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Abstract. We study the coupling of a finite number of Bloch surface waves (BSWs) propagating in different directions at the surface of a
dielectric multilayer. These surface waves arise from a set of diffraction orders associated to a grating on the bottom surface of the substrate
that is illuminated by a normally incident beam. Simultaneous excitation of multiple BSWs is possible with a set of diffraction orders having
the same radial spatial frequency. Using rigorous electromagnetic theory, we design gratings for simultaneous excitation of two, four and six
BSWs propagating in directions separated by π, π/2 and π/3 azimuthal intervals, respectively.

Keywords: Evanescent waves, Surface Electromagnetic Waves, Bloch Surface Waves, Multiple Bloch Surface Waves, MBSWs.

1 Introduction1

Surface Electromagnetic Waves (SEW) represent an interesting op-2

tion for controlling optical signals on miniaturized chips for inte-3

grated optics and sensing applications. Surface Plasmon Polaritons4

(SPP) are probably the most widely known SEWs, but they ex-5

hibit inherent issues related to the ohmic losses introduced by the6

metallic materials involved. As an alternative, SEWs sustained by7

dielectric multilayers (ML) have attracted a growing interest in the8

past decade. This kind of SEW [1] are also referred to as Bloch9

Surface Waves (BSWs) [2] to highlight the role of the underlying10

periodic multilayer structure required for their existence. BSWs of-11

fer several advantages as compared to SPPs, such as a wide spectral12

tunability and low losses thanks to the large choice of transparent13

dielectric materials available for multilayer manufacturing. In ad-14

dition, BSWs can be either TE- or TM-polarized [3,4], depending15

on the multilayer design. Their excitation by pulsed fields has also16

been recently studied numerically [5].17

Being surface waves, BSWs are evanescent in the medium above18

the multilayer surface. The coupling with free-space radiation in a19

BSW-based device is therefore critical as it must provide momen-20

tum matching beyond the light-line. In most of the applications21

proposed so far, BSW coupling is performed by means of bulky22

prisms, either in Kretschmann or Otto configuration [6]. However,23

more sophisticated approaches have been recently implemented,24

involving, for example, the use of individual scatterers [7–9] or25

miniature prisms [10] placed onto the multilayer surface. Another26

promising option is represented by integrating diffraction gratings27

within the BSW-supporting structure [11]. This has been done28

mainly in two different ways: with the grating being fabricated on29

top of the multilayer [12–14] or buried beneath the multilayer [15].30

In the first case, the multilayer is substantially planar, with the ex-31

ception of the top layer, where the grating unavoidably perturbs the32

dispersion of the BSW mode (dielectric loading/unloading effect).33

In the second case, the grating is fabricated on the substrate sur-34

face prior to the multilayer deposition, which occurs on the same35

side. The multilayer itself results to not be perfectly planar because36

it (partially) conforms to the underlying corrugation. In both con-37

figurations, the BSW dispersion is altered by the presence of the38

grating, which may lead to some difficulties regarding the precise39

control of optical functions of complex, possibly resonating, BSW-40

based architectures.41

We propose an alternative approach on diffractive coupling for42

BSWs, with gratings fabricated on the bottom surface of a trans-43

parent substrate having the multilayer deposited on the top surface.44

In particular, we explore the possibility of using two-dimensional45

gratings to simultaneously couple BSWs propagating in more than46

two directions by exploiting the momentum distribution of several47

diffraction orders. Once the mode dispersion of the multilayer is48

known, our approach facilitates BSW coupling in a controllable49

way, as far as wavelengths/numbers and propagation directions are50

concerned. The directional coupling of BSWs has been already51

tackled in a few previous articles [16–18], although never consid-52

ered for multiple directions at once. When the optical path through53

the substrate is also taken into account, our approach allows a pre-54

dictable control onto the coupling locations of BSWs launched in55

different directions.56

The present paper is composed as follows. We begin, in Sec. 2,57

by introducing the grating-based BSW excitation principle and the58

assumed geometrical configuration. The theoretical framework for59

grating design, for which we use a rigorous technique known as the60

Fourier Modal Method (FMM) [19], is described in Sec. 3. The de-61

sign process is analogous with the synthesis of grating-based mul-62
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tiple free-space beam splitters [20], but here we need to account63

for the BSW excitation conditions and the polarization state of the64

input wave. In Sec. 4, we first consider BSW stack design, pro-65

viding a ‘benchmark’ stack employed in the rest of the work, and66

then cover the design of linear gratings for simultaneous excitation67

of two counter-propagating BSWs. Such designs are extended in68

Sec. 5 to two-dimensional periodic gratings for excitation of either69

four or six BSWs propagating at 90◦ or 60◦ intervals along the70

stack, respectively. After a discussion presented in Sec. 6, conclu-71

sions are drawn in Sec. 7.72

2 Excitation principle and geometry73

Figure 1 illustrates the geometry for the simplest case of excita-74

tion of two counter-propagating BSWs. A flat fused silica substrate75

with refractive index nsub = 1.462, such as a 0.5 mm or 3 mm-76

thick SiO2 plate, is illuminated by a normally incident monochro-77

matic beam (wavelength λ0) from the medium underneath (air).78

A linear grating, with period d of the order of λ0, provided on79

the air-substrate surface, splits the beam into three transmitted or-80

ders propagating within the substrate: the zeroth order m = 0 and81

the first diffracted orders m = ±1. The orders m = ±1 propa-82

gate in directions θ+1 and θ−1 given by sin θ±1 = ±λ0/nsubd83

towards the multilayer stack on the top surface of the substrate.84

If |θ±1| matches the Kretschmann-incidence BSW excitation an-85

gle θBSW for the given wavelength and polarization state (TE86

or TM), two counter-propagating BSWs are generated simultane-87

ously. The excitation is efficient as long as the angular spectrum88

of each diffracted order, which defines the beam divergence, falls89

essentially within the (stack-dependent) BSW momentum band-90

width. The polarization state of illumination affects the coupling91

significantly; we will consider only BSW excitation in TE polar-92

ization, which generally requires a smaller number of stack layers93

than TM-polarized BSW excitation.94
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Figure 1: Principle of MBSW generation: the two-beam case. A binary
linear surface-relief grating defined by period d, ridge width c, and ridge
height h on the bottom of a substrate of thickness H splits the input
beam into two diffracted orders m = −1 and m = +1, which excite BSWs
on the top surface of the substrate by interaction with the multilayer
stack (ML). We assumed nsub = 1.462 and nsup is air.

The parameters of the system are chosen such that the two BSWs95

shown in Fig. 1 are spatially separated under finite-beam illumina-96

tion. This feature can be useful in BSW-based platforms such as97

interferometers [23] and integrated components [24]. First-order98

diffracted beams are partially reflected at the top interface, thus99

propagating back into the substrate. The reflected beams continue100

to propagate according to multiple-reflection paths inside the sub-101

strate unless they are extracted by means of diffusers or gratings.102

At each reflection with the ML interface, coupling to BSW occurs.103

Stated differently, BSWs are launched at different locations on the104

ML surface each time the beam is incident on the bottom interface105

of the dielectric stack, thus leading to the appearance of BSW inter-106

ference effects unless the substrate thickness H is sufficiently large107

to minimize spatial overlaps.108

3 Theoretical framework109

Let us consider a rectangularly periodic grating of period dx × dy110

in the cartesian xy coordinate system and assume a plane-wave111

illumination (at frequency ω) normally incident onto the substrate112

from air. In view of the grating equations, the wave vectors of the113

propagating diffraction orders (m,n) in the substrate are114

kmn = kxmx̂+ kynŷ + kzmnẑ (1)

where115

kxm = mKx = 2πm/dx, (2a)

kyn = nKy = 2πn/dy, (2b)

kzmn =
√

k20n
2
sub − k2xm − k2yn, (2c)

and k0 = ω/c0 = 2π/λ0 is the wave number in vacuum. After116

defining the radial spatial frequency of the generic order (m,n) as117

kρmn =
√

k2xm + k2yn =
√

(mKx)2 + (nKy)2, (3)

the condition kρmn < k0nsub identifies those diffraction orders118

propagating within the substrate, the others being evanescent. If119

we denote the refractive index of the superstrate by nsup and as-120

sume nsup < nsub, order (m,n) is evanescent in the superstrate121

when kρmn > k0nsup. Considering BSW excitation, we are there-122

fore interested in orders with radial spatial frequencies in the range123

k0nsup < kρmn < k0nsub. We are primarily interested in the near-124

est neighbors of the zeroth transmitted order, while higher orders125

are made evanescent by appropriate choices of dx and dy . In the il-126

lustrative example presented in Fig. 2(a), orders (m,n) = (−1, 0)127

and (m,n) = (+1, 0) fall on the yellow line of radius kρBSW,128

which defines the BSW excitation condition dictated by the ML129

design.130

Following Ref. [21], we define the ‘exit plane’ of diffraction order131

(m,n) as the plane containing the wave vector kmn and the unit132

vector ẑ. Further, propagation angles θmn and ϕmn of the trans-133

mitted orders, are defined as134

kxm = k0nsub sin θmn cosϕmn, (4a)

kyn = k0nsub sin θmn sinϕmn, (4b)

kzmn = k0nsub cos θmn. (4c)

as illustrated in Fig. 2(b). Here ϕmn is the azimuthal angle in the135

range [0, 2π), measured counter-clockwise from the kx axis, and136

θmn in the range [0, π/2) is the propagation angle measured from137

2
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Figure 2: (a) Diffraction orders of a rectangular lattice in spatial-frequency representation at normal incidence. Diffraction orders are represented
by dots at positions kxm = mKx, ky = nKy . Blue and red circles represent the cut-off radial spatial frequencies kρ = k0nsub and kρ = k0nsup,
respectively, between which BSW excitation is possible. The yellow circle indicates the radial spatial frequency of BSW on a given ML. (b) Definition
of the propagation angles (θmn, ϕmn) of a single transmitted diffracted order (m,n) in its exit plane (the grey rectangle) and the π − σ basis of the
diffracted electric field.

the kz axis. It will prove convenient to use the so-called π − σ138

basis (or local TM/TE basis) to define the polarization states of the139

transmitted orders. As described in Ref. [21], this basis allows us140

to treat incident fields with any polarization state, including partial141

polarization. Here, however, we are mainly interested in either fully142

polarized or unpolarized illumination.143

If the incident plane wave is fully polarized, we can use any suit-144

able rigorous grating analysis method (in our case FMM) to deter-145

mine the transverse Cartesian components exmn and eymn of the146

polarization vector for any transmitted order, as discussed shortly147

below. The longitudinal component of emn is fixed by Maxwell’s148

divergence equation, which gives kmn · emn = 0 and149

ezmn = − 1

kzmn
(kxmexmn + kyneymn) . (5)

In the π − σ basis the polarization state of any order is described150

by a two-dimensional vector eπσmn = [eπmn, eσmn]
T, where the151

π and σ components are explicitly given by152

eπmn = exmn cos θmn cosϕmn + eymn cos θmn sinϕmn

− ezmn sin θmn, (6a)

eσmn = −exmn sinϕmn + eymn cosϕmn. (6b)

As shown in Fig. 2(b), the component eπmn lies in the exit plane,153

whereas eσmn is perpendicular to it. Hence, they represent the TM154

and TE components of the electric field in the exit plane, respec-155

tively.156

In diffraction by two-dimensionally periodic gratings, the polar-157

ization states of the transmitted (and reflected) diffracted orders158

generally depend on the state of input polarization. We represent159

the polarization vector of a (generally, elliptically polarized) unit-160

amplitude input plane wave as161

e = exx̂+ eyŷ = x̂ cosα+ ŷ sinα exp (iδ) , (7)

normalized such that e = 1. The effect of the grating on transmitted162

radiation can be analyzed by calculating (by FMM) the transmis-163

sion coefficients164

T
(x)
xmn, T

(x)
ymn, T

(y)
xmn, T

(y)
ymn, (8)

for all diffraction orders, where the superscripts (x) and (y) re-165

fer to illumination by a purely x-polarized (e = x̂) or y-polarized166

(e = ŷ) incident wave. The coefficients in Eq. (8) are precisely167

the complex vector amplitudes that appear in the Rayleigh plane-168

wave expansion of the field at the output plane of the grating; see,169

e.g., Eq. (5) in Ref. [20]. For an arbitrarily (fully) polarized incident170

wave the transverse electric-field components of the transmitted or-171

ders are [21]172

exmn = T
(x)
xmnex + T

(y)
xmney, (9a)

eymn = T
(x)
ymnex + T

(y)
ymney. (9b)

The longitudinal components ezmn are obtained from Eq. (5), and173

the π−σ representation of each order is given by Eqs. (6). Since the174

input polarization state affects both the π and σ components, it can175

be used as a design degree of freedom in multiple-BSW excitation,176

in addition to the geometrical grating parameters.177

It is customary to describe the state of polarization of a fully po-178

larized field by a 2 × 2 polarization matrix J = e∗eT (Ref. [22],179

sec. 6.3.2). Explicitly, for the incident field,180

J =

[
Jxx Jxy

Jyx Jyy

]
=

[
|ex|2 e∗xey
e∗yex |ey|2

]
, (10)

where the asterisk denotes complex conjugation. Correspondingly,181

the polarization state of any transmitted order in the π − σ basis is182

described by Jπσmn = e∗πmne
T
σmn [21], explicitly183

Jπσmn =

[
Jππmn Jπσmn

Jσπmn Jσσmn

]
=

[
|eπmn|2 e∗πmneσmn

e∗σmneπmn |eσmn|2

]
.

(11)

3
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The polarization states of the diffracted orders can also be charac-184

terized by the Stokes parameters [21]185

S0mn = Jππmn + Jσσmn, (12a)

S1mn = Jππmn − Jσσmn, (12b)

S2mn = 2ℜ (Jπσmn) , (12c)

S3mn = 2ℑ (Jπσmn) , (12d)

where ℜ and ℑ denote the real and imaginary parts. The nor-186

malized forms of the Stokes parameters are defined as sjmn =187

Sjmn/S0mn (j = 1, 2, 3), and the degree of polarization associ-188

ated with order (m,n) is given by189

Pmn =
√

s21mn + s22mn + s23mn. (13)

For a fully polarized incident wave, Pmn = 1 for all orders, even190

though the values of the individual Stokes parameters generally de-191

pend on order indices.192

In addition to fully polarized illumination, we consider the opposite193

extreme case of unpolarized illumination. The matrix J for partially194

polarized light is defined as J = ⟨e∗eT⟩, where the brackets denote195

ensemble averaging over all polarization realizations. For unpolar-196

ized illumination it has a diagonal form (Ref. [22], sec. 6.3.3)197

J =
1

2

[
1 0

0 1

]
(14)

and the degree of input polarization is P = 0. The polarization ma-198

trix associated with order (m,n) can be represented as an average199

Jπσmn =
1

2

[
J
(x)
πσmn + J

(y)
πσmn

]
, (15)

which remains diagonal because ex and ey are uncorrelated. How-200

ever, since the grating treats these components differently, in gen-201

eral Jππmn ̸= Jσσmn, implying that the individual orders become202

partially polarized with Pmn > 0.203

In standard beam splitting problems in resonance-domain diffrac-204

tive optics [20] one is interested in the distribution of the diffraction205

efficiencies of the propagating orders. Since we have normalized206

the intensity of the incident field such that S0 = 1, the diffraction207

efficiencies are defined as [21]208

ηmn = nsub cos θmnS0mn. (16)

In BSW excitation problem, the design goal is to maximize and209

equalize the coupling of the incident field to a set of BSW modes210

with the angle θmn equal to θBSW. If θBSW is the excitation angle211

for TE polarization, the component eσmn excites a BSW while212

eπmn is non-resonant, and vice versa.213

We choose the geometry such that several diffraction orders have214

the same radial spatial frequency kρmn = k0nsub sin θBSW, and215

therefore lie on the yellow circle depicted in Fig. 2(a). The relative216

amplitudes of the excited BSWs are determined by the σ-polarized217

components Jσσmn in TE polarization and Jππmn in TM polar-218

ization. The fraction219

κmn = Jσσmn/Jππmn (17)

provides the ratio of the coupled and uncoupled parts of the inci-220

dent wave in BSW excitation.221

4 Plane-wave design with linear gratings222

As evident from the preceding discussion, the π−σ representation223

returns the BSW excitation problem to the basic TE or TM polar-224

ized problem. In addition, since we assume a substrate thickness225

H ≫ λ0, the evanescent parts of the diffracted fields above the226

grating and the BSW field below the stack are spatially well sepa-227

rated. Hence, we may treat the BSW stack design and the grating228

design as two separate problems. In order to obtain an illustrative229

stack design useful for our purposes, we fix λ0 = 514 nm and pro-230

vide a stack geometry sustaining BSWs at angles between the blue231

and red lines in Fig. 2(a). The resulting stack can then be used to232

design gratings for excitation of BSWs that lie on the yellow circle233

in Fig. 2(a).234

235

4.1 Multilayer stack design236

Figure 3(a) shows the assumed stack structure, which consists of237

N high/low (H/L) refractive index bilayers and a terminating top238

(T) layer with refractive indices nH, nL, nT and thicknesses hH,239

hL, hT, respectively. To reduce the number of variable parameters,240

we consider TE polarization, fix the number of bilayers to N = 6,241

use refractive indices nH = 2.520 (TiO2), nL = 1.476 (SiO2),242

nT = nH = 2.520. The thicknesses hH, hL, hT are used to design243

the stack such that the BSW resonance occurs at an angle θmn in244

the exit plane.245

Figure 3(b) shows the design results. The horizontal axis is246

kx/k0 = nsub sin θmn = neff , where neff can be interpreted as247

the effective index of the stack. The plotting range starts from the248

critical angle of BSW generation and extends to kx/k0nsub, i.e., it249

spans the region between the blue and red circles in Fig. 2(a). As250

neff increases, the BSW becomes increasingly buried within the251

multilayer and acts less like a surface mode. At the same time, all252

layer thicknesses show a monotonically increasing trend.253

254

4.2 Two-way splitting255

As illustrated in Fig. 1, the coupling of two counter-propagating256

BSWs is possible with linear gratings (dx = d, dy = ∞). The257

exit plane of both orders, (m,n) = (−1, 0) and (+1, 0), is the xz258

plane and the π − σ representation reduces to the standard TM/TE259

4
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Figure 3: (a) Definition of the multilayer structure and notation.
(b) Stack parameters as a function of the ratio kx/k0 = neff for TE-
mode BSW excitation with N = 6 bilayers: hH/λ0 (blue), hL/λ0 (red),
and hT/λ0 (black). The dots mark the position kx/k0 = 1.1209 for BSW
excitation at 50◦ angle of incidence.

decomposition. Since, by symmetry, η−1,0 = η+1,0 for binary pro-260

files defined in the inset of Fig. 1, we need to maximize η+1,0. This261

also leads to the optimum value of Jσσmn, while Jππmn = 0. Now262

we only need to find the values of the fill factor f = c/λ0 and grat-263

ing height h/λ0 that maximize η+1,0 (= η−1,0) to also maximize264

Jσσ .265

kx/k0= λ0/dx  

η
h/
λ 0

,  
f

 f

h/λ0

(a)

(b)

η±1,transmitted

η0,transmitted

η0,reflected

0

0.5

1 1.1 1.2 1.3 1.4

0

0.5
0.4
0.3
0.2
0.1

0.4
0.3
0.2
0.1

Figure 4: Design of two-way beam splitters. (a) Optimum values of the
fill factor f (red) and the relief depth h/λ0 (blue) as a function of the
exit angle of the first diffracted order in TE polarization. (b) The cor-
responding first-order diffraction efficiency η+1,0 = η−1,0 (black), the
efficiency η0,0 of the zeroth transmitted order (red), and that of the
zeroth reflected order (blue), which is 1 − 2η+1,0 − η0,0 due to energy
conservation. The inset shows the grating structure and direction of il-
lumination.

The grating-design results are summarized in Fig. 4(a). The op-266

timum fill factor remains fairly constant over the entire angular267

range considered here, whereas the optimum grating height de-268

creases with increasing angle. The efficiencies of all propagating269

orders are plotted in Fig. 4(b). At around kx/k0 = 1.1209 (corre-270

sponding to an excitation angle 50◦) we get η±1,0 ≈ 0.4973. Some271

light is ‘lost’ in zeroth reflected and transmitted orders when we272

move close to the cut-off at kx/k0 = 1 or towards larger values273

of kx/k0, but the designs remain acceptable over a relatively wide274

range of excitation angles.275

The results in Figs. 3(b) and 4 allow us to design two-way beam276

splitters for any BSW resonance angle of interest. The stack design277

for the desired angle is obtained from Fig. 3(b) and the correspond-278

ing grating design from Fig. 4(a). The performance of the design279

can be evaluated from Fig. 4(b). To limit the number of variables280

further, we set θBSW = 50◦, corresponding to kx/k0 = 1.1209.281

The stack design is marked by the dots in Fig. 3(b), the opti-282

mum parameters for TE excitation with N = 6 bilayers being283

hH = 60 nm, hL = 85 nm, and hT = 20 nm. Correspondingly,284

the vertical lines in Fig. 4(a) give a grating design f = 0.2536,285

h/λ0 = 0.2752, with η±1,0 = 0.4973.286

Considering the optimized case represented by the dots on Fig. 3287

and the black dashed line on Fig. 4, simulation of the reflected and288

transmitted coefficients has been performed for the full structure.289

It implies a grating of period d ≃ 459 nm and fill factor is f =290

0.2536 and h/λ0 = 0.2752 on the lower side of a 10-µm-thick291

fused silica wafer on top of which the multilayer is deposited. The292

multilayer design leads to a Bloch surface wave excited when the293

first diffracted order emerge from the grating at an angle of 50 ◦
294

(kx/k0 = 1.1209) at a wavelength of 514 nm. This is observed295

in Fig. 5(a), where a strong dip in reflection arises at this value of296

kx/k0. In Fig. 5(b) the response in wavelength is presented. One297

can observe a relatively strong peak in transmission slightly shifted298

with regards to the reflection dip.299

512 513 514 515 516
]nm[

1.116 1.12 1.124

0.2

R
,T

0.4

0.6

0.8

1

0.2

R
,T

0.4

0.6

0.8

1

T

R

T

R
)a( )b(

0 0

kx/k0= �0/dx  

Figure 5: Response of the full structure (grating, substrate, multilayer
and superstrate). (a) and (b) Reflected (black curves) and transmit-
ted (red curves) first diffracted orders as a function of the normalized
wavevector (a) and wavelength (b).

5 Plane-wave design with biperiodic300

gratings301

We proceed to design of two-dimensionally periodic gratings that302

allow simultaneous excitation of more than two BSWs. Two lattice303

geometries are considered: square lattices for four-way excitation304

and hexagonal lattices for six-way excitation.305

306

5
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5.1 Four-way splitting307

Let us first consider biperiodic gratings with primitive direct-308

lattice vectors a1 = dx̂, a2 = dŷ. The (Wigner–Seitz) primi-309

tive cell is square-shaped, covering the area −d/2 < x < d/2,310

−d/2 < y < d/2. The spatial frequencies of the diffraction or-311

ders are then kxm = mK, kyn = nK, the coordination number312

is 4, and the nearest neighbors of the zeroth order (0, 0), namely313

(m,n) = (+1, 0), (0,+1), (−1, 0), (0,−1), propagate in direc-314

tions ϕ+1,0 = 0, ϕ0,+1 = π/2, ϕ−1,0 = π, ϕ0,−1 = 3π/2, re-315

spectively. By an appropriate choice of d, all of these four orders316

can be placed simultaneously on the yellow ring in Fig. 2(a), thus317

enabling four-way BSW excitation.318

In the design, we found it sufficient to consider binary (z-invariant)319

relative-permittivity profiles of the particular form320

ϵr(x, y, z) =

{
n2
1 when x2 + y2 < r2

n2
2 otherwise

(18)

in 0 < z < h within the primitive cell. The circular feature defined321

by the radius r can be either a pillar (n1 = nsub, n2 = 1 or a322

hole (n1 = 1, n2 = nsub) etched in the substrate. This type of pil-323

lar/hole structures can be patterned at a nanometer-scale addressing324

resolution using electron beam lithography system available to us,325

and require only a single etching step.326

The radius r and the relief depth h can be used as the structural327

design parameters. Some symmetry rules exist, which are helpful328

in the design. Since the unit cell and the structure are centered at the329

origin, the transmission coefficients in Eq. (8) satisfy the inversion330

symmetry rules331

Tx,−m,−n = Txmn, Ty,−m,−n = Tymn, (19)

for both (x) and (y) input polarizations. These rules hold regard-332

less of the input polarization state, which however has an effect on333

the actual values of Txmn and Tymn. They reduce the number of334

orders that we need to (or can) control from four to two: we see335

from Eq. (19) that η−m,−n = ηmn. Similar symmetry rules hold336

also for Jσσmn and Jππmn.337

We begin the design of four-way couplers by optimizing the struc-338

tural parameters r and h to minimize the sum of the efficiencies339

of the reflected and transmitted zeroth orders. This maximizes the340

combined efficiency of the four nearest-neighbor diffraction orders,341

and leaves the polarization state of the incident field free for design.342

Choosing θBSW = 50◦ (d ≈ 0.892λ0), for either 45 ◦ or circu-343

larly polarized illumination and considering pillars, we get a design344

r ≈ 0.201λ0, h ≈ 0.53176λ0, which gives reflected and transmit-345

ted zero-order efficiencies of ∼ 3.5% and ∼ 5.2%, respectively,346

leaving the rest of the incident energy to be distributed among the347

nearest-neighbor orders.348

Our remaining target is to equalize (and maximize) the coupling349

strengths Jσσmn of the four signal orders by designing the input350

polarization state defined in Eq. (7). The symmetry in the 4-way351

splitting implies that there is no structurally induced polarization352

conversion: for (x)-polarized input we get Jσσmn = 0 for orders353

(m,n) = (±1, 0), while (y)-polarized input gives Jσσmn = 0354

for orders (m,n) = (0,±1). Considering linearly polarized light,355

the values of Jσσmn (and Jππmn) vary rapidly with the angle α.356

Choosing α ≈ π/4 gives values Jσσmn ≈ 0.063 and κmn ≈ 0.359357

for all four orders. The same result is obtained also for circularly358

polarized illumination with α ≈ π/4, δ = ±π/2. Both the opti-359

mized diffracted efficiencies and the maximized coupling strengths360

occur at the same illumination polarization.361

Considering unpolarized illumination, the matrix Jπσmn becomes362

diagonal and the degree of polarization takes the form363

Pmn = |s1mn| =
|Jππmn − Jσσmn|
Jππmn + Jσσmn

. (20)

With the present numerical values we obtain Pmn ≈ 0.473 for all364

nearest-neighbor orders. Even though the excitation wave is par-365

tially polarized, we obtain the same values of Jσσmn as above;366

both of the two mutually uncorrelated components of the incident367

field contribute to TE-mode BSW excitation.368

369

5.2 Six-way splitting370

Let us consider a grating with hexagonal symmetry, which allows371

simultaneous excitation of six BSWs. The primitive vectors are372

now a1 = dx̂ and a2 = (d/2)x̂ + (
√
3d/2)ŷ, and the Wigner–373

Seitz primitive cell is a hexagon as shown in Fig. 6(a). It will,374

however, be convenient for our purposes to define a rectangular375

direct-lattice cell as in Ref. [20], which covers the spatial region376

−d/2 < x < d/2, −
√
3d/2 < y <

√
3d/2 in Fig. 6(a). This377

alternative lattice representation simplifies the visualization of the378

geometry. It also allows the use of FMM in a cartesian instead of379

a non-orthogonal basis, as in Ref. [20], though in the present work380

we actually used the latter basis.381

The spatial-frequency structure defined by the reciprocal-lattice382

primitive vectors b1 = Kx̂ − (K/
√
3)ŷ, b2 = (2K/

√
3)ŷ with383

K = 2π/d is illustrated in Fig. 6(b), where the solid green circles384

show the locations of the allowed orders in the cartesian (kx, ky)385

system. The empty circles represent the orders of the rectangular386

spatial lattice, which are forbidden by the hexagonal symmetry.387

The yellow circle connects the six nearest neighbors of the ze-388

roth order that satisfy the condition for BSW excitation simulta-389

neously: orders (m,n) = (+1,+1), (0,+2), (−1,+1), (−1,−1),390

(0,−2), (+1,−1) of the rectangular lattice, with exit planes at an-391

gles π/6+ qπ/3, q = 0, . . . , 5. The excited BSWs propagate along392

the surface of the stack in these directions.393

In hexagonal lattice geometry, the symmetry rules in Eq. (19) en-394

sure Jσσ,−1,−1 = Jσσ,1,1, Jσσ,0,−2 = Jσσ,0,2, Jσσ,−1,1 =395

Jσσ,1,−1. These symmetries leave us three pairs of orders to con-396

trol, and we expect to need additional structural freedom compared397

to the 4-wave case. Let us nevertheless see what designs are pos-398
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Figure 6: (a) The spatial structure of a hexagonal grating. The hexagon
shows the spatial Wigner–Seitz primitive cell, the green features il-
lustrate the grating structure, and the blue rectangle shows the non-
primitive cartesian cell. (b) The spatial-frequency grid. The filled and
empty dots represent the allowed and forbidden orders of the hexagonal
lattice. The blue, yellow, and red circles have the same meaning as in
Fig. 2(a).

sible with circular pillars by following the same strategy as above.399

An important difference is that in the hexagonal geometry we do400

have structurally induced polarization conversion.401

By optimizing r and h for pillars, we get h ≈ 0.422λ0 and402

r ≈ 0.254λ0, which leaves a combined efficiency of ∼ 0.884403

available for the 6 orders of interest. The distribution of Jσσmn404

again depends on input polarization. We found that it is not pos-405

sible to equalize the coupling exactly for all six orders, but using406

circularly polarized light with α = π/4 and δ = 0.486π we have407

Jσσ,1,1 = 0.097, Jσσ,0,2 = 0.102, and Jσσ,1,−1 = 0.113, respec-408

tively. Similarly, for κmn, we have κ1,1 = 1.691, κ0,2 = 1.903,409

and κ1,−1 = 2.310. Though it is not of concern for the present410

purposes, it is worth noting that the diffraction efficiencies are:411

η1,1 ≈ 0.152, η0,2 ≈ 0.145, and η1,−1 ≈ 0.144. As with the412

four-wave case, the design with circular pillars works also for cir-413

cularly polarized or unpolarized illumination but the exact values414

of Jσσmn depend on polarization, but are within the same range as415

above. For unpolarized illumination, the degrees of polarization of416

the individual orders are nearly equal, Pmn ≈ 0.3226.417

In Fig. 7, we show the field amplitude distribution associated with418

the six-way coupling geometry in the xz-plane, i.e., crossing the419

multilayer, when illuminated with a 45 ◦ polarized light wave.420

The field is evaluated over 3-unit cells, i.e., 3 grating periods, in421

the x-direction. It shows, as expected, a strong field on the upper422

medium, which such structure ideal for sensing applications, espe-423
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Figure 7: Field amplitude distribution across the multilayer (xz-plane).
The illumination polarization was set to 45 ◦. The dashed lines super-
imposed on the field represent the multilayer interfaces.

cially when providing multiple sensing areas thanks to the splitting424

of the BSW excitation.425

6 Discussion426

Throughout the paper we have considered normally incident illu-427

mination. The use of non-normal incidence could potentially allow428

us to consider other combinations of diffracted orders being simul-429

taneously resonant. Changing the angle of incidence moves the grid430

of diffracted orders transversely in Fig. 2(a) with respect to the cir-431

cles centered at the origin. For instance, if the propagation direction432

of the incident field is chosen as (kxi, kyi) = (0, kyi), increasing433

kyi moves the grid downwards in ky direction, giving the orders at434

positions kxm = mKx, kyn = kyi + nKy . Hence the three orders435

(m,n) = (0, 0) and (m,n) = (±1, 0) would have a common ra-436

dial spatial frequency if kyi = −(K2
x +K2

y)/2Ky , being therefore437

available for 3-way BSW excitation. To avoid order (0, 2) from oc-438

cupying the same ring as the zeroth order, we would need to choose439

Kx ̸= Ky . However, placing the (yellow) BSW resonance ring out-440

side the blue ring in Fig. 2(a) requires kρ00 > k0nsub, which is not441

possible with incidence from air. Hence a Kretschmann excitation442

geometry would be needed, thus sacrificing the compact footprint443

of the setup.444

As an alternative to the geometry considered in this paper, we could445

consider having the splitter grating and the BSW stack as an inte-446

grated structure. This would still allow a compact platform at nor-447

mal incidence, but the grating design and BSW stack design would448

not be independent anymore. As a first drawback, the splitter grat-449

ing would most likely have to be rather thick (∼ λ0) to suppress450

the zeroth transmitted order, preventing the possibility of etching it451

in the top ML layer. As a consequence, a strong degrading effect452

in the excited BSWs would be expected. Alternatively, one could453

use a highly index-modulated splitter grating with a flat top sur-454

face immediate below the stack. This would partially alleviate the455
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dependency in the ML and the grating design, but presumably the456

BSWs would be less affected.457

7 Conclusions458

In summary, we considered grating design for 2-way, 4-way, and459

6-way BSW coupling at normally incident but arbitrarily polarized460

illumination of gratings with linear, square, and hexagonal symme-461

tries. The plane-wave designs feature ideal TE-mode BSW cou-462

pling in the two-wave case. In the other cases the non-resonant463

parts of the excitation orders cannot be eliminated simultaneously,464

and they actually dominate the resonant (σ polarized) parts by a465

factor of ∼ 2.8 in the 4-wave case. The 6-wave case reveals the466

opposite observation with the resonant part dominating by a factor467

of ∼ 1.968 making them ideal candidate for TE-mode BSW exci-468

tation. Nevertheless, in the 4-wave case all four coupling ratios can469

be made equal, and in the 6-wave case practically equal, for several470

input polarization states of practical significance.471

Funding472

The work was partially funded by the Academy of Finland through473

project 333938 and the Flagship Program PREIN (346518). E. De-474

scrovi acknowledges the funding received by Italian “Ministero475
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