sequence completes or at its release date. If all jobs can be successfully scheduled
in this way, from the first to the last, the schedule is feasible and the increase in
the objective function is minimum. The timing algorithm for scheduling with time
windows (Algorithm TIM_TW) is shown in Algorithm 2 and runs in O(n) time.
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Algorithm 2 Algorithm TIM_TW for 1|seq,∆max ≤ Y | f
1: Compute r j (resp. d̃ j) according to equations 3.1 (resp. 3.2)
2: C1 = r j + p1
3: for i = 1, . . . ,n−1 do
4: Ci+1 = min(r j,Ci)+ pi+1
5: if Ci+1 > d̃ j then
6: return infeasibility.
7: end if
8: end for

3.3.2 Timing with the ∑∆ criterion

The proposed timing algorithms are developed in two steps. First, a general pre-
processing step provides an optimal timing for the schedule subject to the constraint
that the initial objective function value must not increase with respect to the initial
sequence α . After the pre-processing, the algorithms are developed separately and
one is proposed for objective functions ∑w jC j,∑U j,∑Tj and one for Lmax.

Before introducing the pre-processing algorithm, let us introduce some notations,
that will be useful to present the two algorithms. At any point of the schedule, let a
block be a group of jobs that are scheduled consecutively without interruptions and
preceded and followed by idle times, with the exception of a block starting at time 0:
in this case, it is only followed by an idle time. A subblock is any job sequence of
consecutive jobs which is part of a block. A subblock is a head if it is preceded by
an idle time or it is starting at time 0. A subblock is a tail if it is followed by idle
times. A schedule σ is constituted by a set B of blocks scheduled consecutively and
separated by idle times. Each block B ∈B has a starting time tB and a completion
time CB. Figure 3.2 shows an example of a block of jobs constituted by a head
subblock H with starting time tH and completion time CH and a tail subblock T with
starting time tT and completion time CT .

0 t
tB = tH

H

CH = tT

T

CB =CT

Figure 3.2 A block B of jobs, made up of a head H and a tail T .
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The pre-processing phase

The algorithm takes as input a compact sequence of jobs scheduled without idle
times. If the schedule satisfies the constraint on the disruption, then the timing of
jobs is already optimal since any regular objective function is also minimized, thus
we consider only the case where ∑∆ j > Y .

The pre-processing answers to the question if it is possible to get a feasible
schedule without any increase of the current objective function. Given the initial
value ω = f (α) of the objective function in the compact schedule α , the new
schedule σ needs to satisfy the constraint f (σ) ≤ ω . For this purpose, we assign
deadlines to jobs, such that a violation of any of them implies an increase of f .

First, we focus on the case of function Lmax. Given its value ω in the compact
schedule, imposing fmax ≤ ω ⇐⇒ f j ≤ ω , ∀ j ∈ O∪N. To have this constraint
guaranteed, we set d̃ j such that d̃ j ≤ d j +ω . There are cases, where some job i has a
more restrictive deadline than some job j that precedes i in the schedule. In this case,
i will first meet its deadline if both are right shifted of the same amount, and j will
never meet its own deadline if i is scheduled at a feasible time. Consequently, we set:

d̃ j =

{
d j +ω j = n

min(d̃ j+1− p j+1,d j +ω) j = n−1, . . . ,1

Now, let us consider the case of sum objective functions. The initial compact
schedule α has an objective of ω , which is given by ω = ∑ j∈O∪N f j(α). Set ω j =

f j(α),∀ j ∈O∪N as the value of f j in α . Since the sequence is fixed and the f j’s are
regular functions, in any schedule σ with jobs in the same sequence as in α it holds
f j(σ)≥ ω j. But then, imposing ∑ f j = ∑ j∈O∪N f j ≤ ω =⇒ f j ≤ ω j, ∀ j ∈ O∪N.

We illustrate the above definitions on the objective functions we are considering
in this paper. When f = ∑U j,

d̃ j =


d j ω j = 0, j = n

+∞ ω j = 1, j = n

min(d̃ j+1− p j+1,d j) ω j = 0, j = n−1, . . . ,1

min(d̃ j+1− p j+1,+∞) ω j = 1, j = n−1, . . . ,1
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When f = ∑Tj,

d̃ j =

{
d j +ω j j = n

min(d̃ j+1− p j+1,d j +ω j) j = n−1, . . . ,1

Finally, notice that when we are considering ∑ f j = ∑w jC j, d̃ j = ω j, i.e. there is no
way to shift jobs without increasing the objective function and the pre-processing
will not modify the initial compact schedule.

The pre-processing algorithm minimizes ∑∆ j, given the limit on f and checks if

∑∆ j ≤ Y . The idea follows the one of the algorithm for the earliness/tardiness
scheduling problem with a fixed sequence by Garey et al. (1988) that runs in
O(nlogn) time. Minimizing the sum of the earliness and tardiness over a job
set J w.r.t due dates d j means, by definition, minimizing ∑ j∈J |C j− d j|, which is
equal to minimizing the total disruption w.r.t. the original completion times. So, we
modify the algorithm of Garey et al. (1988) and use the modified version to minimize
the total disruption subject to job deadlines constraints. We illustrate the algorithm
in the following paragraphs.

First, let us give some definitions. We say that a job j ∈ O in the rescheduling
problem is early, on time or late if it completes before, exactly at or after dC

j . Notice
that the new jobs have no due date dC

j as the total disruption is only computed on
O. For a given block B in a schedule σ , let us denote by EB(σ) the set of early old
jobs, by OB(σ) the set of on time old jobs and by TB(σ) the set of tardy old jobs
(EB, OB, TB when there is no ambiguity).

The algorithm for the earliness/tardiness problem, iteratively adds a job following
the order of the fixed sequence, appending it to the last block or creating a new block.
This job is either inserted at its due date, if this does not cause an overlapping of
jobs, or exactly next to the previously added job. Let B be the block to which job
j belongs to after the insertion: if |EB|+ |OB|− |TB|= 0, then the block is shifted
to the left until a job of the block becomes on time or the previous block is met or
tB = 0.

To adapt this algorithm to our problem, we distinguish the steps done for the set
of new jobs and those for the set of old jobs. Considering new jobs, since they do
not have any impact on the total disruption, we can schedule them immediately after
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Algorithm 3 Algorithm TIM_C for 1|seq, f ≤Ω|∑∆ j

1: Compute jobs deadlines following equations (1), (2), (3), (4)
2: C1 = min(max(p1,dC

1 ), d̃1)
3: B := 1
4: for i = 1, . . . ,n−1 do
5: if i+1 ∈ O then
6: if Ci + pi+1 ≤min(dC

i+1, d̃i+1) then
7: Ci+1 = min(dC

i+1, d̃i+1)
8: B := B+1
9: else

10: Ci+1 =Ci + pi+1
11: if |EB|+ |OB|− |TB|= 0 then
12: left-shift B by min(min j∈O∩B,dC

j <C j
(C j−dC

j ), tB−CB−1, tB)
13: end if
14: end if
15: else
16: Ci+1 =Ci + pi+1
17: end if
18: end for

their predecessors or at t = 0 if there is no job scheduled before, i.e. for any job i∈N
we define its completion time as Ci =Ci−1 + pi with C0 = 0. If we consider old jobs,
we schedule them so that they complete by dC

j , or at d̃ j if d̃ j < dC
j . If scheduling

a job by dC
j this causes an overlapping of jobs, then the current job is scheduled

exactly next to the previously added job. Notice that for any job that is appended
to its predecessor, the deadlines are satisfied by definition. The modified timing
algorithm for minimizing the total disruption subject to a constraint on the objective
function (Algorithm TIM_C) is shown in Algorithm 3.

Remark 3.3.1. Notice that in Algorithm 3, by construction, for any head subblock H
that is not starting at time 0 (see Figure 3.2), we have |EH |+ |OH |− |TH |> 0. Also,
for any tail subblock T (see Figure 3.2), where none of the jobs has C j = d̄ j, we have
|ET |− |OT |− |TT | ≤ 0, since otherwise, subblock T would not have been shifted so
far to the left.

Theorem 3.3.1. Algorithm 3 returns an optimal solution for the problem 1|seq, f ≤
Ω|∑∆ j.

Consider schedule σ returned by Algorithm 3. Let us introduce, for each tail
subblock A j where j is the starting job of the subblock, a value
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δ
∆
j =

{ |EA j |− |OA j |− |TA j | ∀ j ∈ O

0 ∀ j ∈ N

The value δ ∆
j is the change in the total disruption if A j is right shifted by one

time unit and since only the old jobs contribute to to it, we assign a value δ ∆
j = 0 to

each A j made up of only new jobs. If δ ∆
j > 0, there is a gain in the total disruption,

i.e. the total disruption decreases, and vice versa.

Recall that the jobs are indexed by position in the sequence. For any block B, we
call j∗B the job in B, such that δ ∆

j∗B
> 0, δ ∆

j∗B
≥ δ ∆

i and j∗B > i ∀i ∈ B. Notice, that by
definition, j∗B is always an old job or does not exist.

Lemma 3.3.1. The head subblocks of any block B, that do not contain j∗B, are
optimally scheduled.

Lemma 3.3.2. Shifting any of the tail subblocks with δ ∆
j > 0 always increases f .

In the next two sections, we establish how to iteratively identify the optimal
set of subblocks to be shifted to determine the optimal timing, first for problem
1|seq,∑∆ j ≤ Y |Lmax, next for problem 1|seq,∑∆ j ≤ Y |{∑w jC j,∑U j,∑Tj}.

Timing for problem 1|seq,∑∆ j ≤ Y |Lmax

We saw, that right shifting any of the tail subblocks with corresponding δ ∆
j > 0,

always leads to an increase of any objective function f (Lemma 3.3.2) meaning
that Lmax exactly increases by the amount of the shift. Considering this, it is more
convenient to right shift simultaneously the subblocks A j∗B that corresponds to δ ∆

j∗B
.

By definition, j∗B has the maximum δ ∆
j value in block B, i.e. the unitary gain in the

total disruption is maximum. Therefore, for the same increase of the Lmax, shifting
all tail subblocks with the maximum δ ∆

j value inside each block indeed leads to the
maximum decrease of the total disruption. For any block B, let us denote by BE the
set of all these tail subblocks of the schedule that start with a job j∗B. Consider only
tail subblocks A j with δ ∆

j > 0.

Now, consider shifting simultaneously all the tail subblocks in BE . The situation
is depicted in Figure 3.3. The white blocks are the tail subblocks that start with
the respective j∗B and therefore belong to set BE . The dotted blocks are the head
subblocks that do not move.
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t→
j∗Bi

→
j∗B j

→
j∗Bk

Figure 3.3 Set BE of tail subblocks shifted at each iteration of Algorithm 4.

The total unit gain δ̄ ∆ in the total disruption per unitary time shift is given by
δ̄ ∆ = ∑B∈BE δ ∆

j∗B
. We can derive the following corollary of Lemma 3.3.1 and 3.3.2

for the 1|seq,∑∆ j ≤ Y |Lmax problem.

Corollary 3.3.1. In any schedule σ , it is necessary and sufficient to shift all the
blocks in set BE of schedule σ to find the schedule with the minimum increase of
Lmax and the greatest decrease of ∑∆ j for each unit of inserted idle time.

Algorithm 4 Algorithm TIM_M for 1|seq,∑∆ j ≤ Y |Lmax

1: Run Algorithm 3 on the given job sequence and store solution in σ

2: τ = ∑∆(σ)−Y
3: if τ ≤ 0 then
4: return σ

5: end if
6: Compute BE , δ̄ ∆, qB, q j
7: while δ̄ ∆ > 0 do
8: δ = min( τ

δ̄ ∆
,qB,q j)

9: Shift all blocks in σ belonging to BE by δ

10: τ := τ−δ · δ̄ ∆

11: if τ ≤ 0 then
12: return σ

13: end if
14: Compute BE , δ̄ ∆, qB, q j
15: end while
16: return The given job sequence is infeasible

The algorithm iteratively shifts all the tail subblocks in BE . When moving these
subblocks several events may happen:

(E1). One block meets another block.
(E2). At least one old job reaches its original completion time dC

j .
Consider event E1. The event occurs when at least a subblock B ∈BE is followed by
a block B+1 ∈B \BE . Then, E1 occurs after qB = minB∈BE ,(B+1)∈B\BE (tB+1−
CB) units of time. Next, consider event E2. Clearly, the first event of this type occurs
after q j = min j∈O∩BE ,dC

j >C j
(dC

j −C j) units of time.
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Whenever one of the mentioned events occur, to restore the optimality condition
of Corollary 3.3.1, the δ ∆

j values must be recomputed to find the new optimal set of
subblocks BE to be shifted.

There are two stopping conditions for the algorithm. First, the algorithm stops as
soon as feasibility is reached, i.e. if at any iteration we can shift by τ

δ̄ ∆
units of time

before any of the events occur. Secondly, the algorithm stops as soon as there are
no strictly early tail subblocks. In this case, all δ ∆

j ≤ 0 and there is no way to reach
feasibility with the given sequence of jobs.

Putting all together, we obtain the timing algorithm for the problem with f = Lmax

(Algorithm TIM_M) depicted in Algorithm 4. The algorithm takes as input the
schedule computed by Algorithm 3. Then, at each iteration the algorithm computes
set BE , the corresponding δ̄ ∆ and when the next event occurs (quantities q j, qB).
Next, all the subblocks in BE are right shifted. If at any time, feasibility is reached
or there are no subblocks in BE , i.e. δ̄ ∆ ≤ 0, then the algorithm stops.

Lemma 3.3.3. Algorithm TIM_M finds an optimal solution for 1|seq,∑∆ j ≤ Y | fmax,
with fmax = Lmax, in O(n2) time.

Proof. Computing BE , δ̄ ∆, qB and q j, ∀ j ∈ O∪N can be done in O(n) time by
computing the δ ∆

j ’s backward and meanwhile keeping track of δ̄ ∆, qB and q j and
the subblocks in BE . Starting from the last job of each block, we assign δ ∆

j = 1 if
q j > 0, δ ∆

j =−1 if q j ≤ 0 or δ ∆
j = 0 if j is a new job. Then, for each further job in

the same block, δ ∆
j = δ ∆

j+1 +1 if q j > 0, δ ∆
j = δ ∆

j+1−1 if q j ≤ 0 or δ ∆
j = δ ∆

j+1 if j
is a new job.

Next, we bound the number of events, i.e. the number of iterations of the
algorithm by an additional factor O(n). Clearly, the number of E2 events is bounded
by n, since once an old job goes on time, it cannot become early again. To bound the
number of E1 events, consider instead what happens after one occurs. Two subblocks
B ∈BE and (B+1) ∈B \BE merge and possibly continue to shift if there is some
tail subblocks B j ⊂ B with δ ∆

j > 0. However, (B+1) will not be split again, since, by
definition, EB+1−OB+1 +TB+1 ≤ 0 (from Proof of Lemma 3.3.1) and right-shifting
(B+1) alone does never decrease the total disruption. So, the number of merging
operations, i.e. the number of E1 events, is bounded by the number of blocks, which
is at most n.

The time complexity of Algorithm 4 is then bounded by O(n2) time.
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Timing for problems 1|seq,∑∆≤ Y |{∑w jC j,∑U j,∑Tj}

We now set the procedure to identify and shift subblocks for finding an optimal
timing for objectives ∑ f j ∈ {∑w jC j,∑U j,∑Tj}. Let us introduce, for any tail
subblock A j, a value δ

f
j as the increase of ∑ f j when right shifting A j by one time

unit. Let us define the tail subblock A∗j , with maximum
δ ∆

j

δ
f
j
. Let δ ∆∗

j be the unitary

decrease of the total disruption when right-shifting A∗j . We derive the following
corollary of Lemma 3.3.1 and 3.3.2 for any of the 1|seq,∑∆ j ≤ Y |∑ f j problems.

Corollary 3.3.2. In any schedule σ , it is necessary and sufficient to right shift
the tail subblock A∗j to find the schedule with the minimum increase of ∑ f j =

{∑w jC j,∑U j,∑Tj} and the greatest decrease of ∑∆ j for one unit of inserted idle
time.

It appears that the main difference with problem 1|seq,∑∆ j ≤ Y |Lmax is given
by the fact that one tail subblock at a time is shifted, instead of moving multiple
tail subblocks simultaneously. The timing algorithm for sum objective functions
1|seq,∑∆ j ≤ Y |∑ f j, referred to as Algorithm TIM_S, shifts the tail subblock A∗j
until there is a change in the δ ∆

j ’s or the δ
f
j ’s. In addition to events (E1) and (E2),

the following event may happen:
(E3). At least one job reaches its due date d j.

The additional event E3 may occur, when function ∑ f j depends on due dates, i.e. for

∑U j and ∑Tj, and causes a change in the contribution δ
f
j to the objective function

for a unitary shift, when moving a subblock. The first event of this type occurs after
qD = min j∈O∪N,d j>C j(d j−C j) units of time.

Beside this, the algorithm works as the previous algorithm for the Lmax case.
TIM_S is sketched in Algorithm 5.

Lemma 3.3.4. Algorithm TIM_S finds an optimal solution for any problem 1|seq,∑∆ j≤
Y |∑ f j, with ∑ f j ∈ {∑w jC j,∑U j,∑Tj}, in O(n2) time.

Proof. In each iteration, the algorithm identifies A∗j and computes δ ∆∗
j , qB, q j,qD.

All can be computed in O(n) time.

Next, we bound the number of events. We have already shown that the number
of E2 events is bounded by n (proof of Lemma 3.3.3). In the same way, the number
of E3 events is bounded by n, since this type of event is generated by a job meeting
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Algorithm 5 Algorithm TIM_S for 1|seq,∑∆ j ≤ Y |∑ f j

1: Run Algorithm 3 on the given job sequence and store solution in σ

2: τ = ∑∆(σ)−Y
3: if τ ≤ 0 then
4: return σ

5: end if
6: Compute A∗j , δ ∆∗

j , qB, q j,qD

7: while δ ∆∗
j > 0 do

8: δ = min( τ

δ ∆∗
j
,qB,q j,qD)

9: shift A∗j by δ

10: τ := τ−δ ·δ ∆∗
j

11: if τ ≤ 0 then
12: return σ

13: end if
14: Compute A∗j , δ ∆∗

j , qB, q j,qD
15: end while
16: return The given job sequence is infeasible

its due date and there are n jobs. To bound the number of E1 events, consider instead
what happens after one occurs. We consider an E1 event, where no event E2 or
E3 occur. Two subblocks Ai and A j merge and since there are no events E2 or E3

happening at the same time, the value δ ∆
i

δ
f

i
in subblock Ai does not change if we

neglect the merged block A j. Also, if Ai is selected as a candidate to be right shifted,
δ ∆

i

δ
f

i
≥ δ ∆

j

δ
f
j

value. Then, when we recompute this value for the merged block Ai∪A j,

we have
δ ∆

i +δ ∆
j

δ
f

i +δ
f
j

. The merged block is the new optimal block to be right shifted, since

δ ∆
i +δ ∆

j

δ
f

i +δ
f
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− δ ∆
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i δ ∆
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i δ ∆
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j ))

≥ 0
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and δ ∆
i

δ
f

i
≥ δ ∆

j

δ
f
j

by definition and the denominator is always positive since we consider

regular objective functions. Then, once two blocks merge, they do not split again,
unless another type of event is involved. The total number of E1,E2 and E3 events is
hence bounded by 3n.

Given the maximum total number of iterations, i.e. the total number of events,
and the number of operations for updating the values to identify the optimal idle
time insertion, the overall time complexity of the algorithm is in O(n2) time.



Chapter 4

Exact and approximation algorithms
for 1|∆max ≤ Y |∑w jC j

In this chapter we consider the sum of weighted completion times subject to a
maximum time disruption constraint. This is a boundary problem, when dealing with
the ∆max criterion, since we showed that the structural property of no idle time in the
optimal rescheduling solution still holds, but the problem is already weakly NP-hard.
Total weighted completion time is a step further from the easier, polynomial cases
of minimizing maximum lateness and total completion time, but potentially more
tractable than the cases with idle times in the solution as total number of late jobs,
which is strongly NP-hard. The chapter will show that the problem is solvable in
pseudo-polynomial time and this highlights the special intermediate status of total
weighted completion time.

The chapter is structured as follows. In the first section, we introduce structural
properties that will be exploited in the following algorithms. In the second section, we
present a dynamic programming (DP) algorithm to solve the problem to optimality.
In the third section, we present two approximation algorithms, a fully polynomial
approximation scheme (FPTAS) and a polynomial-time approximation algorithm
with a performance ratio bounded with respect to the number of jobs.
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Table 4.1 Notation for problem 1|∆max ≤ Y |∑w jC j.

Notation Description

nO old job scheduled last
L set of new jobs scheduled before nO
R set of new jobs scheduled after nO
O< j (N< j) subset of old (new) jobs i, with i scheduled before j in π∗

(with i such that wi
pi
≥ w j

p j
)

O> j (N> j) subset of old (new) jobs i ̸= j ∈ O\O< j (i ̸= j ∈ N\N< j)
O< j(σ)(N< j(σ)) subset of old (new) jobs scheduled before job j in

schedule σ

T = PO +Y latest feasible completion time of job nO

4.1 Structural properties

In the following, we list several properties that hold for the optimal solution of the
problem, which allow to impose certain assumptions without loss of generality or to
exclude trivial cases from further consideration.

We will introduce some additional notation specific to this problem and, for ease
of reference, give a summary of the main notation introduced in Table 4.1. The
WSPT ordering rule does indeed play an important role. Whenever relevant, we will
break ties by scheduling old jobs before new jobs, then shorter jobs before longer
jobs, and in the case of identical data, jobs will be sorted lexicographically by index
number.

First, consider the WSPT schedule of both old and new jobs which minimizes the
total weighted completion time over all jobs. If such a schedule satisfies ∆max ≤ Y ,
then this schedule automatically solves 1|∆max ≤ Y |∑w jC j.

In Chapter 2, the structural analysis showed that there is a valid ordering property
that applies to the old jobs when solving this problem, i.e. old jobs are ordered in
WSPT order in an optimal solution (Property 2.1.2) and there is no unforced idle
time in an optimal solution (Property 2.2.2).

Thus, in the structure of an optimal schedule there are new jobs that are inserted
in between the old jobs 1, . . . ,nO ordered in WSPT order. All old jobs sequenced
later than a newly inserted job are delayed, which means that delays are propagated
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throughout the sequence of old jobs and that the largest disruption is always attained
for the last old job. We introduce the following property.

Property 4.1.1. In an optimal schedule for the 1|∆max ≤Y |∑w jC j problem, ∆max =

∆nO and CnO ≤ PO +Y .

Let us refine the above description by characterizing the structure of the optimal
solution as follows.

Property 4.1.2. An optimal schedule of 1|∆max ≤ Y |∑w jC j consists of two disjoint
subsets: the subset O∪L containing all old jobs O and those new jobs L scheduled
before the last old job nO, and the subset R of new jobs scheduled after the last old
job. In both O∪L and R, all jobs are sorted in WSPT order.

Proof. By Property 4.1.1, any job 1, . . . ,nO satisfies the disruption constraint for any
ordering of the new jobs in L. Hence, the WSPT order of the job set O∪L minimizes
the objective function without affecting the feasibility of the schedule. The same
holds for jobs in R, that can be ordered in WSPT order to minimize the objective
function.

The solution structure is visualized in Figure 4.1.

0
nO

CnO

t

PO +Y

O∪L R

Figure 4.1 Structure of an optimal schedule of problem 1|∆max ≤ Y |∑w jC j.

Property 4.1.2 implies the following corollary.

Corollary 4.1.1. Each new job j with w j
p j
≤ wnO

pnO
, is never scheduled before job nO in

an optimal schedule.

From Corollary 4.1.1, we can derive the straightforward assumption that all new
jobs with w j

p j
≤ wnO

pnO
will be scheduled after the last job nO in WSPT order and never

contribute to the disruption of the old jobs. Thus, we can set aside these jobs, solve
the remaining instance to optimality, and then append these jobs in WSPT order at
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the end of the computed sequence. Formally, we can assume the following property
to hold w.l.o.g. in the remainder of the paper:

Property 4.1.3. All new jobs j ∈ N fulfill w j
p j

>
wnO
pnO

.

In analogy to the previous observation, we can conclude that new jobs j with
processing time p j > Y can never be inserted to the left of any old job.

Thus, the following property will be assumed to hold w.l.o.g.

Property 4.1.4. All new jobs j ∈ N fulfill p j ≤ Y .

For an optimal schedule, consider the completion time C∗nO
of job nO and let

T = PO+Y be the maximum feasible completion time of nO in this schedule. For the
first job j ∈ N scheduled after nO it must hold that C∗nO

+ p j > T , because otherwise
it would be feasible, and by Property 4.1.3 optimal, to swap j and nO. Bounding p j

by pmax = max j∈N p j and invoking Property 4.1.1, it follows:

Corollary 4.1.2. In an optimal schedule, the completion time CnO of the last old job
is included in the interval (T − pmax,T ], and for the first new job j scheduled after
nO there is C j > T .

4.2 A dynamic programming algorithm

In the following, we use the structure of an optimal schedule in order to derive a
pseudo-polynomial time dynamic programming (DP) algorithm solving 1|∆max ≤
Y |∑w jC j exactly.

Note that the rescheduling problem shows similarities with the interfering jobs
problem in the multi-agent scheduling setting (see for instance Agnetis et al. (2014)).
In problem 1|IN,L2

max ≤ Q|∑w jC j, jobs of agent 2 are included in those of agent 1,
and while total weighted completion time is minimized over all jobs, only agent 2
has to keep the maximum lateness of its own jobs under a threshold Q. The structural
analysis of the rescheduling problem showed that old jobs are ordered in WSPT order
in an optimal solution (Property 2.1.2). This means that under specific due dates, the
bound on L2

max corresponds to the bound on the disruption. Whereas this problem is
generally strongly NP-hard, we will show in the following that this special case is
solvable in pseudo-polynomial time.
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The dynamic programming algorithm starts with the following assumptions. The
old jobs 1, . . . ,nO are scheduled and indexed by the WSPT rule (Property 2.1.2) and
the maximum disruption equals the disruption of the last old job nO (Property 4.1.1).
Index the new jobs nO + 1, . . . ,nO + nN by the WSPT rule too. By Property 4.1.2
there are two sets L and R of new jobs scheduled by WSPT, where L contains all
new jobs scheduled before nO in an optimal schedule and R all those scheduled
later. Moreover, the completion time of nO will never exceed the time T = PO +Y
(Corollary 4.1.2).

Let us call C the starting time of the first job in R. It holds that C ≥ T − pmax

(Corollary 4.1.2). Also, since it is never optimal to insert idle times, it follows that
C ≤ T and that the total length of the jobs in L must be exactly C−PO.

Summarizing the above, we can reduce the problem to finding the optimal subset
L of new jobs that will be scheduled before nO for the given optimal starting time C
of the new jobs in R.

The optimal solution can be found via dynamic programming using state gen-
eration, and/or using recursive functions. We use the first formulation, where we
generate only feasible states and keep only the dominating ones. Although this
results in a longer presentation, it allows us to show step by step how the optimal
solution is generated while keeping the overall time complexity the same.

The dynamic programming algorithm will consider a collection of states (C,P, f ) j

for j = 1, . . . ,nN defined as follows. Each state contains the total weighted com-
pletion time f (σ j), which we will denote as f , of an optimal solution σ j to the
subproblem that considers all old jobs and new jobs nO +1, . . . ,nO + j, with a start-
ing time C of the jobs scheduled in R and with an exact total length P of the new
jobs scheduled in subset L (see Fig. 4.2).

We seek the optimal solution σ∗ to the problem with all jobs scheduled, i.e. a state
with minimum objective function value f ∗ = f (σ∗) and the corresponding optimal
starting time C∗ of job set R, with no idle time, i.e. the state (C∗,C∗−PO, f ∗)nN .
The set of states is generated via dynamic programming by the following recursive
algorithm. The corresponding schedule can be retrieved by backtracking.

For every pair of parameters (C,P) only the states with minimal objective func-
tion value are relevant for reaching the optimal solution. Thus, we say that state
(C,P, f ′) j dominates state (C,P, f ′′) j if f ′ < f ′′.
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Initial state

State (C,P, f ) j

t

T
T −Y

PO

Y

T −Y

C
T

PO +P
t

O L R

0

Figure 4.2 Structure of a DP state (C,P, f ) j.

Algorithm 6 shows the steps to compute an optimal solution. For any possible
value of C = T − pmax +1, . . . ,T , states (C,0, f (π∗))0 are defined, where f (π∗) is
the total weighted completion time of all the old jobs ordered by the WSPT rule,
assuming they are starting at time 0, i.e. f (π∗) = ∑ j∈O w jC j(π

∗).

At every stage of the recursion, the algorithm considers two possible solutions
for a new job nO + j, namely putting job nO + j in R (Eq. 4.1 in Algorithm 6) or in
L (Eq. 4.2 in Algorithm 6). The entry of the objective function in (4.1) is given by
the increment caused by the contribution of nO + j scheduled at the end of set R. In
(4.2) it is given by the old jobs scheduled after nO + j that are shifted to the right by
pnO+ j time units and by the contribution of nO + j which will be scheduled after the
old jobs with a better WSPT ratio and the available “slot” of P time units.

Note that a new state generated in (4.2) is only feasible if the following two
conditions are met. On one hand, the total length P of new jobs in L must be bounded
by Y , i.e. the new state in (4.2) can only be generated if P+ pnO+ j ≤Y . On the other
hand, the starting time C of jobs in R should not overlap with any job in O∪L, i.e.
PO +P+ pnO+ j ≤C. Since C−PO ≤ T −PO = Y , the latter condition dominates the
former.

We establish the following:
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Algorithm 6 Algorithm DP for 1|∆max ≤ Y |∑w jC j

Order and index new jobs by WSPT.
Compute pmax := max{p j | j ∈ N}
Initialize states (C,0, f (π∗))0 ∀C = T − pmax +1, . . . ,T
for j = 1, . . . ,nN do

for (C,P, f ) j−1 do
Add job nO + j to every state either to R or to L generating new states:

(C,P, f +wnO+ j(C+PN<nO+ j + pnO+ j−P)) j and (4.1)
(C,P+ pnO+ j, f +wnO+ j(PO<nO+ j +P+ pnO+ j)+WO>nO+ j pnO+ j) j

if P+ pnO+ j ≤C−PO (4.2)
end for
eliminate all dominated states

end for
Find the state (C,C−PO, f )nN with minimal f among all C = T − pmax+1, . . . ,T .

Theorem 4.2.1. Algorithm DP solves 1|∆max ≤ Y |∑w jC j to optimality in
O(nNPN pmax) time.

Proof. It remains to evaluate the running time of algorithm DP. The recursion is
computed by iterating over all nN new jobs and all states. The number of states is
bounded by the number of possible values of C, which is pmax, and by the number
time units P available for scheduling new jobs left of nO, which is bounded by
Y ≤ PN . By domination, only one value of f remains for every combination of C and
P. This yields an overall running time of O(nNPN pmax).

4.3 Approximation algorithms

4.3.1 A fully polynomial approximation scheme

In this section, we will derive a fully polynomial approximation scheme (FPTAS)
based on Algorithm DP of Section 4.2. The FPTAS employs two scaling and one
reduction step to the dynamic program. Scaling is applied to the starting times C of
the jobs in R and to the objective function values. Therefore, we cannot apply the
dominance criterion. Reduction is performed on the length P of jobs in L. Since PL

is strictly constrained by Y , we cannot round this value, but we partition the range
for P into intervals and restrict our attention to a limited number of representatives.
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A similar strategy was applied, e.g., for an FPTAS for the Subset Sum Problem
in Kellerer et al. (2003).

For the scaling of the objective function we give two alternative approaches: The
first employs a partitioning of the objective values into equal-sized intervals which
requires upper and lower bounds linked by a bounded performance guarantee. The
second is a geometric rounding approach, which does not rely on lower bounds but
is not strongly polynomials since its running time depends on the logarithm of the
largest input values.

For the first approach, let f LB ≤ f ∗ ≤ fUB be lower and upper bounds on the
optimal objective function value of 1|∆max≤Y |∑w jC j. These bounds can be derived
from any approximate solution σA with performance guarantee ρ by setting fUB =

f (σA) and f LB = f (σA)/ρ . For the definition of the lower bound f LB, we will use
a (n+ 4)-approximation that will be showed in the next section (Theorem 4.3.3,
Section 4.3.2).

Define an accuracy parameter η := ε

nN
f LB. We partition the range of objective

function values into a sequence of N f intervals of identical width η such that N f η ≥
fUB:

(0,η ], (η ,2η ], . . . ,((N f −1)η ,N f η ] (4.3)

For the second approach we partition the range of objective function values into
a sequence of Ng := ⌊nN · log1+ε( fUB)⌋+ 2 intervals of geometrically increasing
width, as it is often done for deriving approximation schemes, see e.g. Boeckmann
et al. (2023):

(0,1], (1,(1+ ε)
1

nN ], ((1+ ε)
1

nN ,(1+ ε)
2

nN ], . . . ,((1+ ε)
(Ng−1)

nN ,(1+ ε)
Ng
nN ] (4.4)

The number of these intervals is polynomial in the input size and 1
ε

since Ng ∈
O
(
nN · 1

ε
· log

(
fUB)). Clearly, the intervals cover the whole range {0, . . . , fUB} of

possible objective values.

For the starting time C of jobs in R a second accuracy parameter ηC := ⌊ε pmax⌋
is introduced. Note that w.l.o.g. we can assume ηC ≥ 1 since ε pmax < 1⇐⇒ pmax <

1/ε would imply that the running time of the exact DP-algorithm of Section 4.2
is polynomial in nN and 1/ε . Recall that T − pmax < C ≤ T . The range for C is
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partitioned into NC +1 intervals of identical integer width ηC:

(T − pmax, T − pmax +ηC], (T − pmax +ηC, T − pmax +2ηC], . . . ,

(T − pmax +NCηC, T − pmax +(NC +1)ηC]
(4.5)

NC is chosen as the smallest integer such that T − pmax+(NC +1)ηC > T . Thus, we
get NCηC ≤ pmax and trivially NC ≤ pmax. The former condition can be relaxed to

NC ε pmax ≤ NC(⌊ε pmax⌋+1)≤ pmax +NC ≤ 2pmax. (4.6)

This yields NC ≤ ⌈2pmax
ε pmax
⌉= ⌈2

ε
⌉. It will be convenient to denote the set of all interval

endpoints in (4.5) as C̃ := {T − pmax + j ηC | j = 0,1, . . . ,NC,NC +1}.

As a third scaling step, the range of total processing times P is partitioned into
NP intervals of identical width ηP := ε

nN
Y :

(0,ηP], (ηP,2ηP], . . . ,((NP−1)ηP, NPηP] (4.7)

Since P≤ Y , we have NP = ⌈nNY
εY ⌉= ⌈

nN
ε
⌉.

As in Section 4.2, we will keep states (C,P, f ) j with the same meaning as before.
However, we do not eliminate dominated states but keep states for all reachable
objective function values. On the other hand, the set of states will be reduced by the
following three steps:

1. Scaling of R-starting times: We do not consider all values of C, but only right
interval endpoints from (4.5), i.e. the elements of C̃ (including the last endpoint
which is > T ).

2. Reducing values of total processing times P: For every C and f we keep
only two states (P̃i, f ), i = 1,2, among all states (C,P, f ) with P in the same
interval w.r.t. (4.7), namely the one with minimal and with maximal value P.
Throughout the algorithm the current reduced set of total processing times of
jobs in subset L will be denoted by P̃.

3. Scaling of the objective function: Every generated value f is rounded up to the
nearest interval bound in (4.3) or in (4.4), depending on the chosen approach.
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In addition, the overall DP algorithm with the scaled parameter space is iteratively
run nN times. By iterating, we guess the new job nO + j∗ with the largest weight
among all jobs in R, i.e. placed right of nO. It follows, that all new jobs nO + j with
wnO+ j > wnO+ j∗ must be placed in L, on the left side of nO. Then, the following
pre-processing step is done in each such run.

4. Given a guess of j∗, add all new jobs nO+ j with wnO+ j > wnO+ j∗ to the set of
old jobs and insert them in WSPT order left of nO. Recall that by Property 4.1.3
no new job with smaller WSPT ratio would be scheduled right of nO. Then
run the FPTAS with Y reduced by their total processing time. If this reduced
Y is negative, the guess for j∗ is infeasible. In the resulting execution of the
FPTAS we know that there are no new jobs with weight greater than wnO+ j∗ .

The initialization of the states is done as follows:

5. For any guess of j∗, the algorithm is initialized with states (C̃,0, f0)0, where
f0 is computed as the total weighted completion time of all the old jobs and the
new jobs nO + j with wnO+ j > wnO+ j∗ ordered with the WSPT rule, assuming
they are starting at time 0.

Algorithm 7 shows the pseudo-code to compute the approximate solution.

To prove that the above algorithm gives actually an ε-approximation we will start
from the exact DP algorithm (Algorithm 6) and iteratively add the Steps 1 to 4 listed
above. At first we consider the scaling of R-starting times from C to C̃:

Property 4.3.1. For every state (C,P, f ) j in the exact dynamic program, there exists
a state (C̃,P, f1) j in the dynamic program with scaled R-starting times, such that

f1 ≤ f + ε f .

Proof. Consider a state (C,P, f ) j generated in the optimal dynamic program and the
associated schedule. Call R j the set of jobs that are scheduled after the last old job nO

in this schedule. Round up C to C̃, i.e. the next right-endpoint of the intervals defined
in (4.5). In the dynamic program the same operations are executed for every value of
C. Therefore, there exists a state (C̃,P, f1) j, which corresponds to the same schedule
of jobs and with the starting time of the jobs in R shifted by C̃−C ≤ ηC. Given the
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Algorithm 7 Algorithm FPTAS for 1|∆max ≤ Y |∑w jC j

for j∗ = 1, . . . ,nN do
Preprocess schedule according to Step 4.
If the guess of j∗ is infeasible, go to next j∗.
Initialize states (C̃,0, f0)0 for all feasible C̃ by Step 5.
for j = 1, . . . ,nN , j ̸= j∗, wnO+ j ≤ wnO+ j∗ do

for all states (C̃, P̃, f̃ ) j−1 do
Add job nO+ j to (C̃, P̃, f̃ ) j−1 either to R or to L generating new states:

(C̃, P̃, f +wnO+ j(C̃+
nO+ j

∑
ℓ=nO+1

pℓ− P̃)) j and (4.8)

(C̃, P̃+ pnO+ j, f +wnO+ j(PO<nO+ j + P̃+ pnO+ j)+WO>nO+ j pnO+ j) j

if P̃+ pnO+ j ≤ C̃−PO (4.9)
Round up the new objective functions obtained to the nearest interval

bound
in (4.3) or in (4.4), according to Step 3.
Reduce states according to Step 2.

end for
end for

end for

total weight WR j of the jobs scheduled in R j, f1 ≤ f +WR j ηC. By Property 4.1.4 we
have

f1 ≤ f +WR j ηC ≤ f +WR j ε pmax ≤ f +WR j εY ≤ f + ε f . (4.10)

The last inequality holds since all jobs in R j finish after T ≥Y (Corollary 4.1.2).

Next we consider the reduction of total processing times from P to P̃.

Property 4.3.2. For every state (C̃,P, f1) j in the dynamic program with R-starting
times scaled from C to C̃, there exist values P̃1 ≤ P ≤ P̃2 with P̃2− P̃1 ≤ ε

nN
Y with

states (C̃, P̃i, f2) j in the dynamic program with scaled R-starting times and reduced
total profit values P̃ such that

f2 ≤ f1 + j
ε

nN
f ∗.

Proof. The statement is shown by induction (it is trivially true as long as no Reduce
was performed, e.g. for j = 1, because up to that point P = P̃i for some i ∈ {1,2}).
The situation, where P is still the only value in its interval, is represented by the case
P̃1 = P = P̃2.
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Now consider a state (C̃,P, f1) j in the dynamic program with scaled R-starting
times which was generated by adding nO + j to some earlier state (·) j−1. There are
two cases how the new state (C̃,P, f1) j might have been generated.

Case I: job nO + j was added at the right side. Then there exists a DP-state
(C̃,P, f1−wnO+ j(C̃+∑

nO+ j
ℓ=nO+1 pℓ−P)) j−1 with R-reduced starting times. By induc-

tion, there exist two values P̃′i, i = 1,2, with P̃′1 ≤ P≤ P̃′2 and P̃′2− P̃′1 ≤ ε

nN
Y , and

with states (C̃, P̃′i,z) j−1 such that z≤ f1−wnO+ j(C̃+∑
nO+ j
ℓ=nO+1 pℓ−P)+( j−1) ε

nN
f ∗.

Adding job nO + j to this state at the right side (as it is done in (4.8)) yields to the
new state (C̃, P̃′i, f̃i := z+wnO+ j(C̃+∑

nO+ j
ℓ=nO+1 pℓ− P̃′i)) j. Plugging in the induction

hypothesis we get:

f̃i ≤ f1−wnO+ j(C̃+
nO+ j

∑
ℓ=nO+1

pℓ−P)+( j−1)
ε

nN
f ∗+

+wnO+ j(C̃+
nO+ j

∑
ℓ=nO+1

pℓ− P̃′i)

= f1 +wnO+ j(P− P̃′i)+( j−1)
ε

nN
f ∗

≤ f1 +wnO+ j
ε

n
Y +( j−1)

ε

nN
f ∗

Case II: job nO+ j was added at the left side. Again, there exists an optimal state
(C̃,P− pnO+ j, f1−WO>nO+ j · pnO+ j−wnO+ j ·(P+PO<nO+ j)) j−1 and the proposition
guarantees the existence of two values P̃′i, i = 1,2, with P̃′1 ≤ P− pnO+ j ≤ P̃′2 and
P̃′2− P̃′1 ≤ ε

nN
Y , with states (C̃, P̃′i,z) j−1 such that z ≤ f1−WO>nO+ j · pnO+ j −

wnO+ j · (P+PO<nO+ j)+ ( j− 1) ε

nN
f ∗. Adding job nO + j to this state at the left

side yields the new states (C̃, P̃′i + pnO+ j, f̃i := z+WO>nO+ j · pnO+ j +wnO+ j(P̃′i +
PO<nO+ j + pnO+ j)) j. Plugging in the induction hypothesis we get:

f̃i ≤ f1−WO>nO+ j · pnO+ j−wnO+ j · (P+PO<nO+ j)+( j−1)
ε

nN
f ∗+

+WO>nO+ j · pnO+ j +

+wnO+ j(P̃′i +PO<nO+ j + pnO+ j)

= f1 +wnO+ j(P̃′i−P+ pnO+ j)+( j−1)
ε

nN
f ∗

≤ f1 +wnO+ j
ε

nN
Y +( j−1)

ε

nN
f ∗
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The last inequality follows from the fact that P̃′1− (P− pnO+ j)≤ 0 and P̃′2− (P−
pnO+ j)≤ ε

nN
Y .

It still remains to bound the term wnO+ j
ε

nN
Y . The following relation holds:

wnO+ j
ε

nN
Y ≤ wnO+ j∗

ε

nN
CnO+ j∗ ≤

ε

nN
f ∗ (4.11)

This is guaranteed by the guess of job nO + j∗ with largest weight among the jobs
scheduled right of nO which leads to the consideration of only new jobs nO + j with
smaller weight than nO + j∗ in the dynamic program; hence, wnO+ j∗ ≥ wnO+ j. Since
nO + j∗ is placed right of nO, in an optimal schedule it holds that the completion
time of job nO + j∗ fulfills CnO+ j∗ ≥ T ≥ Y (Corollary 4.1.2). Plugging in the bound
given in (4.11) for both cases completes the induction.

Finally, we consider the rounding up of objective function values.

Property 4.3.3. For every state (C̃, P̃, f2) j in the dynamic program with scaled
R-starting times and reduced total profit values P̃, there exists a state (C̃, P̃, f3) j in
the final approximate DP such that

f3 ≤ f2 + j
ε

nN
f LB for intervals (4.3),

or f3 ≤ (1+ ε)
j

nN f2 for intervals (4.4).

Proof. Again, we can use an inductive argument. The initialization states (C̃,0, f0)0

contain the original values of f .

Consider the dynamic program with scaled R-starting times and reduced total
profit values P̃ that produces states (C̃, P̃, f2) j, for some C̃, P̃, j. In the execution of
the algorithm one goes from an initial state (·)0 to a state (·)nN through a sequence
(·)0→ (·)1→ ·· · → (·)nN . For the intervals (4.3) an additional rounding error of at
most η = ε

nN
f LB is introduced in each iteration for j = 1, . . . ,nN . For intervals (4.4),

rounding up can increase the objective value at most by a factor of (1+ ε)
1

nN .

Note that the rounding of f -values does not have any influence on the generation
of states. Therefore, for any intermediate step j, there exists by induction a state

(C̃, P̃, f3) j, with either f3 ≤ f2 + j ε

nN
f LB or f3 ≤ (1+ ε)

j
nN f2, which proves the

statement.
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Putting things together we get:

Theorem 4.3.1. For an optimal state (C,P, f ∗)nN computed in the optimal (original)
dynamic program, in the FPTAS (i.e. the dynamic program with scaled R-starting
times, reduced total profit values P̃, and scaled objective function values) there exists
a state (C̃, P̃, f A)nN such that

f A ≤ (1+3ε) f ∗.

Proof. Concatenating the statements of Propositions 4.3.1 to 4.3.3 for j = nN we
consider every (C,P, f )nN in the optimal dynamic program. For the scaling by
intervals (4.3) there exists

f A = f3 ≤ f2 + ε f LB ≤ f1 + ε f ∗+ ε f LB ≤ f + ε f + ε f ∗+ ε f LB ≤ (1+3ε) f ∗.

For scaling by (4.4) there exists

f A = f3≤ (1+ε) f2≤ (1+ε)( f1+ε f ∗)≤ (1+ε)( f ∗+2ε f ∗)= f ∗+3ε f ∗+2ε
2 f ∗.

Plugging in a small enough accuracy parameter, e.g. ε

4 , we reach the required
approximation ratio in both cases. Removing dominated states can only strengthen
the inequalities in Properties 4.3.1 to 4.3.3.

Theorem 4.3.2. Algorithm FPTAS runs in O(n4(1
ε
)3 min(n, max(logn, log(wmax),

log(pmax))) time.

Proof. Completing the recursion requires a computing time of O(n2
NNCNP min{N f ,Ng}).

For the scaling by intervals of identical width with N f = ⌈nN fUB

ε f LB ⌉ according to (4.3)
the (n+ 4)−approximation algorithm presented in Section 4.3.2 yields an upper
bound with fUB ≤ (n+4) f ∗. Choosing the valid lower bound f LB := fUB

n+4 we ob-

tain N f ∈ O
(

n2

ε

)
. For geometric scaling according to (4.4) we recall that Ng ∈

O
(
n · 1

ε
· log

(
fUB)). Thus, we employ a trivial upper bound fUB ≤ nwmax(npmax)

and get Ng ∈ O
(n

ε
· (logn+ log(wmax)+ log(pmax)

)
. Taking the minimum among

the two cases yields the stated overall running time of O(n4(1
ε
)3 min(n, max(logn,

log(wmax), log(pmax))).

We can conclude from the proof of Theorem 4.3.2 that geometric rounding yields
a better running time if the magnitude of all job data is not too large. However,
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Table 4.2 Notation for rescheduling and resumable scheduling.

Notation Description

σRE a feasible schedule for the Resumable problem
σRS a feasible schedule for the Rescheduling problem
σ∗RE an optimal schedule for the Resumable problem
σ∗RS an optimal schedule for the Rescheduling problem
f N(σ) total weighted completion time of new jobs in schedule σ

f N(σRE) total weighted completion time of new jobs in a solution σRE of
the Resumable problem

h1 fixed unavailable time interval on the machine
N< set of jobs completing before h1 in a solution σRE of the

Resumable problem
N> set of jobs completing after h1 in a solution σRE of the

Resumable problem

if n≤ log(wmax) or n≤ log(pmax), then the scaling by intervals of identical width
gives a shorter running time complexity.

4.3.2 Bounded approximation ratio

In this section we will describe a polynomial time approximation algorithm with an
approximation ratio of n+4. Although this ratio does not seem too attractive on its
own, the achieved bound is a crucial prerequisite for the FPTAS in Section 4.3.1.
The algorithm makes use of a known approximation result for a related scheduling
problem, namely scheduling with unavailability constraints. One version of this
problem, denoted as 1|h1,Res|∑w jC j, minimizes the total weighted completion
time when a fixed unavailable time h1 occurs on a machine and where the jobs are
allowed to be resumed, i.e. where they can be interrupted before completion and
completed when the machine is available again (see Lee (1996), Wang et al. (2005)).
For brevity, we call it the Resumable problem (RE). To avoid confusion between the
two scheduling problems we give a list of notations in Table 4.2.

To derive a bounded factor approximation algorithm for 1|∆max ≤ Y |∑w jC j, we
define a transformation between a solution of the resumable scheduling problem and
one of our rescheduling problem. In a first step, the connection to this problem is
used to show that a heuristic for the first problem allows to derive an approximation
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algorithm of factor 3 for the contribution of new jobs to the weighted completion
time in a solution of the rescheduling problem. In a second step, we show that the
weighted completion time of the old jobs in any feasible solution, that satisfies all
properties from Section 4.1, approximates by a factor of n+1 its value in an optimal
solution.

First, define the unavailable time of the machine as the interval h1 = [T −PO,T ].
Given a solution σRE to an instance of RE consisting only of the new jobs, we can
transform it to a solution σRS of the Rescheduling problem (RS) as follows. Let us
call the crossover job in RE, the one which starts before h1 and finishes after. If none
is split, we call the crossover job the one following the unavailable time. Shift the
unavailable time before the crossover job and replace it by the old jobs. Reorder the
whole set of new and old jobs before the crossover job in WSPT order. Note that the
completion time of the crossover job does not change through this transformation
and the completion time of a new job j which is scheduled left of the crossover job
is increased by PO< j (recall that set O< j contains the old jobs scheduled before job j
in π∗).

In other words, we define a transformation σRE → σRS obtained by modifying
the completion times of the jobs of the first schedule through the following function
α .

CRS
j = α(CRE

j ) :


CRE

j , ∀ j ∈ N>

CRE
j +PO< j, ∀ j ∈ N<

PN< j +PO< j + p j, ∀ j ∈ O

(4.12)

Transformation σRE → σRS builds a feasible schedule for the rescheduling problem
(see figure 4.3).

We can also define the inverse function α−1, that given a solution of the reschedul-
ing problem returns a solution of the resumable problem:

CRE
j = α

−1(CRS
j ) :

{
CRS

j , ∀ j ∈ R

CRS
j −PO< j, ∀ j ∈ L

(4.13)

Recall that R and L are the sets of new jobs respectively completing before and
after T in solution σRS of the Rescheduling problem. By inserting the interval
h1 = [T −PO,T ] and preemptively scheduling the jobs with the above completion
times, the schedule generated is again σRS.
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σRS
0

h1
t

PO +Y

N< N>

σRE
0

nO
t

PO +Y

O∪L R

Figure 4.3 Transformation between a schedule with an unavailable time interval and a
rescheduling solution.

Given the total weighted completion time f N(σRE) of the jobs in a solution of
the resumable problem, the objective function value of the schedule σRS, obtained
through the transformation α , is computed as:

f (σRS) = f N(σRE)+ ∑
j∈N<

w jPO< j + ∑
j∈O

w jC j(σRS) (4.14)

Considering the reverse direction, one can take any feasible solution σRS of RS and
move all old jobs to the right, directly before the last old job. In this way, all new jobs
placed left of the last old job in σRS will receive an earlier or unchanged completion
time, while the completion times of new jobs placed right of the last old job in σRS

will remain unchanged. This yields a solution σRE of RE with a consecutive block
of length PO as an unavailable period in RE.

Let σ⋆ be an optimal solution to RS. Then the above yields

f N(σ⋆
RE)≤ f (σ⋆). (4.15)

Moreover, for any feasible solution σRE there is

∑
j∈N<

w jPO< j ≤ f (σ⋆), (4.16)

since in an optimal solution of RS, the old jobs with WSPT ratio greater or equal
than j will precede the new job j, no matter whether j is placed left or right of the
last old job (recall Property 4.1.2).
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The approximation of the Rescheduling problem works as follows. At first,
we compute a heuristic solution σH

RE for RE using the algorithm by Wang et al.
(2005). Let σ⋆

RE be the optimal solution to RE. The heuristic returns a solution,
which is proved by the authors to satisfy f (σH

RE) ≤ 2 f (σ⋆
RE). Then we apply the

transformation α described above and obtain from σH
RE a solution σH of RS. Plugging

(4.15) and (4.16) in (4.14), we get:

f (σH) = f N(σH
RE)+ ∑

j∈N<

w jPO< j + ∑
j∈O

w jC j(σ
H) (4.17)

≤ 2 f (σ⋆
RE)+ ∑

j∈N<

w jPO< j + ∑
j∈O

w jC j(σ
H) (4.18)

≤ 3 f (σ⋆)+ ∑
j∈O

w jC j(σ
H) (4.19)

The following Lemma bounds the last term in (4.19).

Lemma 4.3.1. For the heuristic solution σH there is:

∑
j∈O

w jC j(σ
H)≤ (n+1) f (σ∗)

Proof. Observe that for every old job j

C j(σ
H)≤ PO< j +PN< j.

For each old job j = 1, . . . ,nO, define a partition of the set N< j in three subsets
S j1, S j2, S j3. Recall that set N< j contains new jobs with larger WSPT ratio than j
(Table 1.1). Let S j1 be the subset containing the new jobs i ∈ N< j that are scheduled
before j in an optimal solution of the Rescheduling problem, S j2 the subset containing
the new jobs i ∈ N< j that are scheduled after j in an optimal solution and with
wi ≥ w j, S j3 the subset containing the new jobs i ∈ N< j that are scheduled after j in
an optimal solution and with wi < w j. The latter implies pi ≤ p j, given that wi

pi
>

w j
p j

.

It holds that:

∑
j∈O

w jC j(σ
H)≤ ∑

j∈O
w j

(
∑

i∈N< j

pi + ∑
i∈N< j

pi

)

= ∑
j∈O

w j

(
∑

i∈N< j

pi + ∑
i∈S j1

pi

)
+ ∑

j∈O
w j

(
∑

i∈S j2

pi

)
+ ∑

j∈O
w j

(
∑

i∈S j3

pi

)



4.3 Approximation algorithms 83

Consider the three terms of the sum separately. We first have

∑
j∈O

w j

(
∑

i∈N< j

pi + ∑
i∈S j1

pi

)
≤ ∑

j∈O
w jC j(σ

∗)≤ f (σ∗).

For every j ∈O let j(last) be the new job in S j2 scheduled last in the optimal solution.
We get:

∑
j∈O

w j

(
∑

i∈S j2

pi

)
≤ ∑

j∈O
w jC j(last)(σ

∗)≤ ∑
j∈O

w j(last)C j(last)(σ
∗)≤ nO f (σ∗)

Notice that if j(last) ̸= i(last), ∀i, j ∈ O, i ̸= j, then the nO factor cancels out, i.e.

∑ j∈O w j(last)C j(last)(σ
∗)≤ f (σ∗). Finally, there is

∑
j∈O

w j

(
∑

i∈S j3

pi

)
≤ ∑

j∈O
w j

(
∑

i∈S j3

p j

)
≤ ∑

j∈O
w jnNC j(σ

∗)≤ nN f (σ∗).

In summary, we conclude

∑
j∈O

w jC j(σ
H)≤ (1+nO +nN) f (σ∗) = (n+1) f (σ∗).

Now we immediately obtain our approximation result.

Theorem 4.3.3. The heuristic solution σH gives an (n+4)-approximation of problem
1|∆max ≤ Y |∑w jC j.

Proof. It suffices to plug in the statement of Lemma 4.3.1 in (4.19) to show that
f (σH)≤ (n+4) f (σ⋆).

Consider now the special case, where nO = 1 (N P-hard by Theorem 2.3.1).
For this case, we show that the heuristic described above yields a solution σH which
approximates the optimal solution by a factor 3.

Theorem 4.3.4. If there is only one old job, then the heuristic solution σH gives a
3-approximation of problem 1|∆max ≤ Y |∑w jC j.
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Proof. Recall that by Property 4.1.3 we neglect all new jobs j with w j
p j

< w1
p1

. There-
fore, for each new job j, O< j = /0.

Let us adapt equation (4.18) from above according to the above considerations.
We have

f (σH)≤ 2 f (σ∗RE)+w1C1(σ
H). (4.20)

Consider the optimal solution f (σ∗) = f N(σ∗)+w1C1(σ
∗). Again, this solution

can be constructed starting from a solution to RE, by pushing the old job so that
it finishes exactly at time T and by allowing preemption for the first new job that
follows job 1. From Corollary 4.1.2, we also know that in an optimal schedule it
holds

C1(σ
∗)≥ T − pmax . (4.21)

Since f N(σ∗RE)≤ f N(σ∗), it follows

f (σ∗) = f N(σ∗)+w1C1(σ
∗)≥ f N(σ∗RE)+w1(T − pmax). (4.22)

Given, that C1(σ
H)≤ T because of the disruption constraint, we obtain from (4.20)

and (4.22)

f (σH)− f (σ∗) ≤ 2 f N(σ∗RE)+w1T − ( f N(σ∗RE)+w1(T − pmax)) (4.23)

= f N(σ∗RE)+w1 pmax (4.24)

≤ f (σ∗)+w1 pmax. (4.25)

To show that w1 pmax ≤ f (σ∗) let us denote as m the largest new job with processing
time pmax. Job m belongs to one of the three subsets S11, S12 or S13, as defined above.
In any of the three cases, as it has been shown above, w1 pmax ≤ f (σ∗), which gives
us

f (σH)≤ 3 f (σ∗) (4.26)

from (4.25).



Chapter 5

Exact algorithms for
1|no− idle,∑∆≤ Y |Lmax

In this chapter we consider the minimization of the maximum lateness subject
to a total time disruption constraint with non-delay schedules. This problem is
shown to be NP-hard in a strong sense (Corollary 2.3.5, Chapter 2), therefore it is
unlikely that there is an algorithm that solves it in polynomial time. The problem
under consideration in this chapter does not allow the insertion of idle times in the
solutions. This requirement is reasonable in production systems, where introducing
idle times on the machines is often detrimental given the high running costs of
production machines.

The chapter is structured as follows. In the first section, we introduce two
integer programming models (IP). In the second section, we present the branch and
memorize (BM) algorithm and several elements that improve its efficiency. To test
the algorithm, we provide the results of several computational experiments run on
randomly generated instances. The algorithm is compared with standard solvers, run
on the best-performing mathematical programming model, and shown to outperform
the IP solver.
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5.1 Structural properties

In the following, several properties are listed that hold for an optimal solution of
the problem. These will allow us to impose certain assumptions without loss of
generality or to exclude trivial cases from further consideration.

First, consider the EDD schedule of both old and new jobs which trivially
minimizes maximum lateness over all jobs. If such a schedule satisfies ∑∆≤Y , then
this schedule automatically solves 1|∑∆≤ Y,no− idle|Lmax.

From Figure 2.6 (proof of Property 2.2.2), it follows that for this problem there is
no ordering property which applies to the set of old jobs. So, both old and new jobs
may be in a different order in the optimal schedule and the fact that the problem is
strongly NP-hard which may be related to the fact that the EDD rule is not necessarily
fulfilled in an optimal schedule. In this section, we try to identify situations where
the EDD order applies between jobs in an optimal solution. Let us focus to more
general considerations.

Let σ = γ i j β be a sequence where γ and β are sub-sequences of old and
new jobs, and i, j ∈ O with di ≤ d j. Let σ ′ = γ j i β be the sequence obtained by
swapping i and j in σ . For simplification purpose, let us denote by dC

i (resp. dC
j ) the

completion time Ci(π
∗) (resp. C j(π

∗)) in the initial schedule π∗. We have dC
i ≤ dC

j

as di ≤ d j.

Property 5.1.1. Whenever one of these two conditions holds:

1. pi ≥ p j and Pγ + p j + pi ≤ dC
i ,

2. pi ≤ p j and Pγ + pi ≥ dC
j ,

we have Lmax(s)≤ Lmax(σ
′) and ∑∆(σ) = ∑∆(σ ′).

Proof. As in s jobs i and j are in EDD order, the Lmax value of σ is not increased
with respect to σ ′. Besides, the two conditions state that the total disruption of σ is
not higher than that of σ ′ which follows directly from the definition of ∑∆.

In the remainder we focus on situations where sorting some new jobs in EDD
order does not deteriorate the Lmax and does not increase ∑∆.
Let σ = γ i α j β be a sequence where γ and β are sub-sequences of old and new
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jobs, α is a sub-sequence of old jobs only, and i, j ∈ N. Let σ ′ = γ j α i β be the
sequence obtained by swapping i and j in σ . We first state the following property
which directly follows from the optimality of EDD for the 1||Lmax problem.

Property 5.1.2. Whenever α = /0 and di ≤ d j, we have Lmax(σ) ≤ Lmax(σ
′) and

∑∆(σ) = ∑∆(σ ′).

Now, let us assume that α is made up of at least one old job. We first state the
following general property.

Proposition 5.1.1. Whenever the following conditions hold:

1. max(pi−di; pi+Lmax(α|0); pi+Pα + p j−d j)≤max(p j−d j; p j+Lmax(α|0); p j+

Pα + pi−di), with Pθ =∑ℓ∈θ pℓ and Lmax(α|0) the Lmax value of α when start-
ing at time 0,

2. ∑k∈α ∆k(σ)≤ ∑k∈α ∆k(σ
′),

schedule σ is always preferable to schedule σ ′.

Proof. We first prove the first condition. We have:
Lmax(σ)≤ Lmax(σ

′)

⇔ max(Lmax(γ|0);Li(σ);Lmax(α|Ci(σ));L j(σ);Lmax(β |C j(σ)))

≤max(Lmax(γ|0);L j(σ
′);Lmax(α|C j(σ

′));Li(σ
′);Lmax(β |Ci(σ

′))),

⇐ max(Li(σ);Lmax(α|Ci(σ));L j(σ))≤max(L j(σ
′);Lmax(α|C j(σ

′));Li(σ
′)),

with Lmax(θ |t) the Lmax value of sub-sequence θ when starting at time t. Besides,
we have Ci(σ) =C j(σ

′). By definition of the Lk’s and the Lmax it comes:
max(Li(σ);Lmax(α|Ci(σ));L j(σ))≤max(L j(σ

′);Lmax(α|C j(σ
′));Li(σ

′)),

⇔ max(Pγ + pi−di;Pγ + pi +Lmax(α|0);Pγ + pi +Pα + p j−d j)

≤max(Pγ + p j−d j;Pγ + p j +Lmax(α|0);Pγ + p j +Pα + pi−di),

⇔ max(pi−di; pi +Lmax(α|0); pi +Pα + p j−d j)

≤max(p j−d j; p j +Lmax(α|0); p j +Pα + pi−di),

with Pθ = ∑ℓ∈θ pℓ.

The second condition directly follows from the definition of ∑∆ criterion and
the fact that C j(σ) =Ci(σ

′).
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The general result stated in Proposition 5.1.1 can be further specified but we need
first to focus on the analysis of the ∑∆ variation when we left- or right-timeshift α

from date t (Figure 5.1). This analysis follows the same reasoning used in the timing
problems described in Chapter 3.

α . . .

t
i j k ℓ

Figure 5.1 Sub-sequence of old jobs

Let us recall some notation used in chapter 3. Let B be the block of old jobs j ∈α .
Let EB, TB and OB be the sets of early, tardy and on-time jobs, with respect to dC

j , of B
when it starts at time t and let be δ ∆

B (t)= (|EB|−|TB|−|OB|). If α is right-timeshifted
so that it starts at time (t +1), then the total disruption of jobs in α is decreased, or
increased if negative, by δ ∆

B (t). The value of δ ∆
B (t) enables to derive information

on how much α can be left/right time shifted. First, assume that δ ∆
B (t)< 0 which

implies that by left-timeshifting α its total time disruption is decreased. Then, to
compute a new starting time t ′ ≤ t such that δ ∆

B (t
′) ≥ 0 > δ ∆

B (t
′+ 1), we proceed

as follows: let q−B be the δ ∆
B (t)− th smallest value |C j−dC

j |, ∀ j ∈ TB∪OB. Then,
t ′ = max(0; t−q−B ). We can define in a similar way q+B when δ ∆

B (t)> 0 leading to
t ′ = t +q+B .
Given this analysis, Proposition 5.1.1 enables to derive the following result.

Property 5.1.3. Let σ = γ i α j β and σ ′ = γ j α i β be two sequences in which i
and j are swapped and α is a sub-sequence of old jobs only. Assume that di ≤ d j.
Whenever one of the following conditions holds:

1. pi ≤ p j, δ ∆
B (Pγ + p j)< 0 and q−B ≥ (p j− pi),

2. pi > p j, Lmax(α|0)>−di, δ ∆
B (Pγ + p j)> 0, and q+B ≥ (pi− p j),

3. pi > p j, p j +Pα −d j > Lmax(α|0), δ ∆
B (Pγ + p j)> 0, and q+B ≥ (pi− p j),

schedule σ is always preferable to schedule σ ′.

Proof. The result is proved by showing that Proposition 5.1.1 applies for each of the
three conditions.
First, we focus on the first condition. Assuming that di ≤ d j and pi ≤ p j it follows
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that: 
pi−di < p j +Pα + pi−di,

pi +Pα + p j−d j ≤ p j +Pα + pi−di,

pi +Lmax(α|0)≤ p j +Lmax(α|0)

which implies that condition 1 of Proposition 5.1.1 is answered. Now, assuming
that δ ∆

B (Pγ + p j) < 0, q−B ≥ (p j − pi) and pi ≤ p j imply that: in σ ′, decreasing
the starting time α from Pγ + p j to Pγ + pi leads to decrease the total disruption
induced by α . So, ∑∆(σ)≤ ∆ j(σ

′) and the second condition of Proposition 5.1.1 is
answered.
Next, we focus on the second condition. Assuming that di ≤ d j, pi > p j and
Lmax(α|0)> di, it follows:

pi−di < p j +Pα + pi−di,

p j +Lmax(α|0)< pi +Lmax(α|0),

pi +Lmax(α|0)< pi−di,

pi +Pα + p j−d j ≤ p j +Pα + pi−di,

which implies that condition 1 of Proposition 5.1.1 can be rewritten as:

max(pi−di; pi +Pα + p j−d j)≤max(p j−d j; p j +Pα + pi−di),

and it necessarily holds. As pi > p j, from σ ′ to σ sequence α will be right-
timeshifted by (pi − p j) which results in a decrease of the total disruption as
δ ∆

B (Pγ + p j) > 0 and q+B ≥ (pi− p j), so ∑∆(σ) ≤ ∑∆(σ ′) and the second con-
dition of Proposition 5.1.1 holds.
At last, we focus on the third condition. Assuming that di ≤ d j, pi > p j and
p j +Pα −d j > Lmax(α|0), it follows:

pi−di < p j +Pα + pi−di,

p j +Lmax(α|0)< pi +Lmax(α|0),

pi +Lmax(α|0)< pi +Pα + p j−d j,

pi +Pα + p j−d j ≤ p j +Pα + pi−di,
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which, again, implies that condition 1 of Proposition 5.1.1 can be rewritten as follows,
and it necessarily holds:

max(pi−di; pi +Pα + p j−d j)≤max(p j−d j; p j +Pα + pi−di).

As previously, we can also derive from δ ∆
B (Pγ + p j)> 0 and q+B ≥ (pi− p j), that the

second condition of Proposition 5.1.1 holds.

The results presented in this section can be used, for instance, to improve the
search for an optimal solution in a search tree-based algorithm as it is shown in
Section 5.3 for the branch and memorize algorithm.

5.2 Integer programming models

We present two integer programs (IP), a position-based and a time-indexed model, for
solving rescheduling problems with an IP solver. Since many rescheduling problems
are intractable, it is difficult to obtain optimal solutions in a useful amount of time
from a standard IP solver but we use the solutions as a reference to compare the
quality of the algorithms developed in the next sections.

A position-based integer program

Position-based integer programs use variables that associate jobs to sequence posi-
tions. To this purpose, for each job j ∈ O∪N, we introduce the following binary
variables, for any 1≤ k ≤ n:

x j,k =

{
1, if job j is scheduled in position k,
0, otherwise.

Variable Lmax refers to the maximum lateness of all jobs. We also introduce variables
∆k for any position k, as the total disruption of completion times of the job j in
position k. Notice that, ∀k = 1, . . . ,n, such that j ∈ N occupies position k, the solver
will set ∆k = 0. All variables are assumed to be integer. The model uses a so-called
big-M constraint, which is known to make the model often inefficient the more M is
large. Therefore we bound the value M by the total processing time P of all jobs.
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We express the IP formulation with positional variables (IPpos) as follows:

Minimize Lmax

subject to

∑
n
j=1 x j,k = 1 ∀k = 1, . . . ,n (1)

∑
n
k=1 x j,k = 1 ∀ j = 1, . . . ,n (2)

∑
k
ℓ=1 ∑

n
j=1 p jx j,ℓ−∑

n
j=1 d jx j,k ≤ Lmax ∀k = 1, . . . ,n (3)

∆k ≥ ∑
nO
j=1C j(π

∗)x j,k−∑
k
ℓ=1 ∑

n
j=1 p jx j,ℓ−M ∑

nN
j=1 x j,k ∀k = 1, . . . ,n (4)

∆k ≥ ∑
k
ℓ=1 ∑

n
j=1 p jx j,ℓ−∑

nO
j=1C(π∗) jx j,k−M ∑

nN
j=1 x j,k ∀k = 1, . . . ,n (5)

∑
n
k=1 ∆k ≤ Y (6)

∆k ≥ 0 ∀k = 1, . . . ,n (7)

Constraints (1) guarantees that in any k− th position there is exactly one job
scheduled. Constraints (2) set that each job j is scheduled in exactly one position.
Constraints (3) define the maximum lateness as the maximum difference, among all
positions k, of the completion time of job at that position and its due date. Constraints
(4) and (5) set the disruption of an old job scheduled in position k as a value greater
than the absolute time deviation from initial completion time, or greater than 0
otherwise. Constraints (6) define the disruption constraint and (7) set the range of ∆k

variables. This model involves (n2 +n+1) variables and (3n+2nO +1) constraints.

A time-indexed integer program

Time-indexed integer programs use variables that associate jobs to starting or com-
pletion times. To this purpose, for each job j ∈ O∪N, we introduce the following
binary variables, for any 1≤ t ≤ T , where T = ∑

n
j=1 p j:

x j,t =

{
1, if job j starts at time t,
0, otherwise.
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Variable Lmax refers to the maximum lateness of all jobs, variables ∆ j are introduced
for each old job j. Finally, additional variables C j are introduced for completion
times of jobs.

The IP formulation with time-indexed variables (IPtime) follows:

Minimize Lmax

subject to

∑
T−p j+1
t=1 x j,t = 1 ∀ j = 1, . . . ,n (1)

∑
n
j=1 ∑

t
s=t−p j+1 x j,s = 1 ∀t = 1, . . . ,T (2)

C j = ∑
T−p j+1
t=1 (t−1+ p j) x j,t ∀ j = 1, . . . ,n (3)

Lmax ≥C j−d j ∀ j = 1, . . . ,n (4)

∆ j ≥C j−C j(π
∗) ∀ j = 1, . . . ,nO (5)

∆ j ≥C j(π
∗)−C j ∀ j = 1, . . . ,nO (6)

∑
nO
j=1 ∆ j ≤ Y (7)

∆ j ≥ 0 ∀ j = 1, . . . ,nO (8)

Constraints (1) and (2) again guarantee that each job is scheduled and that there
is no overlap. Constraints (3) define the job completion times. Constraints (4) model
the maximum lateness, while constraints (5) and (6) the disruption for the old jobs.
Finally, constraint (7) defines the threshold on total disruption and (8) the range of job
disruptions. This model involves (nT +n+nO+1) variables and (3n+T +2nO+1)
constraints.

Alternatively, to reduce the number of variables, an earliest starting time est j

and a latest starting time lst j can be defined for every old job. Recall the definition
of release dates and deadlines introduced, for each job in a given sequence, in
Section 3.3.1, which makes a schedule feasible. We will use the same intervals,
but adjusted to refer to the starting time of each job. Let the the earliest starting
time be defined as est j = max(0,C j(π

∗)−Y − p j) and the latest starting time as
lst j = min(T − p j,C j(π

∗) +Y − p j). For new jobs, est j = 0 and lst j = T − p j.
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Constraints (1), (2) and (3) can be rewritten into constraints (1b), (2b) and (3b) as
follows:

∑
lst j
t=est j x j,t = 1 ∀ j = 1, . . . ,n (1b)

∑
n
j=1 ∑

lst j
s=est j+1 x j,s = 1 ∀t = 1, . . . ,T (2b)

C j = ∑
lst j
t=est j(t−1+ p j)x j,t ∀ j = 1, . . . ,n (3b)

5.3 A branch and memorize algorithm

In this section, we present an exact branch and memorize algorithm (BM) for the
1|no− idle,∑ j ∆ j ≤ Y |Lmax problem. The branch and memorize is a branch and
bound-based algorithm that exploits memorization techniques to explore the search
space in a more efficient way.

Branch and bound methods solve the problem to optimality, and are based on
implicit enumeration. The basic idea is to construct and effectively explore a search
tree using three components: a separation principle, a pruning principle and a search
principle (see Morrison et al. (2016) for a review on utilization of these components
in the literature). The space S of the solutions of the original problem P(S) is divided
into the subset S0 of the solutions already considered and a list of other subsets
S1,S2, ...,Sq, generated with the separation principle, such that S = S0∪S1∪·· ·∪Sq.
Each subset Sk identifies a candidate problem P(Sk) which is obtained from P(S) by
restricting the space of admissible solutions to Sk. According to the search principle,
the algorithm chooses a candidate problem and checks whether its resolution is
necessary to find the optimum of P(S). If the answer is negative, P(Sk) can be
eliminated, i.e. pruned from the search tree, and the set Sk is added to the set S0.
Otherwise, it is necessary to decompose Sk further and replace the problem P(Sk)

with a set of new candidate problems accordingly.

In general, the application of memorization to algorithms has the goal of speeding
up their execution, often at the cost of increased memory consumption. In this sense,
various algorithms in the literature use embedded memorization to efficiently explore
the search space, even dynamic programming algorithms or meta-heuristics like tabu
search.
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The inclusion of memorization techniques in branch and bound algorithms is
basically motivated by the fact that exact search tree algorithms repetitively explore
subproblems, which are often similar, if not identical. The underlying idea, to avoid
an inefficient exploration of the solution space, is to identify nodes of the tree that
are build upon such similar subproblems and to determine in advance if the solution
of some of them are dominated by others, and can be neglected for further search.
Efficient applications of memorization to search tree algorithms for sequencing
problems can be found in Szwarc et al. (2001), T’kindt et al. (2004), Sewell and
Jacobson (2012), Shang et al. (2020).

An efficient branch and memorize has been designed for the rescheduling prob-
lem under consideration. In the section, we first present a local search with variable
neighbourhoods that generates an upper bound solution for the problem. Then,
we present the components of the branch and memorize algorithm for exploring
and pruning the search tree. The memorization scheme together with dominance
conditions to compare stored nodes are finally presented.

In Algorithm 8 we give the general structure of the branch and memorize al-
gorithm, while we give more details about the local search algorithm LS for the
upper bound, the search principle (function search_principle()), the separation prin-
ciple (function separation_principle(node)) and the pruning principle (function
pruning_principle(node)) in the next sections.

5.3.1 A local search heuristic for upper bounding

We use a local search-based heuristic (LS) with different neighbourhoods to compute
an initial upper bound solution σUB. The neighbourhoods are defined by swap and
insertion operators, which are shown to work well for the problem. The heuristic
finds a first feasible solution σ0 by using an EDD-EDD schedule, i.e. scheduling the
set of old jobs first and that of new jobs next, each in EDD. This solution is clearly
feasible, with ∑∆ = 0, with respect to the constraints of the problem.

The heuristic makes use of the notion of critical jobs. Given a schedule σ , let
L = { j ∈ O∪N|L j ≥ c×Lmax(σ)} be the set of critical jobs with c = 0.9 a factor
experimentally determined. The critical jobs are those that we would like to left-shift
in schedule σ to decrease the Lmax value.
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Algorithm 8 Algorithm BM for 1|no− idle,∑∆≤ Y |Lmax

1: σ∗← upper bound solution obtained with LS

2: UB := Lmax(σ
∗)

3: node0 := root node associated to empty schedule
4: add node0 to node_list[0][0]
5: l = 0
6: while node_list not empty do
7: l = search_principle()
8: node = node_list[l][0]
9: if l = n then

10: if node→ Lmax <UB then
11: UB := node→ Lmax
12: σ∗ := node→ σ

13: end if
14: delete node
15: else
16: children_list = separation(node)
17: add children to node_list[l +1]
18: end if
19: end while
20: Return σ∗
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A local search starts with an initial solution that is iteratively improved by means
of neighborhood operators. The local search we propose first computes σ0. Given an
incumbent solution of the current iteration, we apply the following neighborhood
operators:

• Swap(σ): from σ all possible swaps of two jobs j and k are performed and
the best schedule, possibly σ , is returned,

• Insert(σ): from σ , the non-critical job j with largest due date that precedes
all the critical jobs is tested for insertion in all positions after the first critical
job. The best obtained schedule, possibly σ , is returned,

• Rotate(σ): from σ , all circular swaps of all triplets of jobs i, ℓ,k are considered.
In σ let i, ℓ,k be respectively in positions posi, posℓ, posk, with posi < posℓ <
posk. If sequence σ = β i ω ℓ γ k α , then the two sequences β ℓ ω k γ i α

and β k ω i γ ℓ α are generated and evaluated. The best obtained schedule
among all possible triplets, possibly σ , is returned.

When applying the above operators, a solution σ ′ improving σ is a solution such
that:

1. Lmax(σ
′)< Lmax(σ) and ∑∆(σ ′)≤ Y , or,

2. Lmax(σ
′) = Lmax(σ) and ∑∆(σ ′)≤ ∑∆(σ).

The local search algorithm is presented in Algorithm 9.

Algorithm 9 Algorithm LS for 1|∑∆≤ Y |Lmax

1: Let be σ = σ0,
2: while improving solutions are found and time limit is not exceeded do
3: Let σi be the solution returned by Insert(σ)
4: Let σ s be the solution returned by Swap(σi)
5: Let σ r be the solution returned by Rotate(σ s)
6: Let be s = σ r

7: end while
8: Return σ and Lmax(σ)
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5.3.2 Search strategy

The branch and memorize explores the solution space following a search principle, a
separation and a pruning principle. We describe them in this section.

The search principle determines the level of the tree (level l in Algorithm 8)
that is considered next for the evaluation of active nodes. We use and test the most
common search principles, i.e. a depth-first, a breadth-first and a best-first strategy.
With depth-first is meant the vertical exploration of the search tree in the sense that
the first active nodes we evaluate are those corresponding to the subproblems of
maximum job cardinality. The level l returned is in this case the deepest level of the
tree with at least one active node. For instance, if there are active nodes with 1, 2 or
3 scheduled jobs, the depth-first strategy considers first evaluating nodes with 3 jobs.
With breadth-first is meant, on the contrary, the horizontal exploration of the search
tree in the sense that the first active nodes we evaluate are those corresponding to
the subproblems of minimum job cardinality. The level l returned is in this case the
flattest level of the tree with at least one active node. For instance, if there are active
nodes with 1, 2 or 3 scheduled jobs, the depth-first strategy considers first evaluating
nodes with 1 job. The third and last search principle, the best-first strategy, refers
to the evaluation of active nodes in non-decreasing order of their associated lower
bound, which, in a way, points to the most promising solution. For instance, if there
are active nodes with lower bound value 12, 15, 18, the best-first strategy considers
first evaluating nodes with lower bound 12.

The separation principle uses an assignment of jobs to positions, in a backward
order, to generate partial solutions (the subproblems). Let σi be a partial schedule
containing i jobs scheduled in the last i positions. Each node of the search tree
corresponds to a partial solution σi and we use a backward branching scheme to
generate nodes: for any given node σi, children nodes are obtained by assigning
unscheduled jobs to position (n− i). In this way, jobs are scheduled from the last
position to the first one and since we deal with the no-idle case it is trivial to compute
completion times backwards. Backward branching results to be much more efficient
with respect to a forward branching, where solutions are build from the first to the
last position. In fact, backward branching induces more information since both
the objective function and the disruption constraint depend on the completion time
of jobs and, often in practice, on the last scheduled jobs. Hence, the backward
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branching enables to detect sooner if the total disruption constraint is violated or the
Lmax of a partial solution exceeds the best upper bound.

Algorithm 10 separation_principle(node)

1: children_list := empty list
2: σi := partial schedule of i jobs associated to input node node
3: s̄ := list of jobs not in σi
4: if σEDD := EDD(s̄) is a feasible schedule then
5: new_node← σEDD
6: add new_node to children_list
7: else
8: for each job j ∈ s̄ do
9: new_node← ( j)∪σi

10: if pruning_principle(new_node) = true then
11: delete new_node
12: else
13: add new_node to children_list
14: end if
15: end for
16: end if
17: Return children_list

To effectively search throughout the solution tree, at each node, the algorithm
applies a pruning principle that is based on some conditions (see Algorithm 11).
If any of the conditions is met, the node is pruned and is deleted from the list
of nodes that need to be further explored. The conditions require the following
information on the respective partial schedule σi with i jobs scheduled from the last
to the (n− i+1)− th position:

• the partial maximum lateness Lmax(σi);

• the partial disruption ∑∆(σi);

• a lower bound for the maximum lateness, computed as LB(σi)= max(Lmax(EDD(s̄),
Lmax(σi)), where Lmax(EDD(s̄i)) is the maximum lateness of the jobs not in
σi scheduled at the beginning of the schedule in EDD order.

Given the best current known upper bound solution value UB, a node is pruned if
any of the following conditions applies:
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• ∑∆(σi)> Y ,

• LB(σi)≥UB,

• structural properties of Section 5.1 are violated,

• the current node is dominated by a node in DB (see dominance conditions
from memorization, equation 5.3.1, in the next section).

Algorithm 11 pruning_principle(node)

1: UB := best current UB known for the problem
2: σi := partial schedule of i jobs associated to input node node
3: if node→ ∑∆ > Y then
4: return true
5: else if node→ LB >UB then
6: return true
7: else if jobs in σi violate structural properties then
8: return true
9: else if node is dominated by a node in DB then

10: return true
11: end if
12: return false

5.3.3 Memorization

The work of Shang et al. (2020) points out memorization as a way to speed up
algorithms at the price of an increased space usage. The memorization of previously
explored partial solutions is used in branching algorithms to avoid generation of
solutions for the same subproblems or to check if permutations of the same subset
of jobs are dominated or dominate some others. The authors define the branch and
memorize paradigm after showing how memorization can be successfully applied to
different scheduling problems. Referring to the definition introduced by Shang et al.
(2020), we use passive node memorization to speed up the search. The idea is to
compare a node with all other active and explored nodes that contain the same subset
of jobs, and check if some dominance conditions are met. Given two subsequences
σi and σ ′i containing two different permutations of the same subset of jobs, let
Lmax(σ) be the partial maximum lateness and ∑∆(σ) be the partial disruption of any
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subsequence σ . Let σ̄ also be the best subschedule containing all unscheduled jobs,
and t = ∑ j∈σ̄ p j.

Property 5.3.1. Given two subsequences σi and σ ′i that contain the same subset of
scheduled jobs, if

Lmax(σi)≤ Lmax(σ
′
i ) and ∑∆(σi)≤∑∆(σ ′i ), (5.1)

σi dominates or is indifferent to σ ′i .

Property 5.3.1 states that the best schedule σ̄σ ′i contained in the subtree rooted
at σ ′i , cannot be strictly better than the best schedule contained in the subtree rooted
at σi, since σ̄σi is not worse than σ̄σ ′i .

The algorithm uses memorization to save previously explored nodes and to
compare them with the others. Whenever two subschedules are found that contain
the same subset of jobs and condition (5.1) is met, then σ ′i is cut and the respective
branch is no further explored.

Despite Property 5.3.1 is a rather simple dominance condition, its efficient
exploitation during the search requires a database implementation to store and
retrieve active and explored nodes, which are relevant for comparison. The ways
in which the database is designed and managed (e.g., database dimension, search,
cleaning strategies) affect the tree search and make the algorithm different from a
branch and bound algorithm.

5.4 Computational results

This section is devoted to show the results of computational experiments run to test
the performances of the branch and memorize algorithm with respect to standard
integer programming solvers run on the proposed integer programs. First, we show
how we generated instances, then we present and discuss the results obtained.

5.4.1 Instances generation

Data have been randomly generated as follows. Instances are considered with n =

nO +nN ∈ {10;20;30;40;50} and nO ∈ {0.25n;0.5n;0.75n}, leading to 15 couples
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(n;nO). For each couple, the processing times of the old and new jobs are drawn at
random following an uniform distribution between U [10;100]. Let P=∑ j p j+∑ j p j

be the sum of randomly generated processing times, then two classes of due dates
have been considered.

• Class 1: d j,d j ∈U [0;P]. This class of due dates corresponds to easy instances.

• Class 2: d j ∈U [0;τP−1] and d j ∈U [τP;P] with τ = 1− nO
n . This class of due

dates corresponds to hard instances since to minimize the maximum lateness
new jobs must be scheduled before old jobs inducing a potential conflict with
the constraint on the total disruption.

The upper bound Y on the value of the total disruption is also computed depending on
the class of due dates. For class 2 instances, ε is determined as the average between
the disruption of a non-disrupted schedule and a schedule with the maximum possible
disruption so that Y =

nO×∑ j∈N p j
2 .

For class 1 instances, an additional factor of 1/2 is multiplied, which considers
the fact that in an EDD optimal schedule, each old job would be, on the average,
followed by just a half of new jobs. For each couple (n;nO), 20 instances are
randomly generated, so leading to 300 instances per class.

The database for memorization is implemented using a hash table with 500n
entries. When the database is full, a “Least Used, First Out” clean strategy is used
(see Shang et al. (2020) for further details).

Tests are run on an i5-8500 3 GHz CPU with 16 Gb of RAM and CPLEX
(version 12.9) as MILP solver. A time limit of 900 CPU seconds is given to the exact
algorithm and 60 CPU seconds to the upper bound heuristic.

All tables show the results for all or a subset of instances. The first column
provides the class of instances, column n provides the total number of jobs, column
nO the number of old jobs. Then, tables show some of the following results. The
column denoted with (#opt) gives the number of instances solved to optimality
before the time limit, (Avg %g) gives the average gap in percentage to the optimal
or best known solution, (Avg t(s)) the average CPU time in seconds, and, whenever
relevant, (Avg #n) gives the average number of nodes explored.



102 Exact algorithms for 1|no− idle,∑∆≤ Y |Lmax

5.4.2 IP models comparison

The positional and time-indexed IP formulations are compared in Table 5.1. Each
model, before solving the IP, checks if the EDD schedule is feasible. If so, it returns
the corresponding Lmax value and stops there.

Since both lower bounds returned by the solver and the analytical lower bound
(EDD) do often perform poorly, we evaluate the relative quality of the solutions,
with respect to each other, as the relative gap between the best solution found. More
precisely, the relative percentage gap is computed as follows. If I is a set of models
that are run for a test, and each model i returns a solution σ i, the relative percentage
gap of each model to the best solution known is computed as

Lmax(σ
i)−mini∈I(Lmax(σ

i))

mini∈I(Lmax(σ i))
·100

Table 5.1 the IP model comparison. For every configuration of n and nO, and
for every model, it indicates how many of the 20 sample instances were solved
to optimality, average and maximum percentage gap from the best found solution,
average and maximum time in CPU seconds, and average and maximum number of
explored nodes. Results are first showed for instances from class 1 of the generation
scheme, followed by instances from class 2.

The time-indexed model is very time expensive due to the large increase in the
number of variables when n increase, and the results clearly show that the position-
based formulation is more efficient in solving the problem. Model IPpos can find
most of optimal solutions up to 30 jobs. Model IPtime has already issues in finding the
optimum within the time limit for 20 jobs. The results clearly show that the positional
formulation compares favorably with respect of the time-based model. Therefore,
we use the results given by IPpos as a reference for evaluating the efficiency of the
branch and memorize algorithm.

5.4.3 Results of the branch and memorize algorithm

In Table 5.2, the quality of the upper bound is evaluated. The upper bound solution
σUB found by the LS heuristic is compared with solutions obtained from the exact
algorithms on instances with up to 40 jobs. The column #inst gives the number of
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instances for which the optimal solution σ∗ is known and the average gap computed.
Here, the percentage gap is computed, for each instance, as

Lmax(σ
UB)−Lmax(σ

∗)

Lmax(σUB)
·100

These results show that the LS heuristic is efficient as it returns in few millisec-
onds a solution often close to the optimal one. Swap and insertion operators are
shown to be effective in particular for instances from class 2.

Some preliminary experiments were run to see the impact of the structural
properties and the memorization on the exact algorithm. Table 5.3 shows the gain in
both computational time and number of explored nodes when using the structural
properties known for the problem (see Section 5.1) and the memorization technique
presented in Section 5.3.3. Only instances with 20 jobs in size are considered.

In this table, the three search strategies are considered (best-first, breadth-first,
depth-first) and for each one four different versions are tested:

I the branch and bound scheme, with neither properties nor memorization
techniques included;

II the branch and bound scheme with properties included;

III the branch and memorize scheme with only memorization;

IV the branch and memorize with both properties and memorization.

From the table, we see that the gain in exploiting both the structural properties and
memorization is clear. The result is mainly evident by looking at the average number
of nodes, which decreases at least of one order of magnitude when adding one of the
two techniques. Without using them, some instances cannot be solved because of an
excessive usage of the RAM.
Note that when neither properties nor memorization are used on instances with only
5 old jobs (first row of each class), the number of nodes explored is the same for
all search strategies. This can be explained by the fact that when there are few old
jobs and many new jobs, there are many solutions that differ in the way new jobs are
scheduled, but are very similar in terms of objective cost. Such solutions appear in
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Table 5.2 LS heuristic with respect to optimal solutions

LS

n nO
# # Avg Avg

inst opt t(s) %g

C
la

ss
1

2 20 18 0 1.8
10 5 20 17 0 1.2

7 20 19 0 0.3
5 20 20 0 0

20 10 20 19 0 0.1
15 20 12 0 2.3
7 20 19 0 0.9

30 15 20 12 0 6
22 20 10 0 14.9
10 20 17 0 1.1

40 20 20 6 0.1 14.4
30 19 5 0.1 25.9

C
la

ss
2

2 20 16 0 2.1
10 5 20 15 0 2.1

7 20 17 0 1.3
5 20 20 0 0

20 10 20 12 0 2.9
15 20 7 0 5.1
7 20 16 0 1.6

30 15 20 7 0 2.8
22 20 8 0 2.1
10 20 14 0 2.5

40 20 15 1 0.1 8.2
30 2 1 0.1 3.1
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Table 5.3 Increased efficiency through properties and memorization on instances solved to
optimality

(BMbest) (BMdepth) (BMbreadth)

Avg Avg Avg Avg Avg Avg
nO t(s) #n t(s) #n t(s) #n

C
la

ss
1

5 0.8 233744.2 0.8 233744.2 0.8 233744.2
I 10 0.3 64719.3 0.3 64719.9 0.3 64739.4

15 0.3 67092.0 0.3 68124.6 0.7 208747.6
5 0.0 358.0 0.0 358.0 0.0 358.0

II 10 0.0 7822.1 0.0 7822.4 0.0 7830.9
15 0.2 37008.2 0.2 37495.2 0.2 39577.8
5 0.1 170.7 0.1 120.7 0.1 145.1

III 10 0.1 561.9 0.1 882.5 0.1 566.3
15 0.1 995.5 0.1 1704.3 0.1 1164.3
5 0.1 143.8 0.1 120.7 0.1 109.6

IV 10 0.1 560.8 0.1 882.3 0.1 473.8
15 0.1 874.9 0.1 1700.6 0.1 814.7

C
la

ss
2

5 0.0 3721.4 0.0 3721.4 0.0 3721.4
I 10 0.1 10747.6 0.1 12224.5 19.4 6113046.3*

15 1.0 122992.6 0.7 126828.6 6.3 2208351.3
5 0.0 188.9 0.0 188.9 0.0 188.9

II 10 0.0 2776.7 0.0 2962.2 0.2 37794.8
15 0.3 41551.7 0.2 43238.1 0.5 97816.9
5 0.1 122.3 0.1 165.3 0.1 155.9

III 10 0.1 789.5 0.1 1263.4 0.2 7239.1
15 0.1 4021.6 0.1 8200.8 0.1 5592.1
5 0.1 120.2 0.1 165.4 0.1 124.0

IV 10 0.1 611.8 0.1 1260.2 0.1 2239.6
15 0.1 3069.5 0.1 8189.8 0.1 4229.6

(*) : RAM exceeded
Instances size: 20 jobs
I : no properties, no memorization
II : only properties
III : only memorization
IV : both properties and memorization
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different branches of the search tree, and optimality is guaranteed by exploring all of
these branches, i.e. independently from the search strategy.

Let us turn to the comparison between the position-based IP formulation and the
branch and memorize algorithm. The algorithms are first compared with respect to
the solution gaps in terms of relative deviation from the best solution found in table
5.4. Then, the performances in terms of number of optimal solutions found, time
and number of explored nodes are showed in table 5.5 for class 1 and table 5.6 for
class 2.

The branch and memorize algorithm strongly outperforms CPLEX whatever is
the search principle. For larger 40−jobs and 50−jobs instances, CPLEX has even
issues in finding any feasible solution ((-) if none is found or (*) if some of the 20
sample instances were unsolved to optimality) within the time limit of 900 CPU
seconds.

Branch and memorize solves all 30−jobs instances to optimality. Most of the
40−jobs instances are also optimally solved and still many 50−jobs instances’
optima are found. The best-first BM is finally resulting in being the most efficient on
class 2, while the breadth-first on instances from class 1. On the respective classes,
they find more optima and explore in average fewer nodes.

The hardest instances are those where there is a majority of old jobs. There, the
fewest number of optima are found and computing times increase.
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Table 5.4 Solution quality comparison between BM and IPpos

(IPpos) (BMbest) (BMdepth) (BMbreadth)

Avg Avg Avg Avg
n nO %g %g %g %g

C
la

ss
1

2 0.0 0.0 0.0 0.0
10 5 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0

20 10 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0
7 0.6 0.0 0.0 0.0

30 15 7.2 0.0 0.0 0.0
22 85.6 0.0 0.0 0.0
10 12.9 0.0 0.0 0.0

40 20 39.3 0.7 0.0 0.0
30 - 3.9 0.4 2.2
22 16.8 0.0 0.0 0.0

50 25 121.7 0.1 1.7 9.3
37 - 0.7 1.8 0.6

C
la

ss
2

2 0.0 0.0 0.0 0.0
10 5 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0

20 10 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0
7 0.9 0.0 0.0 0.0

30 15 1.1 0.0 0.0 0.0
22 7.7 0.0 0.0 0.0
10 2.0 0.0 0.0 0.0

40 20 10.2 2.8 0.4 7.9
30 38.6 0.0 0.3 0.0
12 9.7 0.0 0.0 2.0

50 25 30.7 3.6 0.8 4.8
37 55.0 0.0 0.0 0.0

Time limit: 900 CPU seconds
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Chapter 6

Conclusions and future research

In this dissertation, rescheduling problems for new orders were considered from
theoretical and algorithmic point of view. Rescheduling problems can provide
methods for responding quickly and effectively to the occurrence of unexpected
events and there is need of the development and evaluation of methods for dealing
with such problems. To this end, the dissertation gives the theoretical background
of rescheduling problems to address this class of problems that can be taken as a
reference point.

The work contributes to this purpose by discussing underlying structures of
optimal solutions, which are used to extract properties and dominance conditions
that can be used to solve the problem, analyzing their computational complexity and
classifying problems according to relevant differences in their structure. In this sense,
the analysis outlines the typical theoretical structures of rescheduling problems for
new orders and the difficulty of solving them according to current complexity theory.
The development of the dissertation aims at showing the characteristics and critical
issues that need to be taken into account when it is necessary to solve a rescheduling
problem, and at the same time understand their causes and effects.

Another result that follows the discussion around problem structures is the
formalization, for the first time, of timing problems in rescheduling. The fact that
there are optimal solutions that require the presence of idle time means that the
permutation problem is not sufficient to solve the problem, adding an element of
complexity to the resolution of these rescheduling problems. It is shown when the
timing problem is relevant and how it affects the complexity of the problems. In
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addition to this, the study of the timing problems showed that there are several
analogies with other scheduling problems that can be exploited for solving them.

Finally, the dissertation shows that it is possible to use the outlined models
and structures to design exact and approximation algorithms, which include exact
polynomial algorithms for timing problems, exact and approximation dynamic
programming algorithms for a weakly NP-hard problem, a branch and memorize
and a local search-based heuristic algorithm for a strongly NP-hard problem.

In summary, the dissertation provides a reference framework for understanding
and solving rescheduling problems in the most general way possible. However, the
discussion leaves the door open for further investigation on several points. Therefore,
in the following section, we conclude with some reflections on the directions for
future work, based on the results obtained.

Future work

Problem generalization

We studied rescheduling problems for new orders under some assumptions that are
present in most of the current literature. The problem description of Section 1.1
introduces a well-defined set of problems with certain characteristics that can be
relaxed. In particular, it considers:

1. the optimality of the initial schedule,

2. a function of the absolute time deviation of jobs as a disruption cost,

3. regular functions as objectives to be minimized.

Each of these settings can be relaxed, leading to new problem formulations. Further
research in these sense would help to extend the knowledge of rescheduling methods
and generalize the idea of rescheduling for new orders.

For instance, by dropping the optimality assumption of the initial schedule,
we enter the category of rescheduling of multiple orders (see Section 1.4), which
generalize the problem. Given the intractability of most of the problems considered
here, generalizing the definition would make the problems even harder. Studying
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these problems would help to understand if there are structural results that can be
exploited.

Also, throughout this work, attention has been limited to considering the absolute
time deviation as a disruption cost in the system. There are few variations that would
be worth investigating. First, we recall that there are few works in the literature that
consider different disruption measures, e.g., the deviation in terms of positions in
the schedule, or the change in resource allocation in the multi-machine setting. In
addition, it would be interesting to investigate other cases. For example, how the
models and solutions change when we consider only delays as a source of disruption.
In this case, the problem would be simplified (e.g., by the absence of idle time).
Another case worth studying is the problem with weighted time deviations. For
instance, a job causes a larger disruption in a production facility if the rearrangement
required to move it is more complex and involves other resources. The weight can
also represent the flexibility of different customers or the number of passengers in
train rescheduling. Again, the introduction of weighted deviations is a generalization,
and problems are expected to become more difficult to solve. However, this leads to
a number of special cases that are still open.

The third extension that we mention is the generalization to non-regular objective
functions. In this context, many considerations done on idle time insertion and solu-
tion structures (Chapter 2 and 3), change. The interaction between such objectives
and the absolute time deviations should be further investigated.

Any extension in this sense, would enrich the knowledge about rescheduling for
new orders.

Computational complexity of open problems

The complexity analysis leaves two problems open for weakly or strongly NP-
hardness. They are the rescheduling problem to minimize the total tardiness subject
to a maximum time disruption constraint and that to minimize the total weighted
completion time subject to a total time disruption constraint. A first point for future
work directions requires further investigating these two problems.
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Extension and improvements of the branch and memorize algo-
rithm

Then, work should be devoted in adapting the branch and memorize algorithm for
other hard rescheduling problems, both for the case of preventing and allowing the
insertion of idle times on the machine.

For the case when idle times should be prevented, the generation of nodes in the
search tree remains the same, as do the dominance conditions used in memorization
(except for the objective function and the disruption constraint, which must be
adapted for each specific case). What changes are the structural properties. Given
the impact of the dominance conditions given by the structural properties (see Table
5.3), for efficient solution, structural properties must be formulated and tested for
the other objective functions.

For the other case, where the insertion of idle times is considered beneficial to
the production system, the node generation scheme can remain the same, but needs
some adjustments. For example, given a partial compact solution at a given node, the
timing algorithm can be considered to evaluate whether there is a timing of the jobs
of the partial solution such that the sequence is feasible with respect to disruption.
Thus, the pruning condition regarding the disruption constraint can be applied only
after the evaluation of the idle time insertion. Also, the memorization dominance
condition must be adapted to include different start times of different jobs given the
same subset of jobs at two different nodes in the tree. So, additional memorization
techniques should be implemented and tested.

Furthermore, from a more general perspective, the algorithm lacks efficient lower
bounds that can be exploited in the solution tree, so improvements on this side would
indeed make the exploration of the search tree more efficient.

Evaluation of the impact of idle times

Another relevant point concerns the timing problem that is underlying to some
rescheduling problems and that leaves open the question of its practical impact. Idle
time is often seen as a penalization in production planning, however it should be
evaluated in a more accurate way if the improvements in terms of the objective
function can be high enough to justify the occurrence of idle times on the machine.
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Given this open question, we give just few remarks extracted from preliminary
results. Instances generated randomly as described in Chapter 5 were also tested
allowing the insertion of idle times. However, none of the tested instances resulted
in an optimal solution with inserted idle times. This result suggests that the inclusion
of idle time is only really helpful in achieving an optimal solution in the case of
instances with a very particular structure. A structural pattern that requires the
insertion of idle times is the one given in the example illustrated in Figure 2.6 of
Chapter 2. We provide the example of a schema that replicates the same pattern on
a larger instance in the following. The pattern is repeated n times and is made up
of three old job and one new job. For each i− th repetition, for any i = 1, . . . ,n, we
have processing times

p3(i−1)+1 = 2i

p3(i−1)+2 = p3(i−1)+3 = p3n+i = 1,

due dates
d3(i−1)+1 = M+3(i−1)+1

d3(i−1)+2 = M+3(i−1)+2

d3(i−1)+3 = M+3(i−1)+3

d3n+i = 0,

with M a sufficiently large value, e.g. M > P, such that old jobs are never responsible
for giving the maximum lateness, and a constraint on the total disruption of

Y =
n

∑
i=1

p3(i−1)+1 +2.

An optimal idle schedule can be sketched, for instance, as follows:

0
. . .

t

3n+1

2 3 1

Structural pattern

Figure 6.1 Sample pattern repetition for an instance that requires idle time insertion.
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Modifying the branch and memorize algorithm to integrate the timing algo-
rithm at a node, whenever relevant, would be the first step for evaluating through
experiments the impact of allowing idle times on these or other instances.

Another way of considering the timing issue would be to provide bounds on the
amount of idle time required in optimal solution or on the worst case loss in the
objective function when considering compact solutions. As opposed to the previous
point, this would well serve to the purpose of understanding the theoretical and worst
case impact of neglecting idle time.

Exploration of the full Pareto frontier

We considered solving the rescheduling problem, which is intrinsically a bi-objective
problem, with a so-called a priori method (see T’kindt and Billaut (2006)). In
other words, we assumed that the decision maker makes an a priori decision on the
disruption objective, and solves the remaining single objective problem to optimality.
However, we do not investigate the shape of the full Pareto frontier, which would
certainly provide more information about the relationship between the two objectives.
In fact, the following questions are still open: How much does f increase when the
value Y decreases by a certain amount? For how many different values/range of Y
are there efficient solutions? All of these points should be studied further in order
to have a more precise characterization of the rescheduling problem in terms of its
bi-objective nature. Identifying methods to compute the Pareto frontier would allow
the application of a posteriori methods that allow the decision maker to base his/her
decision on the observed behaviour of the two objectives.

Heuristics and multi-machines settings

The literature review in Section 1.4 revealed the lack of works devoted to test
heuristic approaches to solve large size instances. The exact algorithm proposed
in Section 5.3 is able to solve only small instances therefore, further directions of
work should consider developing fast approximation and heuristic algorithms for the
hard problems. Also, another lack in the literature worth to be mentioned is need of
extending rescheduling formulations for multiple machine environments, to which
just few works in the literature are dedicated.
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