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Abstract

This doctoral thesis discusses the design and implementation of a series of assistive
solutions developed in the context of the digital transformation of the healthcare
sector. Digital transformation in healthcare represents a highly relevant topic in the
current socio-healthcare context. This process involves the adoption and integration
of the enabling technologies derived from the fourth industrial revolution to improve
the efficiency, accessibility, and quality of healthcare services. For this reason, it
is often referred to as Health 4.0. Among the main challenges addressed are the
digitalization of clinical data, the implementation of telemedicine systems, the use
of Artificial Intelligence for medical data analysis, the enhancement of clinical
treatments, and the security of healthcare information.

In the era of Health 4.0, where digital technologies revolutionize healthcare,
metrology is pivotal. As a matter of fact, the integration of metrology with Health
4.0 technologies, including Artificial Intelligence (AI), Internet of Things (IoT), and
Augmented Reality (AR), enhances precision in measurements, ensures data accu-
racy, and contributes to the reliability of advanced healthcare systems. It provides
a foundational framework for calibration, quality assurance, and standardized mea-
surements, fostering the seamless convergence of digital innovations in healthcare.

Going into the details of this work, the first Chapter briefly provides a historical
overview of the four industrial revolutions that have marked the past centuries. Sub-
sequently, particular attention is devoted to the introduction of enabling technologies
of the 4.0 paradigm, such as Augmented Reality, Artificial Intelligence, and the
Internet of Things. The Chapter concludes by explaining how the principles underly-
ing the fourth industrial revolution can also be applied in other contexts, including
healthcare, demonstrating new declinations and their respective benefits with respect
to traditional practices.
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Subsequently, this doctoral thesis elucidates the aforementioned assistive solu-
tions. Chapter 2 focuses on the development of Brain-Computer Interfaces based
on Steady-State Visually Evoked Potentials induced through Augmented Reality
technology, aiming to create highly wearable and portable systems not confined to
laboratory settings. In a nutshell, Brain-Computer Interfaces are an integration of
hardware and software systems that establish a direct communication path between
users and external devices. After a metrological analysis of the performance of
the developed systems, two illustrative application scenarios are briefly presented,
demonstrating the efficacy and potential of such systems. The first scenario de-
lineates a hands-free interaction mode within an operating room by the medical
team. This mode facilitates the monitoring of both the patient and their health status
through augmented reality visualization of vital parameters. The second scenario
highlights an innovative therapy approach for school-age patients with attention or
learning disorders. In both cases, the developed system exhibits capabilities that
surpass traditional systems.

Chapter 3 describes the development of a patient monitoring system in the oper-
ating room based on Augmented Reality. Traditionally, the medical team is divided
between monitoring the patient’s vital parameters displayed on the electromedical
instrumentation monitors and those who directly operate on the patient. Sometimes,
the shortage of medical staff necessitates performing both tasks, occasionally risking
distraction and an inability to respond promptly in case of deteriorating patient health
conditions. For this reason, the developed system aims to display the patient’s vital
parameters in real-time through augmented reality to the medical team, ensuring
that the operators do not lose sight of the patient and can act promptly in case of
danger. In this case as well, a metrological characterization of the system has en-
abled an understanding of its performance in terms of communication accuracy and
latency, demonstrating how such a system can be effective and efficient compared to
traditional practices.

Chapter 4, finally, describes the development of two clinical decision support
systems. In brief, a decision support system is a system that, based on collected data,
provides real-time objective information to the medical specialist. Systems of this
kind find application especially in contexts where decisions are made based on the
experience of the medical specialist. In this thesis work, two systems are presented.
The first system concerns the evaluation of the effectiveness of scoliosis braces.
Specifically, the system is based on the acquisition and processing of thermal images
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of the patients’ backs collected through infrared thermography instrumentation. The
temperature difference measured between different areas of the patient’s back is
caused by the varying pressure exerted by the brace in different back zones. The
system can provide a statistically-based result regarding the correctness of the applied
pressure and, therefore, the effectiveness of the brace, thus avoiding frequent X-ray
prescriptions, which can be harmful to the patient.
The second system, on the other hand, relates to the assessment of perfusion quality
in the field of laparoscopic surgery: following an intervention in the intestinal tract,
it is crucial to know the quality of perfusion to determine whether it is necessary to
intervene again on the patient or not. The proposed system takes input from the video
streaming from the endoscope that analyzes the relevant intestinal tract. Subsequently,
image processing allows for a statistical understanding of perfusion quality, providing
the physician with objective support, especially in cases where making a decision
through simple visual inspection, as traditionally done, is challenging.

All the systems presented have been meticulously designed and developed, taking
into consideration the stringent requirements of the healthcare sector. For this reason,
appropriate metrological characterizations of the functional components have been
conducted to assess the performance of the systems in anticipation of their future
utilization in everyday healthcare practices
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Chapter 1

The Fourth Industrial Revolution

The first Chapter of this Dissertation describes the Fourth Industrial Revolution, also
known as 4.0 Revolution or Digital Trasformation. Then, after the description of
the 4.0 enabling technologies, the manuscript focuses on the transition from the
industrial to the healthcare application context.

1.1 A bit of history

Over the centuries the world has witnessed four industrial revolutions, the last of
which is still ongoing [8].

The First Industrial Revolution, spanning from the latter part of the 18th century
to the early 19th century, denoted a noteworthy change in manufacturing methods
and shifts within society. This transformation was marked by the mechanization
of manufacturing via the inception of steam propulsion and the evolution of novel
apparatus. The utilization of steam engines facilitated the substitution of manual toil
with mechanisms, consequently fostering elevated efficiency and the emergence of
industrial plants. Among the fields that encountered profound alterations during this
phase, the textile domain stood out, benefiting from innovations like the spinning
jenny and power loom, which fundamentally reshaped textile fabrication [9].

The Second Industrial Revolution, extending from the mid-19th to the initial
period of the 20th century, ushered in additional progress primarily propelled by the
introduction of electricity, the expansion of railway networks, and the maturation of
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telegraphy and telephony. These technological breakthroughs expedited the swift
expansion of sectors such as steel, chemicals, and petroleum. The adoption of
assembly lines and techniques for mass production, as epitomized by Henry Ford’s
implementation of the progressive assembly line in the automobile realm, contributed
to heightened efficacy and reduced manufacturing expenses. This epoch was equally
defined by scientific revelations and innovations, encompassing the formulation of
the laws of thermodynamics and the refinement of internal combustion engines [10].

The Third Industrial Revolution, often referred to as the Digital Revolution,
emerged in the latter half of the 20th century with the advent of electronics, comput-
ers, and the internet. This revolution witnessed the automation of various processes,
the miniaturization of electronic components, and the integration of computer sys-
tems into industrial processes. Key developments during this period include the
invention of the transistor, the development of integrated circuits, and the establish-
ment of computer networks. The widespread adoption of computers and the internet
revolutionized communication, information sharing, and data processing, laying the
foundation for the knowledge-based economy [11]. This transformation of produc-
tion processes and the evolution of the manufacturing industry made possible the
development of the Information and Communication Technology (ICT) field, which
refers to a broad and dynamic field that encompasses technologies, services, and
systems related to the gathering, processing, storage, transmission, and presentation
of information. It includes both hardware and software components and plays a
pivotal role in modern society and the global economy. The ICT sector is responsible
for driving technological innovation, facilitating communication, and enabling the
current digital transformation in various frameworks.

The Fourth Industrial Revolution, a term coined by Klaus Schwab and also
acknowledged as Industry 4.0 or the Digital Transformation era, constitutes the
ongoing phase of transformation wherein digital technologies are converging with
physical frameworks, resulting in the development of the cyber-physical realm. This
revolution is distinguished by the convergence of the key enabling technologies,
such as the Internet of Things (IoT), Artificial Intelligence (AI), Big Data Analytics,
Robotics, Additive Manufacturing, Cloud Computing, and Augmented Reality (AR).
The interlinking of devices and systems permits the instantaneous accumulation of
data, its analysis, and the process of decision formulation. Industry 4.0 endeavors
to establish intelligent and adaptable production systems capable of accommodat-
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ing evolving requisites, thereby facilitating tailored and effective manufacturing
procedures [12].

For the sake of comprehensiveness, Fig. 1.1 shows a graphical representation
of the four industrial revolutions, while in the following Section, further details
regarding the key 4.0 enabling technologies will be provided.

Fig. 1.1 Sketch of the four industrial revolutions. Image taken from [1].

1.2 The 4.0 enabling technologies

Industry 4.0 isn’t defined by a singular technology; instead, it represents a collection
of various technological elements that are effectively combined by leaders in tech-
nology, influential users, integrators of systems, and policymakers in governance
[13]. More in detail, the technologies are:

• Internet of Things (IoT): IoT includes devices with self-identification capabili-
ties (localization, status diagnosis, data acquisition, processing, and execution)
linked through standard communication protocols. Such technologies find use
in 4.0 manufacturing scenarios and various other domains (housing and con-
struction, automotive, environment, smart city, agriculture, etc.). Regarding
Industry 4.0, IoT implementations pertain to what’s often referred to as the
industrial Internet.
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• Big Data Analytics: it involves techniques and instruments for managing exten-
sive data quantities in manufacturing, supply chain control, and maintenance.
Data can originate from IoT systems linked to the production layer (such as
sensors and related apparatus) or from interactions between IT systems for
production and warehouse management. Distinct applications in this field
encompass machine learning tools for prediction, projection, anticipatory
maintenance, and simulation.

• Cloud Manufacturing: it involves incorporating cloud technologies into man-
ufacturing, offering widespread accessibility and convenient, on-demand IT
services—such as infrastructure, platforms, or applications—to bolster produc-
tion procedures and supply chain control. Cloud manufacturing encompasses
the virtualization of essential physical resources for factory equipment, as well
as application data and processes spanning various platforms, execution, and
collaborative tools, all hosted in the Cloud.

• Robotics: the robotics cluster involves SCARA, Articulated, Cartesian, Dual
Arm, and Co-bots as distinct methods for automating production tasks. So-
phisticated automation encompasses cutting-edge advancements in production
systems, enhancing their capacity to engage with surroundings, self-learn,
provide automatic guidance, and employ vision and pattern recognition.

• Artificial Intelligence (AI): it involves the understanding and methodologies
designed to imbue machines with intelligence, enabling them to operate effec-
tively by anticipating conditions within their application environment. In the
industrial context, AI pertains to computer science-driven technologies that, in
conjunction with machine learning, are applied to create intelligent sensors,
edge computing, and smart production systems."

• Additive Manufacturing: also referred to as 3D Printing, Additive Manufactur-
ing serves various purposes, from prototyping (to aid in product development,
static simulation, wind tunnel testing, etc.), to manufacturing (direct produc-
tion of items), maintenance and repair, as well as modeling stages. The US
International Standard Organization outlines seven categories of additive man-
ufacturing processes: Binder Jetting, Directed Energy Deposition, Material
Extrusion, Material Jetting, Powder Bed Fusion, Sheet Lamination, and Photo
polymerization (according to ISO TC 261, 2011).
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• Augmented Reality (AR): this technology enhances reality by overlaying dig-
ital information and virtual elements onto the physical world. It empowers
users to perceive an enriched environment where real-world surroundings are
augmented with virtual objects, data, or insights. Within the realm of Industry
4.0, AR is harnessed to revolutionize manufacturing processes, supply chain
management, and maintenance. By seamlessly integrating digital informa-
tion into real-world scenarios, AR enhances productivity, collaboration, and
decision-making, enabling businesses to achieve new levels of efficiency and
innovation.

In the following Section, further details about the three technologies most adopted in
this Dissertation will be provided, namely Internet of Things, Articial Intelligence,
and Augmented Reality.

1.2.1 Internet of Things

The concept of IoT emerged during the 1980s at Carnegie Mellon, where a modified
vending machine could report its inventory and signal the coldness of newly loaded
drinks over the Internet. IoT gained popularity in 1999 at the MIT Auto-ID Center
through Radio-frequency identification (RFID) [14, 15]. Correlated concepts were
subsequently introduced by various companies including Olivetti, Xerox, IBM, as
well as universities such as Carnegie Mellon and MIT. Siemens, however, took a sig-
nificant step by introducing a machine-to-machine (M2M) GMS connected system
back in 1995 [16, 17]. Open-source dynamics, as seen in many IT segments, pro-
pelled IoT development, evident from the adoption of the (open source-based) JXYA
standard in 2003 as a universal peer-to-peer connectivity standard for electronic
components. The technology’s diffusion was further accelerated by the introduction
of an affordable, single-board electronic controller in 2005 from the Interaction
Design Institute Ivrea, resulting in the open-source electronics platform Arduino.
This propelled IoT’s relevance for chip manufacturers, sensors producers, gateway
hardware providers, and software and machine developers for IoT platforms. IoT’s
foundational disciplines encompass computer science, communication and informa-
tion technology, and electronics. Key technologies essential for constructing IoT
devices involve semiconductor technologies, the internet, sensor technologies, and
more broadly, microelectromechanical systems. In particular, IoT devices incor-
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porate Bluetooth technologies, low-power battery technologies, laser technologies,
smart camera technologies, smart meters, and energy consumption sensors. Amidst
this diverse assortment of devices and solutions, at least three technological clusters
emerge: devices, software platforms, and gateways along with other networking
elements. Despite IoT technologies still being in an early developmental phase, they
confront an unsettled competitive and technological landscape. Technical challenges
include data exchange among large-scale heterogeneous network elements, adapting
to uncertain information integration and interaction, and service adaptation within
dynamic system environments. Structured data concerning R&D spending in IoT ex-
ist, though specifics about the Industrial IoT (IoT) subsystem are scarce. Investments
in these technologies predominantly come from private companies. Notable investors
include IBM, Google, Samsung, SAP, Dell, Siemens, and Intel [18]. Yet, pinpointing
a definitive technology leader in both devices and platforms proves challenging due
to the vast array of technologies and sectors involved. Intriguingly, the rising interest
of major companies in acquiring IoT capabilities seems to be propelling a wave of
industry consolidation, as evidenced by Google’s acquisition of Nest and CSR, as
well as Qualcomm’s.

1.2.2 Artificial Intelligence

Efforts to automate human intelligence have a relatively extensive history [19],
but the evolution of modern AI (a term coined in 1954 by John McCarthy as the
theme of a Dartmouth conference) is intricately tied to advancements in computing
technologies, alongside recent strides in machine learning and predictive methodolo-
gies. AI encompasses diverse research domains, often blurring precise boundaries.
Nevertheless, its fundamental components include machine learning, deep learning,
natural language processing platforms, predictive application programming inter-
faces (APIs), image recognition, and speech recognition. Global R&D investment in
AI is rapidly escalating, stemming from internal research at major tech corporations’
labs (such as Google and Baidu) as well as VC-funded start-ups, frequently backed
by corporate resources. Investment estimates range between $25 to $35 billion [20].
Of these funds, machine learning garners the most substantial portion. As high-
lighted by Lee et al. [21], AI’s impact on industrial applications has been somewhat
limited thus far. However, industrial AI is rapidly advancing as a structured research
discipline, concentrating on the development, validation, and deployment of depend-
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able machine learning algorithms for industrial contexts [22]. Forecasts predict a
significant surge in demand over the forthcoming years, with early industrial adopters
mainly clustered in finance, banking, retail, and manufacturing sectors. Current
industrial applications primarily center around autonomous robots, digital assistants,
neurocomputers, machine monitoring and control systems, as well as expert systems
such as healthcare decision-making and smart grid management.

1.2.3 Augmented Reality

Augmented Reality (AR) has a rich history of development [23], but its rise to
prominence is closely intertwined with advancements in technology and recent
breakthroughs in interactive interfaces. The origins of AR trace back to early
experiments, but its modern conceptualization can be traced to crucial moments,
including the introduction of wearable displays and interactive systems. The term
Augmented Reality was coined as the technology matured and expanded its potential.
Innovations in computer vision, spatial mapping, and display technologies, coupled
with the rapid growth of mobile devices, transformed AR from a theoretical concept
to a tangible and interactive experience. Today, AR technology finds application
across diverse sectors, from gaming and entertainment to education, healthcare, and
manufacturing. The development of AR software development kits (SDKs) and tools
has enabled developers to create immersive and interactive experiences that blend
digital and physical worlds. The advent of smart glasses and AR-enabled devices
has extended the reach of this technology, making it accessible for users in various
professional and personal scenarios. Augmented Reality’s journey in industrial
contexts has gained traction, with industries such as manufacturing, maintenance,
and training exploring its potential. AR facilitates real-time data visualization,
remote assistance, and interactive training modules. As AR continues to evolve,
researchers and innovators are working to address challenges related to accurate
tracking, seamless integration, and user-friendly interfaces, aiming to unlock AR’s
full potential in revolutionizing how we interact with the world around us. In
terms of R&D investment, Augmented Reality is experiencing growing attention
from both established technology giants and emerging start-ups. Companies like
Microsoft, Apple, Google, and various tech conglomerates have invested heavily in
AR development. The technology’s capabilities are expanding through collaborative
efforts, ecosystem growth, and continuous research into improving its applications
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and user experiences. In essence, Augmented Reality is on a trajectory similar to
AI and IoT, with its development tightly entwined with technological advancements
and a growing understanding of its potential. As it finds its way into mainstream
adoption, AR holds the promise to reshape industries, enhance user experiences, and
revolutionize the way we perceive and interact with reality.

1.3 From Industry 4.0 to Health 4.0

The principles and driving forces of the Fourth Industrial Revolution have tran-
scended their origins in manufacturing and found transformative applications in
various sectors. Among these sectors, considerable attention should be given to
healthcare. The integration of the 4.0 key enabling technology within the healthcare
framework has given rise to the concept of Health 4.0, which represents a paradigm
shift in healthcare practices. Health 4.0 leverages the power of intelligent tech-
nologies and data-driven approaches to enhance patient care, optimize operational
efficiency, and revolutionize healthcare delivery [24, 5].

Digital technologies such as the Internet of Things (IoT), Big Data Analytics,
Artificial Intelligence (AI), Augmented Reality (AR), and Robotics are seamlessly
integrated into healthcare systems within the Health 4.0 framework [25]. This
integration enables healthcare providers to transform the way care is delivered and
opens up new possibilities for improving patient outcomes. At the core of Industry
4.0, the principle of connectivity finds a natural fit in healthcare, facilitating real-time
data exchange and empowering clinical decision-making. By securely sharing and
analyzing patient data, healthcare professionals can make more accurate diagnoses,
provide timely interventions, and develop personalized treatment plans.

AI, a key component of Health 4.0, plays a pivotal role in processing and ana-
lyzing vast amounts of medical data. Through the utilization of machine learning
algorithms, AI can extract valuable insights, predict disease outcomes, and enhance
the accuracy of medical diagnoses. One notable application of AI in healthcare is
the use of image recognition algorithms, which have proven effective in assisting
radiologists in detecting abnormalities within medical scans. By aiding in early diag-
nosis and timely interventions, AI-powered image recognition algorithms contribute
to improved patient outcomes [26].
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Assistive surgery is another significant aspect of Health 4.0, which harnesses
robotic systems and AI algorithms to enhance surgical precision and improve pa-
tient outcomes. Robotic surgical platforms enable surgeons to perform complex
procedures with enhanced precision and dexterity. These platforms provide real-time
imaging, haptic feedback, and assistance in intricate tasks, thereby augmenting the
skills of the surgeon and reducing the risk of human error [27].

Moreover, the integration of augmented reality (AR) technologies in Health
4.0 has valuable applications in medical training, surgical planning, and patient
education. AR visualization techniques allow surgeons to overlay virtual information
onto a patient’s anatomy during preoperative planning, enabling precise anatomical
localization and improving surgical outcomes. Additionally, AR simulations enhance
medical training by providing medical students and healthcare professionals with
the opportunity to practice complex procedures in a safe and controlled environment
[28, 29].

Also, in the last years, Brain-computer interfaces (BCIs) have emerged as trans-
formative tools within the Health 4.0 framework, enabling direct communication
between the human brain and external devices. BCIs offer significant potential in
assisting individuals with neurological disorders, such as spinal cord injuries or
stroke, by allowing them to control assistive devices through neural signals. For
instance, individuals with paralysis can utilize BCIs to command robotic limbs,
control wheelchairs, or even communicate through direct neural interaction, greatly
improving their quality of life [30, 25, 31, 32].

The integration of these technologies has lead to the development of the Decision
support systems (DSS), which provide healthcare professionals with evidence-based
recommendations, predictive analytics, and personalized treatment plans. By an-
alyzing patient data, clinical guidelines, and research literature, DSS can assist in
accurate diagnoses, optimal treatment selection, and monitoring patient progress.
These systems empower healthcare providers with timely information and enhance
clinical decision-making, ultimately improving patient outcomes [7].

Therefore, in the transition to Health 4.0, the integration of AI, assistive surgery,
AR, BCIs, and DSS offers significant opportunities for personalized and precise
healthcare interventions. These technologies drive advancements in diagnostics,
treatment planning, and patient empowerment, leading to improved healthcare deliv-
ery and overall well-being. Health 4.0 fosters a data-driven healthcare ecosystem,



10 The Fourth Industrial Revolution

enabling continuous monitoring, proactive interventions, and preventive care. By
leveraging the power of intelligent technologies, healthcare can transcend its tra-
ditional boundaries, ushering in an era of patient-centric care and transformative
healthcare experiences. However, it is essential to address challenges such as data
privacy, algorithm transparency, and ethical considerations to ensure the responsible
and effective implementation of these technologies in healthcare settings [33].

In conclusion, Health 4.0 represents a groundbreaking revolution in healthcare,
driven by the principles and driving forces of the Fourth Industrial Revolution.
Through the integration of AI, assistive surgery, AR, BCIs, and DSS, healthcare
systems can unlock new frontiers of patient care, clinical decision-making, and oper-
ational efficiency. While challenges and ethical considerations must be addressed,
the potential benefits of Health 4.0 are immense, promising a future where healthcare
is personalized, precise, and transformative. By embracing Health 4.0, we can shape
a healthcare ecosystem that maximizes the potential of intelligent technologies and
provides better outcomes and experiences for patients.

In the following Chapters of this Dissertation, different examples of assistive
solutions in Healthcare will be provided. Each of these solutions was thoroughly
designed and tested with a metrology-oriented approach in order to guarantee proper
functionality. More in detail, Chapter 2 describes the design and development of
Brain-Computer Interfaces relying on Visually Evoked Potentials and AR. Chapter
3 deals with the implementation of AR solutions to monitor patient’s health in
Operating Room. Chapter 4 describes two Decision Support Systems aimed at
helping physicians during the decision-making process in the framework of scoliosis
treatment and laparoscopic surgery, respectively. Finally, Conclusions are drawn.



Chapter 2

Brain-Computer Interfaces relying on
Steady-State Visually Evoked
Potentials and Augmented Reality

This Chapter presents the design and development of Brain-Computer Interfaces
integrated with Augmented Reality technology. Brain-Computer Interfaces (BCIs)
embody the fusion of hardware and software communication systems that enable a
direct pathway of interaction linking the human brain to external devices. Among
all the different BCI paradigms, Steady-State Visually Evoked Potentials (SSVEPs)
have gained traction in the progress of non-invasive BCI applications, given their
satisfactory signal-to-noise ratio and data transmission rate. Recently, the adoption
of Augmented Reality (AR) head-mounted devices with this BCI approach has
emerged as an appealing substitute for traditional computer screens. Indeed, the
improvement in wearability of such systems foresees the chance of implementing
BCIs in settings beyond research labs. In the subsequent segments, a comprehensive
summary of the essential concepts for developing an SSVEP-based BCI is furnished.
Thus, varied systems designed and implemented throughout the years are displayed
and thoroughly compared to spotlight the enhancements in performance without
losing sight of real-world application potential. Especially, a metrology-oriented
strategy is taken up to gauge the system’s effectiveness among diverse subjects.
Lastly, two pertinent case studies, concerning the practical use of the proposed setup
in children’s rehabilitation and operating rooms are showcased.
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2.1 BCI technology

This Section aims to provide readers with basic information regarding BCI technol-
ogy, from relevant definitions to the typical classifications.

2.1.1 Definitions

Brain-Computer Interfaces (BCIs) represent an innovative communication system
aimed at translating the activity of the central nervous system (CNS) into artificial
outputs, facilitating seamless interaction between the human brain and computers
[32]. This revolutionary technology enables communication pathways independent
of the brain’s usual output channels, such as peripheral nerves and muscles [34].
The transformative potential of BCI lies in its capacity to replace or restore natural
CNS output that might have been impaired or lost, thereby opening up new frontiers
in neurological rehabilitation. By leveraging various methods of interfacing, BCI
serves a multitude of purposes, such as the restoration of sensorimotor functions
[35], and the mapping of cognitive networks [36]. Moreover, BCI holds promise
in augmenting and enhancing cognitive capabilities beyond their natural limits.
Noteworthy examples include using BCI for communication through spelling systems
[37], allowing individuals with motor disabilities to express themselves effectively
[38]. Additionally, functional electrical stimulation of muscles is another remarkable
application of BCI, promoting movement and mobility in individuals facing motor
impairments [39]. These are just a few examples of application scenarios of BCIs.

Figure 2.1 illustrates the fundamental components of a generic BCI system, orga-
nized into four essential blocks: signal acquisition, signal processing (comprising
feature extraction and features translation or classification), the BCI application, and
the feedback loop to the user. Each of these blocks plays a crucial role in enabling
the seamless flow of information between the brain and the computer.

1. The first step in the BCI process is signal acquisition, where neural activ-
ity is captured through non-invasive or invasive methods, depending on the
application’s requirements and the user’s needs.

2. The acquired brain signals serve as the input to the signal processing block.
Here, suitable algorithms typically analyze and extract essential features from
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Fig. 2.1 Generic block diagram of a Brain-Computer Interface (BCI) system.

the brain data, preparing it for the classification stage. This critical stage is
responsible for understanding the user’s intent or action based on the recorded
brain signals.

3. The next step involves the BCI application, where the interpreted signals are
utilized to accomplish specific tasks or control external devices.

4. Finally, the BCI system closes the loop by providing feedback to the user.
This feedback can take various forms, such as auditory, visual, or haptic cues,
informing the user of their mental state or the successful completion of a task.

2.1.2 Taxonomy

BCI systems can be classified into various categories based on different taxonomies.
According to [2] (and shown in Fig. 2.2), these systems can be distinguished into
Independent/dependent, Exogenous/Endogenous , and Invasive/Noninvasive:

1. Independent/dependent, based on their reliance on additional types of brain
activity in order to function. An independent BCI is designed to operate
autonomously, without relying on the brain’s normal output pathways involving
peripheral nerves and muscles [40]. In this type of BCI system, the brain
activity necessary for controlling the BCI is derived solely from the signals



14
Brain-Computer Interfaces relying on Steady-State Visually Evoked Potentials and

Augmented Reality

recorded directly from the brain itself. In contrast, a dependent BCI relies
on the brain’s normal output pathways, which include the peripheral nervous
system and muscles, to generate the necessary brain activity for the system to
function effectively [2].

2. Exogenous or endogenous, based on the nature of the recorded signal. In
exogenous BCIs, the systems utilize external stimuli to elicit the necessary
brain activity for interaction with the machine, which is detected through
EEG channels. These systems can achieve high information rates [41] and
generally do not require extensive training. On the other hand, endogenous
systems do not rely on external stimuli, necessitating users to acquire the skill
of generating specific brain patterns. The training duration varies depending
on the individual subject, the experimental strategy employed, and the training
environment.

3. Invasive/noninvasive, based on the method of data extraction. Invasive systems
involve the implantation of foreign materials into the subject’s body, such
as microelectrode arrays placed in the gray matter. Although this approach
requires brain surgery, it offers better Signal-to-Noise Ratio (SNR) compared to
non-invasive systems, as it avoids artifacts like eye blinking or movements and
provides more spatially accurate signals. Invasive BCIs operate by monitoring
single-neuron activity within the subject’s brain, making them promising for
repairing vision damage and enabling new capabilities for individuals with
paralysis [42]. On the other hand, non-invasive BCI systems do not require any
implantation, and users interact with the machine through wearable devices
equipped with removable electrodes applied to the scalp [30]. However, the
control signal obtained from non-invasive systems can be more challenging
to interpret due to overlaps with signals from other brain areas and artifacts
from muscle and eye movements. Additionally, signal resolution may be
compromised due to losses caused by the bony surface of the skull and skin.
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Fig. 2.2 BCI taxonomy according to [2].

Also, according to [43], BCIs can be also categorized into Active, Passive, and
Reactive:

• Active: "where the subject voluntarily produces an appropriate modulation
of the brain waves for controlling an application, independently of external
events" [32]. Active BCIs are arguably studied in rehabilitation protocols
[44], "where the premise is that the neural activity within a specific region of
the brain undergoes changes when subjects imagine moving any body part"
[32, 45–48].

• Passive, where the user does not directly and consciously control his electrical
brainwaves. This category is generally used for monitoring the user’s mental
state [49] and in the field of affective computing [50].

• Reactive: "where brainwaves are produced in response to external stimuli.
This peculiarity allows the use of reactive BCIs both for control and monitoring
purposes [32]".

Overall, active and reactive BCIs are employed for directed control, whereas passive
BCIs facilitate the assessment and interpretation of changes in the user’s state during
Human-Computer Interaction. Active BCIs are commonly recommended for users
with disabilities, while passive and reactive BCIs are intended for users without
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disabilities. The passive BCI is utilized to interpret the user’s cognitive and emotional
states, whereas the reactive BCI serves the same purpose as the active BCI, enabling
direct control.

On the basis of these categorizations, many BCI paradigms have been developed
over the years, each of them requiring the extraction of suitable features. Some
of the most widely adopted paradigms are: Slow cortical potentials (SCP) [51],
Neuronal action potentials [52], Sensorimotor rhythms (SMR) [53], Event-related
potentials (ERP) [54], and Sensory evoked potentials (SEP) [55]. Specifically, SEPs
are electrical potentials that can be detected by the central nervous system through
electroencephalography when the sensory organs are stimulated. These potentials
are considered as the reorganization of spontaneous brain oscillations in response
to stimuli. SEPs manifest only in the presence of external stimuli and consistently
occur at the same times and in the same modalities, earning them the term phase-
locked. Among the SEPs, [56], Steady-State Visually Evoked Potentials (SSVEPs)
have gained significant traction due to satisfactory signal-to-noise ratio (SNR) and
information rate [57]. In the following Sections, more details about the SSVEP
paradigm will be provided, along with the description of the proposed system.

2.2 The proposed system

This section describes the BCI system developed over the years. As aforementioned,
brain signals can be captured following different strategies. Some examples are func-
tional magnetic resonance imaging (fMRI) [58], magnetoencephalography (MEG)
[59], near-infrared spectroscopy (NIRS) [60], and electroencephalography (EEG).
Among these options, the BCI system taken into account in this study relies on
EEG, since it is widely regarded as the optimal choice due to its non-invasiveness,
user-friendliness, and cost-effectiveness [34].

2.2.1 SSVEP fundaments

The paradigm chosen to develop the EEG-based BCI is that based on the aforemen-
tioned Steady-State Visually Evoked Potentials (SSVEPs).
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SSVEPs are dependent and exogenous brain potentials [61] that are evoked in the
primary visual cortex when the user observes a flickering stimulus. The stimulation
frequency bands of the visual stimuli typically range from 6 Hz to 30 Hz, with
the highest Signal to Noise Ratio (SNR) observed in the range of 8 to 15 Hz [62].
The physiological SSVEP brain response typically occurs after a latency period
ranging from 80 to 160 ms [63]. This response exhibits a sinusoidal-like waveform,
consisting of a fundamental frequency matching that of the observed stimulus, along
with frequently present higher harmonics [64], as illustrated in Fig. 2.3. Therefore,
SSVEPs belong to the Reactive BCIs.

Fig. 2.3 A 10-Hz SSVEP in time domain (a) and frequency domain (b). Image taken from
[3].

In practical applications, the user is presented with simultaneous stimuli at
different frequencies. Each stimulus corresponds to a specific command, enabling
the user to send the relevant command to the target application simply by looking at
the desired flickering stimulus. Based on the generic BCI architecture shown in Fig.
2.1, a representative scheme of SSVEP-based BCIs can be represented as illustrated
in Fig. 2.4. In addition to the already described Signal Acquisition, Signal Processing,
and BCI application blocks, this architecture is composed of a Stimuli Source block,
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Fig. 2.4 Typical architecture of an SSVEP-based BCI

which is used to display N concurrent Visual Stimuli. Each stimulus flickers at a
different frequency from the others and is associated to a specific command to send
to the BCI application.

2.2.2 Design

Based on the generic architecture of SSVEP-based BCI illustrated in 2.4, this Section
described the design of the AR-based SSVEP BCI taken into account in this work.

1. With regards to the Stimuli Source, an AR HMD is used to run a dedicated AR
application that displays N concurrent visual stimuli. Each stimulus flickers
at a different frequency from the others and is associated with a specific and
known command to send.

2. The Signal Acquisition is performed by means of EEG: a portable EEG headset
captures the user’s brain signals and digitizes them.

3. According to [65], "the Signal Processing block can be internal to the EEG
headset, or external: in the latter case, it is typically a portable board con-
nected to the EEG headset by cable [30], or a laptop that receives the EEG
samples over wireless communication [66], or even the AR HMD itself [67]".
The processing unit executes a dedicated classification Algorithm which is
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in charge of processing the EEG sample and deducing which stimulus has
been observed by the user: therefore, the recognition of N stimuli at different
frequencies can be viewed as a N-class classification problem.

4. Once the classification has been made, a Control signal is sent to the BCI
application, the last block of the system which provides a Feedback to the user
depending on the selection performed. If the classification is successful, the
output command will correspond to the choice desired by the user.

For the sake of comprehensiveness, Fig. 2.5 illustrates the system in detail.

Fig. 2.5 Architecture of the AR-based SSVEP BCI taken into account.

The adoption of portable EEG Headsets for signal acquisition and, importantly,
AR HMDs for stimuli rendering has been considered in recent years as a promising
approach to enhance wearability, immersivity, and engagement in BCI applications’
usage [68, 30, 69] compared to traditional methods. Traditionally, these stimuli are
presented on a computer screen (CS), typically an LCD monitor positioned in front of
the user. This setup allows visualization of up to 200 stimuli [70], making it valuable
for applications like the BCI Speller, a system that enables severely motor-disabled
patients to communicate using brain activity without muscular mobility [71, 72].
However, this configuration is bulky and restricts the portability of these systems,
even though it delivers satisfactory performance. As a result, the adoption of BCI-
SSVEP has been limited to laboratory environments for a long time [31]. In contrast,
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the innovative approach discussed here facilitates the deployment of SSVEP-based
BCIs in diverse application contexts, ranging from healthcare [73–75] to industry
[67, 76]. Nonetheless, the overall performance of such systems greatly depends
on the specifications of the chosen HMD, which must be thoroughly analyzed
[31, 76, 77]. To elaborate on this, there are several aspects to consider: first, the
maximum number of flickering stimuli that can be displayed depends on the HMD’s
field of view (FOV), typically ranging from a minimum of two [30] up to nine [78].
Nevertheless, there is ample room for improvement to achieve a number of stimuli
comparable to LCD-based visualization; secondly, HMDs’ hardware is generally less
powerful than desktop PCs, leading to significant unpredictability of the frame rate
(fps) when displaying flickering stimuli [79]. This variation affects the values of the
rendered stimulation frequencies, potentially reducing the classification performance
of the SSVEPs [25]; finally, the stimuli rendered by AR HMDs are holographic,
superimposed on the real space with an assigned level of transparency. Consequently,
an increase in environmental brightness weakens the SSVEPs’ intensity, resulting in
lower recognition [77]. Ensuring appropriate classification performance, becomes a
crucial aspect for AR-based SSVEP BCIs.

Overall, the adoption of AR HMDs offers exciting possibilities for SSVEP-based
BCIs in various applications, but the specific characteristics of the chosen HMD
play a critical role in determining the system’s performance. These issues have been
accurately addressed, as described in the following Section.

2.2.3 Realization

This Section provides a description of the hardware and software systems adopted
over the years to develop the designed AR-based SSVEP BCI. By referring to the
functional blocks shown in Fig. 2.5, three main aspect were considered, namely the
selection of the AR HMDs, EEG Headset, and Processing Strategy to employ.

AR HMDs

The first AR device used (please refer to [30]) was Epson Moverio BT-200, a pair
of AR smart glasses [80]. The perceived screen size of the glasses is 2 m at a 5
m projected distance, with a refresh rate of 60 Hz and a 23° diagonal FOV. The
developed AR environment consisted of two squares, flickering at 10 Hz and 12 Hz,
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placed at the right and left ends of the screen, respectively, and generated with the
Android library OpenGL. The stimulation was realized by means of a black/white
alternation over time, according to the guidelines described by [62].

Successively, in [31, 4], the system was enhanced by means of the employment
of Microsoft Hololens 1, [81] which is an Optical-See-Through (OST) AR HMD
endowed with a 60 Hz Refresh Rate and a diagonal FOV of 34°. The improved
diagonal FOV allowed to accommodate up to four squares flickering in the range
8-15 Hz, and placed at the four edges of the screen. The AR environment was
realized by means of the software Unity and the Windows Mixed Reality Toolkit
(MRTK). Again, the stimulation was realized by means of black/white alternation
over time.

Current developments in the realization of AR HMDs are paving the way for
further enhancements. As a matter of fact, the upgraded version of Hololens 1,
namely Microsoft Hololens 2 [82], which is endowed with a diagonal FOV of
52°, is currently being adopted since it allows the accommodation of six flickering
stimuli (always selected in the range 8-15 Hz). As for its previous model, the AR
environment was realized by means of the software Unity and MRTK libraries. In
addition, the stimulation is exploiting a grayscale [83] alternation between black and
white colors, as it guarantees both less visual fatigue in users and an increase in the
recognition of the observed stimuli with respect to traditional stimulations.

For the sake of clarity, Fig. 2.6 illustrates the AR devices along with a represen-
tation of the user’s point of view. As visible, the restricted FOV of Epson Moverio
does not allow the accommodation of more than two flickering stimuli. On the other
hand, the adoption of Microsoft Hololens 1 and 2 allows for leveraging a wider area
for rendering the stimuli.

EEG Headset

In [30, 31, 4], the device used to acquire EEG signals from users scalps was the
Olimex EEG SMT [84]. It is a 10-bit, 256 S/s, differential input Analog-Digital
Converter (ADC). Brain signals were captured using (i) two active electrodes posi-
tioned at the Frontal Midline (Fpz), connected to the negative input, and Occipital
Midline (Oz) positions, connected to the positive, according to the international
system 10-20 [67], and (ii) a passive electrode (acting as reference) Driven Right
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Epson Moverio BT-200 Microsoft Hololens 1 Microsoft Hololens 2

Fig. 2.6 AR devices used for SSVEP elicitation, along with an illustrative sketch of the
flickering stimuli accommodation.

Leg (DRL), positioned on the earlobe. The Fpz and DRL electrodes contacts consist
of gold-plated, flat surfaces, while the Oz electrode was modified by adding eight
gold-plated spring connectors to improve the skin contact through the hair.
The configuration described is single-channel and based on dry electrodes. In a
nutshell, dry electrodes have been proposed as a potential solution to the inconve-
nience caused by wet electrodes, which are considered the gold standard for clinical
recordings [85]. Dry electrodes are typically designed with reusable materials, elimi-
nating the need for conductive gels or paste. They can be easily placed on the scalp
through the hair, reducing the setup time [73, 66]. However, it’s important to point
out that the contact impedance between dry electrodes and the users’ scalp is hugely
influenced by the pressure applied, unlike wet electrodes [86]. This factor may
contribute to a sense of discomfort or pain experienced by users. Most importantly,
the SNR achieved by the employment of wet electrodes is still significantly better
than that achieved by dry alternatives.

Based on these considerations an enhancement of the system is being developed
in order to increase the amount of information to acquire. This enhancement consists
of the employment of a wireless, wet EEG Headset, namely Flex EEG by Neurocon-
cise [87], along with five acquisition channels, corresponding to the position Oz, O1,
P3, P7 and Pz, according to the 10-20 International System. The chosen sampling
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rate is 125 Sa/s, while the communication with external processing units is made by
means of Bluetooth 2.0 protocol.

Fig. 2.7 EEG devices used over the years.

Processing Strategies

Regarding the processing strategies, Power Spectral Density Analysis (PSDA) is
acknowledged as the most intuitive approach to detect and classify SSVEPs [62].
The initial step involves applying Fast Fourier Transform (FFT) to the user’s EEG.
Subsequently, Power Spectral Density (PSD) is evaluated around each of the N
rendered frequencies. Additionally, Nh multiple harmonics can be taken into account,
as expressed by:

P( fn) =
1

2Nhk+1

[
Nh

∑
i=1

ikn+k

∑
j=ikn−k

w(i) A2( j)

]
(2.1)

where: P( fn) is the PSD coefficient for the given frequency fn (n = 1,2, ...,N), kn

is the corresponding bin in the frequency domain, k is the number of nearest bins
considered, i is the harmonics index, A is the signal amplitude, and w is a weight
assigned to each harmonics. The classification is typically based on the assumption
that the observed stimulus is likely the one with the highest PSD [88]. The main
drawback of PSDA is the need for a minimum time window Tmin for the acquired
EEG to correctly discriminate two sinusoidal tones, as an appropriate frequency
resolution ∆ f = 1

Tmin
is required [89].

Canonical Correlation Analysis (CCA) serves as an alternative, time domain-
based method for SSVEP classification. It is a multivariate statistical approach that
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correlates linear relationships between two sets of data [90]. CCA is performed
between the EEG signal X and a set of sine waves Yn corresponding to the frequencies
of the N stimuli displayed, along with their multiple harmonics. The set of sine
waves Yn(t) (n = 1,2, ...,N) can be obtained following (2.2).

Yn =



sin(2π fn t)

cos(2π fn t)

sin(2π 2 fn t)

cos(2π 2 fn t)

...

sin(2π Nh fn t)

cos(2π Nh fn t)


(2.2)

For each stimulation frequency fn, a correlation coefficient ρn is obtained through
CCA between X and Yn. These coefficients are utilized for the classification stage.
For instance, in [90], the output of the classification was associated with the frequency
having the highest correlation coefficient. In contrast, in [30, 31, 91], the maximum
value among the correlation coefficients ρn was compared with two thresholds, and
the signal was classified only if the chosen correlation coefficient exceeded the
thresholds. CCA typically achieves better classification performance compared to
PSDA [88]. However, bandpass filtering of the EEG signal may be required due
to the impact of spontaneous EEG activities not related to SSVEP events, such as
eye-blinking. Another drawback is that this method is not robust against undesired
variations in the generated frequencies caused by drops in fps of the AR headset,
unlike PSDA.

In order to leverage the benefits of both PSDA and CCA, a hybrid method was
proposed in [4], called Features Extraction (FE), which consists of two steps:
First, the brain signal X is processed in both the frequency and time domains in order
to extract a reduced set of features. Specifically, (i) a Fast Fourier Transform (FFT)
is applied to X ; then, (ii) SSVEP peaks are recognized around all the N rendered
stimulus frequencies. For each nominal frequency value fn with (n = 1,2, ...,N), the
interval [ fn ·0.9, fn ·1.1] is considered to find the actual peak frequency fp. Detecting
the actual peaks leads to more accurate PSD coefficients Pn. Additionally, (iii) in
the time domain, Canonical Correlation Analysis (CCA) is performed between X
and a set of sinewaves Yn, having the frequencies of the N detected peaks, further
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enhancing the accuracy of the CCA coefficients ρn. Ultimately, only 2N features are
extracted and normalized from a given brain signal composed of f s ·T EEG samples
and N stimulation frequencies, where fs is the sampling frequency, and T is time in
seconds.
The second step involves classification, carried out using the three ML classifiers
mentioned earlier: SVM, k-Nearest Neighbor k-NN, and ANN. The conducted
experimental campaigns allowed obtaining a significant increase in classification
performance compared both to traditional CCA-based algorithms and PSDA, primar-
ily due to the mitigation of fps variations. Fig. 2.8 provides an illustration of the
proposed algorithm.

Fig. 2.8 Details of the algorithm developed in [4]



26
Brain-Computer Interfaces relying on Steady-State Visually Evoked Potentials and

Augmented Reality

2.2.4 Performance evaluation

This section provides further details about the typical metrics used to evaluate the
performance of BCI-SSVEP systems. These metrics are applied with a metrological
approach to various systems developed over the years, which are described in
the following paragraphs. This comparison aims to offer insights into the best
implementation strategies that enable the widespread use of these systems by a broad
range of users.

Metrics

The most important metrics related to an N-stimuli, SSVEP-based BCI are three,
namely Time Duration, Accuracy, and, most importantly, Information Transfer Rate
(ITR).

1. The Time Duration is defined as the duration of brain signals to be classified
and translated into a command.

2. The Accuracy is defined as the percentage of brain signals correctly classified.

3. The ITR represents a comprehensive performance indicator that quantifies the
amount of information conveyed to the selected BCI application. It is defined
as follows:

IT R =
[
log2(N)+A log2(A)+(1−A) log2

( 1−A
N−1

)] 60
T (2.3)

where N is the number of flickering stimuli, A is the classification accuracy
within the interval [0,1], and T is the time duration (expressed in seconds) of
the processed EEG signals. The ITR is expressed in bit/min and considers the
trade-off between accuracy, number of stimuli, and the temporal duration of
the acquired EEG. As a result, it emerges as a more reliable metric compared
to classification accuracy alone. While classification accuracy might appear
considerably high when reducing the number of stimuli and prolonging acqui-
sition times, ITR accounts for these factors and provides a more meaningful
measure of performance. Hence, it is essential to highlight that achieving a
high classification accuracy alone does not guarantee the development of a
high-performing BCI. Optimal performance requires not only high accuracy
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but also minimized acquisition times and a substantial number of stimuli to
maximize the ITR and effectively convey information to the BCI application.

Since EEG signals are characterized by significant inter-individual variability, a
suitable procedure to evaluate the performance of an SSVEP BCI system by means
of the metrics introduced should be based, first, on the realization of a dataset con-
taining L signals acquired for M subjects, each with a fixed time duration T and
labeled with an observed frequency fn (where n = 1,2, ...,N). Therefore, given the
processing strategy to apply, a Leave-One-Subject-Out Cross-Validation (LOSO CV)
should be applied to evaluate the classification accuracy across the subjects.
LOSO CV is a variant of the K-fold cross-validation. Given M of subjects, LOSO
CV procedure divides the entire dataset in M folds, where each fold is constituted
by a specific subject. Therefore, for each combination of the parameters of the
algorithm, the process will run M times, each time with a different subject in the test
set, taking the remaining (M−1) in the validation and training sets (if applicable).
Therefore, at the end of LOSO CV, an inter-individual mean value Am and a standard
deviation σA of the classification accuracy are obtained as indexes of the general-
ization capability of the developed system as a whole. Moreover, by dividing the
standard deviation for the number of subjects, the inter-individual standard uncer-
tainty of the classification accuracy uA is obtained. According to the Guide to the
Expression of Uncertainty in Measurements (GUM) [92], the output probability
distribution is a t-student distribution with a number of degrees of freedom νA = M -
1. Hence, a suitable coverage factor k can be used to provide an extended uncertainty
UA = k uA and, therefore, a confidence interval, and the measurement results can be
expressed as (Am ±UA) %.
Once the measurement result of the classification accuracy is obtained, the best
estimate of the ITR can be provided by means of (2.3), when the best estimate Am

is used as classification accuracy value. With regards to the uncertainty of the ITR,
it can be evaluated by means of the first-order Law of Propagation of Uncertainty,
expressed in (2.4).

uITR =

√(
∂ IT R

∂A
·uA

)2

(2.4)

The extended uncertainty UIT R = k uIT R is obtained by considering a t-student
distribution with a number of degrees of freedom νIT R assessed according to the
Welch-Satterthwaite equation [92].
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However, this traditional approach might not be suitable for these measurands,
especially given that classification accuracy is defined in the interval [0÷100]%. In
this case, the assumption of probability distributions like Gaussian or t-student could
lead to measurement results that are outside of the allowed range. To address this,
different probability distributions, such as truncated-Gaussian, should be considered.
In this context, Supplement 1 to the GUM suggests adopting the Monte Carlo Method
[93]. In summary, this method involves estimating the probability density function
(pdf) of the classification accuracy and then generating a vector of i elements (e.g.,
106 samples) from that distribution. Subsequently, the desired confidence interval
(e.g., 99 %) can be extracted from the resulting samples. Similarly, for the ITR, the
accuracy vector can be propagated using (2.3), resulting in a vector of extractions of
ITR. Once again, the desired confidence interval can be obtained from the resulting
extractions. By employing the Monte Carlo Method and considering the appropriate
probability distributions, the evaluation of these performance metrics becomes more
robust and accurate.

Description of the Systems

Among the various systems developed over the years, three of them stand out as
particularly noteworthy and merit description and comparison.

1. The first system, utilized in [30, 73], employed the Moverio BT-200 as the
AR device, capable of rendering two flickering stimuli at frequencies of 10
Hz and 12 Hz. Brain signals were captured using dry electrodes and Olimex
EEG SMT. The system utilized a single-channel configuration, specifically
targeting the Oz location based on the 10-20 International System. To rec-
ognize SSVEPs, Canonical Correlation Analysis (CCA) was adopted as the
classification approach.

2. The second system was utilized in [31, 4] and employed Microsoft Hololens 1
to render four flickering stimuli (at 8.57 Hz, 10.00 Hz, 12.00 Hz, and 15.00
Hz). Again, brain signals were captured using dry electrodes and Olimex
EEG SMT, in the same single-channel configuration as system #1. Instead, to
recognize SSVEPs the Feature Extraction (FE) hybrid method was adopted.

3. Currently, the system employed relies on Microsoft Hololens 2 to render six
flickering stimuli (at 8 Hz, 9 Hz, 10 Hz, 11 Hz, 12 Hz, and 13 Hz) in grayscale
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mode. Brain signals are captured by means of Flex EEG and wet electrodes.
Five channels are exploited, namely Oz, O1, Pz, P3, and P7. FE method is
used to classify SSVEPs.

For better clarity, Fig. 2.9 illustrates the three systems taken into account.

Fig. 2.9 Representation of the three considered AR-based SSVEP BCIs.

Results

This paragraph reports the experimental results obtained from the evaluation of the
performance of the three aforementioned systems.

Regarding the first system, an experimental campaign was conducted involving
twenty healthy and untrained subjects with normal or corrected-to-normal vision,
aged between 20 and 40 years. For each subject, a total of 24 signals were acquired,
with twelve signals labeled as 10 Hz and the remaining twelve signals labeled as 12
Hz. The results in terms of accuracy and ITR are presented in Table 2.1, indicating
various time durations considered. It is important to note that the Monte Carlo
Method, as previously described, was applied using 106 extractions and a 99 %
confidence interval.
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Time Duration (s) Accuracy (%) ITR (bit/min)
0.5 65.0÷76.5 7.5÷25.2
1.0 64.4÷85.1 3.1÷22.6
2.0 77.9÷91.8 6.9÷17.5

Table 2.1 Performance of the system #1. A 99 % confidence interval is considered.

To validate the second system, an experimental campaign was carried out with
nine healthy and untrained subjects who met the inclusion criteria of normal or
corrected-to-normal vision and age between 20 and 40 years. For each subject, a total
of twenty signals were acquired, with five signals corresponding to each stimulation
frequency. The results of this experimental campaign in terms of accuracy and
ITR are presented in Table 2.2, showcasing various time durations considered. As
before, the Monte Carlo Method was applied, utilizing 106 extractions and a 99 %
confidence interval.

Time Duration (s) Accuracy (%) ITR (bit/min)
0.5 36.3÷53.5 4.9÷31.1
1.0 52.4÷81.1 13.9÷58.7
2.0 61.9÷90.9 12.4÷41.5

Table 2.2 Performance of the system #2. A 99 % confidence interval is considered.

Regarding the third system, it is currently in the validation phase. As of now,
data were acquired only from four subjects, with five signals obtained for each of the
six flickering stimuli. The preliminary results are presented in Table 2.3.

Time Duration (s) Accuracy (%) ITR (bit/min)
0.5 40.2÷59.0 26.3÷77.9
1.0 65.4÷87.0 50.4÷102.7
2.0 78.4÷99.2 38.9÷73.6

Table 2.3 Performance of the system #3. A 99 % confidence interval is considered.

Indeed, the improvements brought about by the adoption of wet electrodes and
a more immersive AR device are evident and noteworthy. As can be observed, the
Information Transfer Rate (ITR) significantly increases from a maximum of 25
bit/min in the first system to a remarkable maximum of about 100 bit/min in the
third system. This substantial increase in ITR underscores the impact of employing
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wet electrodes and a more advanced AR device, which results in improved signal
quality and enhanced user experience. These enhancements play a crucial role in
achieving higher accuracy and faster information transfer in the BCI systems, making
them more efficient and effective for practical applications. The promising results
demonstrated by the third system suggest its potential for real-world implementation
and open new possibilities for future developments in SSVEP-based BCIs.

2.3 Application fields

This Section described the application fields in which the developed systems have
been employed over the years by our research group. More in detail, two relevant
frameworks will be described, namely the data selection in the operating room, and
the rehabilitation for children with attention disorder.

2.3.1 Data selection in operating room

In [25, 74], an integrated real-time monitoring system based on Augmented Reality
(AR) and SSVEP Brain-Computer Interfaces (BCIs) was proposed for hands-free ac-
quisition and visualization of remote data. The focus of the study was on monitoring
patients’ vital signs in the operating room (OR) setting. By employing the combined
capabilities of an SSVEP BCI and AR device, an anesthetist could effectively monitor
the patient’s vitals in real-time, using data acquired from the electromedical equip-
ment. Given the critical nature of healthcare-related applications and their stringent
real-time requirements, the scenario chosen for this study presented an interesting
and challenging testbed for the proposed system. Experimental tests were conducted
at the University Hospital Federico II in Naples, Italy, using standard equipment
commonly found in ORs. The system underwent preliminary functional validation,
and accuracy and delay metrics were measured to assess its performance. In par-
ticular, the on-field performance of the single-channel SSVEP-based BCI showed
an accuracy of 70% with a latency of approximately 4.00 s. The experimental re-
sults demonstrated the effectiveness and reliability of the proposed AR-BCI-based
monitoring system. By providing real-time access to vital data through AR glasses,
the system offered a hands-free and intuitive approach for healthcare professionals
to monitor patients during medical procedures. This innovative application of AR
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and SSVEP BCIs holds significant potential for improving healthcare monitoring
in critical settings and may lead to further advancements in the field of medical
technology.

Fig. 2.10 and 2.11 show the user view before and after making the selection of
the waveform to display in real time.

Fig. 2.10 Waveform selection menu.

Fig. 2.11 User view after performing the selection.
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2.3.2 Rehabilitation for children with attention disorder

In [30, 73, 75, 94], an instrument for remote control of robot by wearable Brain-
Computer Interface was proposed for rehabilitating children with attention disorders.
Augmented Reality (AR) glasses generated flickering stimuli and a single-channel
electroencephalographic BCI detected the elicited Steady State Visual Evoked Po-
tentials (SSVEP). This allowed to benefit from the SSVEP robustness by leaving
available the view of robot movements. Together with the lack of training, a sin-
gle channel maximizes the device’s wearability, fundamental for the acceptance
by children, while effectively controlling the movements of a robot through a new
channel enhances rehabilitation engagement and effectiveness. Through a case study
at an accredited rehabilitation center (Villa Delle Ginestre, Volla, Naples, Italy), a
preliminary evaluation of the children adherence to the therapy was conducted on
18 subjects, and a two-months therapy was conducted on 7 participants. During
this period, different tasks were assigned to the children depending on their level of
involvement. The experimental results, based on the Italian Battery for ADHD (BIA)
showed encouraging results, where all the participants observed an improvement in
the various test proposed, even with a low number of session.

Fig. 2.12 shows the user’s view while wearing the AR device and looking at the
robot.

Fig. 2.12 User’s view while wearing the system.
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2.4 Conclusions

In this Chapter, the design and development of Brain-Computer Interfaces relying on
Visually Evoked Potentials and Augmented Reality technology were described. After
a comprehensive resume of the notions necessary to build an SSVEP-based BCI,
different systems designed and developed over the years were shown and thoroughly
compared in order to highlight the contributions in enhancing the accuracy of the
systems in light of adoptions in real-life scenarios. In particular, a metrological
approach was adopted in order to evaluate the system performance across different
subjects. Finally, two relevant case studies, regarding the on-field employment of the
proposed system (i) during surgical procedure and (ii) in the framework of children
rehabilitation, are shown.
Overall, the achieved results in terms of SSVEP recognition accuracy, amount of
transmitted information, and ergonomics can be considered promising for future
applications of this technology in real-world settings outside of laboratory setups.



Chapter 3

Augmented Reality Platforms to
Monitor Patients’ Health in
Operating Room

This chapter presents the development of an Augmented Reality (AR) platform
designed to enable the monitoring of a patient’s health in real-time during surgical
procedures in the Operating Room (OR). The system, as described in [5, 25, 24],
provides the surgical team with immediate access to a comprehensive set of patient
information. The AR platform automatically captures the patient’s vital signs coming
from the OR instrumentation and displays them, in real-time, directly on an AR
headset. Additionally, clinical records can be accessed on request. Furthermore, the
AR-based monitoring platform allows for the display of video streaming coming
from the endoscope in AR, providing an innovative aspect of the proposed platform.
The system’s innovation is demonstrated in its comprehensiveness of available
information, modular and flexible adaptation to different data sources, ease of
use, and reliable communication - all critical requirements for the healthcare field.
Experimental tests were conducted at the University Hospital Federico II (Naples,
Italy) to validate the system by means of a metrological approach, using commonly
available OR instrumentation such as an endoscope, a patient monitor for intensive
care, and a respiratory ventilator. Results showed over 99 % communication accuracy
of data, with an average time response below the millisecond, along with satisfactory
feedback from the System Usability Scale (SUS) questionnaires that were filled out
by physicians after intensive use.
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3.1 Rationale

As previously stated, the Fourth Industrial Revolution has yielded numerous benefits
across various application domains, healthcare included. With regard to AR, it
has shown relevant applications in healthcare, particularly in medical training and
surgical procedures. Alamri et al. [95] and Fida et al. [96], Meola et al. [97], Badiali
et al. [98], Condino et al. [99], Checcucci et al. [100], and Roberts et al. [101] have
all demonstrated the potential of AR in medical training and surgical procedures.
One of the most important applications of AR in surgery is represented by the
overlay of medical images on patients during surgical procedures, as described
in [102]. Additionally, Condino et al. [103] presented a patient-specific hybrid
simulator for orthopedic open surgery, with a focus on the realization of wearable
AR functionalities using Microsoft HoloLens. This device is a successful commercial
Optical See-Through Head-Mounted Display (OST-HMD) that provides advantages
in contrast perception and computational effort [104]. More recently, Tu et al. [104]
used the upgraded version of this device, the Microsoft HoloLens 2, aiming to assist
surgeons in completing distal interlocking. This approach offers benefits such as no
radiation exposure, stereoscopic in-situ visualizations, and less time consumption
when compared to conventional approaches.

Another significant application of AR is the real-time monitoring of patients’
health during surgical procedures in the operating room (OR). By displaying patients’
vital signs and relevant information from electronic clinical medical records, directly
on an AR headset worn by the surgical team, AR technology facilitates effective
real-time monitoring of patients’ health status, even if at a distance from the medical
equipment. The aim of this technology is to improve the efficiency of surgical
procedures by reducing the burden of continuously looking at the OR equipment.
By using AR technology, the surgical team can focus its attention on the patient
and the task at hand, being prepared to promptly respond in case of any aggravating
conditions [105–109]. For instance, in [105], the frequency with which anesthetists
had to divert their attention from the patient to the equipment was investigated, and a
significant reduction of more than a third was observed when using an AR HMD.

Despite the significant potential of AR-based real-time monitoring systems for
patients undergoing surgical procedures, as reported in [5], "only the usability of
such systems has been explored, without an assessment of their performance". This
gap in the research was highlighted in [110], where a systematic review of ten years
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of AR usability studies revealed that, with regards to health infrastructure, most
medical-related AR papers have been published in medical journals and that there
is a scarcity of qualitative data captured from users concerning their mental and/or
physical status after using the system. In more recent work, [111] investigated the
usability and ergonomics of Microsoft Hololens and Meta 2 AR devices for use
in visceral surgery using the System Usability Scale (SUS) questionnaire [112], a
method that has been successfully employed for assessing AR-based applications
in Education [113] and Industry 4.0 [114]. However, while usability assessments
are important, there is also a pressing need for performance assessments of real-
time monitoring systems for patients undergoing surgical procedures. Ensuring the
accurate and timely transmission of information to be displayed in AR is critical. For
instance, in [115, 116], the key requirements for real-time, wireless data transmission
were explored, including the bandwidth, the amount of interruptions per time unit,
the mean duration of stops, the delay in monitoring, the energy efficiency, and the
reliability. It was found that any audio or video delay higher than 300 ms should
be avoided to ensure proper interactions between users and system. Moreover,
techniques of fault tolerance are generally included in the network to prevent failures
that can range from small outages to even large life-threatening scenarios.

Based on these considerations, the development of an integrated monitoring
platform that incorporates AR to aid medical personnel during surgical procedures
has been proposed. The system provides several features that can be selected by
the intended user to assist surgeons, assistant surgeons, nurses, and anesthetists in
real-time monitoring of the patient’s health status. The Microsoft Hololens 2 AR
headset has been chosen to receive data from the electromedical instruments available
in the OR, such as the respiratory ventilator, patient monitor, and laparoscopic
camera, and display them in real-time [117]. The platform also provides access to
patient electronic clinical records and allows rendering of video streaming from the
laparoscopic camera upon request. Notably, the proposed monitoring platform is
innovative due to its comprehensive information, modular and flexible design, ease of
use, and reliable communication, which are critical requirements for the healthcare
field. Despite the high cost of the Microsoft Hololens 2 (approximately 3500 $), its
unique features make it currently the most suitable device to satisfy the healthcare
requirements. Furthermore, the system’s performance is meticulously assessed not
only in terms of data transmission and overall usability using the System Usability
Scale (SUS) questionnaire but also through rigorous metrological methodologies.
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The integration of metrology in the design and validation phases is particularly
crucial for medical applications, where precision and accuracy are paramount [24].

3.2 Design

This section focuses on the design of the proposed AR-based monitoring platform.
Special attention was given to the conceptual design of the integrated system to ensure
modularity and flexibility, enabling the connection of various medical equipment
and the integration of data from diverse sources. The platform’s design aims to
assist nurses, anesthetists, and/or surgeons in monitoring the patients’ health status
simply by wearing an AR headset. This approach eliminates the need to rely on
separate monitoring equipment, allowing them to respond promptly in case of
worsening patient conditions. Figure 3.1 illustrates the distinct components of the
integrated AR monitoring platform. Essentially, a group of Medical Instruments is

Fig. 3.1 Conceptual architecture of the proposed AR-based monitoring platform. Image
taken from [5].

connected to an Instrument Control Unit (ICU) through cables. The ICU transmits
real-time data to the AR Headset worn by the user. Simultaneously, the ICU also
generates alerts if the acquired parameters, such as the patient’s vitals, surpass
standard values. Furthermore, the AR Headset receives the selected patient’s Clinical
Record, providing a comprehensive set of health information upon request. The
design decisions were made with careful consideration of the healthcare sector’s



3.3 Realization 39

strict requirements, particularly regarding the communication latency between data
generation and visualization of patient information.

3.3 Realization

This Section addresses the implementation of the designed system. In particular,
a description of the selected hardware and the implemented software is provided
below.

3.3.1 Hardware

In Figure 3.2, the block diagram illustrates the hardware components and commu-
nication modalities employed to implement the proposed monitoring platform. For
the case study, the medical equipment typically found in an operating room is con-
sidered. This includes: (i) a pulmonary ventilator, (ii) a patient monitor, and (iii) an
endoscope for laparoscopic surgery. To implement the platform, a Laptop functions
as the Instrument Control Unit (ICU). It acquires real-time data from the medical
equipment mentioned above. Subsequently, the Laptop transmits the acquired data
to the Augmented Reality (AR) Headset. The AR Headset receives the patient’s
information from the electronic clinical record. This comprehensive data integration
allows for a detailed understanding of the patient’s health status. For a more detailed
explanation, please refer to the following description.

Operating Room Equipment

The equipment utilized in this work within the operating room consists of three
components: (i) a pulmonary ventilator, (ii) a patient monitor, and (iii) an endoscope
(see Fig. 3.3).

• Pulmonary ventilator: The ventilator employed in this work is the Dräger
Infinity V500. This particular ventilator is designed for intensive care and
plays a crucial role in assisting patients by providing an appropriate level of
oxygen (O2) while eliminating carbon dioxide (CO2) from their lungs. It also
helps reduce the respiratory effort for patients experiencing excessive lung
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Fig. 3.2 Implementation of the proposed AR-based monitoring platform. Image taken from
[5].

workload. The Dräger Infinity V500 ventilator is equipped with a LAN (Local
Area Network) interface and three RS-232 interfaces. The user has the option
to select between the MEDIBUS or MEDIBUSX protocol for communication.
Additionally, the user can configure parameters such as Baud Rate, Parity Bits,
Stop Bits, and Terminator Character according to their requirements.

• Patient monitor: The patient monitor chosen for this project is the Philips
IntelliVue MP90. This advanced monitor enables the monitoring of over 50
different vital signs. By connecting separate "plug-and-play" modules, the
monitor can track various parameters such as oxygen saturation, compound
ECG, respiration rate, and heart rate, among others. Its versatility and compre-
hensive monitoring capabilities make it a valuable tool in healthcare settings.

• Endoscope: The endoscope utilized in this project is the Olympus Visera Elite
II. This advanced imaging platform is designed for various surgical procedures,
including general surgery, urology, gynecology, and more. The endoscope
features an S-video interface, which grants access to the camera, allowing for
high-quality imaging during procedures. Its capabilities make it a versatile
tool in visualizing and documenting surgical interventions.
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Fig. 3.3 Electromedical devices used: pulmonary ventilator (left); patient monitor (center);
endoscope (right). Image taken from [5].

AR Headset

The AR headset utilized is the Microsoft HoloLens 2. This device runs on Windows
10 Holographic and offers a range of features suitable for augmented reality experi-
ences. The HoloLens 2 is equipped with four light cameras, two infrared cameras,
a depth sensor, an Inertial Measurement Unit (IMU), and an 8 MP camera. Users
can interact with the device using various methods, including hand gestures, eye
tracking, head tracking, and voice commands. These interaction modes enhance
the user experience and enable seamless navigation within the augmented reality
environment. Compared to its predecessor, the HoloLens 2 boasts several significant
improvements. One notable enhancement is the increased diagonal field of view
(FOV), now reaching up to 52 degrees. Additionally, the display resolution has been
improved to 2048 x 1080 pixels. Although the HoloLens 2 comes with a relatively
higher cost, its advanced hardware and intuitive interaction modes make it an optimal
solution for meeting the stringent requirements of the healthcare sector, particularly
in terms of communication latency and usability.

Laptop

The operating room equipment used did not impose strict requirements for com-
munication protocols with the Instrument Control Unit. Therefore, a laptop with
the following specifications was selected: Intel i7-10750H processor, 16 GB RAM,
Windows 10 operating system, and three USB 3.1 ports. To establish a connection
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with the pulmonary ventilator, an RS-232 to USB adapter is employed. For the
patient monitor, two adapters are used. First, a Medicollector adapter, which is a
specialized LAN to RS-232 adapter, is utilized. Additionally, a second RS-232 to
USB adapter is employed for the connection. The endoscope is interfaced with the
laptop using an S-Video to USB adapter. These adapters and connections enable the
laptop to communicate with the respective operating room equipment effectively.

3.3.2 Software

The AR software for this work was developed using Unity 3D in conjunction with the
Windows Mixed Reality Toolkit (MRTK). To enhance user experience, a navigation
menu was implemented, granting real-time access to the electronic clinical record
and to a complete set of data from the medical instruments. Three types of interaction
were incorporated to select desired data: hand gestures, vocal commands, and gaze
pointing. Upon launching the application, the operator in the operating room is
prompted to select a patient from the available options. The list of patients is
regularly updated by a WebSocket server, which transmits the updated information
to the HoloLens upon request. The AR content is then presented to the user through
the navigation menu.

Navigation Menu

The navigation menu was carefully designed to ensure that each window within
it maintains a consistent distance from the user, approximately 1 meter away, as
depicted in Figure 3.4. This approach helps prevent discomfort or motion sickness
effects during the use of the AR application. The menu comprises two main sections:

• Electronic Medical Record: Initially positioned on the left side of the menu,
requiring a 90° rotation of the head to the left to access it.

• Data and video streaming from the medical equipment: Initially positioned on
the right side of the menu, requiring a 90° rotation of the head to the right to
access it.
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As a result, the user’s central view remains clear and unobstructed. However, the
user has the flexibility to move and rotate the AR content using vocal commands,
allowing them to adjust the content to face them directly when needed.

Fig. 3.4 Concept of the implemented navigation menu. Image taken from [5].

The section dedicated to displaying data from the electronic clinical record of the
selected patient is divided into four categories: (i) Anamnesis, (ii) Diagnostic Tests,
(iii) Blood Tests, and (iv) Clinical Diary. These data are transmitted to the HoloLens
using the WebSocket protocol. A WebSocket server hosts a database of web pages
specific to each patient. Accessing these web pages is possible through HTTP links
and a web browser. However, by default, Unity 3D does not provide a built-in
browser service for displaying web pages in an AR environment. To overcome this
limitation, the PowerUI asset was installed, allowing the integration of web page
display functionality within the AR application. The user has the flexibility to select
the desired category for monitoring by utilizing hand gestures or the gaze pointer as
input methods. This enables them to interactively navigate and access the specific
data category of interest.

Communication

With regards to the real-time communication with the equipment, HoloLens receives
via Wi-Fi the data coming from the Laptop. The Laptop, in turn, is in charge
of gathering the data from the instruments connected via cable. Specifically, the
Laptop receives via UART (i) the data from the pulmonary ventilator, implementing
the MEDIBUS protocol, and (ii) the video streaming coming from the endoscope.
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Instead, the communication between Laptop and monitor was realized by means
of TCP/IP protocol by using a Medicollector adapter. Finally, the data are sent to
the HoloLens via both MQTT (vitals) and HTTP (video streaming), which shows
it in real time. In this way, the OR operator is able to evaluate in real time if the
surgical procedure in progress is being adequately performed. Further details about
the interfacing are provided below:

The real-time interfacing between the medical equipment and the HoloLens is
facilitated through a series of communication protocols. The HoloLens receives
the data wirelessly via Wi-Fi from the Laptop, which serves as an intermediary for
collecting data from the instruments connected via cable. Specifically, the Laptop
utilizes the UART interface to receive data from two sources. Firstly, it receives data
from the pulmonary ventilator using the MEDIBUS protocol. This allows the Laptop
to gather vital information related to the ventilator’s operation. Secondly, the Laptop
receives video streaming data from the endoscope, enabling real-time visualization
of the surgical procedure. To establish communication between the Laptop and the
patient monitor, the TCP/IP protocol is employed. This communication is facilitated
by the Medicollector adapter, enabling the Laptop to gather important data from the
patient monitor.
The collected data from both the pulmonary ventilator and the patient monitor
is then transmitted to the HoloLens for real-time display. The vital sign data is
transmitted via the MQTT protocol, while the video streaming is transmitted via
the HTTP protocol. This seamless transmission of data allows the HoloLens to
provide immediate visual feedback, enabling the operating room operator to evaluate
the ongoing surgical procedure in real-time and ensure its proper execution. These
interfacing details highlight the robust communication infrastructure established
between the medical equipment, the Laptop, and the HoloLens, facilitating efficient
monitoring and assessment of the surgical procedure.
Further details about the interfacing are provided below:

• Ventilator data acquisition: A MATLAB-based code implements the MED-
IBUS protocol for acquiring data from the Dräger medical device. This
software protocol facilitates data exchange between the medical device and
external devices via an RS-232 interface. Once the protocol is initialized, the
code prompts for and decodes the required vitals to be acquired. Subsequently,
it transmits the data to the HoloLens using the MQTT protocol.
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• Patient monitor data acquisition: The code responsible for acquiring data from
the patient monitor is integrated into the MATLAB script used for communi-
cating with the ventilator. This code retrieves waveforms from the monitor
through the Medicollector adapter using TCP/IP. After acquiring the wave-
forms, the code sends them to the HoloLens via MQTT protocol. The user can
select the waveform to display using hand gestures or a gaze pointer.

• Endoscope data acquisition: A Python 2.7 script was developed to acquire real-
time video streaming from the endoscope utilizing the Imutils.video library.
The acquired data is then transmitted to the HoloLens using the HTTP protocol.

The decision to use the HTTP protocol for transmitting video streaming from the en-
doscope to the HoloLens was based on the native video support offered by HoloLens
through the Media Foundation engine. This made it convenient to employ HTTP as
a protocol for adaptive multimedia content streaming. Therefore, the Unity 3D side
utilizes the UnityWebRequest class to compose and handle HTTP requests. On the
other hand, MQTT was chosen for transmitting the patients’ vitals as it is a widely
used TCP-based messaging protocol for device-to-device communication. MQTT is
lightweight, scalable, and efficient for low-performance devices such as low-power
HMDs, and it eliminates the need for polling, unlike RESTful over HTTP. The data
exchanged is formatted in JavaScript Object Notation (JSON), a text-based data
exchange format. On the Unity side, the M2Mqtt library from the M2MqttUnity
asset is utilized to implement an MQTT client on the HoloLens.

3.4 System Operation

Figure 3.5 depicts the block diagram illustrating the user’s operation with the AR
platform. After wearing the HoloLens 2 and launching the application, the user
is required to select a patient to monitor. This selection can be done using either
the gaze pointer or hand gestures. The AR content appears accordingly, with three
available windows:

1. The Clinical Record window for the selected patient, positioned initially on
the left side of the navigation menu (a 90° head rotation to the left).

2. The Vital Signs window.
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Fig. 3.5 Block diagram of the user’s operation during the fruition of the AR platform. Image
taken from [5].

3. The Video Streaming window, positioned on the right side (a 90° head rotation
to the right).

Upon application launch, the frontal view is clear, and the user can turn their head
sideways to view the desired AR holographic content. They can select the desired
information using the gaze pointer, hand gestures, or even vocal commands to choose
which window to display frontally. Finally, if the user decides to stop monitoring,
they can return to the patient selection by using vocal commands.

For illustrative purposes, Figure 3.6 presents a snapshot of the Clinical Record
menu, displaying the information seen by the user, and f the user’s view when se-
lecting the Vital Signs category to monitor the patient’s vital signs. The displayed
waveforms include Heart Rate, Respiration Rate, ECG, and O2 Saturation, obtained
from the monitor. Additionally, parameters from the ventilator such as Minimum,
Mean, and Peak Airway Pressure, Minute Volume, and Compliance are also moni-
tored.
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Fig. 3.6 Snapshot of the electronic clinical record window (top) and of the real-time monitored
vital signs (bottom). Images taken from [5].

3.5 Performance evaluation

After the validation of the AR platform’s proper functionality, experiments were
conducted to evaluate two aspects: (i) real-time communication with medical equip-
ment and (ii) the usability of the application on the AR headset. Two experimental
sessions were conducted, each comprising five measurement runs. To simulate the
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patient’s lungs, a non-self-inflating bag was connected to the pulmonary ventilator.
Additionally, the patient monitor was used to monitor the vital signs of a healthy
volunteer.

3.5.1 Real-time communication

In order to assess the communication with the medical equipment, two key metrics
were considered: communication accuracy and time response.

The communication accuracy represents the percentage of packets that were
correctly decoded by the Instrument Control Unit. It was calculated for each run
using the following formula:

A =
L−E

L
×100 (3.1)

where L is the total number of packets sent within a run and E is the number of errors
occurred. The mean accuracy value µA and standard deviation σA were calculated
for each session. Additionally, the 3-sigma uncertainty uA was evaluated using the
total number of runs N with the following formula:

uA =
k ·σA√

N
(3.2)

where k = 3 corresponds to a 99.7 % confidence level assuming a normal distribution.

On the other hand, the time response measures the time interval required by the
Instrument Control Unit to transmit data to the AR headset. For each run, the mean
value µTi and standard deviation σTi of the time response for all the packets sent
were evaluated. At the end of the session, the weighted mean µT was calculated,
taking into account the different number of packets Li sent in each of the N runs, as
expressed in Equation 3.3.

µT =
∑ i = 1N

µTi ·Li

∑
N
i=1 Li

(3.3)
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Regarding uncertainty, the 3-sigma uncertainty uT was calculated using the law of
propagation of uncertainties, as shown in Equation 3.4.

uT = k ·

√
N

∑
i=1

(
∂ µT
∂ µTi

·uTi

)2

(3.4)

where uTi is the standard uncertainty of the time response for each run, and k = 3
corresponds to a 99.7 % confidence level assuming a normal distribution of the data.

Table 3.1 presents the details of the two experimental sessions. The time response
measurements were below the millisecond range, while the communication accuracy
exceeded 99 %. These values align with the specifications required in the healthcare
field.

Table 3.1 Details of the two experimental sessions. Table taken from [5].

First experimental session Second experimental session
L µT (s) σT (s) A (%)
117 9·10−4 3·10−4 99.2
122 9·10−4 2·10−4 99.7
118 8·10−4 2·10−4 98.9
118 9·10−4 3·10−4 98.9
41 8·10−4 3·10−4 99.0
Total µT uT µA ±uA
514 9·10−4 3·10−5 99.1 ± 0.4

L µT (s) σT (s) A (%)
111 9·10−4 4·10−4 99.4
102 8·10−4 2·10−4 100.0
113 17·10−4 6·10−4 98.7
35 7·10−4 2·10−4 99.1
117 9·10−4 3·10−4 99.2
Total µT uT µA ±uA
478 11·10−4 6·10−5 99.3 ± 0.6

3.5.2 System Usability

The usability of the AR platform was evaluated by collecting feedback from all
the operating room (OR) operators who extensively used the application during
the experimental trials. A modified version of the System Usability Scale (SUS)
questionnaire was employed to assess the usability of the platform. The obtained
results were rescaled to a range of 0-100. Table 3.2 provides an overview of the
modified SUS questionnaire used in the evaluation. The AR platform received
positive feedback regarding its ergonomics, accommodating users wearing glasses
or having long hair. Users reported no motion sickness effects while using the
application, which is a crucial aspect for a comfortable and immersive experience.
Most importantly, the platform was perceived as easy to use by the operators. One
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notable feature that was highly appreciated by the operators was the multiple options
for data selection, including vocal commands, gestures, and gaze pointers. This
feedback also confirms the suitability of the Microsoft HoloLens 2 headset for
the AR platform. Overall, the feedback from the operators indicated that the AR
platform demonstrated satisfactory usability, making it a promising tool for medical
applications in the operating room.

Table 3.2 Adopted SUS questionnaire. Table taken from [5].

N. Question Score

1
I think that I would like to use this
system frequently 1 2 3 4 5

2
I found the system unnecessarily
complex 1 2 3 4 5

3 I thought the system was easy to use 1 2 3 4 5

4
I think that I would need the support of
a technical person to be able to use this
system

1 2 3 4 5

5
I think the various functions in this
system were well-integrated 1 2 3 4 5

6
I thought there was too much
inconsistency in this system 1 2 3 4 5

7
I would imagine that most people would
learn to use this system very quickly 1 2 3 4 5

8
I found the system very cumbersome
to the user 1 2 3 4 5

9 I felt very confident using the system 1 2 3 4 5

10
I needed to learn a lot of things before
I could get going with this system 1 2 3 4 5

11
I found the multiple choice of data selection
easy to use 1 2 3 4 5

12
I felt motion sickness effects after an
intensive use of the system 1 2 3 4 5

3.6 Conclusions

The integrated AR platform proposed for real-time patient monitoring during sur-
gical procedures offers practical benefits for members of the surgical team in the
operating room (OR). The platform is designed to be worn by nurses, anesthetists,
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or surgeons, providing them with a comprehensive set of real-time information
through an AR headset. This information includes the patient’s electronic clinical
record, vital signs obtained from a pulmonary ventilator and a monitor for intensive
care, as well as video streaming from a laparoscopic camera. By making this data
readily available and easily accessible, the platform facilitates efficient and timely
monitoring for OR operators. The development of the AR platform focused on
meeting the stringent requirements of the healthcare sector, particularly in terms
of communication accuracy and time response. Experimental results confirmed
that the platform achieved high communication accuracy, exceeding 97 %, while
maintaining a fast time response in the millisecond range. These results demonstrate
the platform’s ability to meet the demanding requirements of the healthcare field.
Usability tests, conducted through the administration of SUS questionnaires, further
validated the suitability of the AR monitoring platform for prolonged use. Feedback
from the OR operators highlighted the platform’s ease of use, ergonomic design, and
absence of motion sickness effects. The multiple options for data selection, including
vocal commands, gestures, and gaze pointers, were particularly appreciated by the
operators. In conclusion, the proposed AR integrated platform has demonstrated
its value as a reliable and supportive tool for OR operators in monitoring patients’
health during delicate surgical procedures. By providing real-time access to critical
information, the platform enhances the efficiency and effectiveness of patient care in
the OR.



Chapter 4

Decision Support Systems for Health
4.0

A Decision Support System (DSS) is an integration of hardware and software solu-
tions that helps healthcare professionals make informed decisions about patient care
by analyzing patient data coming from measurement instrumentation and providing
recommendations based on that data [118]. In the context of the digital transition in
healthcare, DSSs are an essential component facilitating the shift towards data-driven
approaches. With the increasing amount of digital data available in healthcare, such
as electronic health records, medical imaging, and genomic data, DSSs are becoming
more critical for healthcare professionals to manage and make sense of this vast
information landscape [119]. To enhance the utility of DSSs, it is imperative to
consider the dynamic interplay between humans and machines, emphasizing the
concept of human-machine interaction. Human-machine interaction in the context
of DSSs involves the seamless collaboration between healthcare professionals and
computational systems. A particular collaborative approach, often referred to as man
in the loop [120], acknowledges the human as an integral part of the decision-making
process. In this paradigm, the DSS serves as a supportive tool, augmenting the
capabilities of healthcare professionals. The human input becomes pivotal in refining
the recommendations provided by the system, ensuring a more personalized and
nuanced decision-making process. As DSSs continue to evolve, the emphasis on
effective human-machine interaction becomes paramount. This collaborative model
not only leverages the analytical power of algorithms and computational tools but
also incorporates the expertise and contextual understanding of healthcare profes-
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sionals. This symbiotic relationship between humans and machines enhances the
interpretability of the generated insights and fosters a more comprehensive approach
to patient care. In the following Sections, two major DSSs are described in detail.
The first is aimed at evaluating the goodness of the effectiveness of scoliosis corsets,
while the second is focused on the assessment of the perfusion quality in laparoscopic
surgery.
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4.1 Evaluation of the therapeutic effect of scoliosis
corsets

In this section, an innovative system is proposed for the real-time assessment of
scoliosis braces using low-cost infrared thermography instrumentation [65]. Tra-
ditionally, the evaluation of brace effectiveness heavily relies on qualitative and
empirical assessments conducted by orthopedists during routine follow-up examina-
tions. However, this evaluation is solely based on the expertise of the orthopedists
involved. Currently, the only reliable methods available to validate the orthopedists’
decisions involve assessing the progression of scoliosis over time, often requiring
the use of ionizing radiations. Therefore, the proposed system aims to fulfill the
requirements of real-time monitoring and objective evaluation in a non-harmful
manner. This is achieved by exploiting the thermoelastic effect and correlating tem-
perature changes on the patients’ backs with the mechanical pressure applied by the
braces. An experimental campaign was carried out at an accredited orthopedic center
under normal operating conditions, involving twenty-one patients in the juvenile and
adolescent age groups. The system’s performance was then evaluated using appro-
priate validation techniques. The experimental results demonstrate a classification
accuracy slightly below 70 %, which shows promise for further advancements aimed
at considering the use of such systems in orthopedic centers.

4.1.1 Rationale

According to [65], "Scoliosis is defined as a complex deformity of the backbone
and the torso that occurs in three dimensions [121, 122] and consists of a lateral
curvature with a vertebral rotation [123]. The standard screening test for scoliosis
is the forward bending test [123], during which the patient is asked to bend forward
with straight knees, while the examiner observes the back for any signs of asymmetry.
If the results of the test, along with the patient’s medical history, raise suspicion
of scoliosis, radiography becomes crucial for further evaluation [124]. Once ra-
diography is acquired, scoliosis is identified by means of the measurement of the
Cobb angle, which quantifies the degree of spinal curvature by measuring the angle
between the two most inclined vertebrae at the top and at the bottom of the curve
[125, 126]. In particular, scoliosis is diagnosed when this angle exceeds 10° [127]".
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The related causes can be classified as neuromuscular [128], syndrome-related [123],
congenital [129], and idiopathic [130]. This latter represents the majority of scoliosis
cases since it is identified as a multi-factor spinal deformity with unknown etiology.
Additionally to the relevant cosmetic deformity, idiopathic scoliosis poses risks in
terms of cardiac and pulmonary impairments [131]. Scoliosis classification varies
based on the patient’s age. It is categorized as infantile, juvenile, and adolescent
scoliosis, corresponding to patients aged 0-3 years, 4-10 years, and older than 10
years, respectively [123]. Other classification systems consider the number of curves
and the type of deformity [132].

With regards to the treatments, they encompass various approaches including
observation, physiotherapy, bracing, and, in extreme cases, surgery [133]. Surgery is
typically reserved for cases where the Cobb angle exceeds 50° [134], while scoliosis
braces are widely utilized as a treatment option for patients with incomplete bone
growth and Cobb angles ranging between 25° and 50° [124, 134]. In this specific
scenario, patients are fitted with a rigid or semi-rigid corset-like device. The selection
of the brace model depends on factors such as the patient’s bone maturity, measured
Cobb angle, and specific characteristics of the spinal deformity [124]. Common
brace models include the Milwaukee, Lyonnaise, Cheneau, Sforzesco, among others
[124].

The customized corset is designed to conform to the patient’s specific torso and,
aiming to straighten and correct the spinal curvature caused by scoliosis, applies
external pressure to the affected areas of the backbone. This pressure is exerted
unilaterally, targeting the curvature on one side of the backbone. Throughout the
treatment process, regular follow-up examinations are essential to assess brace
compliance and make necessary adjustments to the corset in response to changes
in the patient’s body [135], ensuring appropriate pressure application. However,
there is currently no consensus in the literature regarding the implementation of
these brace corrections [134], and there is a lack of agreement on the mechanical
principles guiding brace design and manufacturing [130, 136]. Consequently, the
determination of whether the pressure exerted by the brace is considered "adequate"
or "inadequate" largely depends on the expertise of the orthopedist [137, 122]. As
a result, the most reliable measure to validate the orthopedist’s decision is the
assessment of curve progression, typically achieved by comparing the Cobb angle
measured from radiographic imaging obtained over a specific time frame [138].
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As deduced, this approach necessitates a specific time interval between two
measurements of the Cobb angle. Moreover, the utilization of radiographic imaging
poses potential limitations due to the associated risks of repeated ionizing radiation
exposure over time. If alternative radiation-free methods, such as Moiré topography
[139] or 3D scanning [140], are employed to assess the curve progression by means of
asymmetry indexes, the time horizon between two acquisitions could be considerably
shortened. Nevertheless, according to [65], "evaluation remains not feasible, as
the gradual reduction of spinal curvature can be achieved only with the prolonged
wearing of the brace by the patient. Moreover, another crucial aspect is that failure
to wear the corset correctly by the patients could result in a deterioration of scoliosis,
even if the corset has been properly designed. Therefore, a comparison between two
measurements over time may not accurately reflect the effectiveness of the corset if it
is not consistently worn as prescribed. Consequently, patients still currently lack an
objective means of monitoring the effectiveness of their corsets in real-time, which
would enable prompt adjustments to be made" [65, 139, 140].

A first attempt to enable real-time evaluation was introduced in a previous study
[132]. This approach involved monitoring the mechanical pressure exerted by the
brace by means of the usage of pressure sensors positioned between the brace itself
and the patient’s backbone. However, accurately measuring the existing pressure
between these two surfaces, while still consistently moving the sensor, proved to be
challenging, as it required ensuring reliability, repeatability, and cost-effectiveness in
view of widespread implementation in healthcare facilities.

Based on these considerations, the current study presents an innovative, non-
invasive, and cost-effective approach to evaluate the effectiveness of scoliosis braces
in real-time. The proposed system leverages low-cost infrared thermography (IRT)
instrumentation to capture the skin temperature of the patients’ backbones. By
processing the acquired temperature data, the system can determine whether the
mechanical pressure applied by the corset is considered "adequate" or "inadequate"
based on the orthopedic prescription and brace design. This system represents a
fully-fledged decision-support system, which is a prominent manifestation of the
"4.0" digital transition in healthcare [141]. Its primary goal is to provide orthopedists
with a reliable and objective assessment, enabling them to promptly identify the need
for adjustments to the corset and enhance the scoliosis treatment process.
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4.1.2 Background

IRT, or infrared thermography, is a non-invasive technology that operates by detecting
and capturing emitted radiation energy within the wavelength range of 2 to 15 µm
[142]. This detection is achieved through an array of detectors in charge of converting
the energy into a thermal image [143]. The amount of energy emitted by an object
is influenced by various factors, including wavelength, surface temperature, and
emissivity. Emissivity refers to the ratio between the amount of infrared energy
emitted by an object and that emitted by an ideal black body considering the same
wavelength and temperature [144]. Different objects possess different emissivity
values, meaning they can emit the same amount of thermal energy even if they
have different temperatures. Additionally, when using infrared detectors in order
to measure the infrared energy emitted by a certain object, the measured value is
not solely influenced by the energy emitted by the object itself. It is also affected by
the energy absorbed, reflected, and emitted by the surrounding environment [143].
Furthermore, the measured value is dependent on the distance between the object’s
surface and the camera. To ensure measurement repeatability, it is crucial to acquire
thermal images of objects from a consistent distance and in a consistent environment
[145].

IRT technology has seen widespread adoption in various fields, including electri-
cal engineering [146], mechanical engineering [147], agriculture [148], veterinary
medicine [149], and healthcare [150]. In the healthcare sector, IRT has made signifi-
cant advancements, benefiting from improved detector sensitivity, cost reductions
[151, 145], and integration within the context of the "4.0" digital transition. This
transition leverages technologies like Augmented Reality [32], Internet of Things
[152], Cloud Computing [153], and Artificial Intelligence [154, 3]. In fact, these
advancements have led to the development of infrared cameras that can be attached to
smartphones, providing improved portability, connectivity, and also ease of use, still
without compromising performance compared to traditional devices [155]. This has
paved the way for the emergence of decision-support systems that provide healthcare
professionals with fast, reliable, and objective results in various scenarios. These
systems are used for evaluating inflammatory processes [156], detecting infections
[157], monitoring diabetes-related conditions [158], and assessing eye diseases
[159]. In the field of rehabilitation and orthopedics, such systems are employed for
ergonomic evaluations [6], injury prevention and assessments [160, 161], scoliosis
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diagnosis [162, 163], and brace manufacturing [164]. As an example, Fig. 4.1
illustrates two acquired thermal images of a subject.

Fig. 4.1 IR images of an individual’s whole body. Image taken from [6].

All the aforementioned scenarios necessitate a deep understanding of the rela-
tionship between the human body and the corresponding emitted thermal energy.
In essence, human skin exhibits a constant emissivity in the 3-15 µm range, with
a value of approximately 0.97±0.05, which is close to that of a black body [145].
The thermal energy emitted by the human body can be primarily attributed to factors
such as blood perfusion, metabolism, and external sources [150, 165], including
electromagnetic fields or mechanical loading [150]. In the case of evaluating the
effectiveness of scoliosis corsets, the relationship between mechanical loading and
emitted thermal energy enables the utilization of IRT for assessing the stress im-
posed on the body. This analysis is known as Thermoelastic Stress Analysis (TSA),
which relies on the thermoelastic effect. The thermoelastic effect establishes a linear
correlation between changes in body temperature (and thus emitted thermal energy)
and stress states on the body’s surface, assuming local adiabatic conditions [150].

Considering all these factors, it becomes evident that within the framework
of evaluating the effectiveness of scoliosis corsets, TSA could serve as a robust
foundation. By employing suitable acquisition and processing techniques for thermal
images of patients’ backbones, TSA can be leveraged to determine whether the
pressure applied by the scoliosis corset is adequate.
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4.1.3 Design

Drawing upon the considerations expounded in Section 4.1.1 and 4.1.2, this study
introduces a system designed to evaluate the efficacy of a scoliosis corset, serving
as a decision support tool for orthopedic specialists. The proposed system endeav-
ors to furnish an objective assessment, discerning whether the corset functions
adequately or not, by capitalizing on the interrelation between fluctuations in skin
temperature and applied mechanical pressure (as elucidated in Section 4.1.2), thereby
streamlining clinical decision-making. The system operates as depicted in Fig. 4.2,
comprising three pivotal modules, namely the preparation of regions of interest
(ROIs), processing of ROIs, and the decision module.

Fig. 4.2 Conceptual description of the proposed system

1. The module responsible for preparing the regions of interest (ROIs) is divided
into three blocks. The initial block, denoted as "Images Acquisition," captures
both thermal and corresponding RGB images of the patients’ dorsum. It is
important to note that the patient’s back remains uncovered during this stage.
To ensure the visibility of the bracing effect, orthopedic specialists recommend
a time limit of no more than one minute between the removal of the scoliosis
corset by the patient and the commencement of image capture. Several factors,
such as the duration of brace usage, the intensity of applied pressure, and
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individual metabolism, can influence the duration of the corset’s pressure
effect on skin temperature variation after removal. This effect may gradually
diminish within a few minutes or persist for an extended period, ranging from
several minutes to tens of minutes (Gulyaev et al., 1995; Hart et al., 2004).

The second block, termed "Selection of the ROIs," involves the manual se-
lection of two symmetrical Regions of Interest (ROIs) from the RGB image
by the orthopedic specialist. The first ROI corresponds to the area where the
brace exerts pressure, while the second ROI is chosen symmetrically with
respect to the backbone. The selection process takes into account the patient’s
clinical history, including access to radiography, knowledge of the diagnosis,
type of corset worn, and related prescription. This information enables the
identification of the specific region of the back where the corset should exert
its effect. To avoid confirmation bias, the selection of the ROIs is performed on
the RGB image rather than the thermal image. Subsequently, the third block,
referred to as "Mapping," maps the selected regions from the RGB image onto
the thermal image.

2. The module for processing the ROIs is also divided into three blocks. The
first block, named "Grayscale Conversion," converts the thermal ROIs from
the RGB color space to grayscale. This conversion assigns the maximum
temperature value to the white color and the minimum temperature value to the
black color. Consequently, each ROI undergoes a transformation from three-
dimensional (red, green, and blue channels) to one-dimensional (grayscale).

Next, the "ROIs Partitioning" block divides each grayscale ROI by performing
horizontal and vertical slicing. As a result, each ROI is segmented into subre-
gions with dimensions of N ×M, where N represents the number of horizontal
slices and M represents the number of vertical slices.

The final block, referred to as "Partitions Averaging," computes the average
value for each of the subregions within the partitioned grayscale ROIs. This
process generates two vectors, each with dimensions of [N ×M, 1], represent-
ing the averaged values of the subregions for each ROI.

3. The two vectors obtained from the ROIs processing module are compared
using the "Decision" module. Specifically, the Student’s T-Test is performed
between the two vectors to evaluate whether there is a statistically significant
difference in the means of the two groups represented by the vectors. Clearly,
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a preliminary investigation about the normality of the data was conducted by
means of a χ2 test. The output of the T-Test is the p-value, indicating the
probability of obtaining test results as extreme as the observed result, assuming
that the null hypothesis is true. In this context, the null hypothesis implies no
significant difference between the two vectors, suggesting inadequate scoliosis
brace pressure. A lower p-value indicates a lower probability of erroneously
rejecting the null hypothesis. Therefore, the resulting p-value is compared with
a predefined threshold, determined through a learning process, to associate
it with an output that indicates whether the scoliosis brace is functioning
adequately or not.

Specifically, if the obtained p-value is below the threshold and the average
temperature of ROI #1 (region where brace pressure is expected) is higher than
that of ROI #2 (region where brace pressure is not expected), the pressure of
the scoliosis corset is deemed adequate. Conversely, if the p-value exceeds the
threshold, it is considered inadequate.

A graphical representation of the proposed system is depicted in Fig. 4.3. The
figure highlights the three modules (ROIs preparation, ROIs processing, and Deci-
sion), along with the internal blocks related to: the selection of the ROIs (a), the
mapping onto the thermal image (b), the partitioning and grayscale conversion (c),
the averaging of the partitions (d) that generates two vectors v of length L = N ×M,
the T-Test (e), and finally, the thresholding and output assessment (f), where the
output is 0 if the corset pressure is inadequate and 1 otherwise.

4.1.4 Experimental Validation

In this section, the on-field case study conducted at Ortopedia Ruggiero in Cardito
(Naples, Italy) is described, along with the obtained experimental results pertaining
to the evaluation of the proposed system’s performance.

The study adhered to the guidelines specified in the Declaration of Helsinki. As
the data for this study were collected during routine clinical practice, formal approval
from the institutional review committee was not required. However, informed consent
for the surgical procedure and the utilization of patient data by third parties was
obtained from the parents or legal guardians of each participant.
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Fig. 4.3 Graphical representation of the proposed system: a) Selection of the ROIs; b)
Mapping; c) ROIs Partitioning and Grayscale Conversion; d) Partitions Averaging; e) T-Test;
f) Thresholding and Output.
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Setup

The experimental campaign comprised a cohort of twenty-one patients, consisting
of both juvenile and adolescent individuals, with fourteen of them being females.
All patients were diagnosed with idiopathic scoliosis and were undergoing bracing
treatment as prescribed by the specialist, making them ineligible for surgery. The
prescribed braces varied depending on the individual’s condition. Specifically, nine
patients had dorsal or lumbar scoliosis, while the remaining twelve had dorso-lumbar
scoliosis with a double curve of the spine.

Importantly, none of the patients had any chronic or acute health conditions
known to cause temperature fluctuations on the skin surface. Nineteen patients
participated in the experimentation once, while two patients were involved in the
study on two separate occasions.

To provide an illustrative example, Figure 4.4 displays different models of braces
worn by the subjects participating in the experimental campaign.

Fig. 4.4 Different braces models worn by subjects involved in the experimental campaign.

Before the infrared (IR) acquisition, patients were instructed to avoid consuming
stimulant beverages, engaging in physical activity, applying body creams, and wear-
ing jewelry. The experimental campaign was conducted in a conditioned room with
non-direct airflow, maintaining a temperature between 19°C and 23°C to simulate
real operating conditions.

Upon arrival at the facility, patients’ radiographs and orthopedist prescriptions
were collected. Subsequently, they were guided to a designated room to rest and
acclimate for approximately fifteen minutes. During this time, the orthopedist
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performed a standard examination, including assessing the compliance of the brace
through manual procedures. To ensure measurement repeatability and reproducibility,
each patient was positioned at a consistent distance from the camera. A marked spot
on the floor, located 1 meter away from the IR camera, served as the reference point.
Careful attention was given to avoiding any obstacles between the IR camera and the
patient’s back. After the acclimatization period, "patients were instructed to undress
and remove the brace, allowing for thermal images of their back to be captured.
This step ensured that any interference caused by the brace material was eliminated,
enabling clear visualization of the thermal effects resulting from the brace’s applied
pressure. The thermal images were acquired within one minute of brace removal,
enabling the observation of the temperature increase caused by the brace’s pressure."
[65] "The thermal images were captured using the FLIR ONE Pro thermal imaging
camera [166], an affordable camera that attaches to smartphones. The cost of
this camera is approximately $450 USD. In terms of metrological performance, the
camera provides an accuracy of 3°C when operated within a temperature range of
15 to 35°C and when measuring object temperatures ranging from 0 to 120°C. The
thermal sensitivity of the camera is 100 mK. The thermal sensor operates within a
spectral range of 8 to 14 µm, covering the range of interest from 8 to 12 µm. The
acquired data are stored directly on the smartphone as an image with dimensions of
1440x1080 pixels, while the thermal resolution of the camera is 160x120 pixels" [65].
For a comprehensive understanding, Figure 4.5 presents a schematic representation
of the acquisition system.

Fig. 4.5 Sketch of the acquisition system.
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By the conclusion of the experimental campaign, a total of 21 pairs of RGB/thermal
images were acquired (one for each patient). For each RGB image, the medical
team followed the procedure outlined in Section 4.1.3 to select the pairs of Regions
of Interest (ROIs). As patients were affected by single or double curvature of the
backbone, in some cases two pairs of ROIs were considered for a patient. Overall,
36 pairs of ROIs were selected. Subsequently, a label Yi was assigned to each pair of
ROIs to indicate the pressure applied by the brace, classified as either adequate/1
or inadequate/0. To minimize subjective evaluations from a single operator and
mitigate the potential for bias, the labeling process adhered to a majority rule, where
multiple members of the medical team contributed to the decision-making process.
This approach aimed to ensure objectivity and consistency in the assignment of
labels.

Results

The obtained 36 pairs of ROIs were processed following the steps outlined in the
"ROIs processing" module depicted in Figure 4.2. Consequently, the dataset for
analysis consisted of 36 scores Xi, each associated with a corresponding label Yi.

To assess the performance of the proposed system in terms of classification
accuracy (defined as the percentage of instances correctly classified) and its general-
ization capability (preventing overfitting), a leave-one-out cross-validation (LOOCV)
strategy was employed. LOOCV is a widely used method for evaluating the perfor-
mance and generalization ability of a classifier within a dataset. It is a form of k-fold
cross-validation where k is equal to the number of instances in the dataset.

In LOOCV, the dataset is divided into k subsets or folds, with each fold containing
only one instance. The model is then trained on k− 1 folds and evaluated on the
remaining fold. This process is repeated k times, ensuring that each instance serves
as the test set once. LOOCV provides an effective approach for assessing the
performance and generalization of the system while mitigating the potential bias
introduced by a specific test set.

In this study, the training process involved performing a grid search over 1000
different values of the threshold parameter th, ranging from 0.005 to 0.500. For
each iteration of the LOOCV process, the threshold value thmax that maximized the
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classification accuracy on the training folds (k−1 folds) was applied to the test fold
k. This allowed for an evaluation of the model’s performance on unseen data.

However, given the relevant imbalance of classes in the dataset, with only 10
instances labeled as inadequate/0 pressure and 26 ones labeled as adequate/1 pres-
sure, a balancing procedure was conducted prior to applying LOOCV. Ten random
subsets were created from the original dataset, so that it was ensured that each subset
contained 20 instances with a balanced distribution of half labeled as 0 and the
remaining half labeled as 1.

Subsequently, LOOCV was applied to each of the ten subsets, resulting in
ten different values of averaged classification accuracy and associated standard
uncertainty (evaluated as type-A uncertainty [92]). By considering these multiple
subsets, the overall mean value and uncertainty provide a robust indication of the
system’s performance on unseen data. Figure 4.6 illustrates the conducted evaluation
of the system’s performance.

Fig. 4.6 Description of the evaluation of the system performance.

Tab. 4.1 displays the averaged accuracy (A) values and their corresponding
standard uncertainties (u) for each subset, expressed as percentages.
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Metric Set #1 Set #2 Set #3 Set #4 Set #5 Set #6 Set #7 Set #8 Set #9 Set #10 Mean
A (%) 70.0 55.0 65.0 75.0 65.0 70.0 60.0 65.0 65.0 65.0 65.5
u (%) 10.5 11.4 10.9 9.9 10.9 10.5 11.2 10.9 10.9 10.9 3.4

Table 4.1 Accuracy (A) and corresponding standard uncertainty (u) obtained for each subset
and averaged.

After evaluating the system’s performance, a grid search for the threshold param-
eter th is repeated on the entire dataset to extract as much information as possible
from the data [167]. This process aims to find the best threshold value (thbest) to be
used in real-time scenarios for clinical evaluations. The overall mean accuracy (Am)
is determined to be 65.5 %, with an associated standard uncertainty (um) of 3.4 %,
evaluated using the first-order law of propagation of uncertainty [92]. Assuming a
normal distribution and a confidence interval of 95 %, a coverage factor (k) of 2 is
applied to obtain the expanded uncertainty (Um = k ·um), expressing the measurement
results as (65.5 ± 6.8) %.
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4.2 Evaluation of the blood perfusion quality in la-
paroscopic surgery

In this Section, the innovative algorithm proposed for laparoscopic colorectal surgery
in [7] and aimed at automatically assessing the perfusion quality of the blood in
intestinal sectors is described. Typically, the homogeneity of luminosity in indocya-
nine green-based fluorescence imaging is evaluated solely through a qualitative and
empirical assessment that significantly depends on the surgeon’s subjective judgment.
Consequently, this leads to evaluations that are highly experience-dependent. In
order to overcome this bottleneck, the algorithm described in this study evaluates
the degree and consistency of indocyanine green administration during laparoscopic
surgery. The algorithm utilizes a Feed-Forward Neural Network, which receives a
feature vector as input. This feature vector is based on the histogram of the green
band of the input image. The algorithm is used for two primary purposes: (i) to
obtain information related to the perfusion during surgery, and (ii) to assist the
surgeon in objectively evaluating the outcome of the procedure. Specifically, the
algorithm produces an output that classifies the perfusion as either adequate or inade-
quate. The validation of the algorithm was performed on a set of videos captured
during surgical procedures conducted at the University Hospital Federico II (Naples,
Italy). The results obtained showcase a classification accuracy of 99.9 %, and a
repeatability of 1.9 %. Ultimately, the effectiveness of the proposed algorithm’s
real-time functionality was assessed by analyzing video streaming captured directly
from an endoscope located in the operating room.

4.2.1 Rationale

Indocyanine green (ICG) is a molecule that was developed at Kodak’s Research and
Development laboratories in the 1950s [168]. It was originally intended for use in
infrared photography, and has since found various other applications. This molecule
was the first substance discovered to be able to emit fluorescence in the spectrum
of the near-infrared (NIR). Specifically, it gets fluorescent when it is illuminated
with infrared light. Such substance has been found to have negligible toxicity and is
quickly eliminated by the body without any significant side effects, except in rare
cases of allergic reactions which can be easily prevented [169]. In 1959, the use
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of indocyanine green (ICG) was approved by the Food and Drug Administration
(FDA) for clinical applications [170]. Since then, it has been extensively utilized as
a diagnostic tool for various pathologies affecting the heart, eyes, liver, and lungs.
This substance is typically administered by injection into the patient’s vein prior to
surgery or near the tumor mass to be removed the day before surgery. Once in the
body, the molecule binds to plasma proteins present in the blood, thereby imparting
its fluorescent properties to the blood, liver, and biliary circulation [171].

More recently, the use of ICG has become widespread in the field of surgery due
to the development of fluorescence detectors, which are optical systems designed
for the excitation and detection of emitted fluorescence. One important area of
research involving ICG is its use in estimating perfusion quality during laparoscopic
surgery [172–177]. This is a critical step in assessing whether the intestine is
adequately perfused, which serves as an indication of the overall outcome of the
procedure [178–180]. In fact, a deficiency in perfusion at the site of an anastomosis
increases the risk of anastomotic dehiscence, which refers to the failure of sutures to
heal properly and can lead to the development of fistulas and compromised tissue
perfusion [181]. Therefore, assessing the quality of perfusion using ICG allows the
surgeon to intervene promptly during the ongoing surgical procedure.

The most commonly used technique for verifying the perfusion of an intestinal
segment is to inject ICG into the patient’s body. This makes the blood fluorescent
with a green tinge when illuminated with infrared light. The evaluation of the
intensity and uniformity of this fluorescence allows the surgeon to determine whether
the tissue is adequately perfused. This technique has been successfully used by Boni
[181] to provide information related to perfusion during colorectal surgery and assist
the surgeon in adopting the best strategy during colorectal anastomosis, which is often
necessary in colorectal interventions where two conical stumps need to be stitched.
In addition, ICG has been used for other applications such as dynamic discrimination
of primary colorectal cancer using systemic indocyanine green with NIR endoscopy
[182], intraoperative ureter identification, and lymph node dissection [183]. At
present, the brightness of ICG fluorescence is evaluated solely on a qualitative and
subjective basis by the surgeon, relying on personal experience. However, there
is currently no established technique or system available to quantify fluorescence
brightness objectively and support surgical assessments. Despite several efforts to
design systems capable of assisting surgeons in the assessment of perfusion quality,
including those described in [184–187], none have been successful in quantifying the
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fluorescence brightness of ICG in a reliable and objective manner. These approaches
are primarily founded on the rate of indocyanine diffusion within the tissues. The
perfusion of the colorectal segment is evaluated by analyzing the gradient related
to the intensity of ICG fluorescence brightness captured by a camera. The resulting
output is a heat map that highlights the areas of the intestine characterized by a
more rapid increase of ICG fluorescence brightness after injection. Additionally,
these methods attempt to correlate the heat map with the post-surgery outcome.
Nevertheless, it should be noted that the techniques presented in [184–187] lack
the ability to automatically and objectively evaluate the quality of perfusion in
the analyzed region. These methods only generate a graphical output, leaving the
subjective interpretation of the results to the surgeon.

In order to address this challenge, an increasingly popular field of technology is
being adopted, namely Artificial Intelligence (AI) [188, 189], specifically Machine
Learning (ML). The combination of powerful computing capabilities and the de-
velopment of effective algorithms by researchers [190–192] has contributed to the
widespread adoption of ML in a wide range of applications, including healthcare
[193]. Currently, there are many examples of ML-based approaches being used
in the medical field [194–196], providing evidence that this technology can assist
medical professionals in minimizing patient risks and preventing complications.

In the healthcare field, there exist many examples of ML-based approaches,
such as the development of a symptom-to-disease digital health assistant in [194]
which achieved a high accuracy of over 90 % in differentiating over 20,000 diseases.
Another study in [195] proposed an AI-based diabetic retinopathy screening model
in endocrinology outpatient settings, with a sensitivity and specificity of 92 % and 93
%, respectively. In [196], AI was used for tuberculosis detection in chest radiographs,
with a sensitivity of 95 %. Additionally, an original ML-based maxillofacial fracture
detection system was proposed in [197] to detect traumatic fractures in patients.
According to Steele [198], ML models applied to electronic health records can
outperform conventional models for predicting patient risks. In addition, Cahill et
al. [199] proposed a decision support system based on AI for intra-operative tissue
classification in colorectal cancer. Park et al. [200] explored the feasibility of using
AI-based real-time analysis of microperfusion to predict the risk of anastomotic
complications in patients undergoing laparoscopic colorectal cancer surgery. Igaki et
al. [201] conducted the first study using an image-guided navigation system with total
mesorectal excision. Sanchez et al. [202] conducted a systematic literature review
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on the use of AI in finding colorectal polyps in colonoscopy. Finally, Kitaguchi
et al. [203] used AI to identify laparoscopic surgical videos, aiming to automate
time-consuming manual processes such as video analysis, indexing, and video-based
skill assessment.

Therefore, in the study published in [7], a ML-based system that aims to objec-
tively assess the adequacy of intestinal perfusion after an injection of ICG is proposed.
The system is designed to provide surgeons with an automated tool that can assist in
assessing the outcome of laparoscopic colorectal surgery. Specifically, the algorithm
is capable of classifying the perfusion as either "adequate" or "inadequate", providing
surgeons with a reliable, objective assessment of the procedure. The system works on
a video extracted from a laparoscopic camera and a Region of Interest (ROI) selected
by the surgeon, which contains the area to be assessed. The system uses a set of
pre-processing steps to prepare the input for a Feed-Forward Neural Network, which
is used to evaluate the quality of perfusion. The neural network hyper-parameters
are precisely tuned to achieve a high prediction accuracy, making the proposed
architecture suitable for standard routine adoption during surgery. The feasibility of
the system is demonstrated through a proof-of-concept case study, which involves
perfusion analysis applied to abdominal laparoscopic surgery at University Hospital
Federico II in Naples, Italy. The system’s optimal performance in real time proves
its effectiveness as a decision support tool for both less-experienced surgeons and
those at the beginning of the learning curve.

4.2.2 Design

The issue tackled in this study can be expressed formally as a binary classification
problem that deals with identifying frames from a video stream that correspond to
an ROI with either adequate or inadequate perfusion. To address this issue, the
objective was to develop an automated system capable of quantitatively assessing the
amount of ICG present in the ROI. This was achieved by computing the histogram
of the green band of the acquired frames and producing an output that corresponds
to either adequate or inadequate perfusion.

The present study was conducted in compliance with the principles outlined in
the Declaration of Helsinki. As the investigation did not involve any pharmacological
experimentation, medical devices, or patient data, but solely relied on the computer-
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based analysis of video material collected during routine clinical practice, the Ethics
Committee’s approval was deemed unnecessary. Prior to the surgical procedure, each
patient provided written informed consent, which included approval for third-party
use of their data.

System Architecture

The overall architecture of the proposed system is shown in Fig. 4.7.

Fig. 4.7 Functional blocks of the proposed algorithm. Three main blocks are outlined: the
first block implements a fast-tracking algorithm to track the selected Region of Interest (ROI).
The second block performs feature extraction on the available frames as a pre-processing
step. Finally, a Machine Learning (ML)-based classifier is utilized in the third block to
provide the output in terms of the quality of perfusion. Image taken from [7].

The proposed system takes two inputs: (i) frames captured from the video streaming
and (ii) an ROI identified as a rectangular box selected by the user. The ROI indicates
the portion of the frame that requires analysis and is selected using the mouse or the
trackpad on the computer, facilitated by the OR operator, at the beginning of the
algorithm.

The architecture of the system, from left to right, comprises the following three
functional blocks:

• The first functional block of the proposed system employs a Fast tracking
algorithm to track the selected ROI during video execution. The Minimum
Output Sum of Squared Error (MOSSE) tracker [204] was utilized for this
purpose. The MOSSE algorithm uses adaptive correlation to track objects,
resulting in better robustness against variations in lighting, pose, scale, and non-
rigid transformations. The MOSSE tracker also implements an auto pause and
resume functionality, which comes into effect if the object to track disappears
(for instance, if the surgeon covers it) and then reappears. Additionally, the
MOSSE tracker can work at high frame rates, exceeding 450 fps.
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• After extracting the frames containing the ROI from the video source, the
second functional block performs Features extraction. The frames are in
the RGB format, where each colored image is obtained by combining three
images, one for each color channel: red, green, and blue. Each pixel has an
8-bit resolution, representing the intensity of the pixel. Subsequently, the ROI
of each frame is partitioned into 20 vertical equal slices, and for each slice, the
histogram of the green band and its area are computed using Eq 4.1:

Ai =
255

∑
l=k

counti(l) · (b(l +1)−b(l)) 1 ≤ i ≤ 20 (4.1)

where Ai represents the generic element of the features vector corresponding to
the slice i, b(l) is the bin value at level l, counti(l) is the number of occurrences
of the green intensity at level l for slice i, and k is a parameter that excludes
pixels with low values of green. In this study, a value of k = 25 was selected,
as it yielded the best classification performance. Subsequently, a features
vector comprising 20 elements is generated. This vector serves as the input to
the final functional block.

• The final block of the proposed algorithm utilizes a Feed Forward Neural
Network to perform binary classification of the feature vector, determining
whether it corresponds to an adequate (1) or inadequate (0) perfusion of the
colorectal portion. The binary cross-entropy was selected as the loss function
and the optimizer used was Adam, as described in [205, 206].

Model Evaluation and Selection

The following neural networks (NN) were evaluated as classifiers in an experimental
study.

• The first type of NN tested was a one-hidden-layer NN, which utilized a
classic feedforward neural network (FFNN) with a single neuron in the output
layer having a sigmoidal activation function. The hidden layer was first
tested with 20 neurons and a rectified linear unit (ReLU) activation function
and then with 80 neurons and a hyperbolic tangent (Tanh) activation function.
Furthermore, this network was tested with three additional activation functions:
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Tanh, Sigmoid, and ReLU. For each activation function, the number of neurons
varied between 10 and 100, with an increment of 10.

• The second type of NN tested was a two-hidden-layer FFNN composed of
different combinations of ReLU, Sigmoid, and Tanh activation functions with
50, 70, and 90 neurons. The output layer used the softmax activation function
with two neurons.

The tuned hyperparameters in the study were the activation functions and the
number of neurons in each hidden layer. Additionally, a Support Vector Machine
(SVM) method with linear and Gaussian kernels was used as a baseline classifier.
All ML models were validated on the entire dataset using 10-fold cross-validation
(CV) to assess and select the best model in a statistically significant manner without
overfitting [207]. In K-fold CV, the data set is divided into K folds, and the network
is trained K times for each combination of hyperparameters. According to [7], "each
time the network is trained, one of the K folds of the data set is used as a test set, and
all the remaining K-1 folds are used as training sets. The selection of the best model
was conducted based on the mean of the obtained accuracies over the K test folds,
defined as the percentage of correct classification".

After the selection, the chosen model was retrained on the entire dataset to extract
as much information as possible from the data [167] for use in a real-time surgical
scenario. The proposed algorithm was developed in Python 2.7 on Windows 10,
utilizing the open-source frameworks and libraries TensorFlow, Keras, and OpenCV.
The training of the proposed NNs was conducted using a batch size of 5 for 100
epochs.

4.2.3 Performance evaluation

This section discusses two validation phases of the proposed algorithm. The first
phase is the laboratory experimental validation, which involved the use of a dataset
provided by surgeons to train and validate the ML classifiers used by the algorithm.
The second phase is an online validation in the operating room, which was conducted
using the best ML model obtained after the training.
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Laboratory Experimental Validation

The surgeon provided a total of 11 videos in .M4V format for the laboratory ex-
perimental validation. The medical staff collected and labelled these videos during
routine clinical practice. To protect the privacy of patients, an anonymisation proce-
dure was applied which removed any metadata from the original files. The videos
captured the portions of the intestine where the anastomosis was being performed,
and were acquired directly from the endoscope during surgery. The ICG technology
was used, and when the ICG was injected, the portion that is well perfused became
fluorescent. Figure 4.8 shows an example of frames extracted from the dataset,
illustrating the intraoperative use of ICG technology.

Fig. 4.8 Use of ICG technology during surgery to assess the vascular perfusion of the
intestinal segment and to guide the anastomosis procedure. Fig. 4.8-a shows the fluorescence
angiography, which allows visualization of the well-perfused portion of the intestine. Once
this segment is identified, the anastomosis is performed using the residual colon, as shown in
Fig. 4.8-b. Image taken from [7].

In this context, it is noteworthy that 4.8-a showcases fluorescence angiography,
which effectively demonstrates the vascular perfusion of the intestinal segment that
delimits the section point. On the other hand, 4.8-b depicts the surgical procedure for
anastomosis using the residual colon. The fluorescence angiography was carried out
using a laparoscopic system, namely the Olympus OTV-S300, which features a light
source (Olympus CLV-S200 IR) capable of utilizing visible as well as near-infrared
light. The performance of the developed NNs was validated using 11 videos from
the dataset. Different frames were extracted from each video, and frames containing
ROIs with clear evidence of ICG were selected as well as more challenging ones to
train the model properly in assessing the quality of perfusion. From each ROI, 20
feature vectors were obtained, resulting in a dataset size of 470 frames. The overall
process of feature extraction is illustrated in Fig.4.9.
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Fig. 4.9 Details of the features extraction: in Step 1 of the feature extraction process, the ROI
is selected from the frame. In Step 2, the ROI is divided into 20 equal slices. In Step 3, for
each slice, the histogram of the green band of the RGB color space is evaluated. Finally, in
Step 4, the amount of green in each histogram is evaluated, and this information is used to
construct the feature vector that is sent to the machine learning (ML) classifier. Specifically,
the amount of green in each histogram is normalized and represented as a value between 0
and 1, and all 20 values are concatenated into a single feature vector. Image taken from [7].

Step 1 involves displaying the frame of interest. Following this, as previously
described, the user selects the ROI which is subsequently divided into 20 slices in
Step 2. For each slice obtained in Step 3, the histogram of the green channel is
computed to show the frequency distribution of the green levels. Step 4 involves
evaluating the area under each histogram as an element of the feature vector. These
extracted features are then fed into the classifiers discussed earlier. Table 4.2 provides
a summary of the chosen hyperparameters for each classifier and their corresponding
accuracy in terms of means and 1−σ repeatability.
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Network Kernel Neurons L1 Neurons L2 Activation function Accuracy (%)

SVM Linear - - - 54.5 ± 15.6
SVM Gaussian - - - 45.4 ± 23.8
FFNN - 20 - ReLU 99.9 ± 1.9
FFNN - 80 - Tanh 54.1 ± 28.6
FFNN - 100 - Sigmoid 86.0 ± 7.6
FFNN - 90 90 ReLU 85.2 ± 15.0
FFNN - 50 50 Tanh 69.9 ± 22.9
FFNN - 90 70 Sigmoid 68.5 ± 24.2

Table 4.2 Performance as a function of the chosen set of hyperparameters for all the tested
networks. Table taken from [7].

According to what reported in [7], "the experimental results indicate that the one-
hidden layer neural network (NN) with 20 neurons and Rectified Linear Unit (ReLU)
as the activation function achieves the best performance, with an average accuracy
of 99.9% and a 1−σ repeatability of 1.9%. This model outperforms the Sigmoidal
and Tanh activation functions, even with more neurons in the hidden layer". The
performance of Support Vector Machine (SVM) and two-hidden layer NN is found
to be worse than that of the one-hidden layer network. The best accuracy achieved
with SVM is 54.5%, while the two-hidden layer NN reaches the best accuracy of
85.2%. Since the one-hidden layer NN achieved the best results, additional tests were
conducted to fine-tune the number of neurons. Table 4.3 and Fig.4.10 summarize
the performance details for the one-hidden layer networks as both the number of
neurons and the activation function are varied. The best model is highlighted in bold.
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Neurons Tanh accuracy (%) Sigmoid accuracy (%) ReLU accuracy (%)

10 47.9 ± 23.7 74.2 ± 10.6 93.7 ± 14.8
20 42.1 ± 25.3 75.6 ± 14.7 99.9 ± 1.9
30 51.1 ± 28.1 79.5 ± 11.5 98.0 ± 3.0
40 45.6 ± 39.5 79.4 ± 8.5 97.4 ± 5.2
50 53.2 ± 36.1 84.6 ± 9.2 97.4 ± 3.2
60 52.1 ± 35.9 85.8 ± 5.5 98.6 ± 2.8
70 49.1 ± 33.2 81.1 ± 10.7 99.3 ± 2.0
80 54.1 ± 28.6 83.7 ± 9.8 99.4 ± 1.9
90 50.9 ± 34.2 82.6 ± 6.4 98.7 ± 2.7
100 53.9 ± 30.2 86.0 ± 7.6 99.7 ± 2.6

Table 4.3 Performance of FFNN with one hidden layer and Tanh, Sigmoid, and ReLU as
activation functions with different neurons. Table taken from [7].

Fig. 4.10 Comparison of (a) accuracy, and (b) 1-σ repeatability for the three activation
functions used with different neurons: Tanh (orange), Sigmoid (red), Rectifier Linear Unit
(blue). Image taken form [7].

The experimental results demonstrate that the best performance is consistently
achieved using ReLU as the activation function, and the optimal number of neurons
is 20. To validate the statistical significance of the differences between the mean
accuracies obtained with the three different activation functions (Tanh, Sigmoid,
and ReLU), One-Way ANOVA and Fischer tests were performed with a chosen
null hypothesis (H0) that assumed the groups belonged to the same population at a
significance level of α = 1.0%. The results indicated that the null hypothesis should
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be rejected with a P-value of 0.0%. Subsequently, a paired t-test was conducted with
a significance level of α = 1.0% to determine which group was different from the
others (upon verification of normality of data by means of a χ2 test). In all three tests,
the null hypothesis of identical groups was rejected. The statistical analysis was
performed using the online tool "Statistic Kingdom" [208]. Table 4.3 summarizes
the detailed performance of the one-hidden layer networks with varying numbers
of neurons and activation functions, with the best-performing model highlighted in
bold. Further details are reported in Table 4.4.

Test H0 α (%) P-value (%) Decision

Fischer test Tanh-Sigmoid-ReLU Same distribution 1.0 0.0 Reject
t-test Tanh-Sigmoid Same distribution 1.0 1.8·10−9 Reject
t-test Tanh-ReLU Same distribution 1.0 3.5·10−9 Reject
t-test ReLU-Sigmoid Same distribution 1.0 1.0·10−5 Reject

Table 4.4 Details about statistical analysis of the three groups. Table taken from [7].

The statistical validation tests confirmed that the accuracy results obtained using
ReLU activation function and 20 neurons are statistically significant, as they showed
a significant difference when compared to the other models with different activation
functions. Therefore, this specific model was chosen for the classification stage of
the proposed system and implemented in the prototype version.

For illustrative purposes, the outcomes of the proposed algorithm when applied
to frames of the dataset depicting good and bad perfusion are presented in Fig. 4.11.

For each frame in the dataset, the corresponding ROI is highlighted. Specifically,
Fig. 4.11-a and Fig. 4.11-d have ROIs classified as having good perfusion (i.e., a
high amount of green) and a prediction output of 1. Conversely, Fig. 4.11-b and Fig.
4.11-c have prediction outputs equal to 0, as the ROIs were considered to have poor
perfusion due to a low amount of green or an uneven distribution of green in the
selected ROI. In all cases, the accuracy of the classification was confirmed by the
surgeons.

Operating Room Experimental Validation

After the offline validation, the proposed algorithm was further tested using the
Olympus Visera Elite II endoscope at the University Hospital Federico II in Naples,
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Fig. 4.11 Four frames from the dataset are presented in Fig. 5, with their respective ROIs.
Figures 4.11-a and 4.11-d have ROIs indicating adequate perfusion, with a high amount of
green and a corresponding prediction value of 1. On the other hand, 4.11-b and 4.11-c have
prediction values of 0, indicating inadequately perfused ROIs, with low amounts of green
and/or non-uniform ICG diffusion. Image taken from [7].

Italy, to verify the possibility of interfacing the system with medical equipment
and to assess real-time interfacing with the endoscope. The Olympus Visera Elite
II is a general surgery imaging platform that links the OR to other devices and
facilities around the hospital, and an S-video to USB adapter was used to connect the
endoscope to a PC running Windows 10 and Python 2.7. The endoscope captured
video was transmitted in real-time to an elaboration unit located outside the OR, and
surgeons who were not part of the operation were asked to select the ROIs, although
this workflow could also be conducted by the main surgical team inside the OR.

The system was able to process at least 30 frames per second from the video
source, which was considered acceptable for the surgeons to select the ROI and use
the system. Furthermore, the output provided by the algorithm could effectively
assist surgeons in making decisions even in low brightness situations. In Fig. 4.12,
the output of the system working under three different levels of green brightness is
presented. This also demonstrates that the proposed system is capable of accurately
classifying the frame regardless of the level of green brightness.
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Fig. 4.12 For the online validation, frames with different brightness levels were acquired
directly from the endoscope. Fig. 4.12-a shows a frame with high brightness, Fig. 4.12-b
with medium brightness, and Fig. 4.12-c with low brightness. Despite the different brightness
levels, the proposed algorithm was able to provide real-time predictions, demonstrating its
robustness and effectiveness in various scenarios, including low brightness scenarios. Image
taken from [7].

4.3 Conclusions

This Chapter introduced the development of two decision-support system in the
framework of Health 4.0.

The first system leverages low-cost infrared thermography instrumentation to
evaluate the effectiveness of scoliosis braces in real time. Such a system exploits the
thermoelastic effect, establishing a correlation between changes in brace pressure
and temperature variations on the patient’s backbone. An experimental campaign
was conducted at an accredited orthopedic center involving 21 juvenile and adoles-
cent patients. The campaign simulated real operational conditions and acquired 36
thermal images, each of which was labeled by the medical team. A dedicated algo-
rithm incorporating artificial intelligence techniques was implemented, and rigorous
validation strategies were employed to ensure generalization to unseen data. The
experimental results demonstrated a classification accuracy slightly below 70 %,
which is promising given the use of low-cost instrumentation and the intentionally
non-ideal experimental conditions. Future endeavors will focus on improving perfor-
mance through the utilization of advanced instrumentation and algorithms, aiming to
enhance the reliability of this decision-support system for orthopedic centers.

Another system described in this Chapter is a decision-support system designed
to assist surgeons during laparoscopic colorectal surgery. Such a system automati-
cally evaluates the quality of perfusion as either "adequate" or "inadequate" following
an injection of indocyanine green dye. Multiple classifier models were tested on
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a dataset comprising videos of various anastomoses performed at the Federico II
Hospital. Among the models, the one-hidden-layer neural network with 20 neurons
and a Rectified Linear Unit (ReLU) activation function exhibited the best perfor-
mance. It achieved a prediction accuracy of 99.9 % with a 1-σ repeatability of 1.9
%. These results were statistically validated through ANOVA, Fischer, and paired-t
tests, leading to the selection of this model for system implementation. Successful
validation was also achieved in terms of interfacing with the actual equipment used
at the University Hospital Federico II in Naples, Italy. The proposed system serves as
a valuable decision-support tool for surgeons, particularly in situations of uncertainty
where the adequacy of blood perfusion is uncertain due to the presence of unclear
indocyanine green dye. Future work will address the current research limitations
by introducing more levels between adequate and inadequate perfusion, thereby en-
hancing the resolution of assessments and prediction accuracy. Additionally, efforts
will focus on automatically selecting Regions of Interest (ROIs) and expanding the
dataset to include cases where blood perfusion is impaired by underlying pathologies
such as atherosclerosis. These scenarios pose challenges for both the classifier and
the surgeon in accurately assessing the adequacy of perfusion.



Chapter 5

Conclusions

This doctoral work focuses on the development of assistive solutions in Healthcare
by leveraging some of the emerging 4.0 enabling technologies, then contributing to
the digital transformation of Healthcare.

In particular, Chapter 2 details the development of Brain-Computer Interfaces
(BCIs) utilizing the Steady-State Visually Evoked (SSVEP) paradigm and Aug-
mented Reality (AR) technology. Following an extensive overview of the concepts
essential for constructing an SSVEP-based BCI, the chapter presents various systems
designed and developed over the years, systematically comparing them to underscore
their contributions in enhancing system accuracy for real-world scenarios. Notably,
a metrological approach was employed to assess system performance across diverse
subjects. Finally, the chapter presents two pertinent case studies, illustrating the
practical application of the proposed system (i) during surgical procedures and (ii)
within the context of children’s rehabilitation. Overall, the obtained results in terms
of SSVEP recognition accuracy, information transmission efficiency, and ergonomic
qualities show promise for future applications of this technology in real-world set-
tings beyond laboratory environments.

Chapter 3 delves into the implementation of an Augmented Reality (AR) platform
for health monitoring in the Operating Room (OR). This platform was designed to
be worn by nurses, anesthetists, or surgeons, offering them a comprehensive stream
of real-time information through an AR headset. This information encompasses the
patient’s electronic clinical record, vital signs collected from a pulmonary ventilator
and an intensive care monitor, as well as video streaming from a laparoscopic camera.
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By instantly providing this data and making it easily accessible, the platform stream-
lines efficient and prompt monitoring for OR personnel. The development of the
AR platform concentrated on meeting the rigorous criteria of the healthcare domain,
especially concerning communication accuracy and response time. Experimental
outcomes corroborated that the platform achieved exceptional communication ac-
curacy, surpassing 97 %, while concurrently maintaining rapid response times in
the millisecond range. These results showcase the platform’s capability to satisfy
the exacting needs of the healthcare sector. Usability tests, conducted through the
administration of System Usability Scale (SUS) questionnaires, further validated
the AR monitoring platform’s suitability for extended use. Feedback from OR staff
underscored the platform’s user-friendly nature, ergonomic design, and the absence
of motion sickness effects. The array of data selection options, including vocal
commands, gestures, and gaze pointers, received particular commendation from
operators. In conclusion, the proposed integrated AR platform has demonstrated
its worth as a dependable and supportive tool for OR personnel during the vigilant
monitoring of patients’ health in complex surgical procedures. By offering real-time
access to crucial information, the platform enhances the efficiency and effectiveness
of patient care within the OR.

Finally, Chapter 4 introduces the development of two decision-support systems.
The first system utilizes low-cost infrared thermography instrumentation to assess
the real-time effectiveness of scoliosis braces. This system capitalizes on the ther-
moelastic effect, establishing a correlation between changes in brace pressure and
temperature fluctuations on the patient’s spine. An experimental campaign was
conducted at an accredited orthopedic center, involving 21 juvenile and adolescent
patients. The campaign simulated real operational conditions, capturing 36 thermal
images, each labeled by the medical team. An algorithm incorporating artificial
intelligence techniques was specifically designed, with rigorous validation strategies
to ensure applicability to unseen data. The experimental outcomes demonstrated a
classification accuracy of just below 70 %, promising considering the use of afford-
able instrumentation and intentionally non-optimal experimental conditions.
Another system described in this chapter is a decision-support system tailored to aid
surgeons during laparoscopic colorectal surgery. This system automatically evaluates
the quality of perfusion as either adequate or inadequate following an indocyanine
green dye injection. Multiple classifier models were evaluated on a dataset compris-
ing videos of various anastomoses performed at the Federico II Hospital. Among
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the models, the one-hidden-layer neural network with 20 neurons and a Rectified
Linear Unit (ReLU) activation function exhibited better performance. It achieved
a prediction accuracy of 99.9 % with a 1-σ repeatability of 1.9 %. These results
underwent statistical validation via ANOVA, Fischer, and paired-t tests, leading to
the selection of this model for system implementation. Successful validation was
also accomplished in terms of interfacing with the actual equipment used at the
University Hospital Federico II in Naples, Italy. The proposed system serves as a
valuable decision-support tool for surgeons, particularly in instances of uncertainty
where the adequacy of blood perfusion is uncertain due to the unclear presence of
indocyanine green dye.

For each of the described systems, a metrological approach was adopted to char-
acterize their performance and ensure a defined confidence interval. This was carried
out following the guidelines of the Guide to the Expression of Uncertainty in Mea-
surement and its Supplement One, based on the Monte Carlo Method. In this manner,
all developed systems are contributing to an enhancement in the services provided
by the healthcare system, thus fully embracing the 4.0 digital transformation.
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