I %}? ™
Ya O aY . .
V&A% Politecnico

/

y ONELA W ge :

\{I\IIII . 1859 III‘I‘Iél dl Torlno Scuola di Dottorato - Doctoral School
S WHAT YOU ARE, TAKES YOU FAR

Doctoral Dissertation

Doctoral Program in Aerospace Engineering (35" cycle)

Reference Architecture for an
Integrated Ground and Space
Software for CubeSats

By

Lorenzo Maria Gagliardini

sk sk skoskosk

Supervisor(s):
Prof. Sabrina Corpino
Dr. Daniel Fischer, Co-supervisor

Doctoral Examination Committee:
Dr. Paolo Marzioli, Referee, University of Roma La Sapienza

Prof. Dario Modenini, Referee, University of Bologna

Politecnico di Torino
2023

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,

including those relating to the security of personal data.

Lorenzo Maria Gagliardini
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Abstract

Ever since the first CubeSat mission was launched, the concept and complexity of
CubeSat missions has evolved at a pace that current operational system/doctrine
cannot match. In an increasingly dynamic space economy, where small businesses
have become the norm, innovative solutions that abstract away complexity of bigger
missions and increase autonomy of simpler systems are fundamental to reduce

operational costs.

It is within this frame that the current study is presented, aiming at developing a
software architecture with data handling capabilities for small- and nano-satellites
platforms, reducing the resources required for its adoption.

We first investigate the solutions currently available and established in the market,
e.g., CCSDS MO Services [1] and SAVOIR OSRA [2]. We assess the European small
satellite market needs through a survey with key players in the sector, highlighting
which features of these technologies to keep, and which to elaborate and improve.
From this survey, we derive the high-level requirements of a software architecture
capable of satisfying the reduced complexity expressed by market needs while
maintaining the critical data handling functionalities and providing the packets

traceability and persistency needed for system monitoring.

The adopted design methodology makes wide use of a Model-Based System
Engineering language [3] and common tool, as well as a fast prototyping, for passing

from the model to the implementation, in an iterative optimisation process.

Finally, we report the testing of a communication pipeline between components
relying on the implemented framework. The results are twofold: the strict data
domain segregation adopted in the design enables a high level of modularity for
data distribution and processing, making it possible to re-use portions of code when

the system scales up; In addition, the file-based configuration logic used for the

iv

framework API makes the plug-in process much lighter for the developer when

introducing new applications.

The results show that starting from the existing technologies, it is possible to
reduce time and effort required by their adoption. Still, further development is
needed in order to asses tested system in an operational scenario, while supporting
the arising systems’ complexity.

Contents

List of Figures

List of Tables

Introduction

1 Literature Review

2

1.1
1.2
1.3
1.4

Cubesats
Ground and Space Segments
Industry and Academia

Reference Architecture

Market Investigation

2.1

2.2

Research Questions and Objectives
2.1.1 ResearchQuestions

2.1.2 Research Objectives

Software Architectures and Standards Survey

22.1 SurveyScope
2.2.2 core Flight System
223 SAVOIROSRA
2.2.4 CCSDS Mission Operations

viii

xi

vi Contents

2.2.5 ECSS Packet Utilisation Standard 31

226 MOSS. 33

23 MarketPolling 37
231 Statistics e e e 37

232 Results 42

3 Architecture Design 44
3.1 Requirements Derivation 44
31.1 Pros&Cons 49

3.1.2 Harmonised Architecture 50

3.2 Design Methodology 51
3.2.1 Model Based System Engineering 51

33 Framework 54
3.3.1 DataRepresentation 55

3.3.2 DataClassification 58

3.3.3 DataTraceability 62

3.3.4 DataOrchestration 64

34 DataModels 66
341 CommandRouter 70

342 Telemetry Output 73

3.4.3 Autonomous Events Response 74

344 Generic ComponentModel 75

345 Components 76

4 Proof of Concept 77
4.1 Prototyping 77

4.1.1 Functional Modularity 77

Contents vii
4.1.2 Component Addressing 81

4.1.3 Autonomous Packet Delivery 82

42 Deployment 86
4.2.1 Network Management and Resources Segregation 86

4.2.2 Communication Patterns 89

43 Validation 91
4.3.1 Framework Validation 91

4.3.2 Ground Components Validation 96

5 Conclusions and Next Steps 101
5.1 Conclusions L 101

5.2 NextSteps v v i e e 105
References 107
Appendix A Questionnaire 112
Appendix B Client & Provider 116
Appendix C Framework Packets 120

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10

Iterative process. 2
core Flight System architecture [4].. 17
core Flight System logic [4]. 18
OSRA layered architecture [2]. 21
OSRA component and container [2]. 22
MO Service Architecture [1]. L. 26
UML Source and Related links anrules [5]. 29
Service object’s relations [6]. Lo 30
Common PUS services [7]. 31
Potential Structure of the Harmonised Architecture. 34

Standards usage: Have you used any of the following in your projects?
(1) CCSDS Space Packet Protocol [8]; (2) CCSDS Mission Opera-
tions Services [9]; (3) CCSDS Spacecraft On-board Interface Ser-
vices [10]; (4) CCSDS Space Link Extension [11]; (5) ECSS Packet
Utilization Standard [7]; (6) Savoir-Fair OBSW REFA. 37

List of Figures

ix

2.11 Standards familiarity: Are you familiar with any of the following?
(1) CCSDS Space Packet Protocol; (2) CCSDS Mission Opera-
tions Services; (3) CCSDS Spacecraft On-board Interface Services;
(4) CCSDS Space Link Extension; (5) ECSS Packet Utilization
Standard; (6) Savoir-Fair OBSWREFA. CCSDS, Consultative Com-
mittee for Space Data Systems; ECSS, European Cooperation for
Space Standardization; OBSW, On-board software; REFA, reference
architecture.

2.12 REFA usage distribution: Do you apply “a”/*“your own” REFA in

YOUY PFOJeCtS?o e e e e e e e e

2.13 REFA covered areas: At what level do you apply “a’/”your own”
REFA? (1) At hardware interface level; (2) at software interface level;

(3) at communication protocol level; (4) at operational concept level.

2.14 REFA perspective distribution: Would a CubeSat REFA bring value
and facilitate your business model? (1) No; (2) yes, if it is at
hardware mechanical interface level; (3) yes, if it is extended at
device interface level in form of APIs; (4) yes, if it is at on-board
communications protocol level; (5) yes, if it is at space to ground
interface level; (6) yes, if it also encompasses the composition of
functional components on-board and on the ground; (7) yes, help in
research or in student recruitment or in academic purposes. APIs,

Application Programming Interfaces.

2.15 How far shall a REFA go? (1) Tools for auto-generation of code; (2)
high-level architectural design—paper only; (3) open-source refer-
ence implementation of the core elements of the REFA (as reference
not mandatory to take); (4) Market Place with competitive vendors

offering compliant and competing implementations of elements of
the REFA.

3.1 If Data Model stored within the framework.
3.2 If Data Model stored by the app-level components.
33 CurrentMO DataModel.
34 REFADataModel.

39

40

List of Figures

3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

Command Router DataModel. 72
FDIR DataModel., 75
Mirroring of the data management logic in the implementation . . . 79
Generic Provider interaction sequence - Activity Diagram 84
Protocol Buffers/grpc - remote procedurecalls 89
ZeroMQ Publish-Subscribe interaction pattern 90
Data hierachisation within the REFA. 93

GS hardware diagramblock 99

List of Tables

2.1 MO submitAction operation 30
22 UserNeeds 43
3.1 High-level Requirements derivation 48

3.2 MO Header Data Classification 61

Introduction

Research Rationale

The future of CubeSats is headed well beyond the initial CubeSat standardisation
definition, and nowadays CubeSats have much more in common with normal-sized
spacecrafts than they used to have at the beginning of their journey. This inevitably
involves the world of the Operations as well as the systems for their support. In
order to keep up with the unprecedented pase at which small-satellites operations are
evolving, ESA and industry have developed and are developing ground- and space-
based standards, technologies and applications that improve the way of conducting
operations. This phenomenon show the high level of competitiveness that is domi-
nating the CubeSat market today, together with the limits that this competitiveness

carries around, being hardly committed by the companies themselves.

The market is populated by a wide variety of different companies, in terms of
dimensions, resources, and in terms of working areas. Ranging from private launch
companies, to small satellite operators, to bus manufacturers, such entities have
become the main driver of the space economy. Among those that were more recently
born, some have successfully established themselves in the market. The bigger ones
often relying on venture capitals, that made them capable of developing their own

proprietary software solutions.

On the other hand, there are many reasons that can be attributed to the lack of
market success or to the delays that some other companies experience while getting
their product to the market. We can point out to the lack of a standardized, open
source software architectural reference for mission operations as one of the main
obstacles. Without access to proprietary software, these companies are forced to
develop in-house knowledge and build and design their own software stacks, a lengthy

2 List of Tables

and costly process. Moreover, this ad-hoc development further disincentivizes the
development of a common architecture; if a company allocates resources to gain
a market edge, it is not likely it is interested in losing it by making its software

available to competitors.

The architecture that intends to solve such a variety of issues can potentially
play several roles and target many purposes. Their identification cannot completely
be fixed from the first stages of the design process, and it shall be evaluated in an

iterative manner.

Therefore, the project scope is double, and the relative achievements to be gained
concurrently: the architecture is born with the objective of becoming a reference i.e.,
spreading within the market for unifying the software tooling applicable in the space
mission scope. This is a multi-step process scoped in the long period, whose first
achievement targets the CubeSat environment as the most convenient test-bench and

most relevant use-case.

Technology Prototyping
| Survey and testing
J'
¥ k.
° Begin Market User Needs Requirements Design
Investigation | Definition | Derivation Definition

f

Fig. 1 Iterative process.

In parallel to this, the design and implementation preceding the architecture
delivery, follows an iterative process of design and improvement which instead
primarily focuses on the software architectural aspects, rather on the strategic role
such technology will play. These development stages seek a different approach,
played both in the technical and socio-economical fields, whose background logic
shall be aligned consistently. The architecture aims at playing the role of a de-facto
standard architecture, concurrently maintained, and developed by industry and public

agency, namely ESA, in order to:

* Increasing the competitiveness of industry by seeking the low-cost/fast-delivery

paradigm.

List of Tables 3

* Supporting the interoperability and integration in the system of units coming

from diverse supply chain.
* Delivering more services with little impact on costs.

* Widening the range of applications involving new stakeholders and business
models.

In this context, thanks to its role, ESA is interested in addressing existing limits,

and commits itself for finding solutions impacting the CubeSat market actors.

Thesis Layout

The present Section provides the reader with the logic behind the thesis structure.
The thesis is composed of five chapters that will guide the reader through the project,
prom the very initial stages to the conclusions and next steps.

Chapter 1: Operations

Role of Chapter 1 is to introduce the reader to the research topic by providing a
literature review that covers the key aspects of the design process leading to software
architecture. The chapter touches the topic background by providing motivation to
the proposed work and examples, by emphasizing on the use of Model Based System

Engineering methodologies that we will find in further chapters.

Chapter 2: Market Investigation

Chapter 2 reports the market investigation conducted in 2019 in order to get familiar
with the CubeSat market environment. The chapter presents the Research Questions
and Objectives formalised during the first steps of the project and aims at collecting
the perspectives of the entities populating the market (via a proper questionnaire)
with respect to the Reference Architecture project, as well as presenting a survey
of those existing technologies that could play a role in the new REFA architecture
definition. After the outcome of the questionnaire is analysed and the technological
survey is concluded, a set of User-Needs is formalised, that presents the working
condition from which the design shall start.

4 List of Tables

Chapter 3: Architecture Design

Chapter 3 is the core chapter of the thesis, and covers all the aspects related to
the design of the architecture, as well as all the elements involved in the design.
As a continuation of Chapter 2, from the set of User Needs a list of high-level
requirements is derived, that lead the design process. A detailed description of the
derivation process from user-need to requirement is provided. As everything is set for
starting the proper design, a description of the adopted design methodology is given.
Afterwards, the two main layers of the architecture are explained in details.The
chapter provides a complete description of the core elements of the architecture and
of the interaction layer linking them, and here is where the Service introduction of
Chapter 1 gets useful.

Chapter 4: Proof of Concept

Chapter 4 is devoted to the proof of concept following the design process. Objective
of the Chapter is to translate the theoretical design into a working environment. This
is done in three consecutive steps. First the implementation criteria are explained.
Such criteria are not to be as stand-alone choices, as they follow the same modularity
and re-usability principles adopted in the design process. As second, a focus on the
software deployment is given, so to understand the structure of the code, as reflecting
the implementation criteria. Last but not least, the validation of a set of components

is provided, by showing their working behaviour observed in test campaigns.

Chapter 5: Conclusions

Chapter 5 discusses on the results of the project, on its limitations and on its current
potentialities, for further developments.

Chapter 1

Literature Review

1.1 Cubesats

Traditionally, satellite production follows a limited model, often producing only one
or a few units. In such cases, rigorous testing is essential to ensure the functionality
of the system when deployed. Both physical and digital testing, including modeling
and simulation, are conducted extensively. When there’s only one opportunity to
achieve success, it becomes crucial to ensure its practical reliability. The expenses
associated with these programs can be excessively prohibitive, particularly when
considering the cumulative costs of various segments such as hardware, software,
and launch. The testing required to validate the design can significantly escalate
the overall price, particularly as the complexity of the system increases. In contrast,

CubeSats offer a more affordable and easily reproducible alternative.

The stringency of testing can be balanced with the reduced consequences of
failure. According to Robert Twiggs, co-creator of the CubeSat Design Specification
[12], in the book "Space Mission Engineering: The New SMAD," [13] some degree
of failure is acceptable in the pursuit of technological advancement. Although initial
failures can be costly, they ultimately contribute to lowering costs by providing

valuable information.

6 Literature Review

1.2 Ground and Space Segments

Today the Ground Data Systems (in short Ground) and on-board software (in short
OBSW) of a space mission have separate development lifecycles. These systems are
developed independently as two distinct software architectures with a well-defined
interface, which is captured in the so-called space to ground (S2G) ICD. For ESA
missions this interface is typically based on the ECSS Packet Utilisation Services
(PUS) standard [7].

While the successful history of ESA missions is a practical evidence that the
current paradigm works, it shall not befog the missing opportunities for achieving
a higher level of reuse across the Ground and Space segments, which would lead
to a much more optimised and integrated development lifecycle, higher degree
of automation and more advanced concepts of space mission operations. ESA is
investigating in the context of a TRP study [14] a new harmonised architecture for
the Ground and Space Segments for future missions, which takes a different view to
the Ground and Space software systems, conceiving them as two elements of one

distributed system by merging the advantages of these optimized tools.

This harmonised architecture combines the underlying concepts of three relevant
architectures, the service-oriented architecture of the CCSDS MO and CCSDS
SOIS, and the component-based architecture of European SAVOIR initiative (On-
board Software Reference Architecture — OSRA). The long-term perspective of this
harmonised architecture is motivated by the strong logical dependencies between the
Space and the Ground systems and the fact that today many artefacts with similar
purposes are redeveloped independently for the two segments. Examples hereof
are application logic (source code), automation procedures, validation artefacts and

simulation models.

One of the high-level concepts of the harmonised architecture is to expose
the native interfaces of selected OBSW components (OSRA components) as MO
Services, which can then be consumed by other on-board components or by Ground
components, using different communication protocols (bindings). The independence
from the implementation and communication technology is in the core of the CCSDS
MO architecture. The harmonised architecture and its related tooling, shall allow:

» Rapid development of space missions through auto-generation of large portions
of OBSW and Ground components;

1.2 Ground and Space Segments 7

* Specification of unambiguous, machine readable formal interface specifica-

tions for the space to ground interface;

* Integrated validation of space and ground systems at different stages of the
development lifecycle (today performed only during System Validation Tests,
SVTs;)

* Higher level of reuse of simulation models, automation procedures, validation

artefacts and even source code between space and the ground

Notwithstanding its potential, this harmonised architecture needs to be assessed
carefully and validated before implementation on a large-scale. CubeSat projects
might represent valuable use cases for development and application of this architec-
ture. On the other hand, the emerging (European) CubeSat context would benefit of
an integrated SW Reference Architecture (REFA) for Ground and OBSW in terms
of:

* Increasing competitiveness of industry (low-cost/fast delivery paradigm:;

* supporting interoperability and integration in the system of units from diverse

supply chains;
¢ delivering more services with little impact on costs;

» widening the range of applications involving new stakeholders and business

models

In the context of the development and V&V of ground and on-board software for
CubeSats, especially oriented to mission operations, some key points are identified

which might deserve the attention of developers and operators, in the areas of:

» Standardization. Today, any developer has its own customized standard and
software implementation, although open source SW and tools are used. In the
software testing process, no common rules are specified and agreed;

* Automation. At mission operations level: human intervention is often required,
especially for managing contingencies. Command and data handling effort
increases with the quantity of data generated by the mission, and the complexity

8 Literature Review

of mission architecture (e.g. operations of mega-constellations). At code
generation level: often most part of the SW is written by a developer that

implements functions and algorithms as specified in documents

The poor standardization and little automation of today systems leads to not-

optimised mission operations management and software development and V&V.

1.3 Industry and Academia

The number of CubeSats in orbit has increased in the last twenty years, when back
in 2003 six of them were deployed in low Earth orbit (LEO) in the first multiple
CubeSat launch [15]. CubeSats are nano-satellites that share a common interface
and equipment standardization. The basic CubeSat is a cube-shaped platform 10 cm
on a side whose mass is less than 1.33 kg, but multiple unit CubeSats exist and are
becoming popular [12]. The CubeSat standard was born within the academia with a

pure educational purpose [16].

Low-cost and fast-delivery features were key parameters playing a crucial role for
the standard definition. These factors led to a high number of CubeSats developed
by universities in the first decade, mainly with education as primary objective;
technology demonstration, scientific experiments and/or Earth observation have been
secondary objectives for most of them [17]. However, in the last years, governments,
space agencies and private companies recognised CubeSats and nano-satellites as
attractive space platforms to pursue a broad set of mission goals, including science,
technology demonstration, communications, and Earth observation, with a significant
cost reduction and a relatively faster development time, from design to operations,
compared with traditional larger-satellite missions [18].

CubeSats allow building brand new architectures, which would be unattainable
with bigger satellites. Constellations of nano-satellites in LEO are becoming a reality
[19][20], while the CubeSat community is exploring the possible applications of
nano-satellites for interplanetary missions [21][22], and two units for technology
demonstration of future missions to Mars have already been launched [23]. This
new paradigm requires the development of adequate technology to enhance CubeSat
performance and increase mission success, while keeping the cost of the mission

within an acceptable cap.

1.4 Reference Architecture 9

Whilst ongoing technology miniaturisation, radiation-hardened COTS electronics
and tight system integration associated with CubeSats will enable a significant
reduction in the space and launch segment costs, the operations costs do not scale
down with spacecraft size/mass unfortunately. This will be critical especially for
high-end CubeSats, such as for interplanetary scientific and exploration missions,
and for LEO applications involving multi-unit architecture (e.g. EO and/or telecom
mega-constellations, orbiting vehicles inspection missions). The future CubeSat
missions will then require advanced concepts of mission operations and a high degree
of reliability. It must be said that educationally-driven CubeSat missions have often
failed. The failure of CubeSats is dominated by infant mortality, which can be traced
back to design weakness and/or ineffective Assembly-Integration-Verification (AIV)
planning and execution. An effective and exhaustive Verification and Validation

(V&V) process may help to increase the reliability of small-scale satellites [24].

1.4 Reference Architecture

Creating a new model for each project, considering the various needs, stakeholders,
goals, hardware, and facilities, can be inefficient. Instead, it may be more effective
for organizations with common elements to establish a common baseline. This
baseline would incorporate relevant aspects of the organization and provide engineers
with a more advanced starting point. This is where a reference architecture comes
into play. A reference architecture serves as a repository of knowledge, offering
guidance and rules for structuring, classifying, and organizing a model. It essentially
encapsulates the collective architectural knowledge accumulated over many years
of work [25]. According to Maier and Rechtin [26], systems architecting occurs
when the problem is not yet fully understood. Architecture forms the foundation
for a structured problem-solving approach, ensuring the consistent application of

principles necessary for project success.

A reference architecture is most effective when there are significant similarities
between projects. Within an organization, a reference architecture can serve as a
guide for employees, outlining expectations for product development and business
practices. In a specific domain, a domain-specific reference architecture ensures

consistency by establishing common foundations for all products being developed

10 Literature Review

within that domain. The reference architecture should encompass relevant standards,

legislation, domain constraints, and mandatory frameworks.

There are also external factors that drive the need for a reference architecture,
including increased interoperability, adaptability, and shorter time to market for indi-
vidual products. Having a reference architecture facilitates greater compatibility and
integration among various components and systems, allowing for quicker adaptation

to changing market demands.

The purpose of creating a reference architecture is not solely to ensure the success
of one project. It is designed to capture the best practices from prior designs and
projects, promoting continuous growth and evolution. The knowledge gained from
modeling is reinvested back into the architecture, enabling it to incorporate existing
architectural efforts while also focusing on future innovation and the development of
new products.

Chapter 2

Market Investigation

2.1 Research Questions and Objectives

Operations do not necessarily scale down with the size of the spacecraft [27]. Cube-
Sat systems and missions can increase in complexity and this brings an increasing
amount of management and engineering capabilities [28]. The goal of the current
project starts from this assumption and targets a software architecture devoted to
CubeSat capable of reducing the effort required by CubeSat mission’s operations.
The system architecture design can heavily impact the time and cost at operations
and therefore the complexity and variety of aspects reported in the previous chapter
shall be handled at design-time.

The present project started by stating a list of questions and objectives that were
given at the very early stages and have been hereafter formalised. They focus on both
technical and strategic aspects, mostly related to the CubeSat market environment

and the opportunities the market itself can offer.

2.1.1 Research Questions

The short list of questions, address both the role such project can play in the next

years’ market development, as well as the constraints leading the design.

12 Market Investigation

Time and Cost-saving Architecture

"Is it possible to define a time- and cost-efficient architecture for future
space and ground segment developments?"”

The first research question focused on the difficulties that small-sized companies
experience when bringing their products to the market. A solutions like a reference
architecture (REFA in short), which aims at spreading over the market shall align
with time and cost requirements imposed by the market dynamics. For such a REFA
to be effective, it shall be able of imposing itself because of its capabilities to save

both the time of development and implementation and the relative costs.

Market Needs

"Is it possible to model an architecture on current market needs?"

Achieving time and cost efficiency in a market populated by a wide variety of
different companies may not be trivial. We cannot exclude the contrasting needs
from different stakeholders. And at the same time we shall not befog the opportunity
to shape our architecture on a common solution, a compromise which includes any

party in the game, where possible, and avoids selective choices.

Re-inventing the Wheel

"Can we exploit existing market technologies, without reinventing the
wheel?"

One of the main risks when introducing a new standard, is the limited added
value i.e., limited amount of solved problems when compared to the overhead that
the new architecture carries around. In other words, what is supposed to be the final
solution, threatens ending up for being just an additional one. Aligning to the marked
needs is a good starting point, but at what cost does it come?

2.1 Research Questions and Objectives 13

2.1.2 Research Objectives

The objectives of the the project target the definition of the architecture that best
answers the research questions, by driving the design choices. These have been

formalised in two sentences that summarise the purposes of the project.

Harmonised Solution

To develop an on-board and ground software architecture which in-
cludes the best features of the existing technologies in the space do-
main, and which provides a harmonized implementation of a core set
of resources and the framework for accessing them.

The architecture shall attempt to define mechanisms which allow the combination
of existing technologies whilst maximising the benefits for the end-users. In the
present work, we shall specify an architecture which owns the requirements needed
for a wide adoption, starting from the given state of the constituent technologies.
This research work shall propose the characteristics of the architecture together with

potential ways in which they can be achieved.

Targeting the User-Needs

To align the architecture development to the market investigation re-
sults, in order to target the needs coming directly from the companies’
developers.

The present research objective underlines the importance of taking into consider-
ation the market perspective along the work, as the final target of the current project.
The architecture sophistication, as one the principal design aspects, highlighted in
the first research objective, shall not befog the importance and associate risks of

shaping the architectural solution in accordance to socio-economical aspects.

14 Market Investigation

2.2 Software Architectures and Standards Survey

The first step of the investigation starts from the technologies populating the market,
and it is important mentioning here certain key aspects that might help us better
defining the context that the REFA design will target. The discussed points may
seem quite technical, especially at this stage of the REFA design, nevertheless it is
important bearing in mind that such discussion will help us critically evaluating the
potential solutions during the architecture survey as well as during the analysis on
the market investigation results and during the proper design of the architecture.

2.2.1 Survey Scope

Far from providing a complete list of all the possible aspects that are implied in the
REFA definition and design, we provide this list of examples to give the reader an
idea of the topics, questions and perspectives that shall be assessed, answered and

evaluated during all the stages of this project. These are hereafter reported.

* One of the main points opened on the architecture design from the very be-
ginning, concerns the domain of applicability. The REFA interest focuses on
whether such architecture should target the actual on-board software domain
or rather a higher, application-level environment. This aspect implies consider-
ations on the governance model leading the system’s development and on the
implications the same architectural choices induce on the management logic.

This brings us to the next point.

* A second key aspect concerns the development management. It is important to
define whether such development can be left to the final user e.g., as it can be
an open-source project, or rather a delivery granted by an official development
entity should be foreseen. Depending on the previous point e.g., in the case
this software is running in a user-space i.e., in a safe environment, any new
application can be plugged into the framework with almost no hazard. On
the other hand, in the case this is the primary system handling the spacecraft
activities, the verification and validation needed for avoiding conflicts and
inconsistencies, directly affect and potentially threaten the system’s health,
becoming therefore mandatory. And since the scope of the project is not only

technical, we can ask:

2.2 Software Architectures and Standards Survey 15

* Which implications would such choice have out of the technical scope of the
current project? May the REFA become concurrent to other on-board software
rather than running on top of it/being controlled by it? And if this is the case,

from a development point of view:

* Does it make sense to start prototyping either such two different systems with
the same approach or rather a first version of the software shall be located

closer to the user space? And therefore;

* Which functionalities of the software do we want to address? Which of them
can reside in the user-space and which shall be part of the on-board software?
Are there technical solutions that can be adopted only at certain levels?

Having familiarised with the breadth of the project’s scope, we have one more
instruments that will help us answering these and more questions through the survey

on the existing architecture solutions and during the next design phases.

In the present chapter we examine four technologies, both spread within and
outside of the CubeSat industry. These are:

« core Flight System, [4]

SAVOIR On-board Software Reference Architecture, [2]
* Mission Operations Services [1]

* Consolidated Architecture from the MOSS study [29]

2.2.2 core Flight System

The core Flight System (cFS) [30, 31] is a widely adopted flight software (FSW
in short) in many NASA missions. It is developed and maintained at the Johnson
Space Center and its purpose is to reduce the costly and time-consuming process of
developing software for spaceflight missions. Its flexible and layered architecture
creates a development environment where system integrators can assemble a signifi-
cant portion of a software system for new missions, test platforms, and technology

prototypes, resulting in reduced technical, schedule, and cost risks.

16 Market Investigation

The idea behind the design involves the reuse of cFS elements that not only
include the software, but the artifacts such as requirements, design, test procedures
and results, and documentation, saving projects and missions the cost and effort of
reinventing these pieces over and over again as was done in the past. The end result
is an architecture that can evolve and is flexible.

From the objectives point of view, the cFS is quite close to what the REFA project
aims at reaching i.e., a modular, flexible and, in the end, reusable set of artifacts that
carry around time and cost saving implications. Let’s look at it closer and from a

structural point of view.

cFS architecture

The cFS is composed of five main elements [32], covering from the hardware adap-
tation elements necessary for the system to be run on different physical architectures,
to the application standard functionalities remaining fixed between missions. Such
elements are hereafter reported:

* Platform Support Package (PSP), is the set of packages needed for making
the architecture runnable on different machines, while maintaining perfor-
mance constraints. Each mission is expected to customize a Platform Support
Package.

* Operative System Abstraction Layer (OSAL), is a small software library that
isolates the Flight Software itself from the Real Time Operating System. With
the OS Abstraction Layer, flight software such as the Core Flight Executive

can run on several operating systems without modification.

2.2 Software Architectures and Standards Survey 17

SW
Components
_—
Messaging
Middleware
Time, Events, Files, Tables CFE Services
Executive Services 0OS Abstraction

Device Abstraction

0S1/eee/0Sn Operating Systems

“=>control & data

HW
Components

Fig. 2.1 core Flight System architecture [4].

Device Drivers

* core Flight Executive (cFE), is a set of mission independent, re-usable, core
flight software services [33], applications, and operating environment. It
provides standardized Application Programmer Interfaces (API) and supports
software development for on-board FSW, desktop FSW development and
simulators. The core Flight Executive includes five core services:

— Executive Services, among the others it provides ability to start, restart

and delete cFS Applications and manages data preservation.

— Event Services, provides an API for sending asynchronous debug, infor-
mational, or error message telemetry to ground and for filtering event

messages.

— Software Bus provides a portable inter-application message service,
routes messages to all applications that have subscribed to the message

and reports errors detected during the transferring of messages.
— Table Services, manages all cFS table images.

— Time Services, provides a user interface for correlation of spacecraft time

to the ground reference time.

18 Market Investigation

* core Flight Applications [34]. Running on top of the core flight executive, the
applications are developed for mission-specific purposes. Such applications

use the core services for basic functionalities exploitation and communication.

¢ cFS Libraries.

Instruments

Mass
Storage
File System

The cFS architecture creates a Flight
Software “App Store”.

Command
Ingest

1553 Bus Telemelry
Support Output

. oFS Applications S
e : 1553 - Interfaces
O Mission Applications Hardware Real-time Telemetry
File downlink

. Core Services/Applications

Fig. 2.2 core Flight System logic [4].

The cFE/cFS provides a layered assembly of components, so that every compo-
nent manages its component-specific set of operations that are then offered to other

applications as an API.

Despite its smart approach to the problem, we highlight here two major prob-
lematics that we think the described architecture maintains. These are hereafter
reported and will be assessed during the REFA development, in the next sections of

the present document.

* The first issue is mostly technical. The cFS correctly keeps services segregated
from components, nevertheless every component i.e., application, develops
its own internal logic and operations i.e., data models, then offered to other
components in terms of APIs i.e., there is no native common data-model for

distributed-component applications.

2.2 Software Architectures and Standards Survey 19

* The second issue is related to management and logistic. Despite its smart ap-
proach and efficient architecture, the amount of work required for its adoption
does not scale down to the size of small missions (and companies e.g., hiring

10-20 people who have to cope with the whole spacecraft project).

The example provided by the cFS, together with the other existing technologies,
had a strong impact in the direction the REFA would take. Notwithstanding the
mentioned issues, it shows relevant characteristics from which the REFA can benefit,
and despite a re-invention of the framework, it is considered convenient to adopt
some of its basic principles and to build of top of these. In the next chapter the REFA
design are discussed more in details so to make such commonalities clearer for the
reader.

2.2.3 SAVOIR OSRA

The SAVOIR-FAIRE working group was set up in 2009 to determine and specify a
reference architecture for onboard software (OBSW) [35], together with necessary
interfaces, to smooth the way that OBSW is developed and procured in Europe.
The group issued an initial document describing the User Needs and High-Level
Requirements determined by industry representatives and capturing the key aspects
of the proposed reference architecture.

It was therefore suggested that a reference architecture is needed to actively
assists in the management of this complexity making software development, ver-
ification and validation, and maintenance easier and more manageable. This was
approached through:

* Through strict encapsulation of various elements of the system, using standard,

or regular, interfaces;

* Through the separation of concerns within the software system, such as the

separation of functional and non-functional aspects of the design.

These two aspects were satisfied by the application of a component-based soft-
ware engineering (CBSE) paradigm which permitted the construction of software
from multiple components each with well-defined interfaces and which cleanly

separate functional and non-functional aspects.

20 Market Investigation

The SAVOIR presents an overview of a consolidated avionics functional reference
architecture derived from the SAVOIR avionics reference architecture objectives
and functions. It gives through an example a possible physical implementation
of the reference architecture. It does not only limit the definition to the software

architecture definition but spans over the avionics definition and interfaces.

Among all such model, the On-board Softwware Reference Architecture (OSRA)
is the part of the model focusing on the reference architecture for spacecraft onboard
(flight) software developed as part of the SAVOIR initiative. The OSRA is intended
to address the major needs for software development.

The OSRA adds the model-based approach to the component-based design, to
allow the development of onboard software in a more efficient and flexible way than

traditional methods, without sacrificing robustness.

Let’s investigate point by point the most relevant aspects of such architecture and

comment them with respect to the REFA design described in the next chapter.

OSRA Architecture

The OSRA [36] is based around a three-layer architecture. The application func-
tionality is defined by components, which exist in the Component Layer, along with
the specification of the desired non-functional properties. The containers which
envelope components, and the connectors which bind component interfaces, exist
within the Interaction Layer. Both of these layers are dependent on the application
function and rely on the underlying Execution Platform for application-independent

services.

2.2 Software Architectures and Standards Survey 21

Applications

] I I I Mission dependent
(e.g. AOCS, Thermal, Power, P/L
Manager, System Mode
Management, Planning / Autonomy)

Interaction layer

Execution Platform

Software Execution

Automation Environment
Monitoring and Control External System Access
Network & Device Protocol Handling Hardwa_re Execution
Access Environment

TSP based Runtime Classical Runtime

Fig. 2.3 OSRA layered architecture [2].

The Component Layer is where the application software is designed and imple-
mented. The functional aspects of the application are captured as components whilst
the non-functional concerns are captured declaratively as non-functional properties.

A component in the OSRA is intended as composed of the following properties:

* Has a well-defined interface.
* Has explicitly captured dependencies, which form part of its interface.

* Is purely functional, containing only sequential behaviour with no timing or

synchronisation.

Such layaring [37] represents the state of the art in term of flight software. Such
three design hinges will remain valid in the REFA design, unless for realization
constraints, as we will see in the next chapters, mainly impacting (and requiring) the
strict segregation between interface (as general as services) and functions (dictated
by the applications’ data models).

22 Market Investigation

In the OSRA a component is defined by its component type which provides and
requires specific interfaces, each of which is defined by an interface type. To use
a component, the component type is implemented and then instantiated, creating a

component instance for each use.

The idea of modular elements remains in the REFA, since every interface, as
either required or provided is part of the component’s dependencies (inheritances)
and therefore instantiated at run-time depending on the type i.e., service & sub-
service specified.

The Interaction Layer acts as “middle-ware”, implementing containers and con-
nectors and matching the services provided by the Execution Platform to those
required by the containers and connectors. The Interaction Layer is tailored for a
given assembly of components and is specific for a given Execution Platform. In this
respect, it is the “glue” which allows a platform-independent component model to

be executed on a platform-specific Execution Platform.

Within the OSRA a component in use is completely enveloped by a container. A
container is specific to a component instance and is responsible for the realisation
of non-functional properties associated with tasking, synchronisation and timing,
using the mechanisms offered by a given execution platform. For example, if a non-
functional property specifies periodic execution, the container would be responsible
for executing the component operation periodically, using a task provided by the

execution platform.

Container

Fig. 2.4 OSRA component and container [2].

For the REFA the concept is lost, since there is no self-standing isolation element
mediating the interaction between interfaces at the application level (it is not true

2.2 Software Architectures and Standards Survey 23

anymore at the level 1-2 of the OSI stack). It is rather true that the component
is responsible for making use of a set of standard interfaces depending on the

component’s configuration i.e. specified before the start-up.

The Execution Platform [38] provides all the underlying services [39] neces-
sary to support the execution of components. The Execution Platform provides
application-independent resources to the Interaction Layer and is dependent only on

the underlying hardware, not on the application or mission.

As discussed later, the REFA project targets the functional properties of the
architecture and their interaction, by providing a structured layerization, the physical
platform on which the architecture is run and relative efficiency considerations are
not included in the study.

The REFA project inherited a lot from the SAVOIR-OSRA, not from the engi-
neering solutions but rather from the methodology followed during its development

and the criteria adopted at system high-level design.

More in particular:

* It was decided to follow the same methodology of market investigation, by
first analysing the outputs of a questionnaire submitted to the entities present
in the CubeSat market, in order to collect a first list of User Needs, and from
these extrapolating a list of requirements to be applied to the high-level design

of the architecture; moreover

* The methodology inherited from the OSRA did not cover the only procedure
leading to the investigation but also the design, namely the Component-Based
Software Engineering (CBSE) which requires:

— Strict segregation of concerns; and

— Loosely coupled set of components.

We will find such features in the REFA design, impacted both by the adoption
of a Model-Based language, in Section 3.2.1, and by the introduction of the
so-called Data Models [40], discussed in Section 3.4.

24 Market Investigation

2.2.4 CCSDS Mission Operations

Since the year 2003, the Spacecraft Monitor and Control working group of the
Consultative Committee for Space Data Systems (CCSDS), participated by members
of 10 different space agencies, has been working on the definition of a Service
Oriented Architecture (SOA) consisting of a suite of standard end-to-end Mission
Operations (MO) services [9, 1] between functions resident on-board a spacecraft
or based on the ground. The MO services are intended to cover all the activities
needed for operating any possible mission and, despite its more recent introduction
and very limited deployment on existing missions when compared to the PUS , the
gap between the two standards is being gradually filled. OPS-SAT, launched in
December 2019, is the first small-sat (CubeSat 3U) using the CCSDS MO services
as the mean for exchanging data among the experimental platform on-board and the
experimenters on ground. OPS-SAT runs the NanoSat MO Framework [41] which
1s built upon the CCSDS Mission Operations Service Framework and thus inherits
the same agnosticism towards the transport layers used in the space system. This
allows the conceptualization of a “multi-segment” software framework dedicated to
nanosatellites that is neither limited to the space segment nor the ground segment,
and instead it covers both segments simultaneously. At the time this survey is
being written, the latest publication of a new MO area of services, the so called
Common Services (CCSDS 522.0-B-1), has been issued by June 2020, in addition
to the previous COM services [5] and M&C services [6]. From the architectural
point of view, the CCSDS Mission Operations standard introduces a strict and
coherent task subdivision, within the same service layer, which threatens aspects
going from the abstract interface with the applications to the abstract interface with
the communication protocols. In the middle, concepts like the Service Specifications,
the Common Object Model (COM) and the Message Abstraction Layer (MAL) are
introduced to guarantee an effective independence between the three levels of the
system (i.e. application level, service level and transport level). Let’s see them in
detail.

MO Architecture

From a structural point of view, the the CCSDS Mission Operations [1] service
framework can be internally decomposed into several elements, vertically structured

so that the upper layers rely on the lower layers for operating.

2.2 Software Architectures and Standards Survey 25

On the bottom layer, the MO standard provides the mapping between the MAL

specification e.g., [42], and transport technology/encoding.

On the upper layer, the framework interacts with the components via an adapta-
tion component, which translates the service API into the components API and vice

versa.

In the between, within the framework itself, MO provides the definition for the
Message Abstraction Layer (MAL) [43]. The MAL defines an abstract definition for
a data types set that are used for further data structuring. These same data types are
used by the same MAL definition for designing the abstract MAL message header
i.e., a set of information used for addressing packets among the MO framework.

In addition to this, the MAL defines the interaction patterns that any service can

adopt for data exchange purposes.

Beside the MAL, the CCSDS MO standard provide a data model definition for
handling services related data. The COM both provides a syntax for connecting the

MO objects and a set of rules for identifying the objects.

In the present section we will present the main elements of the MO framework.

Message Abstraction Layer

The Message Abstraction Layer [44] represents the core of the Mission Operations

standard and provides the abstract definition of aspects like:

* Interaction patterns according to which any service shall be expressed in order

to exchange data;

* Set of basic elements composing the service messages, which constitute the

bricks from which any further service-specific structure shall be built; and

* Addressing methodology for service messages within a distributed architecture,
by gathering the information functional to the messages exchange in an abstract
MAL message header.

26 Market Investigation

Services
‘ c
' Infrastructure

Fig. 2.5 MO Service Architecture [1].

Thanks to these features defined within the MAL, the specification of a set of
MAL-consistent services remains transport and encoding-agnostic. In other words,
the MAL is meant to give the means for managing any new service compliant with
the MAL prescriptions regardless of the implementation language and transport
protocol chosen.

The specification of a service, as already mentioned, shall be MAL compliant,
and starts from the selection of the interaction patterns defined within the MAL
specification, meant to be specified for any service operation. As opposing to the
PUS, any service operation must rely on six predefined interaction patterns: SEND,
SUBMIT, REQUEST, INVOKE, PROGRESS and PUBLISH-SUBSCRIBE, each
being a slight development in complexity of the previous one. The interaction patterns
include the generation of acknowledgments, progress, execution and completion
reports as well as error reports. Each pattern shall specify the set of statuses that both
the provider and consumer can attain during the execution of the pattern exchange.
The interaction patterns specifications do not standardise the only space-to-ground
interface. The MO services specification does not conceive a marked distinction
between application processes located either on-board or on ground. The majority
of these interaction patterns are composed by more than a single message instance

2.2 Software Architectures and Standards Survey 27

exchanged between entities which may be either distributed or located in a same
asset. As a consequence, the CCSDS MO covers any possible message exchange
between peer entities, regardless of the domain, session and network zone, being
all aspects considered in the MAL specification. The second needed element for
the specification of a service, as for the PUS, is the definition of the data structures
used for the semantic representation of the message content. The service data
structures rely on the building blocks defined within the MAL and therefore the MAL
implementation will be capable of handling such kinds of messages. Nevertheless,
any service specification defines its own data structures different from any other,
composed by the fundamental MAL data types. The MAL message header provides
an abstract specification for addressing and handling any MAL compliant message.
The header contains all the fields needed for identifying the location of the application
processes involved in the interaction and the characteristics of the message itself
(e.g. time stamp, interaction type, interaction stage). The fields composing the MAL

message header are hereafter reported.

Common Object Model

The Common Object Model (COM) is the second fundamental MO specification and
provides a standard object model for the MO services. Whilst the MAL provides the
building blocks to be used for the operations, the COM provides the object definition
upon which any service can rely to manage service-specific data structures. Whilst
the COM does not limit what may be considered an object by a service specification,
it does define how objects are referenced and how they can reference each other.
Each object can link to up to two other objects. The two links have different roles, the
related role is expected to be used to link to a related object (for example a parameter
value object could link to a parameter definition object), and the source link would
be used to link to an unrelated object (for example the operator who requested its
value change). It is service specific how these links are to be used. Each linked
object can define its links (so a parameter definition object could define a related link
to a parameter name object if this was required) and therefore provides the ability to
have ‘n’ levels of hierarchy. In addition, the same specification of the COM defines
a set of basic services upon which any further service specification can rely. In the
Mission Operations framework, any data handled by the framework shall be first

modelled. The data representation model offered by the Mission operations services

28 Market Investigation

i.e., the Common Object Model (COM), consists of four main points [5], section
2.2.1:

* An object is defined as a thing which is recognised as being capable of an

independent existence and which can be uniquely identified.
* There are no requirements on what an object may be.

* It must be possible to uniquely identify an instance of an object so that it can

be referenced.

* Each service that utilises the COM must define the object, or set of objects,

that form the data model of the service.

In other words, the framework handles the only objects that have firstly been
modeled accordingly to the COM rules and any data handled by an MO Service, shall
be formally represented in memory as a self-standing object, by means of an identity,
definition, time instance, etc. This applies to any kind of data, from the representation
of a parameter, to an activity object. The consequence of such definition implies a
duplication. As first, we find the instance (e.g., the parameter value) taking part to
the framework activities, exchanged from component to component by means of
packets, which then get stored in memory too, and whose existence we can assume
being independent from the framework itself, since it is originated by a component.
As second, we find the framework-domain representation, compliant with the COM
rules for the object identification, whose instance is then exchanged via packets, as

just mentioned.

2.2 Software Architectures and Standards Survey 29

0.1 *
Related

Object

A

Fig. 2.6 UML Source and Related links an rules [5].

It is worth noticing that such framework’s feature, consisting in the identification
and classification in a framework model of data instances originated at component-
level, does not serve the interfaces standardisation process, being characterised by the
Service Body definitions. Such feature requires instead the components to comply
with the service’s specific rules for objects identification, for them to exploit the data
instance transfer capabilities offered by the services. Only after such kind of "object
registration” is finalised, the component can fill the service API with the identified

data instance.

In particular, the CCSDS Mission Operations standard provides a central data
model (the Common Object Model) that any service specification uses for structuring
the service-specific objects. Starting from the definition offered by the Common
Object Model, here we highlight the main features characterising the relations
between COM-compliant objects:

* Any object relies on two formal links for referencing other objects. These are
the Source Link and the Related Link, reported in Figure 2.6.

* Every service defines its own service objects and the relations between service

objects.

30 Market Investigation

Table 2.1 MO submitAction operation

Operation Identifier submitAction

Interaction Pattern SUBMIT

Pattern Sequence Message Body Signature

IN SUBMIT actionInstld : (MAL::Long)
actionDetails : (ActionInstanceDetails)

Release : L sou rce% OperationActiv ity

ActivityTransfer

Source

Acceptance :
ActivityAcceptance

Source

Source
Execution :

ActivityExecution

Second Operation :

OperationActiv ity Sourc Release :
ActivityTransfer

Source Acceptance :

ActivityAcceptance

Source

Execution :

ActivityExecution

Fig. 2.7 Service object’s relations [6].

* The service objects’ relations defined by every service are formalised by the

solely use of the mentioned Source and Related Links, reported in Figure 2.7.

Such data model, based on two link, is adopted for the description of any service
objects’ relation. Such data model is also strictly tied to the services data structures,
and APIs more in general. Many service data structure indeed host fields devoted
to describing such kind of relations, as shown in Table 2.1. It is not possible for
any application to get rid of such model and develop a custom one, to be eventually

translated into an application-specific service API.

2.2 Software Architectures and Standards Survey 31

2.2.5 ECSS Packet Utilisation Standard

The ECSS Packet Utilisation Standard (PUS) is now at its third issue[7, 45, 46].
Since its first publication, it has been widely developed and updated in order to
meet the more recent operational needs. As a result, it has reached a high level of
maturity in terms of requirements’ satisfaction and is nowadays adopted by most of
the existing ESA (and non-ESA, in Europe) missions. The PUS has standardised 20
tailorable services, from which any adopting mission can choose, which are intended
to cover all the missions’ specific needs [47]. In case the standard services are not
sufficient for satisfying the mission requirements, the good practices for aligning the
new ad-hoc services to the PUS standard are provided. The standard services’ names

and enumerations are reported hereafter:

request verification 1
device access 2
housekeeping 3
parameter statistics reporting 4
event reporting 5
memory management 6
(reserved) 7
function management
time management 9
(reserved) 10
time-based scheduling 11
on-board monitoring 12
large packet transfer 13
real-time forwarding control 14
on-board storage and retrieval 15
(reserved) 16
test 17
on-board control procedure 18
event-action 19
parameter management 20
request sequencing 21
position-based scheduling 22
file management 23

Fig. 2.8 Common PUS services [7].

32 Market Investigation

Taking into account what already described in the introduction chapter, a more
detailed description of the PUS services is here provided. Each service message
structure is meant to semantically reflect the service-specific information. This is
achieved by designing a specific data field set for each service message instance.
Any data field composing the service message relies on a set of common data types
shared among all the services specifications. The data types shall be capable of rep-
resenting any possible kind of data: Boolean, Enumerated, Unsigned Integer, Signed
Integer, Real, bit-string, octet-string, character-string, Absolute Time, Relative Time,
Deduced and Packet. This means that any data field composing the service message
shall be defined and constrained within the defined type set. Any application/device
relying on the PUS shall, in the end, comply with the service interface expressed
as a specific combination of data fields. This implies that adapting the interface
provided by the component to the interface offered by the service is a developer’s
responsibility, thus left as an implementation concern. It is remarkable that the ECSS-
E-ST-70-41C document standardises the only space-to-ground interface. This aspect
has a great impact in the distinction between the ground-based processes and the
space processes, sunning on-board. The PUS does not specify the interaction patterns
involved in the transactions but how to relate the services needed for performing the
desired operation (e.g. the generation of a TM[1,3] report in case of Success Start of
Execution). This reflects on the conceptual definition of Telecommand (request type,
directed from ground to the spacecraft) and Telemetry (report type, directed from the
spacecraft to ground) and allows the classification of any service transaction within
three different classes:

* The service instance can be a request related transaction type and therefore,
as a consequence of a request (TC) message, a response (TM) message is

dispatched from the spacecraft.
* It can be an autonomous data reporting, such as a cyclic TM parameters update.
* It can be and Event report, so being generated autonomously on-board in

response to a specific change in on-board conditions.

The identification of each end-to-end transaction with a specific TC/TM packet
exchange constitutes the base service model for the Packet Utilisation Standard.

Nevertheless, some application processes (peer entities on-board) may require the

2.2 Software Architectures and Standards Survey 33

on-bard mutual exchange of messages. The mechanisms used to exchange such
on-board messages are mission-dependent and therefore outside the scope of the
PUS Standard.

2.2.6 MOSS

The MOSS study [48, 49] is an initiative funded by ESA an carried out by OHB,
RHEA and Bright Ascension, in the context of a research for future spacecraft activity,
which analysed three key technologies in the on-board software frame:

* CCSDS Mission Operations Services (MO Services).
* CCSDS Spacecraft Onboard Interface Services (SOIS); and

* the SAVOIR-FAIRE Onboard Software Reference Architecture (OSRA).

with a view to consolidating them into a single harmonised architecture.

The MOSS study is particularly representative in the survey here reported be-
cause provides a first attempt to merge existing technologies that were not natively
thought to work together. The components definition provided by the OSRA as
well as the MO services definition (both mentioned above) are widely pertinent
to the scope of the REFA project. On the other hand, definitions like the SOIS
services, which address lower functionalities, do not apply to our case of study.
Therefore in the present section we will focus on the functionalities offered by the
first two technologies and on how they can interact for offering a more sophisticated

architecture.

Also in this case the initial phase of the activity studied the three technologies
carefully and elicited a set of User Needs and High-Level requirements for each one.

34 Market Investigation

Application
Components
System Components

Device Pseudo- Platform

Components Pseudo-Components
7 . '
Execution Platform
Avionics Services MO Framework
l Device Virtualisation | [Time | | age i I l C Object Model l [Common Services l
Subnetwork Ac File M t
[" cess ‘ [i ‘ Common Support Services
Context Management [Platform M:] I VS A]
Y
Application Support Services
Command and Data Device Enumeration " File and Packet Store
Acquisition Services [Service | I ULESGEEEB TS | Services
Subnetwork Services
[Packet Service] [Memnry Access Service| | Synchrenisation Servioel I D!vmse;vceewery | | Test Service
\. J

Fig. 2.9 Potential Structure of the Harmonised Architecture.

The primary output of the activity is the consolidated architecture [50], a ref-
erence architecture combining MO services, SOIS and the OSRA into a single
architecture for application across space and ground segments. The activity provided
a concrete specification for this architecture which highlighted a number of issues

with each of the technologies which hamper easy integration.

Further steps in this activity defined the high-level characteristics of a harmonised
architecture which permits tighter integration of the technologies and full realisation
of the consolidated User Needs. This long-term approach requires some adaptation

of the individual technologies.

The main aim of the consolidated architecture is to permit the combination of the
three constituent technologies in a single system such that the original User Needs and
Requirements of each technology are still realised. The High-Level Requirements
document [51, 52] captured this as a single list of consolidated requirements. The

intention is that the consolidation can be achieved in two steps, as follows.

2.2 Software Architectures and Standards Survey 35

* In the short term, the aim is to permit the use of the OSRA and SOIS with
an MO framework, using MO service definitions to define the interfaces to
OSRA components, elements of the OSRA Execution Platform and SOIS
devices. This requires defined mappings between MO service specifications
and OSRA component interfaces, and the SOIS device model (as captured by
SOIS electronic data-sheets) and MO service specifications. Additionally, the
short term consolidated architecture can specify expectations on the conceptual
and logical structure of the OSRA Execution Platform. This results in a single
system with defined regions, or elements, which apply the OSRA. We refer to
this as the consolidated architecture. [53]

* In the long term, the aim is to permit the application of a harmonised compo-
nent model across the complete space-ground system. This should allow all
elements of the system to realise the development-time and maintenance bene-
fits of a component-based and model-based system. The intention is to make
parts of the component model optional, such as constructs which fully realise
the separation of concerns and non-functional properties. Additionally, the
model must be extended to permit various types of dynamic binding. Where
separation of concerns constructs are applied, and the “local” system is re-
stricted to have static binding, this corresponds to the OSRA component model
and can therefore be analysed as such. We refer to this as the harmonised
architecture. [14]

In order to realise application functions, multiple components may be connected
together, this is referred to as binding. Interfaces are defined separately from a
component and can be used in the definition of multiple component types. Each
attribute on an interface is typed and may be read-only or read/write. Interface
operations are defined with a signature, determined by an operation name and an

ordered set of parameters.

Although a number of MO books define a component as the provider and con-
sumer of services, components are not captured in an MO system. Service consumers
and providers, however, are uniquely identified by an address, specified in the form
of a URIL

As such, it might be possible to adapt component interfaces to function as MO
services; however, this would be a mistake as there is a fundamental semantic differ-

ence between the two. Whereas an MO service defines a mechanism, a component

36 Market Investigation

interface defines an entity. For example, where a component interface identifies
an attribute, MO may use the Parameter Service to provide access to parameters,
the types of which are defined in terms of the COM. Where a component emits
or receives specific events, MO may use the Alert Service to provide a means for
publishing and subscribing to alerts (which are, again, defined in terms of the COM).
Although interface operations and service operations may look alike (and could
easily be made more so) we contend that this similarity is deceptive and belies
a difference in semantics. The choice of provider of a service operation in MO
can be conducted at run time, meaning that the service operation is semantically
independent of provider. A component operation is bound to a specific provider such

that the operation is tied, once deployed, to a particular provider.

2.3 Market Polling 37

2.3 Market Polling

We started the survey in mid-2019 by submitting a questionnaire to several private
companies and public bodies in the CubeSat market (“the entities”). Of these, twenty-
four expressed their perspective on the existing standards and best practices when
applied to CubeSats. To guide our work and gauge their interest, our investigation
is centred around two topics: if the European standards satisfy their needs and how
proposed solutions could bridge that gap, discussing how a to formalise a reference
software architecture devoted exclusively to CubeSats operations. Particularly, we
are concerned with how this architecture would differed from their current adopted
solutions and whether they would be prone to adopt it in the future. After the response
period closed, we reviewed their answers and characterized their distributions: entity

size, mission needs, and unique entity characteristics.

2.3.1 Statistics

In the present section, the results of the questionnaire as well a discussion to under-
stand the pig picture is provided. The discussion will go through the main results.
The text of the questionnaire can be found in Appendix A.

ml
m2
=3

m5
m6

Fig. 2.10 Standards usage: Have you used any of the following in your projects? (1)
CCSDS Space Packet Protocol [8]; (2) CCSDS Mission Operations Services [9]; (3) CCSDS
Spacecraft On-board Interface Services [10]; (4) CCSDS Space Link Extension [11]; (5)
ECSS Packet Utilization Standard [7]; (6) Savoir-Fair OBSW REFA.

38 Market Investigation

The first questions, whose answers have been reported in the Figure 2.10 and
Figure 2.11, intend to point out which existing standards, references, and best
practices (e.g., CCSDS, ECSS standards) freely available to the European market
the polled entities are familiar with, and which the respondents currently use in their
CubeSat projects.

]l m2 m3 w4 m5 mb6

Fig. 2.11 Standards familiarity: Are you familiar with any of the following? (1) CCSDS Space
Packet Protocol; (2) CCSDS Mission Operations Services; (3) CCSDS Spacecraft On-board
Interface Services; (4) CCSDS Space Link Extension; (5) ECSS Packet Utilization Standard;
(6) Savoir-Fair OBSWREFA. CCSDS, Consultative Committee for Space Data Systems;
ECSS, European Cooperation for Space Standardization; OBSW, On-board software; REFA,
reference architecture.

Such list was selected to cover the message transport issues both on-board and on-
ground, the Space-to-Ground interface, and the orchestration of on-board activities,

so to cover most of the macro-areas touched by the CubeSat operations.

The companies were also asked to point out additional references they apply,
might these have not been considered in the questionnaire. Beside the CCSDS
and ECSS standards, the companies mentioned other references they adopt in their
CubeSat projects, listed below.

¢ Other ISO standards.

¢ Other OMG standards.

2.3 Market Polling 39

MISRA coding standards.
* CubeSat Space Protocol.

* Compass Stack.

Other ECSS standards (tailorable and non-).

* Non-disclosed in-house-developed standards).

UNISEC Global.

According to our survey, 67% of the entities adopt the CCSDS Space Packet
protocol (SPP) in their CubeSat project as a solution at the network layer, showing
that it has become a de-facto standard even though most of them are not developing
projects in collaboration with a public space agency. This provides a common
baseline mission information data exchange. At the same time, respectively the
29% and the 42% of the entities adopt the ECSS Packet Utilisation Standard (PUS)
and CCSDS Mission Operations (MO) services, as these provide a reference for
managing data at application (operational) level. Of these entities, 43% and 50%
respectively are contractors of the European Space Agency, which demands the use
of these standards. Nevertheless, this suggests the CCSDS MO Services are more
widely spread among CubeSat missions than ECSS PUS Services.

® Yes ®m No

Fig. 2.12 REFA usage distribution: Do you apply “a’/“your own” REFA in your projects?

Focusing on the second half of the questionnaire, we are interested in understand-
ing how many companies are adopting ‘a’/‘their own’ reference architecture (REFA)

40 Market Investigation

in their project development process and to which extent. As shown in Figure 2.12,
the majority (83%) of the polled companies say they use a reference architecture
developed in house or outsourced. Of those, 25% use an architecture that covers

software interfaces while 35% apply a reference architecture for communication

1) 2) 3) 4)

Fig. 2.13 REFA covered areas: At what level do you apply “a”/”your own” REFA? (1) At
hardware interface level; (2) at software interface level; (3) at communication protocol level;
(4) at operational concept level.

protocols.

O P N W b U1 OO N

Such a result aligns with Figure 2.10 and Figure 2.11, which highlights the
application-level software i.e., MO services, PUS services, and communication
protocols i.e., SPP, CSP, as the most adopted technologies by the polled entities.
Indeed, they tend to take advantage of existing standards as a starting point for their
in-house designs, notwithstanding their non-mandatory adoption i.e., imposed by
a contract. We lastly asked the polled entities to deepen the software REFA topic,
Figure 2.14 and Figure 2.15, about the possibility to adopt a common CubeSat
reference architecture. We are interested in understanding how this choice would
impact their business model, and what should the reference architecture encompass

in order to bring an added value.

2.3 Market Polling 41

10

o N B~ OO

n 1 I C I i
2) 3) 4) 5) 6) 7)

Fig. 2.14 REFA perspective distribution: Would a CubeSat REFA bring value and facilitate
your business model? (1) No; (2) yes, if it is at hardware mechanical interface level; (3)
yes, if it is extended at device interface level in form of APIs; (4) yes, if it is at on-board
communications protocol level; (5) yes, if it is at space to ground interface level; (6) yes, if it
also encompasses the composition of functional components on-board and on the ground; (7)
yes, help in research or in student recruitment or in academic purposes. APIs, Application
Programming Interfaces.

1)

This first question evaluates what design level the reference should target (e.g.,
software/hardware interfaces/protocols), for tackling technology gaps. The second
inquiry we make is to understand how to propose such a reference (e.g., as a paper-
only design, in the form of Open-Source). What is immediately clear is that the
request for an architecture covering on-board and on-ground functional components
is, by far, the solution that best fits market needs. According to the polling, 46%
of the entities ask for an architecture involving the core functional components as
a non-mandatory reference. This aligns with what we reported before, showing
companies and public entities taking advantage of existing technologies as a starting
point for their internal design process, which in most cases results into an ad-hoc
reference architecture. This further highlights the market need for a REFA and
provides a line of research for a further development in our study. Moreover, from
the buyer’s perspective, the presence of an open-source reference implementation
would mean greater competitiveness and higher quality products, with vendors
offering their own design, but still compliant with the reference architecture differing

for implementation details.

42 Market Investigation

15

10

5 I
v == W

1) 2) 3) 4)

Fig. 2.15 How far shall a REFA go? (1) Tools for auto-generation of code; (2) high-
level architectural design—paper only; (3) open-source reference implementation of the
core elements of the REFA (as reference not mandatory to take); (4) Market Place with

competitive vendors offering compliant and competing implementations of elements of the
REFA.

2.3.2 Results

From the analysis done on the results of the questionnaire, three important behaviour
the polling highlighted are here reported.

As first, the polled entities take advantage and make wide use, in their CubeSat
projects, of existing technologies and standards for space application. An example
of this is provided by the transport/network protocols, such as the Space Packet
Protocol [8], or to the CubeSat Space Protocol [54, 55]. Another example is made by
the families of services for operations, like the CCSDS Mission Operations services,
or the Packet Utilisation Standard [7]. All of these have become de-facto standard
for anybody in the market nowadays. As a first point, we highlight that exist a set of
standards that are already spread among companies devoted to CubeSats.

The questionnaire also highlighted that the same companies use the mentioned
existing technologies as a starting point for further developing their own in-house
reference framework or reference architecture. The questionnaire shows that exists
the trend of looking for a baseline, for a solid starting point, on top o which it is
possible for the companies to focus on their further products or services rather than

re-inventing the architecture wheel.

The polled entities are by the vast majority prone to the adoption of an open-
source common software REFA as long as it provides a set of core functional ele-
ments on top of which application-specific solutions, compliant with the architecture,
can be developed and customised.

2.3 Market Polling 43

Table 2.2 User Needs

UN-ID User Need Text

UN-001 The architecture shall take advantage of existing standards, references,
and best practices.

UN-002 The architecture shall allow the usage/introduction of other standards.

UN-003 The architecture shall offer a baseline on top of which further solutions
can be developed.

UN-004 The architecture shall avoid unnecessary constraints.

UN-005 The architecture shall be easily tailorable.

UN-006 The architecture shall balance the proper level of details.

UN-007 The architecture shall allow vendors offering compliant and competing

implementations of elements of the REFA.

Such results of the described polling were then reported into a list of User Needs,
reported in Table 2.2, summarising the main elements that shall be taken into account
in the definition of the requirements leading the REFA design.

Chapter 3

Architecture Design

3.1 Requirements Derivation

The identification of the proper level of details in the architecture definition can
be considered as the main driver of the design process. The aim for becoming a
spread de-facto standard, implies the capability of reducing at most the unnecessary
constraints coming from the design process while providing a solid baseline that
serves as a common reference. The identification of such aspects whose definition
is deemed relevant for the architecture and those who can instead be accounted
for tailoring processes is of paramount importance. The entire set on User Needs
evolves around this hinge concept which we meet by making strategic choices in
the design process, as we will sudden describe. It is worth to bear in mind that such
Needs we are proposing do not constitute by any means a technical description of
the architecture, and their lack of technicality would not allow such purpose. The
statements reported in Table 2.2 are solely intended to resume the user needs as they
result from the questionnaire. The present chapter provides a discussion focused
on the system level, in order to better understand the considerations which led the
requirements’ derivation. An explanation of the derived requirements is provided
and a 1-to-N mapping from the User Needs to the applicable set of High-Level
Requirements, reported in Table 3.1, is described hereafter.

By the elicited UN-100, reported in Table 2.2, we do not intend to specify which
of the existing standards to make use of and which to discard. Such indication

serves instead for identifying the areas this architecture will span. Taking advantage

3.1 Requirements Derivation 45

of the existing standards, references and best practices, it is possible to cover the
different architectural domains. Such architecture shall not limit the specification
to the only on-board segment but shall address either on-board, on-ground and
Space-to-Ground functionalities. In SYS-0100, defining an on-board and on ground
architecture results in multiple achievements, both from the User Needs alignment
perspective and from the analysis done on the proposed questionnaire’s results.
The on-board segment constitutes the focus of the present work. Nevertheless, a
functional set of core on-board components cannot be considered as a self-standing
entity. By defining SYS-0100, we intend here to guarantee that the provision of those
ground components, needed for run-time control, make the architecture an effective,

functional set of tools for engineers operating the spacecraft.

UN-002 constitutes the other face of the medal for UN-001, and it was indeed
important, in the interpretation of UN-001, not to impose a selection of applicable
technologies/standards. In seeking flexibility, by fixing the requirement SYS-0200
we intend to avoid an architecture’s specification which refer to particular imple-
mentation choices, e.g. Transport/Network protocols; Java implementation language.
The inter-process communication, i.e. component-to-component communication
technology and implementation choices are left to the customer. Such feature plays
a game-changer role in an architecture definition which aims at spreading among
the most different customers. Fixing such choices at a too early stage would instead
impact into its adoptability and would mean a cut off for potential many of the

customers. SYS-0200 is a direct outcome of this consideration.

The translation from UN-003 to Requirement is straight forward. The identifica-
tion and definition of a framework of core functionalities and transport components
shall provide a solid baseline on top of which further solutions can be added. In SYS-
0300, defining a baseline core of functionalities, i.e. application-level components,
needed for controlling the on-board and ground activities shall constitute a minimal,
yet fully functional starting point for further tailored improvements (more granularly
specified in the next requirements) and additional components. Thanks to this core
set, required by SYS-0300, the customer shall avoid re-inventing the wheel spend-
ing time in designing the spacecraft bus, and rather investing in mission-specific

solutions.

The UN-004 balances the detailed level of definition of the core components

of the architecture coming from SYS-0300. The need for avoiding unnecessary

46 Architecture Design

constraints is required by two main needs. The need for the user to internally
replace specific functionalities of the components, depending on the mission spe-
cific performances required; and possibility for the implementer to impose its own
transport solution when getting to the inner components functionalities. Regardless
to the component-to-component communication interfaces, the intra-component
communications shall remain transparent to the architecture definition. This aspect
is of paramount importance and therefore we consider that any application-level
component aspect, e.g. execution timing and synchronisation, will be potentially
compliant with mission specific requirements. Bearing in mind such considerations,
the flexibility expressed by SYS-0400 and SYS-0500 foresee the possibility for
the implementer to add and customise application-level components and internal

components communications.

UN-005 differs from UN-003 for the non-trivial implications. As first, tailoring
the core components means that the architecture shall allow substitution of existing
functional block, by maintaining the component API. SYS-0600 intends defining
a component’s interface model the customers can align to, in the customisation
process, and focus on the translation to the mission’s-specific and/or customer’s
specific technology, which remains transparent to the architecture specification. By
following SYS-0600, it is possible to derive SYS-0700, which concurs in achieving
tailorability. By maintaining the internal modification of any functional component
transparent to the other components, allows concurrent developers, working on
different components, to not interfere with each other as long as they comply with
the component model API. SYS-0700 guarantees transparency. It is important to
consider that such internal modification shall never imply the deletion, omission, of
the functions on which the other core components of the architecture rely, e.g. time-
tagged commands parsing, which would affect the overall system’s functionality.
This requirement is expressed by SYS-0800, and the identification of such core
elements is part of the architecture design process.

UN-006 poses a condition that cannot be directly translated into requirements, but
that rather can further be evaluated by imposing specific conditions to our architecture.
The proper level of granularity is reached as first by mapping any architecture macro-
functionality, e.g. command ingestion, to a unique functional component. By making
this segregation, it is possible to treat separately the granularity issue for every
component, and varying such granularity for specific components, depending on the

customer’s need. For achieving internal granularity, SYS-0900 allows decomposing

3.1 Requirements Derivation 47

each application-level component into lower functional elements. From what stated
by SYS-0900, it is then possible to separate design concerns depending on their
specific granularity, for each component. This will provide the means, at further
development times, for identifying the proper level of definition as we dive deep into
each component. It will also be possible for the customers to impose the needed
granularity level for the tailored component. The same granularity is ensured by
the proper separation of concerns. As coming from the marked polling analysis,
UN-007 shall be framed into a specific market model. The current work targets
small companies which can take advantage of the specification introduced by the
architecture design. In such perspective, the architecture intends to be offered to
the customers, i.e. not imposed as a mission requirement, as stated by SYS-1100.
Therefore, aim of the architecture is not to reach the rank of a standard. The market
model that best aligns to such doctrine is the Open-source model, which facilitate
the adoption process, as remarked by SYS-1200. As a result, by fixing SYS-1300,
the aim for realising a common repository where common components can be
chosen/adopted, differing for implementation details as proposed by the customers’
community, allows a central entity, i.e. ESA, maintaining the reference guidelines

for adoption.

48

Architecture Design

Table 3.1 High-level Requirements derivation

Requirement | Title Text Reference
ID User Need ID
SYS-0100 System’s Domain | The architecture shall define functional on- | UN-001
board and on ground components
SYS-0200 Implementation The architecture shall not tie users to a specific | UN-002
technology/implementation
SYS-0300 Component Func- | The architecture shall provide a framework of | UN-003
tionalities core functionalities
SYS-0400 Adaptability The architecture shall allow the user to replace | UN-004
the composing elements depending on the spe-
cific mission’s needs
SYS-0500 Inter-Process The architecture shall not define the inter- | UN-004
Communication process communication technology/implemen-
tation
SYS-0600 Inter-Component | The functional components’ interactions shall | UN-005
COmmunication | be expressed in terms of abstract interfaces
SYS-0700 System Compos- | The internal modification of any functional | UN-005
ability component shall be transparent to other com-
ponents
SYS-0800 Architectural The composition of the core functional com- | UN-005
Structure ponents shall ensure the overall system’s func-
tionality
SYS-0900 Component De- | Each functional component shall be internally | UN-006
composition decomposed into the different processes taking
part to the activity
SYS-1000 System Composi- | Each system functionality shall be mapped to | UN-006
tionality a different functional component
SYS-1100 Market Model The architecture shall not be mandatorily | UN-007
adopted
SYS-1200 Licencing The architecture shall provide Open-Source | UN-007
Reference Implementations of the core ele-
ments of the REFA
SYS-1300 Documentation The architecture shall be presented as a high- | UN-007
level descriptive standard with guidelines for
its adoption and tailoring.

3.1 Requirements Derivation 49

3.1.1 Pros & Cons

For evaluating the pros and cons of the proposed architecture, we shall understand
which aspect of the architecture will effectively ease the work for the adopters
and which aspects potentially induce some drawbacks. The harmonisation process,
as presented by the MOSS study in Section 2.2.6, provides well-aligned set of
components and layers whose interaction with each other is mediated via a set of

adaptation elements and a methodology for automating the adaptation.

It is worth bearing in mind that an adaptation process is needed for any non-native
interfacing operation. Adopting a family of services, like the MO services, requires
the application-level components to align to such choice. This can be achieved in

multiple ways, and is worth mentioning two of them.

* Asfirst, it is possible to imagine the app-level components as only MO Services
users. This means that the components’ role is solely to “collect” a set of
services together and to orchestrate them as a single entity, or node. From a
Service perspective this is indeed what an app-level component is. But if no
further considerations are made on the nature of the functional components, it
is much likely that tieing components to specific services will induce loosing
the flexibility and abstraction that MO strains to reach.

* A second consideration can be made. Taking into account the general de-
scription provided by OSRA, for components interface, it is possible to keep
the app-level components development segregated from their translation into
services, whichever those are. This is why an adaptation element, between

component interfaces and services interfaces is needed.

Nevertheless, in any real word application, realising such adaptation requires
the introduction of an overhead, i.e. the adaptation components development and
maintenance, which constitutes an addition to the system complexity and, as for
every software tool, implies a cost. Here is why it is worth considering what kind of

facilitation and drawbacks this segregation induces, though motivated by flexibility.

50 Architecture Design

3.1.2 Harmonised Architecture

Given the premises, the solution that best aligns with the considerations above shall
include a layered architecture where we can identify three main layers:

* A layer defining the only service framework used for data exchange among the
architecture. Much likely the MO service framework, such services’ families
shall only cope with the common - horizontal - interfaces definition. From
a structural point of view this is the lowest layer of the REFA i.e., the one
providing communication capabilities, and to which any upper application shall
in the end align. From an implementation point of view it can be considered
as one of the data-models on which the architecture is based, similarly to what
the Software Bus of the cFS is.

* A mid-layer defining the functional specification of the on-board applica-
tions intended as end-to-end systems handling operational data, including
elements potentially belonging to different components i.e., on-board nodes.
This mid-layer provides application-specific interfaces and includes the core
functionality set that enables a basic range of operations and which can be
further extended as needed by the customer. The data models combine the very
convenient modularity feature, and the native interface enabling the overhead

reduction whn coming to the components interaction.

* A top layer whose function is bridging between applications i.e., data-models,
in order to put together functionalities depending on standard operations
activities and mission-specific activities requirements. Bridging between
applications and combining their functionalities enables a higher level of

complexity in the operations while maintaining a relatively simple system.

3.2 Design Methodology 51

3.2 Design Methodology

In the present section we described the methodologies adopted for modelling and
reporting the architectural concepts, features and characteristics to the developer that
will adopt it.

The design methodology involve both a model-based methodology, used as the
principal description of the architecture, partially merged with a document-based for
those areas for which such methodology is considered more fitting e.g. the present
document for a discursive description of the architecture concept.

A model-based system engineering activity was conducted so to provide a SysML-
compliant description of the architecture, as providing a convenient instrument for
describing either the inner organisation of the architectural elements i.e., the Block
Definition Diagrams (BDD), the internal composition i.e., Internal Block Diagrams
(IBD), the functional description of the activities i.e., Activity Diagrams (AD) and
a description of the interactions occurring between the architectural elements i.e.,

Sequence Diagrams (SD).

For the reference architecture it was considered convenient the use of independent

models i.e., set of diagrams, for each of the architectural elements to be modeled.

In addition to this, it was considered more handy for such architecture to keep
the requirements definition seprate from the model itself, to be then presented an

additional document, for each of the architectural elements.

As a result, the architecture will be accompanied by a general description pro-
viding the main concept leading to the design i.e., the present document, and, for
each architectural element, a set of models and a requirements document which can
be separately handled by the developers. This design choice was inherited by the
CCSDS blue books used for describing the MO service families.

3.2.1 Model Based System Engineering

One of the most useful definition of Model Based Design (MBD) [3] states that MBD
is a mathematical modeling-based method for designing, analyzing, and validating
dynamic systems. During the design phase, the MBD methodology uses computer

modeling tools that are simulated and approved before code generation. A product’s

52 Architecture Design

deployment from the early concept of design to the final validation and verification
testing is covered by this method, which includes numerous disciplines, functional

behavior, and cost/performance optimization.

In this scope, we will provide hereafter a high-level description of the diagrams
adopted in the model, as coming from SysML [56]. We provide here the main
definitions.

Systems Modeling Language (SysML): SysML is a general-purpose system

architecture modeling language for Systems Engineering applications.

Block Definition Diagram

A Block Definition Diagram is a static structural diagram that shows system compo-
nents, their contents (Properties, Behaviors, Constraints), Interfaces, and relation-

ships.

The purpose of Block Definition Diagrams is to specify system static structures
that be used for Control Objects, Data Objects, and Interface Objects. When properly
applied Block diagrams are recursively scalable and mathematically (parametrically)

simulatable.

Internal Block Diagram

An Internal Block Diagram is a static structural diagram owned by a particular
Block that shows its encapsulated structural contents: Parts, Properties, Connectors,
Ports, and Interfaces. Stated otherwise, an IBD is a "white-box" perspective of an
encapsuated ("black-box") Block.

The purpose of Internal Block Diagrams (IBDs) is to show the encapsulated
structural contents of Blocks so that they can be recursively decomposed and "wired"
using Interface Based Design techniques. When used correctly BDDs + IBDs are
recursively scalable and mathematically (parametrically) simulatable.

Activity Diagram

An Activity (notation: rounded-rectangle or "roundangle") represents a flow of
functional behaviors that may include optional Object (data) Flows. Control and

3.2 Design Methodology 53

Object Flows can be sequential (default) or parallel (indicated by Fork & Join Nodes)

depending upon conditions.

Sequence Diagram

A Sequence diagram is a dynamic behavioral diagram that shows interactions (collab-
orations) among distributed objects or services via sequences of messages exchanged,

along with corresponding (optional) events.

Documentation

The documentation adopted for the elements description is the solely System Re-
quirements Document (SRD). A software requirements document (also known as
software requirements specifications) is a document that describes the intended

use-case, features, and challenges of a software application.

Just like for the definition of the above models, an SRD shall be issued for every

new components development.

54 Architecture Design

3.3 Framework

The present Section describes the main changes and tailoring done on the CCSDS

Mission Operation standard in order to get to the REFA design.

The service framework constitutes the connective layer of the architecture on
which any on-board component, as either a peripheral adapter or a complete SW
application, is plugged-in. The service framework provides a simple, yet functional
set of core services intended for self-standing components to interact with each other.
The service definitions are directly derived from the Mission Operations CCSDS
Blue Book specifications, heavily tailored for simplification purposes. Such tailoring
was possible, i.e. convenient, due to the implementation “from scratch” done for this

project. Implementation from scratch was motivated by several benefits:

* Tailor the service definitions by making them more strict in terms of func-
tionalities segregation and at the same time more simple, by cutting-off some
invasive features. The stricter segregation is meant to offer the application-
level components a service API which makes the service framework logic
transparent to the component, e.g. a feature like the Actions and Parameters
registration to the COM archive is not present anymore. Such segregation also
makes it possible to get rid of a central, invasive elements as the COM archive.

* Rely on a new data representation methodology, such as Protocol Buffers
(protobuf, in short) and grpc for the Remote Procedure Calls (RPC) implemen-

tation; which led to:

* Flexibility when getting to the implementation language selection. The pro-
tobuf compiler takes advantage of a language-independent service definition
which can then be “compiled” for generating the actual language-specific
implementation. Python is the chosen language for this prototyping phase of
the project.

The framework provides services with two main purposes. First-class services
for performing operational activities are intended for the satisfaction of primary
application-level component needs. An example of these services is the Action

Service, used for submitting general instructions from component to component. A

3.3 Framework 55

second-class set of services, conceptually derived from the MO COM services, pro-
vide additional support functionalities to the main services, for further presentation
and analysis on ground. Example of these are the Activity Tracking Service and the
Alert Service (the latter of which is more similar to the MO Event Service in terms of
use-cases, rather than to the actual MO Alert service, but the Alert service interface
is more suitable as an API), used for services’ operations acknowledgements and

eventual alerts raise.

The data classification is the base from which organising any data exchange
operation and, in our case, from which harmonising the implementation of an
architecture which intends to include technologies different from each others, in
terms of functionality, domain of competence and role. Objective of this section
is to describe the classification applied to any data within the architecture, the
methodology adopted for orchestrating their exchange, and the tools that make such

networking possible.

3.3.1 Data Representation

The data representation review, leading to the data model adopted for the architecture,
started from the data model adopted by the current CCSDS Mission Operations
standard, and reported in Section 2.2.4.

The main differences, with respect to the COM, consist in three main points,

hereafter reported:

* There are no objects, but packet instances.

e There is no data-instance identification, as its identification is left to the

components on top of the framework.

* packet Instances are only identified by the information in the packet header.

The first main change consists in the absence of data duplication for traceability
purposes. The data who transit the framework, from one component to another, exist
as only instance of its identity. E.g., a parameter exchanged in the service framework
appears in the service data structure as a name and a value, with no reference to any

definition or persistence. The duty of maintaining and being aware of the parameter

56 Architecture Design

identity, possible value ranges and respective usage, remains under the component’s
responsibility. In other words, the consumer must know how to correctly interface
with the provider in terms of data semantics, while the framework provides the data

structure consistency and interaction capabilities.

The second change introduced in the architecture consists in the absence of any
distinction between two different instances of a same service operation, in terms
of data model. In other words, for correctly exploiting a service, the component
is only required to provide a data instance whose type matches the service API,
with no reference to the identity owned by such data, which remains a concern of
the component’s internal logic. The use of such data remains transparent to the
service framework which keeps being unaware of what the parameter definition is,
and whether the specific request exploiting the service is consistent or not. This
implies that it is the component’s responsibility to map the service API to the
correct component API so to e.g., trigger the query of a parameter when receiving a
getParameter service instance; and to correctly connect the lower-level functionalities

of the architecture with the upper-level logic of the component.

The third change enables the framework to carry out the basic functionalities,
namely the traceability and orchestration functionalities, by referencing the only

headers of the packets used for exchanging service data.

One may argue that such choices tie many possibly distributed tasks to the
component generating the data e.g., the statistics on data generated by a component
to be implemented by the component itself, because the framework on its own does
not provide such reference model representation which would abstract the provider
away. This is only partially true. Let’s make an example:

With reference to Figure 3.1, if a component (namely "Component A") requires
statistics on data generated by another component (namely "Component B") via the
statistics service (implemented by "Component C"), the statistics service references

the data as modeled and stored in the framework environment, there available.

3.3 Framework 57

Component #A Component #B Component #C
Registers parameters in Requests parameters Operates on framework's
the framework to the framework parameters
Y |

Service Framework

Fig. 3.1 If Data Model stored within the framework.

On the other hand, with reference to Figure 3.2, the same task requires a trian-
gulation, for which Component A queries data from Component B and forwards the

data, by means of a statistics service API, to Component C to get the statistics.

Such choice is oriented to the segregation of functionalities and allows the
component to be fully responsible for executing a complex task (component-specific)
without the need of involving the framework logic, which only serves data exchange

purposes.

Component #A Component #B Component #C
A A A
Requests data via the ACCESSES resurces
framework via the framework

Service Framework

Fig. 3.2 If Data Model stored by the app-level components.

Such changes induce some implications, related to the traceability and store-
ability of data. In particular it requires a new methodology for trace and link the
on-board activities to be analysed on ground and a common data model for any
application-level task which requires multiple components to operate on the same

data sets, which will be further described.

58 Architecture Design

3.3.2 Data Classification

The classification of the data, as coming from the Mission Operations services, has a
double purpose. As first it is meant to organise the data flowing into the framework,
and as second it is meant to provide modularity to the packets building and addressing

process.

The life-cycle of data instances within the framework follows a process of con-
struction, exchange and persistence. This lifecycle is meant both to carry information
from one point to another within the framework, an to track the activities for post-

processing.

The first of these, is the message building process, meant to gather all the data
needed for its distribution and interpretation, within the sessions of interaction

between users and providers.

The architecture introduces the concept of "context", which uses for keeping
information separated. The architecture therefore builds messages in three different
contexts, which we can identify starting from the bottom as the "packets context",
the "service context" and the "data model context". Such division reflect the layers
constituting the framework architecture, and the separation in handling such different

information allows making the architecture’s reconfiguration modular.

Before any service or application is introduced, the framework defines a space
domain in which to operate, constituted by a list of nodes (the components) and
of links for connecting them (the network), which evolve along a time-domain.
The packet data classification shall allow the identification, in the such time- and
space-domain, of any link between any two components within the framework.
Such classification works as the basis for further and more complex data handling

orchestration.

The service definition adds a level of complexity to the interaction between the
nodes and links introduced in the packet context description. On top of the link and
nodes, the service definition defines for an hypothetical link between two nodes, the
type of data exchanged via the link, and the interactions occurring between the nodes
and relying on the link. The service definition provides the rules for formatting the
data within the packet’s payload, in order to semantic reflect the carried information.
In addition the service definition describes the exchanging patterns fitted for the

specific interaction between the two nodes.

3.3 Framework 59

One level up, we find the data models, which define application-specific rules
in terms of data definition (e.g. in a clock application, the "Day", the "Hour", the
"time reference"), data relations (e.g. conversion between UTC and CET) and the
operations on such data (e.g. the creation or deletion of time references). Despite the
architecture can include the definition of such data models, these are not part of the
service framework, which is only in charge of orchestrating the data flow, and does
not deal with the application-level activities. This implies that, beside the services
definitions provided by the framework, any data model needs its own specification

for its definitions, relations and operations.

The data classification just reported makes use of the message data structure for
unambiguously identify the packet, the service instance and data model activity for
which the specific message is issued. In particular, we will focus on these information
contained in the message header, and we will show how they allow the unambiguous
classification of the message.

The data organization and modularity objectives are met by a first data classifica-
tion applied to the information being part of the MAL Abstrac Header, described
by the MAL [43], so to divide such information into sub-groups and hierarchically

organise them into a tree structure.

* At the bottom of the architecture, we define those data associated to the space-
and time-domain, used for identifying any packet in the architecture. The
values associated to each packet at this level can be deduced from the Table 3.2,
by looking under the columns reporting a "Component" label. Such parameters
can be dived between the static values defined at design-time i.e., the URIs and
the Network Zone; and those who constantly update during operations i.e., the
component’s Time Stamp and the Transaction identifier. Such MAL header
fields unambiguously identify any packet shared in the service framework

during the framework lifetime.

* At the second level of the architecture we can find the services-related data.
Each service includes one to multiple operations, which in the end define the
proper data exchange logic, in terms of data structure and interaction patterns.
Such parameters can be desumed from the same table under the columns

reporting a "Service" label.

60 Architecture Design

* On the top level of the architecture, there is a series of parameters which do
not belong to the framework. Such parameters come from the internal logic of
the data model and do not take part to the characterisation of the architecture
layout. These are the Authentication ID, which is left to the component for
an internal verification for access from a external user, the Domain, and the

Priority Level of the delivered message.

The possibility to classify information, depending on their belonging domain i.e.,
component, service and operation, introduces a substantial reduction of efforts for
managing data. By assigning the data grouped by domain to a different configuration
element e.g., by using a different configuration file, it was then possible to structure
the data-assembling functions to be dedicated to the specific data resource, resulting
in an overall software modularity. As a result, it becomes possible to use the same
assembling functions i.e., blocks of code, for building different services’ packets.
Every new element, introduced for composing new service structures, will refer to
a self-standing data-structure and will implement its own assembling logic e.g., as
either the data translation from incoming to outgoing packets, or the insertion of
data from a configuration file to the relative packet structure portion. The software

modularity topic will be the core of Section 4.1.1.

61

3.3 Framework

SSINLITST SSINLIFST SSNIOLITST
uots uors
-IOA BAIY -IOA BAIY UOISIQA BATY
uoneradp uoneradp uoneradQ
QOIAIRS QOIATRS QOIATRS
BaIY BaIYy
QOIAIRS OIATIS BOIY Q0IAIOS
al ai
uonoesuel], uonoBSuLI], (] uonoesuely,
a8e1g
uondBIANUJ 331§ IoJU] 93e1§ uonorINU]
adAl, adAl,
Uon0RIAU] UuonORIAU] odAT, uonoeiauy
QweN
B SN=IN QWIBN UOISSAS
uoISsaS uoISSaS
uoy ouoy,
JIOMIAN JIOMIAN QUO7Z JIOMION
urewo] urewo(g
Aong Kjong
[9A9] SO0 [9A9] SO0
dwreygowry, dweygowy, dweygowry,
OL N OL TN OL TN
dl 'pny dl ‘'pny
wol TN wolf 1IN wol] TN
owpuny swrpuny | Joyduosaq 101d110s9(q swrpuny | Joyduosaq 10yd1108
uonedrddy | jusuodwo) | juouodwo) | armooyyory | uoneradp | suonerad(| -o(901AISS
urewo(g SPIo1] JopeoH
Anqesoery, | uoneorddy SuIssaIppy 2In3093IYoOIYy UTeWIO(] JIOMIWERL] a8esso]N TVIN

uoneoyIsse[) e 19peaH ON T'€ 219PL

62 Architecture Design

3.3.3 Data Traceability

The Mission Operations makes use on objects for abstracting any information in
the operational environment, and assigning an identification to them. This allows a
global visibility on any on-board activity as if we were taking a snapshot of the data
at any change. In the framework we implemented, the main difference, with respect
to the Mission Operation services, consists in the Data Traceability methodology
adopted. The data traceability within the devised framework relies on packets and
on the data contained in the packets’ headers. Now the on-board data exists on as
an exchanged data. It does not exist before its exchange and persists after in the
on-board memory only as a stored packet i.e., there is no identity associated to the
data, but only data instances exist. The greatest impact of this major change, is that
we get rid of the overhead constituted by the abstract representation adopted by the

Mission Operations services, and relative rules the developers shall comply with.

Such choice is also made in order to confine the traceability issue to the service
framework domain, with no extensions on -nor references to- the application-level
data model adopted by the components. This modularity reflect then on the re-
usability of the code, all across the framework.

With reference to Table 3.2 of Section 3.3.2, the last column is the results of the
data classification analysis for traceability purposes. Traceability based on packets
makes use of the packet header’s fields needed for unambiguously identifying a
packet in a time and space domain, and therefore, the data in the within. In our case
the packet header is the MO MAL Header. From this, it is possible to select a sub-set

of fields meant for data traceability purposes. Such selection is reported hereafter:

e URI From: indicated the URI where the packet was originated. It is needed in
order to describe the path followed by the packet.

* URI To: same as for the URI From. It identifies the destination of the packet
and contributes in the path reconstruction.

* Network Zone: every network zone consist of a set of unique URIs and the
same URI can exist among different network zone. This field is needed for

narrowing down the network of operations.

* Transaction ID: a component assigns a cyclic transaction ID value to every

transaction it is performing. Since more transactions can occur between

3.3 Framework 63

two same components, the transaction ID is needed for distinguishing them.
Nevertheless, the transaction ID is cyclic i.e., restarts from zero as it gets to its

highest value, therefore an additional parameter is needed.

* Time Stamp: it is needed for distinguishing between interaction packets having

the same Transaction ID, as repeating after a certain time span.

The information contained is this sub-set of MO header fields allows to unam-
biguously identify in a time and space domain any packet instance exchanged within
the framework of services.

This is made possible because the Network Zone, the URI From and URI To
enable identifying a unique "channel" between two nodes of the architecture. In the
space/network domain, this triangle of information behaves like an identifier for the

path of the information flow.

Beside this, within the same channel, the information flow contains as many
packets as the two nodes’ operations require. The Time Stamp on its own provides

the capability to reference the packets in a time domain.

In addition, it might happen for the same application to issue multiple packets
directed to the same node at the same time e.g., via different services, or because
parallel processes share the same service interface. For solving this ambiguity, each
application uses a so-called Transaction ID, working as a cyclical global counter,

which increases by one every time the application issues a packet.

The three groups of parameters provided resolve the ambiguity issue concerning
any packets exchanged between two nodes of the architecture and routed through the
framework. It is worth noting that, up to this point, no data related to the structure or
semantics of the packet’s payload has been utilized. This implies that the traceability
methodology has broad applicability across services. Regardless of the service used

by the application, the same traceability methodology is adopted.

Furthermore, the traceability methodology remains symmetrical. This means
that it is independent of both the service employed for data exchange and the data
itself.

While we now possess all the necessary elements to uniquely identify any packet

within the framework, we have yet to incorporate the required information for on-

64 Architecture Design

board data handling and distribution. Consequently, it becomes possible to establish

the service management logic on top of the packet logic.

3.3.4 Data Orchestration

The framework provides the data orchestration feature, along with data traceability,
enabling the organization of data within the service layer for post-processing pur-
poses. This facilitates the handling of operations performed within the system on the

ground.

In the course of routine operations, the exchange of packets between two nodes
adheres to a more intricate logic. The rules governing the coordination of information
flow consistency within the system are defined by the services specification. Each
service specification is tailored to serve a specific purpose, which is why the message
header contains information specific to the respective service. Each information is

assigned to a specific header field. The fields are:

* Interaction Type: Among the interaction patterns defined by the CCSDS
Mission Operations specification, the Interaction Type identifies the specific

combination of requests/responses adopted for the specific operation.

* Interaction Stage: Each interaction pattern consists of a finite sequence of
requests and responses, and the combination of these elements can vary. The
interaction stage indicates the specific step within the interaction life-cycle to

which a message belongs.
» Service Area: A contextual grouping of services defines a Service Area.

¢ Area Version: As different versions of the same Service Area can be devel-
oped and deployed, this field ensure that both the nodes o the interaction i.e.

consumer and provider, agree on the same service definition.

* Service: the service used for the data exchange. Each service is composed of

multiple operations, sharing a common vocabulary of objects.
* Operation: the operation for such data exchange.

* Is Error Message: is a flag field which identifies the packet as containing an

€rror message.

3.3 Framework 65

The data in the current section are meant to track any instance in the commu-
nication and in the service domain i.e., when generating the requests and response
messages. Such fields are aggregated transparently as an additional data structure
and appended to such packets/service for allowing referencing the request originating

the activity. Here follows a more detailed description.

The service specification to be adopted in the Reference Architecture can then
be inherited from the MO services [6] or PUS services [7], and the service tailoring

will be treated in Chapter 4, for implementation purposes.

66 Architecture Design

3.4 Data Models

The new structure just introduced, changes the traceability and the orchestration
logic of the whole framework, but still, the service definition can be inherited from
either the MO or PUS services. And this is the case, as the service specification
adopted for the implementation (proof of concept) starts from the existing CCSDS
Blue Book for the Monitor & Control services [6]. It is possible to further apply
a simplification to the Mission Operations services definition. The result of such
tailoring process, meant for the only proof of concept purpose, will be treated in
Chapter 4.

On top of the presented logic, whose scope is mainly to create and keep track
of an ordered flow of packets and services, a further layer is yet to be built: the
Data Models. Such addition layer provides a methodology and rules for operating
on mission-specific data. The data models family and their role into the devised
architecture are yet to be defined, as specific to each mission. From common
applications across different missions, it is nevertheless possible to shape a list of

data models that provide basic yet critical functionalities.

In the present section the structure of a list of data models running on top of
the framework is described. Objective of this Section is not only to provide a
functional description of the on-board and on ground data models (which is provided
by a dedicated SysML model, and the relative Python implementation), but rather
understanding the role of the data models in the architecture and in the realization of

core system’s functionalities.

The purpose of data models is to provide the instruments for managing a multi-
tude of application-related data in an organized manner. Data models, as treated in

the present document, consist into:

* The set of rools for describing the data-sets of a specific application; which
can be further decomposed into:

— Syntax adopted for linking the data objects i.e., the properties defining
the objects’ relations; and

— Data Definitions for providing an identity to the objects belonging to a
data model and linked by using an agreed syntax.

3.4 Data Models

67

* The Rules for operating on the such data as defined by the applications them-

selves i.e., relational conditions between the objects.

As an example we can refer to Figure 2.6 in Section 2.2.4. The MO COM tools

involve the COM syntax, which consists into the source and related links between the

objects, and the data definitions used for identifying objects into the MO framework
i.e., the Type, the Object ID and the Object’s Domain.

With respect to Figure 3.3, the tools are represented by the COM definition in

the blue box within the common layer.

Component #Y Component #X

Component-specific
Layer

Application-specific
Layer

Service Definition #1
(e.g. ActivityTracking)

Service Definition #2 Service Definition #3

Data Model #1
(activityAccept. >source>
operationActivity)

Data Model #2 Data Model #3

Service-specific
Layer

- COM definition -
Data Instruments

Message Abstraction Layer
(Data Types, Header & Interaction

(Source/Related links; Domain/Type/ID) Patterns)

Fig. 3.3 Current MO Data Model.

Common Layer

In addition to the fools, every service in the MO framework provides the Rules

for operating on the application-specific data accordingly to the provided Data

Definitions and syntax. With respect to Figure 3.3, the service specification are

represented by the different red-bordered boxes within the Service-Specific Layer.

These include a data model specification which is generic and applied directly to

the service definition, just like it is for the COM with the MO services. The same

applies within the Common Layer, where the COM definition is kept together with

the MAL definition.

68 Architecture Design

New Framework Logic

More in general, it makes sense to develop a data model that provides ad-hoc
instruments for describing the system of information typical of a particular activity
e.g., the Mission Planning data model, while keeping it segregated from the services

definitions used for accessing the application which operates on the data model.

A data model can e.g., operate both receiving inputs via commands and via
files. Depending on which of the two inputs is chosen, the same data model will be
accessed via either the Action service of the File Transfer service. Might the data
model require e.g., a constant time update, this will most probably provided via the

Time service.

An application operates on a data model in compliance to the data model defi-
nition and in compliance with the definitions of the services it uses for exchanging
data. From the point of view of the architecture, Figure 3.4, given the services and
the data models definitions, the application works as a junction between the two, in
order to translate the incoming service request (compliant to the service definition)
into the correct data model operation (compliant with the data model definition), and
vice versa, sharing the data model output, via service packets.

Let’s make an example. The Mission Planning System (MPS) generates the
products i.e., command stacks, accordingly to the Mission Planning data model
definition, in order for the commands to get to the on-board Command Router. The
MPS implements the operations, which are defined by the data model, for generating
the products, whose format is defined by the data model syntax and data definition.
The MCS can now deliver the products (either on-bard or more probably to the MPS)
via the File Transfer Service. Same as for the data model, the operations and data

structure for transferring the files are defined by the File Transfer Service definition.

In order for the command to get delivered on board, the Command Router shall
implement the File Transfer Service definition for command dispatching and the
Mission Planning data model for un-packing the command stacks and perform
the command checks. Ones the Command are on-board, the Command Router
implements the Action Service definition for dispatching the commands to the
on-board applications/peripherals.

3.4 Data Models 69

It is now clear that different applications e.g. the MPS and the Command Router,
implement the same data model i.e., the Mission Planning data model, for performing

distinct actions on the data sharing an agreed syntax and data definitions.

Applications Command Router
Mission Planning System

i ﬁ ﬁ VAN
i {}

Mission Planning Model:

- Syntax, Data Definition
Data Models Context - Data Model Rules

N N

File Transfer
Service

L i

Message Abstraction Layer
(Data Types, Header & Interaction Patterns)

i
7

Packet Context Network definition
(Links, Nodes)

Action Service

Service Context

Fig. 3.4 REFA Data Model.

Regardless of the functionalities of the framework, guaranteed by the packet-
based features treated in Section 3.3.3 and Section 3.3.4, it was possible to segregate
the services API from the data model adopted by the above application. The data
model is then adopted by the application which exploits the services for providing

input and output data to and from the data model.

For several application to operate on the same data model, they shall share the
same data model definition. One application is not limited to adopt one, but can
freely operate on different data models depending on the activities it is dedicated to

at run-time.

70 Architecture Design

In this way it is possible to develop a mission planning system whose products
structure i.e., the data model, are independent from the the service used for their
transport. The mission planning components are based on the data model in use and
on the mission. It makes sense to align multiple missions to the same MPS data

model, and this can be done transparently to the framework of services.

It becomes possible to abandon the source/related links for defining any data
relation as per the COM model and to develop more intuitive and fitting data models

devoted to the specific application.

In the next section we present a list of data models which can be reused across
different missions and which constitute a core i.e., the set of basic functionalities
needed for operating a CubeSat, notwithstanding the possibility of extending such

set, to a wider family of data models.

3.4.1 Command Router

The Command Router data model (CR in short) is conceptually derived from the
core Flight System Command Ingestor component. Its role is to handle incoming
commands generated on ground and distribute them on board, according to the
command distribution logic of the data model run by the component. The command

distribution distinguishes between two distribution methodologies:

* ASAP commands i.e., those commands which get delivered to the target as
they are received and checked by the CR.

* Time-Tagged commands i.e., those commands that get released and dispatched

to the target at a certain epoch in time.

The data model defines three parallel routines, respectively responsible for:

* Classifying incoming commands and forwarding them to the correct sub-
routine.

When a command stack is received from ground, the data structures containing
the commands must be checked against inconsistencies, as well as the com-
mands in the within. The command stacks are then handed over either by the
ASAP queuing routine or TTQ routine depending on the checks’ results.

3.4 Data Models 71

* Processing the ASAP commands. When an ASAP command is received on
board it is handled by this second routine, which queues the ASAP commands
and dispatches them following a First In - First Out logic.

There is no time-constraint in the dispatching of such commands, as this
will solely rely on the available processing capabilities and peer-components

response times, in order to get to the following command processing.

* Processing the Time-Tagged commands. Such dispatching routine is conceived
for dispatching commands based on a time constraint. With respect to the
ASAP dispatcher, that could dispatch a command only after the previous
one terminated, the TTQ dispatcher is meant to handle every new command
handling independently from the previous ones, so that they can be run in

parallel and align to time constraints.

72

Architecture Design

wblocks
Packet Payload

«blocks
TimeStamp

«blocks
URI From

«blocks
Interaction Typs

ablock»
URI Tor

Traceability Fields

«blocks
Command History

«block»
Command History
Item

«blocks «block» ablock»
ASAP/TTQ Flag

«block=
Domain

«blocks
Transaction Id

\

«block=
Service Area

wblocks wblocks
Operation Service

Fig. 3.5 Command Router Data Model.

Acceptance Flag

«blocks
Execution Flag

The Command Router itself allows the distribution of commands coming from

ground among the on-board subsystems as if such commands were generated directly

on-board. The commands distribution on-board relies on the data classification
described in Section 3.3.2.

When the CR receives a command directed to the CR itself, the first of the three

processes receiving such command halts the listening and starts the CR-command

execution. As its execution is complete, the process restarts listening for incoming

commands.

3.4 Data Models 73

Commands directed to the CR component itself can include: ASAP queue update,
TTQ update, component shutdown.

The TO handles both file-based and packet-based telemetry.

3.4.2 Telemetry Output

The Telemetry Output data model component (TO in short) works in parallel to
the CR and provides telemetry availability to ground as a single source point. Its
routine involves the collection of telemetry from the on-board components, the
consistency checks and the gathering of checked data for making them available for

down-linking.

Together with the CR, the TO constitutes the other gateway used for routing data
to ground. The TO data model is meant for handling to types of telemetry:

* Packet-based telemetry. Such telemetry includes all the packets generated
on-board during operations. As the framework is responsible for keeping track
of such packets, the TO data model is responsible for handling them for the
downlink.

* file-based telemetry. Such telemetry is not generated by the exchange on on-
board satabut rather is the collection of data as generated by the components

themselves during operations e.g., the payload data.
The operations TO includes are hereafter reported:

* Collecting available telemetry. The operators on ground can explicitly specify
which of the generated telemetry to retrieve, and in our case this can be done

by exploiting the data classification and storage capabilities of the framework.

* building the packets for down-linking the gathered telemetry. Such telemetry
shall be addressed to components on ground. The components relying on the
TO data model on ground shall comply to this packetisation methodology for
handling telemetry routed via the TO.

* Making the gathered telemetry available to ground. The operators on ground
can actively specify which packetised telemetry to deliver to ground. This can
be done exploiting the packetisation feature.

74 Architecture Design

3.4.3 Autonomous Events Response

The Autonomous Events Response (AER in short) data model is a basic FDIR
data model. It is meant to receive events subscription commands for those events
requiring a reaction, as well as response action indications. Nevertheless, it is not
just a matter of triggering an action in response to an incoming events. The event
handling is more sophisticated than this and shall cover many peculiar casistics. In
order to do this, the AER relies on an Event-Action table which gathers all the FDIR
configurations needed for providing the correct response to any potential event. It is

shaped as follows, and is reported in Figure 3.6:

* Event list, is the list of events the AER shall response in case any of this is
notified (to the component implementing the AER data model). Every event

part of the list is formally linked to two other lists.

* Threshold list. Some events can be part of the routine activities without
threatening the status of the on-board system, until they get reported beyond a
certain pase e.g., an Out of Limit (OOL in short) can occur in the transient stage
of an operations up to a spare number of occurrences, without harming the
system. This changes in the case the OOL is repeatedly triggered, indicating it
is not related to a temporary condition but rather to a permanent contingency.
The Threshold list is meant to gather such kind of i formation related to th

event in order not to trigger an action if the event is not harming.

e Action list. An incoming event can require multiple actions to be taken in
response to its triggering. The Action list contains the information for handling

the action sequence in response to every event in the Event list.

* Parameter list. Every action may require parameters, whose value can be
conditionally defined. The present list contains the conditions to be respected

for assessing the correct parameter’s value.

3.4 Data Models 75

«block»
Event/Action
Tahle

«blocks
Action List

«block»
«blocks Param List
Event List

wblocks
Threshold List
wblocks
Threshold Item
1= 1*
«block= «block»
Action Item Parameter Item

i e i iLe

wblocks
Event ltem

Fig. 3.6 FDIR Data Model.

3.4.4 Generic Component Model

The generic component model is not a data model per sé, but rather a collection
of common features that can be re-used for the design of any additional, mission-
specific data model. Its elements have already been mentioned and described above,
that a data model shall own in order to be compliant with i.e., can run into, he
reference architecture described in the present document. Such Generic Component

Model includes the prescriptions regarding:

* The interaction definition occurring between the application-level component
and the framework-level services, as depicted in Section 4.1.3.

* The Memory area segregation, as described in Section 4.2.1.

* The methodology for packet addressing, as described in Section 4.1.2.

76 Architecture Design

3.4.5 Components

As mentioned above, in order to operate on the data model, the generic services’ API
shall be translated to the specific data model’s implementation, including both the
data model’s API and functionalities. The component’s are responsible for both the
tasks i.e., collecting the data model’s requests/responses so to translate them into a
service-compliant format (and vice versa, for the incoming requests/responses), as
well as implementing the operations needed for model’s data handling i.e., computing
requested operations, in compliance with the data model’s prescription.

It becomes now clear that while the data model’s definition can be inherited
as it is from mission to mission, the components operating on such data models
and run on top of the framework are implementation-specific as well as mission-
specific. This becomes a key feature if we look at modularity and re-usability
across different missions. While a Command Router data model is expected to
be present in every mission i.e., every mission can adopt the same data model,
each mission can either exploit existing component’s implementation or re-design
the components in compliance to mission-specific requirements e.g., in terms of

execution responsiveness or prioritisation.

Chapter 4
Proof of Concept

In the present chapter we will go through the prototyping of the design elements,
their implementation and validation of both the framework software elements and

components

4.1 Prototyping

The current section focuses on the implementation aspects on the prototyped archi-
tecture that serves the proof of the architectural concept described in the previous
chapters.

4.1.1 Functional Modularity

When getting to the implementation, the structure of the code takes advantage of
the design features for the modularity property. The code structuring presented here
constitutes the first validation step of the design, since it is a direct consequence of
the choices made during the design. The code here presented is composed by three
layers (namely from the lower to the upper: Definition layer, Constructor layer and
Specification layer), operating in compliance with the data classification reported in
Section 3.3.2. The framework here implemented is conceptually located between the
application layer on top (described previously) and the transport on the bottom of
the stack, further described.

78 Proof of Concept

The framework provides the upper application layer with an API enabling access

to the lower services and transport logic almost transparently.

From a structural point of view, with respect to the architecture stigmatization
described in Section 3.4, the three levels in which the code is structured - depicted
in Figure 4.1 - can be grossly defined as implementing the orange and green blocks
reported in Figure 3.4 i.e., the data-elements belonging to the service framework.

79

uonejuawa[dwr oy ur 9130] Juswaseurw BIep Y JO SULIOLIA ['§ "SI

12fe7 uoniuyaq 291MaS

(sapoN ‘s)ur)
uonjuSP YI0MBN

i

1X3jU0D 19%0ed

<2

J19AE 1019N1SU0D 3TIAIRS

(suianed uonoelauy| g JapeaH ‘sadA] eleq)
1akeT uonoensqy abessapy

1L

J3AeT uoneoyoads aoinIes

v 30IAIBS

X3)UOD B0IAIBS

IX3JU0D S|2Pon eled

(s)uauodwon

& &

Z# wauodwog dn-yoon L# Juauodwon dn-3oop

4.1 Prototyping

uonejuswa|dw] apo)

suoneslddy

21601 uonesysayalQ 1sal

80 Proof of Concept

Within the framework functional subdivision, the Definition and Constructor
portions of the code, provide functionalities and definitions inherited by the Specifi-
cation. Such hierarchical sequence, following the organisation presented in Section
3.3.2, is here detailed.

The first layer of code from the bottom — the Definition layer - is intended to
translate the document-oriented service specification into machine readable data
structures and RPC definitions. Here the basic data types the framework uses are
defined as well as, on top of these, more complex data structures, then exchanged via
refined RPCs. An example of data structure definitions belonging to the Definition
layer is the Packet Header definition and the service-specific payloads data structures.
Such definitions make up the objects that the upper layers use for storing and moving
information between components, i.e. the packets - their definition is part of the

SysML model produced during the research activity.

Above the Definition layer, there is a second layer acting as a work-force for
the framework — the Constructor layer. The Constructor layer implements the
proper framework functionalities and hides much of the operations complexity
by following static data-handling rules, which therefore enable automation. Each
service, being either a first-class service or a support service, has it’s own data
structures definition and a defined set of rules for moving data among such data

structures. Such automated operations reside in this layer.

An example of these is the header_constructor, whose responsibility is to receive
data from the layers above (further described) and place that data into the header
data structure, define by the lower Definition Layer, for the service requesting it.

A related example is represented by the ActivityTracking constructor. Its re-
sponsibility is to receive packet-related information from the layers above, e.g the
Packet Header data structure, collecting the data required for tracking purposes, and
moving such information accordingly to the ActivityTracking packet, for exchanging

acknowledgments among components.

The third layer of the framework — the Specification layer - provides the MAL
information characterising any on-board component, service and service’s operation
and a set of methods for retrieving such information. Such configuration data are
hierarchically inherited (Component < Service < Operation). By doing this, the
component instance has then access to the constructors for populating the data
structure accordingly and the possibility of making use of specific services.

4.1 Prototyping 81

4.1.2 Component Addressing

The present section describes how the hierarchical classification provided in Section
3.3.2 enables API simplifications.

The inheritance logic makes the interfacing with the framework a lightweight
task by reducing the amount of input the developer shall provide. In addition, the
functions presented to the developer exploiting the framework, make the framework

itself quite intuitive, thanks to the way such hierarchisation is presented.

As first, let’s understand how the framework’s configuration information is
shared within the system. Within the system we find many segregated memory
areas, either visible or hidden from each other. The main central visible memory
area is handled by the framework itself, and includes the services’ configuration
information that every component will then inherit. Every component then shares
a second public memory area where every component introduces itself to the rest
of the architecture, by making available its component-configuration information
1.e., who he is and where to contact him (URI), as well as which services exposes
(service, area, operation). Such component-configuration information (enclosed in
a component-configuration file) inherits the services’ configuration files publicly
visible, so that different component have access to the same services implementation,

when exchanging data with each other.

In addition to this, every component hides a self-representation configuration-
file which inherits the other components’ configuration files, therefore inheriting
all the information needed for reaching any component sharing such configuration
information in the shared memory area, and thus making the communcation between
segregated components possible. This discover-ability methodology oriented to the
overhead reduction, requires any component’s developer to provide a reduced amount
of information for making the component reachable, and no additional configuration

activities at run-time is required.

As mentioned above, the system presentation the framework provides, makes
the use of such libraries quite intuitive. By inheriting the shared files, any third
party component in the architecture is now available. The hierarchical structure
adopted for such inheritance enables the user to access nested functionalities starting
from the component (e.g., ComponentA, as per component’s configuration), digging

to the service the components wants to assess (e.g., Action service, as per frame-

82 Proof of Concept

work’s configuration) and as last getting to the operation (e.g., submitAction, as per

framework’s configuration).

4.1.3 Autonomous Packet Delivery

Let’s now describe from a functional point of view how the autonomous delivery

property is achieved.

As a command is dispatched on board, the transport layer handles the routing, in
order to reach the target component. The framework auto-generates the API code for
dispatching/receiving the packet (Orange flag-shaped block on the left - "Received
Packet" Figure 4.2). As the packet is received on the provider side, the information is
saved into a Definition-compliant variable for the further handling steps. The simple
reception process plays no role on the received packet’s data handling. Here is where
the app-level components jumps into the scene, helped by the Constructor layer.

The app-level component is required to perform internal compliance checks -
"Acceptance Checks routine" - and, based on this, calling the Constructor layer
for building the acceptance packet - "Activity Acceptance_constructor - Figure 4.2",
which can either confirm or reject the acceptance of the received packet, to the client.

For such ActivityAcceptance packet construction process, the component is
required to provide the Constructor function with both the header of the received
packet and the internal checks’ results. The framework provides three hidden

functionalities to the component:

* Traceability data structure building, then placed into the ActivityTracking
payload of the packet. This allows the traceability between the incoming

request and the acknowledgments in response - Traceability feature.
* ActivityTracking packet header building.

* On-board persistency of the generated packets, into a framework’s memory
area. This is meant to store the exchanged packets into a central memory area

for further orchestration - Persistency feature.

For building the data structure dedicated to traceability, the Constructor function

disassembles the header for extrapolating the only data required for traceability

4.1 Prototyping 83

purposes - see Section 3.3.3 - and places such data into a dedicated payload data
structure, within the ActivityAcceptance packet, targeting the client. Such moving
of traceability data preserves the addressing information i.e., URIs and Services, so
to make the response process lightweight to the provider component. In this case,
the adopted grpc make this process automatic, without relying on service-layer’s
functionalities.

For building the header of the ActivityTracking packet, the constructor function
is provided with the header of the incoming packet. The majority of the fields is

preserved, while some automatic data moving and update is done.

As the payload and the header are built, the packet is assembled into a single data
structure compliant to the Definition layer’s specification. This data data strucure
1.e., the packet, is saved into a memory area dedicated to the packet’s service i.e., the

ActivityTracking service.

Proof of Concept

weaderq AJIANOY - 2ouanbas uonoeIaiuI I9pPIAOI OLIdUAD) 7'f 31

_— dayg "2ax3 jse] sep

peojheg panasoy

asjey WAU
eujwia)

afessay
ﬁ anil Ad3Y 1IeD
——> suodsy asuodsa)
supnoy ey e }\T t supnoy SPI3H Pe1a 19498 2N229Y m\.
UOPNIAXT B PUBWILIO) 3INIAXT
¢J0113 2ueydany SP2Y) ueIdY

84

193ped PaARIRY
w@ped
eojAeg asuod: L= peojhed W@4ed peojked
RIS peovted = UORNISAIAYARY — 1 uopnsexzhuanay | @sueidasoyAyanay 2ouedasay AYARY
ELIT
1019NJ35U0)BsuUOdSIY esuodsay _ ﬁ =
101INISUOI”UOUNIBXIANARIY
1apeay panasay

4.1 Prototyping 85

The process is very similar both for the next acknowledgment packet i.e., Activi-
tyExecution, and for the eventual response packet i.e., in case the incoming request
expects some mission data back. Such functionalities are identical and can therefore
rely on the same portions of code, thus saving much of the effort needed for its
development.

Let’s now understand, how the on-board domains are managed by the framework,
so to make it possible to orchestrate the depicted operations.

86 Proof of Concept

4.2 Deployment

The deployment Section here reported presents the key aspects related to the working
environment, as compliant to the implementation criteria adopted. We will first go
through the management of the network environment properties and the methodolo-
gies adopted for keeping the software components modular. Secondly, the Section
focuses on the lower communication protocols on which the architecture relies, high-
lighting those aspects that enhance the architecture’s time- and cost-saving properties
i.e., the auto-generation of code.

4.2.1 Network Management and Resources Segregation

The present section describes the methodologies adopted within the architecture for
providing the components with a global visibility among the architecture and the
instrument adopted for arbitrarily expose and hide their respective resources to and

from the third party components.

Network Management

From the networking point of view i.e., the network- and transport-level protocols
adoption, the architecture is meant to exploit as much as possible of the existing
technologies. The decision of adopting the Transport Control Protocol over Internet
Protocol (TCP/IP) for the communication among components, was motivated by the
opportunity of relying on decades of proven traffic orchestration within a distributed

architectures, such as the World Wide Web. The choice has pros and cons.

Among the pros, we find a double outcome. As first, the developer is not required
to have additional know-how. Any Computer Science engineer has a wide familiarity

with network management.

As second, such protocols enable the adoption of common software elements
used for the networking, hereafter reported, and whose usage will be treated in

further sections:

e Virtual Private Networking (VPN)

* Network segregation via access gateways i.e., routers

4.2 Deployment 87

* Possibility to secure communication between remote ten works i.e., via Secure
Shell (SSH)

In addition to this, the proved reliability of such protocols and their worldwide
adoption allows the deployment process of the architecture over any distributed
network remaining almost transparent to the developer. As a consequence, such

choice has a direct impact on the architecture structuring.

Talking about the cons, fixing the network/transport protocols of the architecture
may constitute an excessive prescription, inducing a limit to further developments
and tailoring processes. While this is true from the design-specific point of view,
it is worth bearing in mind that the architecture here described aims at being a
first prototype, a proof of concept. For such reason, certain choices, that in the
beginning design stages could be left open for any further specific application need,
now require to be fixed in order to identify, among these, the technology that of
our architecture a Ready to use system. Moreover, despite the tailoring process
done on the framework, described in the next sections, and despite the focus on
the network transport technologies, the portability over different protocols i.e., the

protocol mapping, is not further prevented.

Said that, we focused the research on certain properties that the network shall
provide to the architecture, and that were fixed during the second design iteration of

the architecture networking.

* Every software component belonging to the architecture, being either one
of the core components or a tailored i.e., mission-specific component, is
addressable via an IP address assigned to that component, in such a way that

every component is potentially reachable by any node of the architecture.

* The adoption of a Virtual Private Network prevents the need for the software
component belonging to the same network zone, to be running on the same
physical machine or Local Area Network (LAN).

* On every component i.e., from any IP node of the architecture, a set of sockets

for communication via services are exposed.

* To each service a specific TCP port range is reserved, so that the same service
is made visible and available at the same TCP port(s) by any component

providing the same kind of resource.

88 Proof of Concept

Given such properties, every component is now made available to any other

component in the architecture.

Nevertheless, it is of primary importance for any component to segregate its
resources in order to arbitrarily decide which to expose and which to keep hidden

from the rest of the architecture.

Resources Segregation

The methodology adopted for wrapping the resources is the containerisation, which
allow every component to be isolated from the rest of the environment and expose
specific interface relying on the below network.

The adopted technology, [57] Docker, uses a client-server architecture and is
widespread such applications, with multiple distributed elements shall interact by
solely exposing standard interfaces. The Docker client talks to the Docker daemon,
which does the heavy lifting of building, running, and distributing Docker containers.
The Docker client and daemon can run on the same system, or it is as well possible
to connect a Docker client to a remote Docker daemon. The Docker client and
daemon communicate using a REST API, over UNIX sockets or a network interface.
Another Docker client is Docker Compose, that lets the user work with applications

consisting of a set of containers.

The Docker daemon (dockerd) listens for Docker API requests and manages
Docker objects such as images, containers, networks, and volumes. A daemon can

also communicate with other daemons to manage Docker services.

The Docker client (docker) is the primary way that many Docker users adopt
for interacting with this powerful tool. When using commands such as docker run,
the client sends these commands to dockerd, which carries them out. The docker
command uses the Docker API. The Docker client can communicate with more than

one daemon.

By the use of this tool, any user can design, integrate and deploy its own com-
ponent over the architecture and gain full access to the services the architecture

provides.

4.2 Deployment 89

4.2.2 Communication Patterns

The defined communication patterns adopted, consist in two main methodologies:

* Peer-to-peer communication, by means of remote procedure calls, Figure 4.3.

* Data stream communication, by means of publish-subscribe interaction, Figure
4.4.

There is no prescription on what service should adopt which communication
pattern, as this choice mainly resides in the service logic.

gRPC Server Ruby Client

C++ Service

/'ot
© Response(s)

Android-Java Client

Fig. 4.3 Protocol Buffers/grpc - remote procedure calls

For an e.g.,Action service, the peer-to-peer communication pattern is more suited,
because the dispatched action is intended for being interpreted and executed by a

single entity i.e., the peer entity on the other node of the remote procedure call.

On the other hand, for the e.g., Alert service, the data stream communication
pattern enables the multiple notification needed for a system-wide anomaly report.

From the implementation point of view, for the proof of concept of the proposed
design, Protocol Bufers/grpc [58] and ZeroMQ [59] were adopted.

90 Proof of Concept

Fublisher Publisher Fublisher

| | I
L) L= J L=)

FUE
.
connect connect coanct
\ |
b xlnd
LSUEB
Prozy
IFUE

bind

connect comnect connect
SUB] SUB] SUB]

Subscriber Subscriber Subscriber

Fig. 4.4 ZeroMQ Publish-Subscribe interaction pattern

The protocol Buffers and grpc enable both a standard data structure definition
whose content can be seamlessly translated from the service definition. At the same
time, based on such definition, Protocol Buffers and grpc enable the auto-generation
of large portion of code which can then be easily introduced in the implemented
architecture. Beside the reduction of custom code by means of auto-generated code,
the Protocol Buffers and grpc were chosen because they provide a standard API
which reduces at most the adaptation elements needed for its adoption by the upper
layer of the architecture. From an operational point of view, whichever the service,
the interaction logic and implementation pattern is fixed, and any further design
making use of them needs no customisation. This is observable from the e.g., generic
provider interaction sequence described by the activity diagram reported in Figure
4.2.

The Response red elements in the activity diagram are implemented by the
same code i.e., API and the only difference in the implementation is presented at
application-level, when it comes to the selection of the packet content which respects

the service-specific logic.

4.3 Validation 91

4.3 Validation

Given the size of the project and the workload required by implementing and validat-
ing the whole architecture, it was chosen to follow an approach that take advantage of
the modularity property of the architecture. It was therefore decided select elements
to be validated, regardless of the relations occurring between each other. The modu-
larity features of the architecture allow validating every component’s functionality
as a self-standing element of the architecture, without the need of the adoption of
any software-in-the-loop validation.

On such premises, the validation addresses the highest number of components
starting by the key ones, i.e. the framework services, and the ones that offered a
validation opportunity of wider scale i.e., the ground components working as a proof
of concept in a parallel Politecnico’s project [60].

The validation of the implementation of the architecture involved elements

located in different layers of the architecture:

* Framework; the validation of the framework is intended to proof that the
design properties imposed by design, described in Sections 3.3.1 to 3.3.4,
guarantee the achievement of the modularity and quick deployment stated in
the requirements definition.

* Ground Components; As a proof of concept, it was decided to adopt the
design drivers defined by the REFA in the implementation of three ground
components involved in the management and operation of a ground station
project developed at Politecnico di Torino [60].

The present section focuses on the mentioned components and describes how the
validation purposes were met.

4.3.1 Framework Validation

Thanks to the high level of modularity achieved in the design of the architecture, the

framework validation will not involve any upper architectural layer.

The framework validation is related to three main types of software components,
already mentioned in Section 4.1.1, being:

92 Proof of Concept

* Instantiation description provided by the Specification Layer. The validation
here proofs that the definition files provide a consistent description of the
component’s layout. This means that the component’s description in the
framework domain is sufficient for the component to access the functionalities

offered by the services.

 Information integration developed in compliance to the data classification of
Section 3.3.2. Here the validation proofs that the modular functions imple-
mented for moving information between portions of different packets i.e., for
maintaining the packets traceability transparent to the component, cover the
whole information range belonging to the MO header. As different informa-
tion undergo different processing in the reception-response interaction, the
validation proves that every processing works independently and acts on its

own data-section of competence.

* Data translation from a data format specific to the REFA, mostly derived from
the MO definition, to a Protocol Buffer data format, that can then be translated
into remote prodedure calls. As the implementation requires the selection of
an encoding convention and a fixed representation of the buffers structure,
this this validation proofs that the REFA convention is correctly translated
into ProtoBuf/GRPC convention, enabling auto-generation of big portion of
code, therefore leaving the transfer concerns out of the REFA domain. Despite
negligible, this feature ensures a huge reduction of effort required for the actual
implementation and a programming-language-independent data convention,

that unties component’s language of implementation from each others.

Objective of the framework validation is to prove that the modularity and inheri-
tance structure of the defined software elements both provide the components with a
user-friendly operation-invocation syntax, that reflects the architecture layouts; and
that the successful data traceability and persistency associated to any data exchange

is transparent to the interacting components.

4.3 Validation 93

«blocks
____________ headerfields_pb2

«block»

T
'

'

'

'

!

i

wblocks 1
component_descriptor_pb2 ¥
'

'

|

'

1

'

'

1

'

1

service_descriptor_pb2

lock»
a
i
i
i
i
i
i
i
' i
'
i
i
i
1
i
i
i
'
i
'
i
'
i
i
i
i
'
!
coosm=cS «blocks eblocks i
header_descriptor pb2| activityTracking_descriptor_pb2 | 4
P
1
i
i
1
f i
i
i
i
'
V
lo

v v

H

«block»

'
Iy
&

T
|
1
v
«blocks
ParameterService_constructor

[

raiseAlert_constructor

‘ «block»

ablocks
component

Fig. 4.5 Data hierachisation within the REFA.

As the validation of such properties do not depend on the exchanging components
or on the underlying services, it was decided to implement a pair of mock-up
components, working as the user and the provider of the exchanged data. In addition
it was decided to adopt a generic service that as the Action Service, and to implement
the submitAction operation.

94 Proof of Concept

Client.py

With reference to the Client code in Appendix B.

The component is required to import (line 1 to 4) generic libraries responsible
for the transport of the message i.e. grpc and asycio. It is then required to import the
service specification of the service he wants to use. Finally, he shall import the file

descriptor of the component he wants to communicate with.

Lines 5 to 13 are the mock-up data structures used for this experiment, that shall

match the payload data fields of the submitAction operation.

Lines 14 and 16 initialise the grpc pipeline. The initialisation of che communi-
cation requires the address i.e., IP address and TCP port, of the target component.
Such info are extrapolated by the component descriptor file which provides a method
for retrieving the information. This is indeed one of the purpose of the file descriptor
that any component shares in the architecture.

In line 17 to 21 the submitAction packet to be delivered is built. Here we can see
what already described in Section 3.3.3. The Client is only required to provide the
data concerning the application level of the architecture i.e., from PriorityLevel to
args. Any other information regarding the service level is hidden from the component
and extrapolated from the component file descriptor, which provides information
such as the services the Provider components provides. This is the second purpose
of such file.

In this case the Provider provides the Action Service and therefore we can

dispatch the message, in line 22.
Line 23 prints the response to the screen, as shown later int he current Section.
Lines 24 and 25 are part of the Python script checking routine.

Let’s have a look at the other end of the channel, at the code of the Provider.py.

Provider.py

With reference to the Client code in Appendix B.

The Provider is required to import (lines 1 and 2) generic libraries responsible

for the transport of the message i.e. grpc and asycio. It is then required to import

4.3 Validation 95

the service specification of the service he wants to provide (lines 3 to 5). It shall
import its own file descriptor, where its information are stored (in line 6). Then it

shall import the descriptors needed for the support services handling the traceability
(line 7 and 8).

On line 10 the Provider starts the routine that waits for any incoming message,
line 1 saves the header data in a variable and on line 12 the request is printed to
screen, whose content will be shown later in the present Section. Then the component
descriptor is instantiated as an object so to have access to its dependencies. Lines 14

and 15 are mock-up functions.

On line 16 the traceability packet is generated starting from the request-packet
header. Such operation generates data structures that allow linking requests and
acknowledgments together for ground operations. On line 17 to 19 the response is
populated with the generate acknowledgment packet and then dipatched, on line 20.
The same iter is run twice, from line 22 to line 27, because in the chosen example
the data exchange involves a two-step process execution, requiring two distinct

acknowledgment packets.

A similar process is done for sending back the response closing the execution.
On line 28 to 32 the activityExectution packet is populated with mock-up data and
finally dispatched on line 33.

Lines from 34 to 42 are part of the Python script checking routine.

Test

The validation consist in a test where the two mock-up components, namely the
Provider and the Client, will exchange mock-up data. The test will be considered
successfull if:

* The Client will receive from the provider the confirmation of the delivered

command execution; and

* The traceability data linking between the requests and response packets are

built transparently to the two moc-up components

In Appendix C the Json format of the request packet as received from the Provider
side is printed.

96 Proof of Concept

The packet is divided into two main sections, the header and the body. The
header’s information has been extrapolated from the descriptor files describing the
architecture and the packet could be successfully build and delivered via the correct

service to the correct component.

In Appendix C the Json format of the Acceptance packet and of the two Execution
packets delivered from the Provider to the Client is reported.

The packet is composed of three sections. The first is the header. This has been
correctly handled by the framework during the response, by picking up the Client
information at request arrival and using them for re-addressing the responses. This

has been done for all the the acknowledgments.

The second section is the packet payload. As this is part of an ActivityExecution
Service packet, the payload contains the traceability information of the incoming
request. Such data are extrapolated from the request packet header by the activity-
Tracking_constructor SW component and made available to the packet constructor

before the packet is being delivered.

The third and last section of the packet is made of the application-level data, as
provided by the mock-up Provider. Such data indicate whether the application-level
tasks requested by the Client have been accepted and executed on the Provider

execution area.

As can be seen from the four packets i.e., request, acceptance packet and two
execution packets, the framework has handled those data in the request that shall be
kept transparent to the application-level component. The modular elements of the
framework have successfully translated both the addressing data of the incoming
packets and the traceability data from the requests to the responses. On top of this, it
was possible for the Provider to just run its internal (mock-up) processing without

caring of the packets routing or third-parties components details.

4.3.2 Ground Components Validation

In the present chapter, we demonstrate how the conceptual architecture envisaged
for the on-board components can be translated into the ground components with

slight modifications, by relying on existing technologies. The implementation here

4.3 Validation 97

reported involves the definition of three ground software components devoted to the

operations and management of a ground station facility.

Software Ground Components

Again, as described in the previous chapters, the system architecture is based on
the concept of multiple modules connected via well-defined loose-coupled inter-
faces. Starting from software architecture, in computer science we can easily find
a paradigm based on the same principles: micro-service architecture. This kind of
architecture can be realized using multiple software solutions. Docker Container
Engine, as presented in Section 4.2.1, is a Platform as a Service (PaaS) open-
source tool designed to manage and create containers. Containers are a form of
light-virtualization based on namespace features provided by a Linux kernel. Each
container is an isolated environment, with its own persistence (file system) and
network stack, meaning that multiple instances of the same “image” (container root
file system) can run at the same time without interacting with each other. These
features make it possible to decompose a monolithic application into multiple simple
components that can be packaged as containers, and then being orchestrated as
atomic entities, each one with its specific multiplicity and execution environment
[61].

The decomposition pattern is the base of our proposal, as any component is
packaged and deployed as a container, connected to the others via network sockets.

In the current implementation, there are three principal subsystems:

* Secure Remote Access Gateway
* Digital Signal Process Service

¢ Antenna Control Service

The first one consists of a Virtual Private Network (VPN) access gateway with
a Public Key Infrastructure (PKI) authentication based on the OpenVPN software.
This represents the main entrance point for the GS operators, as all communications
and interactions with the station subsystems are managed in a controlled and secure
way. The PKI infrastructure is self-hosted, and it uses EJBCA software. Our service

model is based on the following pattern: a X.509 certificate is issued to every user,

98 Proof of Concept

and represents the access token to the internal network, on which all services are
exposed. Other subsystems (that will be referred to as “services” later on) are

organized in “stacks”, which are sets of containers connected via internal networks.

The second subsystem, the Antenna Control Service, is composed of three
containers: the main one hosts an instance of GPredict [62], which is responsible
for calculating the satellite orbit and the relative position to the GS at a specified
time. The position is then converted in azimuth and elevation parameters that are
communicated to the antenna rotator via meta-commands. These are then transmitted
to a “driver” container (HAMIib) that translates them into real commands to be sent
to the antenna rotator controller: the container in this case acts as adaptation layer.
The antenna rotator controller is a hardware device that controls multiple actuators
mounted on the top of the pole on which the antenna is installed to orientate it. The
operator interacts with the system (GPredict user interface) using a VNC remote

desktop session.

The third subsystem, the Digital Signal Process Service, contains three main
components: the front-end, the modem, and the payload handler. The front-end
module is composed of multiple instances of GNURadio that are responsible for
controlling the SDR devices, making them accessible via network socket. This
adaptation layer allows to decouple the SDR from the software modem. One of
the benefits of this approach is the segregation of the signal acquisition from the
signal processing module, meaning that the software modem can be modelled as
a functional block, abstracting it from the SDR hardware device and its handling.
Another positive aspect is the fact that the software modem (which is a CPU bound
workload) can be run on high-performance host that doesn’t need to be located
near the SDR or the antenna system. The software modem component is another
GNURadio instance, which implements all the signal processing logic, to act as a
mid-level gateway to communicate to the satellite. At the end of the pipeline, we can
find the last component of the system which is the payload handler block. Payload
handler block implementation won’t be part of this description, as it needs to be
designed specifically for the communication protocol used by the specified satellite.
Anyway, our design allows us to simply change that module on the fly, just running
and stopping the right container, which will be implementing the specific protocol
used by the target satellite. The other modules are in fact common for all satellites
and are so designed to be sufficiently generic to not represent a limit in the protocols
that the GS can handle.

4.3 Validation 99

Hardware Ground Implementation

Together with the software solutions , the present chapter provides also an off-topic
on the hardware solutions adopted for the realisation of such architecture, as an

additional proof that the proposed architecture can be implemented in a real-world

scenario.
Rotat [4x CTRL | [4xCTRL |Control [1xETH | Power Supply #1
Olalor 7 bR 1« [2ZXPWR | Box LIXPWR — (Rotator
L]
GPIO
1x ETH Power Supply { 2xPWR
GPIO (RF cqmpanents)
GPIO
;
= EXETHLAN] !1x ETH WAN]
US55 ETH Switch BPS
»[1xUSB 3| SDR #1 [4xtype N} 1x type N 2x PWR
(S-Band)
GPIO
[2PWR e
GPIO
e —
»[AxUS5 3] SDR #2[2xtvpg M | Txtype N X PWR |«
(VHF UHF)
GPIO
2x PWR =
GPIO

Fig. 4.6 GS hardware diagram block

Moving to hardware architecture, the system is composed of Commercial Off-
the-Shelf (COTS) modules integrated together in Figure 4.6. This paradigm allowed
us to concentrate on the software implementation, abstracting us from the details of
hardware design and its specific concerns. As we stated before, our GS implementa-
tion is entirely based on SDR (software defined radio) for its communication system.
Using this approach our GS is not locked to a specific protocol or modulation scheme
and it can be adapted to any satellite, having SDR and RF pipeline operating bands
as limit. We have three different RF pipelines: one for UHF band, one for VHF
band and one for S band. UHF and VHF pipelines are composed of SDR (shared
between pipelines), a LNA (low-noise amplifier - on rx chain) and a HPA (hi-power

amplifier - on tx chain), a combiner/diplexer and the antenna system. The S band

100 Proof of Concept

pipeline has the same components, but with its own SDR and antenna. A dedicated
RaspeberryPi is responsible to power-on the amplifiers when a specific chain is in
use. Same Raspberry can also control the Power Supply of the Antenna Rotator. A

python script exposes the status and control interface using a REST API.

Chapter 5
Conclusions and Next Steps

The current research has successfully showcased that by adhering to the designated
design patterns, it becomes feasible to create the service framework and define data
models for the same architecture, allowing them to progress independently and
function cohesively.

Furthermore, this study has demonstrated a loosely connected group of elements
forming a software architecture, while presenting an initial, yet efficient design for

their integration and collaboration.

5.1 Conclusions

Considering the broad scope and ambition of this project, which encompasses the
entire spectrum of a multi-domain software architecture, we have successfully pre-
sented an initial and valid example of what can be accomplished through exploration
in this field. A significant achievement of this project is the collection and harmo-
nization of a diverse set of architectural elements, which may not have been directly
related but are often interconnected in a monolithic manner. As a result, the output
of this work largely covers many of the initial objectives set for this project, offering
a flexible and fully functional architecture.

* It has revealed insights into the opinions and trends within the small-satellite

market concerning software architecture. This was accomplished by providing

102 Conclusions and Next Steps

a focused perspective on various technologies, along with their advantages and

disadvantages.

* The work has delivered the design of key components essential for a software

architecture tailored to small-satellites and CubeSats.

* Additionally, a simple yet reliable proof of concept was implemented to

demonstrate the practicality of this design.

When examining the more technical aspects, we can evaluate the results and
identify the areas that remain open for further exploration.

Throughout the study, different layers of the architecture were developed in
parallel, with a specific focus on the key elements and tasks within each layer. An
important takeaway from this approach is that the independent development of the
framework and data models contributes to the architecture’s flexibility, making it a
viable starting point for new small-satellite and CubeSat missions. This approach
eliminates the need to reinvent the wheel when it comes to software functionality for

each new mission.

The framework development primarily emphasized data traceability and orches-
tration, making it applicable to any mission that requires data handling. On the other
hand, the data models were designed to enable new missions to utilize a standardized
set of application-level components, promoting consistency and ease of adoption

across different projects.

Regarding Section 2.1, it is evident how the developed design successfully
accomplished the proposed objectives. In this section, the design goals and objectives
were outlined, and the subsequent implementation of the architecture demonstrated

how these goals were met.

* The research successfully attained its goal of aligning system requirements
with user needs through the utilization of a market survey. This survey provided
valuable insights into the essential needs of recently established companies
within the industry. This outcome represents a pivotal accomplishment in
the research, as it extends beyond mere technical evaluations and serves as a

fundamental reference point throughout the architecture design process.

By conducting the market survey, the research team gained a comprehen-

sive understanding of the primary requirements expressed by users in the

5.1 Conclusions 103

small-satellite industry. This user-centric approach played a crucial role in
shaping the architecture, ensuring it meets the real-world demands of the target

audience.

In summary, the incorporation of the market survey to inform system require-
ments is a key milestone that highlights the research’s focus on meeting user

needs and guiding the architecture design effectively.

* The goal of developing and implementing both on-board and on-ground soft-
ware architecture based on existing technologies has been successfully accom-
plished from various perspectives. The distribution of applications between
space and ground is easily defined within the data models domain, as outlined

in the previous chapters.

For instance, the mission planning data model comprises data created on the
ground using dedicated ground applications. These data are then transmitted to
the on-board system for orchestration. This particular data model, the Mission
Planning data model, serves as a compelling example of how data can be

distributed between the ground and space domains.

Moreover, the ground and space components responsible for implementing
such data models can seamlessly leverage the provided service framework for

the space-to-ground interface.

In summary, the achievement of this objective showcases a well-structured
and efficient software architecture, incorporating both on-board and on-ground
components while optimizing data distribution and leveraging the service

framework for effective communication between space and ground elements.

The simple data models definition and design provided in Chapter 3,

The incorporation of modular self-contained components aligns perfectly with
the driving design principles proposed, as evidenced by the formulated design model.
The creation of the new software architecture was achieved through the adoption
of Model-Based System Engineering (MBSE) methodologies, which signify the
future of designing complex systems. This approach has the significant advantage of
streamlining the development process and expediting the adoption and enhancement

of similar systems in the future.

It is essential to highlight that MBSE greatly reduces the management effort
required for many aspects of the design. However, it is important to note that while

104 Conclusions and Next Steps

MBSE is highly beneficial, it cannot completely replace the traditional document-
based approach in certain aspects of the design process. Combining these approaches

can lead to more comprehensive and efficient system development.

* On one hand, it offers the tools and terminology to represent the multitude of
relationships that arise between elements within a system, particularly as the
system becomes more complex. However, on the other hand, there are certain

aspects where it may have limitations or challenges.

* MBSE establishes a structured framework for the system, but it may lack the
intuitive understanding of design choices, presenting a significant limitation
to the MBSE paradigm. Despite the modeling capabilities, this approach
still necessitates the use of traditional documents to fully comprehend the

innovative aspects of the project.

Flexibility plays a crucial role in our architecture, considering standardization as
a fundamental requirement. This approach allows seamless interaction with various

on-board peripherals without imposing rigid implementation choices.

In fact, the devised architecture emphasizes modularity and flexibility as its
defining features, transforming the REFA into a valuable tool rather than a limiting
constraint. Each architectural component was conceived as an independent element
capable of serving the architecture’s objectives. This achievement was made possible
by leveraging the advancements of technologies already prevalent in the market, and

described in the previous chapters.

The technology survey revealed promising opportunities for cross-fertilisation
between technologies intended for different architectural areas. For instance, the MO
Services integrated seamlessly with the SAVOIR-OSRA environment, just like the
Protobuf/GRPC, which significantly reduces overhead related to code re-utilization

efforts.

By placing the framework service layer in charge of service-specific domains, the
system properties necessary for orchestrating the traffic have been preserved. This
approach ensures that the information is accessible to the ground while also allowing
room for expanding the service families to be incorporated into the model, as well as

accommodating additional components to run on the service layer without obstacle.

5.2 Next Steps 105

Consequently, the architectural structure, which features a layered schema with
components operating atop a shared service layer, has significantly improved modu-
larity and segregation among its constituent elements. This design choice has not
only simplified the adoption process but has also made the system scalable and

manageable.

5.2 Next Steps

Despite the accomplishments made in recent years, the present work represents only
the initial phase of what could be a potentially extensive process of collaboration

and cross-contamination.

Although the project has made considerable efforts to address numerous areas,
the focus on comprehensiveness has, in turn, affected the level of refinement achieved

in certain areas.

The proposed Framework already provides a strong foundation on which further
development can be built. By adding new services and expanding the range of func-
tionalities, this process becomes nearly effortless due to the high level of modularity
embraced in the design. However, it is important to note that a comprehensive family
of Monitoring and Control (M&C) services still requires further refinement to align

seamlessly with the architecture design drivers.

Further development in the framework domain shall start from existing MO
services and porting them to the simpler and modular specification provided in the
present document, up to complete at least the whole family of Monitor and control,

services [6].

Indeed, while the developed data models show promise, they currently lack the
necessary sophistication to handle the full orchestration of operational activities.
This limitation is not due to neglecting certain areas but rather reflects the need for
further refinement to effectively manage the diverse scenarios that may arise during
operations. Enhancements are required to create a comprehensive solution capable

of accommodating the complexities and variability inherent in operational scenarios.

The strict separation between the data models and the communicating compo-
nents, a fundamental aspect of the REFA paradigm, should be preserved in the future

development stages of the architecture.

106 Conclusions and Next Steps

In conclusion, the author expresses hope that the devised software architecture
is just the initial step of a fruitful cooperative journey, contributing to the ongoing

efforts in the challenging environment of small satellite software development.

References

[1] MC Working Group. CCSDS 520.0-G-3, Mission Operations Services Concept.
Consultative Committee for Space Data Systems (CCSDS), December, 2010.

[2] ESA. https://essr.esa.int/project/osra-onboard-software-reference-architecture,
November, 2021.

[3] D. H. Chang J. C. Jensen and E. A. Lee. A model-based design methodology
for cyber-physical systems, 2011.

[4] NASA. https://cfs.gsfc.nasa.gov/, June, 2021.

[5S] MC Working Group. CCSDS 521.1-B-1, Mission Operations Common Object
Model. Consultative Committee for Space Data Systems (CCSDS), February,
2014.

[6] MC Working Group. CCSDS 522.1-B-1, Mission Operations Monitor Control
Services. Consultative Committee for Space Data Systems (CCSDS), October,
2017.

[7] European Cooperation for Space Standardisation (ECSS). ECSS-E-ST-70-41C
- Telemetry and telecommand packet utilization. Aprile, 2016.

[8] MC Working Group. CCSDS 133.0-B-2, Space Packet Protocol. Consultative
Committee for Space Data Systems (CCSDS), June, 2020.

[9] MC Working Group. CCSDS 520.1-M-1, Mission Operations Reference Model.
Consultative Committee for Space Data Systems (CCSDS), July, 2010.

[10] CCSDS 850.0-G-2, Spacecraft Onboard Interface Services.
[11] CCSDS 910.3-G-3, Cross Support Concept — Part 1: Space Link Extension.

[12] Cal Poly SLO The CubeSat Program. Cubesat design specification, rev 13.
page 42, 2014.

[13] James R Wertz, David F Everett, and Jeffery J Puschell. Space mission engi-
neering: the new SMAD. Microcosm Press, 2018.

[14] OHB Systems Bright Ascension, RHEA. CCSDS MO Services, CCSDS SOIS,
and SAVOIR for Future Spacecraft: Final Report. Reserved Document, 2011.

108 References

[15] https://directory.eoportal.org/web/eoportal/satellite-missions/c-
missions/CubeSat-launch-1 EOPORTAL. Cubesat - launch 1. Accessed:
Sept-2020.

[16] C. Turner J. Puig-Suari and W. Ahlgren. Development of the standard cubesat
deployer and a cubesat class
npicosatellite. In IEEE Aerosp. Conf. Proc.(Cat. No.0OITH8542), vol. 1, pages
347-351, 2001.

[17] J. Bouwmeester and J. Guo. Survey of worldwide pico- and nanosatellite
missions, distributions and subsystem technology. In Acta Astronaut., vol. 67,
no. 7, pages 854-862, 2010.

[18] A. J. Ricco K. Woellert, P. Ehrenfreund and H. Hertzfeld. Cubesats: Cost-
effective science and technology platforms for emerging and developing nations.
In Adv. Sp. Res., vol. 47, no. 4, pages 663—684, 2011.

[19] Laura Niles. Largest flock of earth-imaging
satellites launch into orbit from iss. In
http://www.spacedaily.com/reports/Largestrlock, fgarthymagingsatellitesyaunchintoorbitprom;SS
Aug —2020.

[20] J. Bouwmeester B. Zandbergen E. Gill, P. Sundaramoorthy and R. Reinhard.
Formation flying within a constellation of nano-satellites: The gb50 mission.
In Acta Astronaut., vol. 82, no. 1, pages 110-117, 2013.

[21] D. Blaney R. Staehle and H. Hemmati. Interplanetary cubesats: Opening the
solar system to a broad community at lower cost. In CubeSat Dev. ..., vol. 2,
no. 1, pages 1-30, 2011.

[22] F. Cabral S. Ilsen F. De Wispelaere K. Mellab B. Garcia Gutierrez M. Kuppers
J. Naudet, A. Pellacani and I. Carnelli. Aim: A small satellite interplanetary
mission. In 4S Symposium, 2016.

[23] A. Klesh J. Schoolcraft and T. Werne. Marco: Interplanetary mission develop-
ment on a cubesat. In ATAA SpaceOps Conference, pages 1-8, 2016.

[24] J. H. Saleh G. E. Dubos, J. Castet. Statistical reliability analysis of satellites by
mass category: does spacecraft size matter? In Acta Astronautica, vol. 67(1-2),
pages 584-595, 2010.

[25] D. Verma R. Nilchiani E. Hole R. Cloutier, G. Muller and M. Bone. The
concept of referece architectures. In Wiley Interscience, Hoboken, New Jersey,
2008.

[26] M. W. Maier and E. Rechtin. The art of systems architecting. In Boca Raton,
Florida: CRC Press, 2009.

[27] Chantal Cappelletti, Simone Battistini, and Benjamin Malphrus. Cubesat
handbook: From mission design to operations. Academic Press, 2020.

References 109

[28] John Bowen, Al Tsuda, John Abel, and Marco Villa. Cubesat proximity
operations demonstration (cpod) mission update. In 2015 IEEE Aerospace
Conference, pages 1-8. IEEE, 2015.

[29] ESA. https://www.esa.int/esa/enabling support/space engineering technolo-
gy/shaping the future, 2016.

[30] David McComas. Nasa/gsfc’s flight software core flight system. In Flight
Software WorkshopFlight Workshop, number GSFC. CPR. 7525.2013, 2012.

[31] Charles P Wildermann. cfe/cfs (core flight executive/core flight system). In
Flight Software Workshop 2008, 2008.

[32] Alan Cudmore. Nasa/gsfc’s flight software architecture: core flight executive
and core flight system. In NASA Flight Software Workshop, 2008.

[33] David McComas, Susanne Strege, and Jonathan Wilmot. Core flight system
(cfs) a low cost solution for smallsats. In Annual Small Satellite Conference,
number GSFC-E-DAA-TN25822, 2015.

[34] David McComas. Nasa/gsfcs flight software core flight system community. In
Flight Software Workshop, volume 12, 2014.

[35] Space Avionics Open Interface Architecture.
https://savoir.estec.esa.int/savoirdocuments.htm, November, 2021.

[36] SAVOIR-TN-002 Onboard Software Reference Architecture.

[37] Jan Sommer, Raghuraj Tarikere Phaniraja Setty, Olaf Maibaum, Andrea Gerndt,
and Daniel Liidtke. Evaluation and development of the osra interaction layer
for inter-component communication. In 2019 IEEE Aerospace Conference,
pages 1-12. IEEE, 2019.

[38] SAVOIR-GS-005 Execution Platform Functional Specification.
[39] SAVOIR-TN-001 SAVOIR Functional Reference Architecture.
[40] SAVOIR-TN-003 SAVOIR Model Based Avionics Roadmap.

[41] César Coelho, Mario Merri, Otto Koudelka, and Mehran Sarkarati. Ops-sat

experiments’ software management with the nanosat mo framework. In ATAA
SPACE 2016, page 5301. 2016.

[42] MC Working Group. CCSDS 524.2-B-1, Mission Operations—Message Ab-
straction Layer Binding to TCP/IP Transport and Split Binary Encoding. Con-
sultative Committee for Space Data Systems (CCSDS), November, 2017.

[43] MC Working Group. CCSDS 521.0-B-2, Mission Operations Message Abstrac-
tion Layer. Consultative Committee for Space Data Systems (CCSDS), March,
2013.

110 References

[44] Stefan Girtner, Jens H Hartung, and Michael Wendler. Implementation of
ccsds mission operations services at the german space operations center. In
SpaceOps 2014 Conference, page 1869, 2014.

[45] Mario Merri, Bryan Melton, Serge Valera, and Andrew Parkes. The ecss packet
utilization standard and its support tool. In SpaceOps 2002 Conference, page 06,
2002.

[46] M Schmidt. The ecss standard on space segment operability. In Space OPS
2004 Conference, page 504, 2004.

[47] Ignacio Clerigo, Andrea Accomazzo, Peter Collins, Nic Mardle, Elsa Mon-
tagnon, Jose-M Morales-Santiago, and Ignacio Tanco. One standard to rule
them all: the tailoring of pus-c for future esa missions. In 2018 SpaceOps
Conference, page 2399, 2018.

[48] Andreas Jung. Introduction to mo services, sois and savoir harmonisation
[moss] study, October, 2015.

[49] A. Wortmann A. Jung M. Sarkarati P. Mendham, S. Reid. Mo services, sois
and savoir harmonisation: project status, 2015.

[50] OHB Systems Bright Ascension, RHEA. CCSDS MO Services, CCSDS SOIS,
and SAVOIR for Future Spacecraft: Consolidated Architecture. Reserved
Document, 2011.

[51] OHB Systems Bright Ascension, RHEA. CCSDS MO Services, CCSDS SOIS,
and SAVOIR for Future Spacecraft: User Needs and High-Level Requirements.
Reserved Document, 2011.

[52] OHB Systems Bright Ascension, RHEA. CCSDS MO Services, CCSDS SOIS,
and SAVOIR for Future Spacecraft: Prototype User Manual. Reserved Docu-
ment, 2011.

[53] OHB Systems Bright Ascension, RHEA. CCSDS MO Services, CCSDS SOIS,
and SAVOIR for Future Spacecraft: Prototype Detailed Design. Reserved
Document, 2011.

[54] Kubos. https://docs.kubos.com/1.2.0/apis/libcsp/index.html, 2017.
[55] GomSpace. Cubesat space protocol (csp), June, 2011.

[56] A. Moore M. Hause. The sysml modelling language, September 2006.
[57] Docker Inc. https://docs.docker.com/get-started/overview/, 2023.

[58] Google LLC. https://protobuf.dev/, 2022.

[59] The ZeroMQ Authors. https://zeromq.org/, 2022.

References 111

[60] A. Cornacchia R. Tuninato A. Arcieri F. Stesina S. Corpino L. M. Gagliardini,

G. Maiolini Capez. An academic ground station as a service (gsaas) devoted to
cubesats. ESA TTC 2022.

[61] A. Martin T. Combe and R. Di Pietro. To docker or not to docker: A security
perspective. IEEE Cloud Computing, vol. 3, no. 5:54—62, October, 2016.

[62] http://gpredict.oz9aec.net/. Gpredict. Accessed: Oct-2020.

113

Appendix A

Questionnaire

Which is the main focus of your
company/organisation in

CubeSats domain?

Cubesat OBSW developer

Cubesat OBSW developer

Complete Cubesat project imple-

menter

Research, Education

Downstream services provider

Cubesat Operator

Is your company/organisation

Business/Revenue driven

Public Organisation/Educational

Company Size

< 5 employees

5-10 employees

10-20 employees

> 20 employees

Where is your company/organisa-

tion based?

<Open Answer>

Number of CubeSat projects already involved with

1

<5

5-10

> 10

Yearly company turn-over in CubeSats domain

<200KEuros

200 - 500 KEuros

500 - 1000 KEuros

> 1000 KEuros

Are you already involved in one of ESA CubeSat projects?

No

No, but we would like to

Yes, as consultant

Yes, as sub-contractor

Yes, as prime contractor

114

Questionnaire

Are you familiar with the following Standards

CCSDS Space Packet Protocol

CCSDS Mission Operations Ser-

vices

CCSDS SOISCCSDS Mission

Operations Services

CCSDS SLE

ECSS PUS

SAVOIR-FAIRE - OBSW Refer-

ence Architecture

Have you used any of the
above standards in your CubeSat

projects

<Open Answer>

Do you apply "a” / "your own’
Reference Architecture in your

CubeSats projects

Yes / No

If yes, at what level

at communication protocol level

at operational concept level

at software interfaces level

Reference Architecture at hard-

ware interfaces level

Would a CubeSat REFA bring value and facilitate

your business model

Yes, if it is at on-board communi-

cations protocol level

Yes, if it is extended at device

interfaces level in form of APIs

Yes, if it encompasses also the
composition of functional com-
ponents on-board and on the

ground

Yes, if it is at hardware mechani-

cal interfaces level

Yes, help in research or in stu-
dent recruitment or in academic

purposes

Yes, if it is at space to ground
interface level

115

How far shall a CubeSat REFA go?

Market Place with competitive
vendors offering compliant and
competing implementations of el-
ements of the REFA

High Level Architectural Design
- Paper Only

Open-Source Reference Imple-
mentation of the core elements
of the REFA (As reference not
mandatory to take)

Tools for auto-generation of code

How urgent is the introduction of a common REFA

to your organisation?

Short term need (within next 2

years)

Mid-term need (within next 5

years)

Long term need (within next 10

years)

Not required
Would you Tike to be directly in-
volved in the specification of a Yes / No

REFA for CubeSats

Appendix B

Client & Provider

117

(()uni)uni-oroukse ST

L, urew T == " oweu JI v

(osuodsor)jurxd €T

1(19yoed uonoylrwqns) uoIIdyirwqgns - qnis-9oI1AIaSuorjoe ul asuodsor I10j oukse (44

(s3ie 12

‘ pruonoe 0¢

fuoIssas 61

¢ pruorioesuelr) 81

¢ 1oa974K)11011d)39yoedTuonoylirwqns 3onIjsuod C yiuouodwoo = joyoed uornoylrwgns L1

([PUUBYD T 9OTAIOSUOI}OR) QN)ISAITAIOSUOTIOY " 0d1877qd 101d1I0SOP~90TAIQSUOIIOE = QN)S QDIAIOSUOI)OR 91
IJoUURBYO T 90IAIOGUOIIOR SB (()SSQIPPRT90IAIOSUOI}OE)93 " yiuouodwod) [ouueyd~oIndoasur - ore odi3 yjim oukse S1
IQUON <— ()unl jJop oukse i

7 = UOISsas €1

00C = plruomndesuen Cl

1 = [9A97K111011d 11

[sppyuownsgie ¢ son[eAjuowngie] = s3ie 6

[+ ‘7] = spppuawngie S

[¢ ‘1] = sonjepjuownsgie L

0S¢l = pluonoe 9

() viusuodwo) = wyiusuodwood S

viuouodwo) jrodwr uorjeorjroads” yiuouodwood suorjein3rjuod woly ¥

odi87zqd 103driosap~ooraraguorjoe se odiSTzqdTirojdriosapTooraraguoroe - gqd - s10)onijsuod - suorjeingryuod jroduwr ¢
0di3 j1odur z

oroufkse jrodwr 1

Ad-yuarp)

Client & Provider

118

SY0QoUO UOIINJIX9 JO PpUIY AUt WIOJIOJ#

Jsuodsor ploIk

((oni1g,
¢ pIpuewIwIod

‘19peoy uonoe)loyoed ooueidoooyAirarnoe 3198 "juouodwo)siy)~~ - jros)woirjhdo) - asuodsal

()19yoed SuryoraK11an}oy - gqd-1oidraosop SuryorrK1ta1ioe = asuodsal

ooueidoooe joyoed uInjoIr pue sSYO09Yd Jo pury Aue WIOJIdJ#

7 = 1uno)uoIINoaxd
(A3111UQpPJUOIIO® " S[IB]O QOUBISUJUOIIOR " UOIJO®) IS = P[PUBWIUIOD
()ruouodwoDsiy], = juduodwo)SIyly~ "~ - J[os
(uomnyoe)jurad
10)d110Sop~I9pRAY " UOIIO® = JOPBAY UOI)O®

119yoed T SuryorILAITAIIOY <— (1X2)UO0DIA0IAIXG "orle 2di3 :31Xx9jU0d

\\ ¢ S[IB)O QOUBISUJUOI}OY :UOIIDE ‘ J[3S)UONOyIIWqns Jop OJukse

:(JOOTIAIQOGODIAIOSUOIIOY) IQAIIS 9DIAIOQUOI)IY SSB[D

zqd~103driosop~SuryoriAjrarioe se gqd - ioldriosop Suryoei[Alrarioe -gqd- siojoniisuood - suorjerndijuod jroduwr

joyord SuryorrA1ranoy 1rodwr gqd~ioidrrosop SuryoevrA311A11oe " 7qd $10)0NIISUOD " SUOIIBINSIJUOD WOIJ

juouodwo)siyy, 31odwr juouodwoosty) - jusuodwodsiyl - suorjeInsrjuod wolij

IOAJIOST0) I90TAIASQAdTAIdSUOTIOY ppe Jrodwr odiS~gqd~1o)driosap~oeoraroguorioe "gqd sI10)JONI}SUOD " SUOTIBINSIJUOD wWOIJ

s{rejaeoueisujuonoy 3jrodwr gqd-iojdrroseopTooraraguor)oe gqd s10)JoNnI)}SU0D " SUOTIBINSIJUOD WO

I1901A1I9G§901A13SUuO01)0Yy J1odwr odiS~zqd 10jdriosap~ooraraguoroe - gqd s10)0nI1jsuod " suorjeinSrjuod woij

0di3 j1odur

oroufkse jrodwr

0¢
61
81
L1
91

Sl
14!

el
4!
I

o
—

— AN N < VO >~ 0

Ad-xapraoag

119

(()9Alas)uni- oroukse

Turew == " oweu JI

tu

()uomneuIwWId) " I0J JTBM " IQAIJS JIBME
()31IB)S "IOAIIS JIRME
(() SSQIpPpPeB I9AI9S 201A19S§UOI}OR 198 "Juouodwo)siyl)1rod oInodsur ppe - I9AI3S
()ruouodwo)siy], = jusuodwo)siyl
(J9AIIS ‘() IOAIIST QJIAIISUOIIOY)IQAIIS 0] IJQDIAIJISIDIAIISUOIIDY ppe
() 1oA19s "ore - odi3 = 10AI9S
IQUON <— () 9AI3S Jop ouAhse

dsuodsa1r po1k
((1unopuornoaxa
‘C
‘asieq
‘ pIpuBwWIIOD

‘1apeay uonoe)ioyoed uorinoaxgAiraroe 198 juouodwo)siyr~ c jos)woirjAdo) - asuodsai

T UO0IINO9X9 UM U0 OD#

osuodsor plorik
((1uno)HuUoOIINOIX?
‘1
‘aniy,
‘ pIpuewIwIod

‘1opeay_uonoe)ioyoed uorinoaxgAiraroe 1938 juouodwo)siyr~ - jos)worjAdo) - asuodsaa

w
84

oy
6¢
8¢
Le
9¢
33
143

%3
[43
83
(013
6¢
8¢

LT
9¢
4
ye
€C
(44

Appendix C

Framework Packets

Request Packet

header_descriptor {
component_descriptor {
URI_From ({
_URI_From: "127.0.0.1"
}
URI_To {
_URI_To: "127.0.0.5"
}
domain {
_domain: 1
}
networkZone {
_networkZone: 1

1
service_descriptor {
service {
_service: "5010"
1
qoslevel {
_qoslevel: 1
1
serviceArea {
_serviceArea: 1
1
areaVersion {
_areaVersion: 1

}

operation_descriptor {

121

operation {
_operation: 1

}

interactionType {
_interactionType: "submit"

session_descriptor {
session {
_session: 2

}

interactionStage {
}

isErrorMessage {

}

1
realTime_descriptor {
timeStamp {
_timeStamp {
seconds: 1675864879
nanos: 315421000

}

priorityLevel {
_priorityLevel: 1

}

transactionld {
_transactionId: 200

}

actionInstanceDetails {
actionldentity: 150
argumentValues: 1
argumentValues: 3
argumentlds: 2
argumentlds: 4

Acceptance Acknowledment Packet

commandAccetance_packet {
header_descriptor {
component_descriptor {
URI_From {
_URI_From: "127.0.0.5"
}
URI_To {
_URI_To: "127.0.0.1"

122 Framework Packets

domain {
_domain: 1

1

networkZone {
_networkZone: 1

}
service_descriptor {
service {
_service: "5010"
}
qoslevel {
_qoslevel: 1
}
serviceArea {
_serviceArea: 1
}
areaVersion {
_areaVersion: 1

}
operation_descriptor {
operation {
_operation: 1
}
interactionType {
_interactionType: "submit"

session_descriptor {
session {
_session: 2

}

interactionStage {
}

isErrorMessage {

}

}
realTime_descriptor {
timeStamp {
_timeStamp {
seconds: 1675864879
nanos: 317146000

}

priorityLevel {
_priorityLevel: 1

}

transactionld {
_transactionlId: 200

}

traceability_descriptor {

123

service_traceability {
service {
_service: "5010"
}
serviceArea {
_serviceArea: 1
}
areaVersion {
_areaVersion: 1
}
operation {
_operation: 1
}
interactionType {
_interactionType: "submit"
}
interactionStage {
}
}
instance_traceability {
transactionld {
_transactionlId: 200
}
URI_From {
_URI_From: "127.0.0.1"
}
URI_To {
_URI_To: "127.0.0.5"
}
timeStamp {
_timeStamp {
seconds: 1675864879
nanos: 315421000

}
domain {
_domain: 1

}

acceptancePayload {
commandId: "150"

commandSuccess: true

Execution Acknowledment Packet #1

commandExecution_packet {

124 Framework Packets

header_descriptor {
component_descriptor {
URI_From {
_URI_From: "127.0.0.5"
}
URI_To {
_URI_To: "127.0.0.1"
}
domain {
_domain: 1
}
networkZone {
_networkZone: 1

}

service_descriptor {

service {
_service: "5010"

1

qoslevel {
_qoslevel: 1

1

serviceArea {
_serviceArea: 1

1

areaVersion {
_areaVersion: 1

}
operation_descriptor {
operation {
_operation: 1
}
interactionType {
_interactionType: "submit"

}

session_descriptor {
session {
_session: 2
}
interactionStage {
_interactionStage: 1
}
isErrorMessage {
}
1

realTime_descriptor {
timeStamp {
_timeStamp {
seconds: 1675864879
nanos: 317570000

125

priorityLevel {
_priorityLevel: 1

}

transactionld {
_transactionlId: 200

}
traceability_descriptor {
service_traceability {
service {
_service: "5010"
}
serviceArea {
_serviceArea: 1
}
areaVersion {
_areaVersion: 1
}
operation {
_operation: 1
}

interactionType {

_interactionType: "submit"

}
interactionStage {
}
}
instance_traceability {
transactionld {
_transactionId: 200

}
URI_From {
_URI_From: "127.0.0.1"
}
URI_To {
_URI_To: "127.0.0.5"
}

timeStamp {
_timeStamp {

seconds: 1675864879

nanos: 315421000

}
domain {
_domain: 1

}

executionPayload {
commandId: "150"
commandSuccess: true
executionStage: 1
executionCount: 2

126

Framework Packets

Execution Acknowledment Packet #2

commandExecution_packet {
header_descriptor {
component_descriptor {
URI_From {

_URI_From: "127.0.0.5"

}
URI_To {

_URI_To: "127.0.0.1"

}

domain {
_domain: 1

1

networkZone {
_networkZone: 1

}
service_descriptor {
service {
_service: "5010"
}
qoslevel {
_qoslevel: 1
}
serviceArea {
_serviceArea: 1
}
areaVersion {
_areaVersion: 1

}
operation_descriptor {
operation {
_operation: 1
}
interactionType {
_interactionType:

}
session_descriptor {
session {
_session: 2
}
interactionStage {
_interactionStage:

"submit

2

127

}

}
isErrorMessage {
_isErrorMessage:

realTime_descriptor {

}

timeStamp {
_timeStamp {

true

seconds: 1675864879
nanos: 317812000

}

priorityLevel {
_priorityLevel: 1

}

transactionId {

_transactionlId: 200

traceability_descriptor {

service_traceability {

}

service {
_service: "5010"

1

serviceArea {
_serviceArea: 1

1

areaVersion {
_areaVersion: 1

1

operation {
_operation: 1

1

interactionType {
_interactionType:

1

interactionStage {

}

"submit"

instance_traceability {

transactionld {

_transactionlId: 200

}
URI_From {
_URI_From: "127.0.0.1"
1
URI_To {
_URI_To: "127.0.0.5"
1

timeStamp {
_timeStamp {

seconds: 1675864879
nanos: 315421000

128 Framework Packets

}
domain {
_domain: 1

}

executionPayload {
commandId: "150"
executionStage: 2
executionCount: 2

	Contents
	List of Figures
	List of Tables
	Introduction
	1 Literature Review
	1.1 Cubesats
	1.2 Ground and Space Segments
	1.3 Industry and Academia
	1.4 Reference Architecture

	2 Market Investigation
	2.1 Research Questions and Objectives
	2.1.1 Research Questions
	2.1.2 Research Objectives

	2.2 Software Architectures and Standards Survey
	2.2.1 Survey Scope
	2.2.2 core Flight System
	2.2.3 SAVOIR OSRA
	2.2.4 CCSDS Mission Operations
	2.2.5 ECSS Packet Utilisation Standard
	2.2.6 MOSS

	2.3 Market Polling
	2.3.1 Statistics
	2.3.2 Results

	3 Architecture Design
	3.1 Requirements Derivation
	3.1.1 Pros & Cons
	3.1.2 Harmonised Architecture

	3.2 Design Methodology
	3.2.1 Model Based System Engineering

	3.3 Framework
	3.3.1 Data Representation
	3.3.2 Data Classification
	3.3.3 Data Traceability
	3.3.4 Data Orchestration

	3.4 Data Models
	3.4.1 Command Router
	3.4.2 Telemetry Output
	3.4.3 Autonomous Events Response
	3.4.4 Generic Component Model
	3.4.5 Components

	4 Proof of Concept
	4.1 Prototyping
	4.1.1 Functional Modularity
	4.1.2 Component Addressing
	4.1.3 Autonomous Packet Delivery

	4.2 Deployment
	4.2.1 Network Management and Resources Segregation
	4.2.2 Communication Patterns

	4.3 Validation
	4.3.1 Framework Validation
	4.3.2 Ground Components Validation

	5 Conclusions and Next Steps
	5.1 Conclusions
	5.2 Next Steps

	References
	Appendix A Questionnaire
	Appendix B Client & Provider
	Appendix C Framework Packets

