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Abstract. We study the coupling of a finite number of Bloch Surface Waves (BSWs) propagating in different
directions at the surface of a dielectric multilayer. These surface waves arise from a set of diffraction orders asso-
ciated to a grating on the bottom surface of the substrate that is illuminated by a normally incident beam.
Simultaneous excitation of multiple BSWs is possible with a set of diffraction orders having the same radial
spatial frequency. Using rigorous electromagnetic theory, we design gratings for simultaneous excitation of
two, four and six BSWs propagating in directions separated by p, p/2 and p/3 azimuthal intervals, respectively.

Keywords: Evanescent waves, Surface electromagnetic waves, Bloch surface waves, Multiple bloch surface
waves, MBSWs.

1 Introduction

Surface Electromagnetic Waves (SEW) represent an inter-
esting option for controlling optical signals on miniaturized
chips for integrated optics and sensing applications. Surface
Plasmon Polaritons (SPP) are probably the most widely
known SEWs, but they exhibit inherent issues related to
the ohmic losses introduced by the metallic materials
involved. As an alternative, SEWs sustained by dielectric
multilayers (ML) have attracted a growing interest in the
past decade. This kind of SEW [1] is also referred to as
Bloch Surface Waves (BSWs) [2] to highlight the role of
the underlying periodic multilayer structure required for
their existence. BSWs offer several advantages as compared
to SPPs, such as a wide spectral tunability and low losses
thanks to the large choice of transparent dielectric materials
available for multilayer manufacturing. In addition, BSWs
can be either TE- or TM-polarized [3, 4], depending on the
multilayer design. Their excitation by pulsed fields has also
been recently studied numerically [5].

Being surface waves, BSWs are evanescent in the med-
ium above the multilayer surface. The coupling with free-
space radiation in a BSW-based device is therefore critical
as it must provide momentum matching beyond the light-
line. In most of the applications proposed so far, BSW
coupling is performed by means of bulky prisms, either in
Kretschmann or Otto configuration [6]. However, more

sophisticated approaches have been recently implemented,
involving, for example, the use of individual scatterers
[7–9] or miniature prisms [10] placed onto the multilayer
surface. Another promising option is represented by inte-
grating diffraction gratings within the BSW-supporting
structure [11]. This has been done mainly in two different
ways: with the grating being fabricated on top of the
multilayer [12–14] or buried beneath the multilayer [15].
In the first case, the multilayer is substantially planar, with
the exception of the top layer, where the grating unavoid-
ably perturbs the dispersion of the BSW mode (dielectric
loading/unloading effect). In the second case, the grating
is fabricated on the substrate surface prior to the multilayer
deposition, which occurs on the same side. The multilayer
itself results to not be perfectly planar because it (partially)
conforms to the underlying corrugation. In both configura-
tions, the BSW dispersion is altered by the presence of the
grating, which may lead to some difficulties regarding the
precise control of optical functions of complex, possibly
resonating, BSW-based architectures.

We propose an alternative approach on diffractive
coupling for BSWs, with gratings fabricated on the bottom
surface of a transparent substrate having the multilayer
deposited on the top surface. In particular, we explore the
possibility of using two-dimensional gratings to simultane-
ously couple BSWs propagating in more than two direc-
tions by exploiting the momentum distribution of several
diffraction orders. Once the mode dispersion of the multi-
layer is known, our approach facilitates BSW coupling
in a controllable way, as far as wavelengths/numbers
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and propagation directions are concerned. The directional
coupling of BSWs has been already tackled in a few previ-
ous articles [16–18], although never considered for multiple
directions at once. When the optical path through the
substrate is also taken into account, our approach allows
a predictable control onto the coupling locations of BSWs
launched in different directions.

The present paper is composed as follows. We begin, in
Section 2, by introducing the grating-based BSW excitation
principle and the assumed geometrical configuration. The
theoretical framework for grating design, for which we use
a rigorous technique known as the Fourier Modal Method
(FMM) [19], is described in Section 3. The design process
is analogous with the synthesis of grating-based multiple
free-space beam splitters [20], but here we need to account
for the BSW excitation conditions and the polarization
state of the input wave. In Section 4, we first consider
BSW stack design, providing a “benchmark” stack
employed in the rest of the work, and then cover the design
of linear gratings for simultaneous excitation of two coun-
ter-propagating BSWs. Such designs are extended in
Section 5 to two-dimensional periodic gratings for excita-
tion of either four or six BSWs propagating at 90� or 60�
intervals along the stack, respectively. After a discussion
presented in Section 6, conclusions are drawn in Section 7.

2 Excitation principle and geometry

Figure 1 illustrates the geometry for the simplest case of
excitation of two counter-propagating BSWs. A flat fused
silica substrate with refractive index nsub = 1.462, such as
a 0.5 mm or 3 mm-thick SiO2 plate, is illuminated by a
normally incident monochromatic beam (wavelength k0)
from the medium underneath (air). A linear grating, with
period d of the order of k0, provided on the air-substrate
surface, splits the beam into three transmitted orders prop-
agating within the substrate: the zeroth order m = 0 and
the first diffracted ordersm=±1. The ordersm=±1 prop-
agate in directions h+1 and h�1 given by sinh±1 = ±k0/nsubd
towards the multilayer stack on the top surface of the
substrate. If |h±1| matches the Kretschmann-incidence
BSW excitation angle hBSW for the given wavelength and
polarization state (TE or TM), two counter-propagating
BSWs are generated simultaneously. The excitation is effi-
cient as long as the angular spectrum of each diffracted
order, which defines the beam divergence, falls essentially
within the (stack-dependent) BSW momentum bandwidth.
The polarization state of illumination affects the coupling
significantly; we will consider only BSW excitation in TE
polarization, which generally requires a smaller number of
stack layers than TM-polarized BSW excitation.

The parameters of the system are chosen such that the
two BSWs shown in Figure 1 are spatially separated under
finite-beam illumination. This feature can be useful in
BSW-based platforms such as interferometers [21] and inte-
grated components [22]. First-order diffracted beams are
partially reflected at the top interface, thus propagating
back into the substrate. The reflected beams continue to
propagate according to multiple-reflection paths inside the

substrate unless they are extracted by means of diffusers
or gratings. At each reflection with the ML interface,
coupling to BSW occurs. Stated differently, BSWs are
launched at different locations on the ML surface each time
the beam is incident on the bottom interface of the dielec-
tric stack, thus leading to the appearance of BSW interfer-
ence effects unless the substrate thickness H is sufficiently
large to minimize spatial overlaps.

3 Theoretical framework

Let us consider a rectangularly periodic grating of period
dx � dy in the cartesian xy coordinate system and assume
a plane-wave illumination (at frequency x) normally inci-
dent onto the substrate from air. In view of the grating
equations, the wave vectors of the propagating diffraction
orders (m, n) in the substrate are

kmn ¼ kxmx̂ þ kynŷ þ kzmn ẑ ð1Þ
where

kxm ¼ mKx ¼ 2pm=dx ð2aÞ

kyn ¼ nKy ¼ 2pn=dy ð2bÞ

kzmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20n

2
sub � k2xm � k2yn

q
ð2cÞ

and k0 = x/c0 = 2p/k0 is the wave number in vacuum.
After defining the radial spatial frequency of the generic
order (m, n) as

kqmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xm þ k2yn

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmKxÞ2 þ ðnKyÞ2

q
ð3Þ

the condition kqmn < k0nsub identifies those diffraction
orders propagating within the substrate, the others being
evanescent. If we denote the refractive index of the super-
strate by nsup and assume nsup < nsub, order (m, n) is
evanescent in the superstrate when kqmn > k0nsup. Consid-
ering BSW excitation, we are therefore interested in
orders with radial spatial frequencies in the range
k0nsup < kqmn < k0nsub. We are primarily interested in
the nearest neighbors of the zeroth transmitted order,
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Figure 1. Principle of MBSW generation: the two-beam case. A
binary linear surface-relief grating defined by period d, ridge
width c, and ridge height h on the bottom of a substrate of
thickness H splits the input beam into two diffracted orders
m = �1 and m = +1, which excite BSWs on the top surface of
the substrate by interaction with the multilayer stack (ML). We
assumed nsub = 1.462 and nsup is air.
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while higher orders are made evanescent by appropriate
choices of dx and dy. In the illustrative example presented
in Figure 2a, orders (m, n) = (�1, 0) and (m, n) = (+1, 0)
fall on the yellow line of radius kqBSW, which defines the
BSW excitation condition dictated by the ML design.

Following reference [23], we define the “exit plane” of
diffraction order (m, n) as the plane containing the wave
vector kmn and the unit vector ẑ. Further, propagation
angles hmn and /mn of the transmitted orders, are defined as

kxm ¼ k0nsub sin hmn cos/mn ð4aÞ

kyn ¼ k0nsub sin hmn sin/mn ð4bÞ

kzmn ¼ k0nsub cos hmn ð4cÞ
as illustrated in Figure 2b. Here /mn is the azimuthal
angle in the range [0, 2p), measured counter-clockwise
from the kx axis, and hmn in the range [0, p/2) is the
propagation angle measured from the kz axis. It will
prove convenient to use the so-called p–r basis (or local
TM/TE basis) to define the polarization states of the
transmitted orders. As described in reference [23], this
basis allows us to treat incident fields with any polariza-
tion state, including partial polarization. Here, however,
we are mainly interested in either fully polarized or unpo-
larized illumination.

If the incident plane wave is fully polarized, we can use
any suitable rigorous grating analysis method (in our case
FMM) to determine the transverse Cartesian components
exmn and eymn of the polarization vector for any transmitted
order, as discussed shortly below. The longitudinal compo-
nent of emn is fixed by Maxwell’s divergence equation,
which gives kmn � emn = 0 and

ezmn ¼ � 1
kzmn

kxmexmn þ kyneymn

� �
: ð5Þ

In the p–r basis the polarization state of any order is
described by a two-dimensional vector eprmn =
[epmn, ermn]

T, where the p and r components are explicitly
given by

epmn ¼ exmn cos hmn cos/mn þ eymn cos hmn sin/mn

� ezmn sin hmn ð6aÞ

ermn ¼ �exmn sin/mn þ eymn cos/mn: ð6bÞ

As shown in Figure 2b, the component epmn lies in the exit
plane, whereas ermn is perpendicular to it. Hence, they rep-
resent the TM and TE components of the electric field in
the exit plane, respectively.

In diffraction by two-dimensionally periodic gratings,
the polarization states of the transmitted (and reflected)
diffracted orders generally depend on the state of input
polarization. We represent the polarization vector of a (gen-
erally, elliptically polarized) unit-amplitude input plane
wave as

e ¼ ex x̂ þ eyŷ ¼ x̂ cos aþ ŷ sin a exp idð Þ ð7Þ
normalized such that e = 1. The effect of the grating on
transmitted radiation can be analyzed by calculating
(by FMM) the transmission coefficients

T ðxÞ
xmn; T

ðxÞ
ymn;T

ðyÞ
xmn;T

ðyÞ
ymn ð8Þ

for all diffraction orders, where the superscripts (x) and (y)
refer to illumination by a purely x-polarized (e ¼ x̂) or
y-polarized (e ¼ ŷ) incident wave. The coefficients in
equation (8) are precisely the complex vector amplitudes
that appear in the Rayleigh plane-wave expansion of
the field at the output plane of the grating; see, e.g.,
equation (5) in reference [20]. For an arbitrarily (fully)

Figure 2. (a) Diffraction orders of a rectangular lattice in spatial-frequency representation at normal incidence. Diffraction orders
are represented by dots at positions kxm = mKx, ky = nKy. Blue and red circles represent the cut-off radial spatial frequencies
kq = k0nsub and kq = k0nsup, respectively, between which BSW excitation is possible. The yellow circle indicates the radial spatial
frequency of BSW for a given ML. (b) Definition of the propagation angles (hmn, /mn) of a single transmitted diffracted order (m, n) in
its exit plane (the grey rectangle) and the p � r basis of the diffracted electric field.
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polarized incident wave the transverse electric-field compo-
nents of the transmitted orders are [23]

exmn ¼ T ðxÞ
xmnex þ T ðyÞ

xmney ð9aÞ

eymn ¼ T ðxÞ
ymnex þ T ðyÞ

ymney: ð9bÞ

The longitudinal components ezmn are obtained from
equation (5), and the p–r representation of each order is
given by equations (6). Since the input polarization state
affects both the p and r components, it can be used as a
design degree of freedom in multiple-BSW excitation, in
addition to the geometrical grating parameters.

It is customary to describe the state of polarization of a
fully polarized field by a 2 � 2 polarization matrix J = e*eT

([24], Sec. 6.3.2). Explicitly, for the incident field,

J ¼ Jxx Jxy

Jyx Jyy

� �
¼ exj j2 e�xey

e�yex ey
�� ��2

" #
ð10Þ

where the asterisk denotes complex conjugation. Corre-
spondingly, the polarization state of any transmitted
order in the p–r basis is described by Jprmn ¼ e�pmne

T
rmn

[23], explicitly

Jprmn ¼ Jppmn Jprmn

Jrpmn Jrrmn

� �
¼ epmnj j2 e�pmnermn

e�rmnepmn ermnj j2
" #

:

ð11Þ
The polarization states of the diffracted orders can also be
characterized by the Stokes parameters [23]

S0mn ¼ Jppmn þ Jrrmn ð12aÞ

S1mn ¼ Jppmn � Jrrmn ð12bÞ

S2mn ¼ 2R Jprmnð Þ ð12cÞ

S3mn ¼ 2I Jprmnð Þ ð12dÞ
where R and I denote the real and imaginary parts. The
normalized forms of the Stokes parameters are defined as
sjmn = Sjmn/S0mn (j = 1, 2, 3), and the degree of polariza-
tion associated with order (m, n) is given by

Pmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21mn þ s22mn þ s23mn

q
: ð13Þ

For a fully polarized incident wave, Pmn = 1 for all orders,
even though the values of the individual Stokes parameters
generally depend on order indices.

In addition to fully polarized illumination, we consider
the opposite extreme case of unpolarized illumination.
The matrix J for partially polarized light is defined as
J = he*eTi, where the brackets denote ensemble averaging
over all polarization realizations. For unpolarized illumina-
tion it has a diagonal form ([24], Sec. 6.3.3)

J ¼ 1
2

1 0

0 1

� �
ð14Þ

and the degree of input polarization is P = 0. The polar-
ization matrix associated with order (m, n) can be repre-
sented as an average

Jprmn ¼ 1
2

JðxÞ
prmn þ JðyÞ

prmn

� 	 ð15Þ

which remains diagonal because ex and ey are uncorre-
lated. However, since the grating treats these components
differently, in general Jppmn 6¼ Jrrmn, implying that the
individual orders become partially polarized with
Pmn > 0.

In standard beam splitting problems in resonance-
domain diffractive optics [20] one is interested in the distri-
bution of the diffraction efficiencies of the propagating
orders. Since we have normalized the intensity of the inci-
dent field such that S0 = 1, the diffraction efficiencies are
defined as [23]

gmn ¼ nsub cos hmnS0mn: ð16Þ
In BSW excitation problem, the design goal is to maximize
and equalize the coupling of the incident field to a set of
BSW modes with the angle hmn equal to hBSW. If hBSW is
the excitation angle forTE polarization, the component ermn
excites a BSW while epmn is non-resonant, and vice versa.

We choose the geometry such that several diffraction
orders have the same radial spatial frequency
kqmn = k0nsubsinhBSW, and therefore lie on the yellow circle
depicted in Figure 2a. The relative amplitudes of the
excited BSWs are determined by the r-polarized compo-
nents Jrrmn in TE polarization and Jppmn in TM polariza-
tion. The fraction

jmn ¼ Jrrmn=Jppmn ð17Þ
provides the ratio of the coupled and uncoupled parts of
the incident wave in BSW excitation.

4 Plane-wave design with linear gratings

As evident from the preceding discussion, the p–r represen-
tation returns the BSW excitation problem to the basic TE
or TM polarized problem. In addition, since we assume a
substrate thickness H � k0, the evanescent parts of the dif-
fracted fields above the grating and the BSW field below
the stack are spatially well separated. Hence, we may treat
the BSW stack design and the grating design as two sepa-
rate problems. In order to obtain an illustrative stack design
useful for our purposes, we fix k0 = 514 nm and provide a
stack geometry sustaining BSWs at angles between the blue
and red lines in Figure 2a. The resulting stack can then be
used to design gratings for excitation of BSWs that lie on
the yellow circle in Figure 2a.

4.1 Multilayer stack design

Figure 3a shows the assumed stack structure, which con-
sists of N high/low (H/L) refractive index bilayers and a
terminating top (T) layer with refractive indices nH, nL,
nT and thicknesses hH, hL, hT, respectively. To reduce the

J. Eur. Opt. Society-Rapid Publ. 20, 9 (2024)4



number of variable parameters, we consider TE polariza-
tion, fix the number of bilayers to N = 6, use refractive
indices nH = 2.520 (TiO2), nL = 1.476 (SiO2),
nT = nH = 2.520. The thicknesses hH, hL, hT are used to
design the stack such that the BSW resonance occurs at
an angle hmn in the exit plane.

Figure 3b shows the design results. The horizontal axis
is kx/k0 = nsub sinhmn = neff, where neff can be interpreted as
the effective index of the stack. The plotting range starts
from the critical angle of BSW generation and extends to
kx/k0nsub, i.e., it spans the region between the blue and
red circles in Figure 2a. As neff increases, the BSW becomes
increasingly buried within the multilayer and acts less like a
surface mode. At the same time, all layer thicknesses show a
monotonically increasing trend.

4.2 Two-way splitting

As illustrated in Figure 1, the coupling of two counter-pro-
pagating BSWs is possible with linear gratings (dx = d,
dy = 1). The exit plane of both orders, (m,n) = (�1,0)
and (+1,0), is the xz plane and the p–r representation
reduces to the standard TM/TE decomposition. Since, by
symmetry, g�1,0 = g+1,0 for binary profiles defined in the
inset of Figure 1, we need to maximize g+1,0. This also leads
to the optimum value of Jrrmn, while Jppmn = 0. Now we
only need to find the values of the fill factor f = c/k0 and
grating height h/k0 that maximize g+1,0 (= g�1,0) to also
maximize Jrr.

The grating-design results are summarized in Figure 4.
The optimum fill factor remains fairly constant over
the entire angular range considered here, whereas the

optimum grating height decreases with increasing angle.
The efficiencies of all propagating orders are plotted in Fig-
ure 4b. At around kx/k0 = 1.1209 (corresponding to an exci-
tation angle 50�) we get g±1,0 � 0.4973. Some light is “lost”
in zeroth reflected and transmitted orders when we move
close to the cut-off at kx/k0 = 1 or towards larger values
of kx/k0, but the designs remain acceptable over a relatively
wide range of excitation angles.

The results in Figures 3b and 4 allow us to design
two-way beam splitters for any BSW resonance angle of
interest. The stack design for the desired angle is obtained
from Figure 3b and the corresponding grating design from
Figure 4a. The performance of the design can be evaluated
from Figure 4b. To limit the number of variables further,
we set hBSW = 50�, corresponding to kx/k0 = 1.1209. The
stack design is marked by the dots in Figure 3b, the opti-
mum parameters for TE excitation with N = 6 bilayers
being hH = 60 nm, hL = 85 nm, and hT = 20 nm. Corre-
spondingly, the vertical lines in Figure 4a give a grating
design f = 0.2536, h/k0 = 0.2752, with g±1,0 = 0.4973.

Considering the optimized case represented by the dots
on Figure 3 and the black dashed line on Figure 4, simula-
tion of the reflected and transmitted coefficients has
been performed for the full structure. It implies a grating
of period d ’ 459 nm and fill factor f = 0.2536 and
h/k0 = 0.2752 on the lower side of a fused silica wafer on
top of which the multilayer is deposited. The multilayer
design leads to a Bloch surface wave excited when the
first diffracted order emerge from the grating at an angle
of 50� (kx/k0 = 1.1209) at a wavelength of 514 nm. This
is observed in Figure 5a, where a strong dip in reflection
arises at this value of kx/k0. In Figure 5b the response in
wavelength is presented.

Figure 3. (a) Definition of the multilayer structure and nota-
tion. (b) Stack parameters as a function of the ratio kx/k0 = neff
for TE-mode BSW excitation with N = 6 bilayers: hH/k0 (blue),
hL/k0 (red), and hT/k0 (black). The dots mark the position
kx/k0 = 1.1209 for BSW excitation at 50� angle of incidence.

Figure 4. Design of two-way beam splitters. (a) Optimum
values of the fill factor f (red) and the relief depth h/k0 (blue) as
a function of the exit angle of the first diffracted order in TE
polarization. (b) The corresponding first-order diffraction effi-
ciency g+1,0 = g�1,0 (black), the efficiency g0,0 of the zeroth
transmitted order (red), and that of the zeroth reflected order
(blue), which is 1 � 2g+1,0 � g0,0 due to energy conservation.
The inset shows the grating structure and direction of
illumination.
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5 Plane-wave design with biperiodic gratings

We proceed to design of two-dimensionally periodic grat-
ings that allow simultaneous excitation of more than two
BSWs. Two lattice geometries are considered: square
lattices for four-way excitation and hexagonal lattices for
six-way excitation.

5.1 Four-way splitting

Let us first consider biperiodic gratings with primitive
direct-lattice vectors a1 ¼ dx̂, a2 ¼ dŷ. The (Wigner–
Seitz) primitive cell is square-shaped, covering the area
�d/2 < x <d/2, �d/2 < y <d/2. The spatial frequencies
of the diffraction orders are then kxm = mK, kyn = nK,
the coordination number is 4, and the nearest neighbors
of the zeroth order (0, 0), namely (m, n) = (+1, 0),
(0, +1), (�1, 0), (0, �1), propagate in directions
/+1,0 = 0, /0,+1 = p/2, /�1,0 = p, /0,�1 = 3p/2, respec-
tively. By an appropriate choice of d, all of these four orders
can be placed simultaneously on the yellow ring in
Figure 2a, thus enabling four-way BSW excitation.

In the design, we found it sufficient to consider binary
(z-invariant) relative-permittivity profiles of the particular
form

�r x; y; zð Þ ¼ n2
1 when x2 þ y2 < r2

n2
2 otherwise



ð18Þ

in 0 < z < h within the primitive cell. The circular feature
defined by the radius r can be either a pillar (n1 = nsub,
n2 = 1 or a hole (n1 = 1, n2 = nsub) etched in the substrate.
This type of pillar/hole structures can be patterned at a
nanometer-scale addressing resolution using electron
beam lithography system available to us, and require only
a single etching step.

The radius r and the relief depth h can be used as the
structural design parameters. Some symmetry rules exist,
which are helpful in the design. Since the unit cell and
the structure are centered at the origin, the transmission
coefficients in equation (8) satisfy the inversion symmetry
rules

Tx;�m;�n ¼ Txmn; Ty;�m;�n ¼ Tymn ð19Þ
for both (x) and (y) input polarizations. These rules hold
regardless of the input polarization state, which however
has an effect on the actual values of Txmn and Tymn. They
reduce the number of orders that we need to (or can) con-
trol from four to two: we see from equation (19) that
g�m,�n = gmn. Similar symmetry rules hold also for Jrrmn
and Jppmn.

We begin the design of four-way couplers by optimizing
the structural parameters r and h to minimize the sum of
the efficiencies of the reflected and transmitted zeroth
orders. This maximizes the combined efficiency of the four
nearest-neighbor diffraction orders, and leaves the polariza-
tion state of the incident field free for design. Choosing
hBSW = 50� (d � 0.892k0), for either 45� or circularly
polarized illumination and considering pillars, we get a
design r � 0.201k0, h � 0.53176k0, which gives reflected

and transmitted zero-order efficiencies of ~3.5% and
~5.2%, respectively, leaving the rest of the incident energy
to be distributed among the nearest-neighbor orders.

Our remaining target is to equalize (and maximize)
the coupling strengths Jrrmn of the four signal orders by
designing the input polarization state defined in equation
(7). The symmetry in the 4-way splitting implies that
there is no structurally induced polarization conversion:
for (x)-polarized input we get Jrrmn = 0 for orders
(m, n) = (±1, 0), while (y)-polarized input gives Jrrmn = 0
for orders (m, n) = (0, ±1). Considering linearly polarized
light, the values of Jrrmn (and Jppmn) vary rapidly with
the angle a. Choosing a � p/4 gives values Jrrmn � 0.063
and jmn � 0.359 for all four orders. The same result is
obtained also for circularly polarized illumination with
a � p/4, d = ±p/2. Both the optimized diffracted efficien-
cies and the maximized coupling strengths occur at the
same illumination polarization.

Considering unpolarized illumination, the matrix Jprmn
becomes diagonal and the degree of polarization takes the
form

Pmn ¼ js1mnj ¼ jJppmn � Jrrmnj
Jppmn þ Jrrmn

: ð20Þ

With the present numerical values we obtain Pmn � 0.473
for all nearest-neighbor orders. Even though the excitation
wave is partially polarized, we obtain the same values of
Jrrmn as above; both of the two mutually uncorrelated com-
ponents of the incident field contribute to TE-mode BSW
excitation.

5.2 Six-way splitting

Let us consider a grating with hexagonal symmetry, which
allows simultaneous excitation of six BSWs. The primitive
vectors are now a1 ¼ dx̂ and a2 ¼ ðd=2Þx̂ þ ð ffiffiffi

3
p

d=2Þŷ,
and the Wigner–Seitz primitive cell is a hexagon as shown
in Figure 6a. It will, however, be convenient for our
purposes to define a rectangular direct-lattice cell as in
reference [20], which covers the spatial region �d/2 <
x < d/2, � ffiffiffi

3
p

d=2 < y <
ffiffiffi
3

p
d=2 in Figure 6a. This alterna-

tive lattice representation simplifies the visualization of the
geometry. It also allows the use of FMM in a cartesian
instead of a non-orthogonal basis, as in reference [20],

Figure 5. Response of the full structure (grating, substrate,
multilayer and superstrate). (a) and (b) Reflected (black curves)
and transmitted (red curves) first diffracted orders as a function
of the normalized wavevector (a) and wavelength (b).
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though in the present work we actually used the latter
basis.

The spatial-frequency structure defined by the
reciprocal-lattice primitive vectors b1 ¼ K x̂ � ðK=

ffiffiffi
3

p Þŷ,
b2 ¼ ð2K=

ffiffiffi
3

p Þŷ with K = 2p/d is illustrated in Figure 6b,
where the solid green circles show the locations of the
allowed orders in the cartesian (kx, ky) system. The empty
circles represent the orders of the rectangular spatial lattice,
which are forbidden by the hexagonal symmetry. The
yellow circle connects the six nearest neighbors of the zeroth
order that satisfy the condition for BSW excitation simulta-
neously: orders (m, n) = (+1, +1), (0, +2), (�1, +1),
(�1, �1), (0, �2), (+1, �1) of the rectangular lattice, with
exit planes at angles p/6 + qp/3, q = 0,. . .,5. The excited
BSWs propagate along the surface of the stack in these
directions.

In hexagonal lattice geometry, the symmetry rules in
equation (19) ensure Jrr,�1,�1 = Jrr,1,1, Jrr,0,�2 = Jrr,0,2,
Jrr,�1,1 = Jrr,1,�1. These symmetries leave us three pairs
of orders to control, and we expect to need additional struc-
tural freedom compared to the 4-wave case. Let us never-
theless see what designs are possible with circular pillars
by following the same strategy as above. An important
difference is that in the hexagonal geometry we do have
structurally induced polarization conversion.

By optimizing r and h for pillars, we get h � 0.422k0 and
r � 0.254k0, which leaves a combined efficiency of ~0.884
available for the 6 orders of interest. The distribution of

Jrrmn again depends on input polarization. We found
that it is not possible to equalize the coupling exactly for
all six orders, but using circularly polarized light with
a = p/4 and d = 0.486p we have Jrr,1,1 = 0.097,
Jrr,0,2 = 0.102, and Jrr,1,�1 = 0.113, respectively. Similarly,
for jmn, we have j1,1 = 1.691, j0,2 = 1.903, and
j1,�1 = 2.310. Though it is not of concern for the present
purposes, it is worth noting that the diffraction efficiencies
are: g1,1 � 0.152, g0,2 � 0.145, and g1,�1 � 0.144. As with
the four-wave case, the design with circular pillars works
also for circularly polarized or unpolarized illumination
but the exact values of Jrrmn depend on polarization, but
are within the same range as above. For unpolarized illumi-
nation, the degrees of polarization of the individual orders
are nearly equal, Pmn � 0.3226.

In Figure 7, we show the field amplitude distribution
associated with the six-way coupling geometry in the
xz-plane, i.e., crossing the multilayer, when illuminated with
a 45� polarized light wave. The field is evaluated over 3-unit
cells, i.e., 3 grating periods, in the x-direction. It shows, as
expected, a strong field on the upper medium. Such a struc-
ture is ideal for sensing applications, especially when provid-
ing multiple sensing areas thanks to the splitting of the
BSW excitation.

6 Discussion

Throughout the paper we have considered normally inci-
dent illumination. The use of non-normal incidence could
potentially allow us to consider other combinations of dif-
fracted orders being simultaneously resonant. Changing
the angle of incidence moves the grid of diffracted orders
transversely in Figure 2a with respect to the circles centered
at the origin. For instance, if the propagation direction of

Figure 6. (a) The spatial structure of a hexagonal grating. The
hexagon shows the spatial Wigner–Seitz primitive cell, the green
features illustrate the grating structure, and the blue rectangle
shows the non-primitive cartesian cell. (b) The spatial-frequency
grid. The filled and empty dots represent the allowed and
forbidden orders of the hexagonal lattice. The blue, yellow, and
red circles have the same meaning as in Figure 2a.

Figure 7. Field amplitude distribution across the multilayer
(xz-plane). The illumination polarization was set to 45�. The
dashed lines superimposed on the field represent the multilayer
interfaces.
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the incident field is chosen as (kx i, ky i) = (0, ky i), increasing
kyi moves the grid downwards in ky direction, giving
the orders at positions kxm = mKx, kyn = kyi +nKy. Hence
the three orders (m, n) = (0, 0) and (m, n) = (±1, 0) would
have a common radial spatial frequency if kyi ¼
�ðK 2

x þK 2
yÞ=2Ky, being therefore available for 3-way

BSW excitation. To avoid order (0, 2) from occupying
the same ring as the zeroth order, we would need to choose
Kx 6¼ Ky. However, placing the (yellow) BSW resonance
ring outside the blue ring in Figure 2a requires
kq00 > k0nsub, which is not possible with incidence from
air. Hence a Kretschmann excitation geometry would be
needed, thus sacrificing the compact footprint of the setup.

As an alternative to the geometry considered in this
paper, we could consider having the splitter grating and
the BSW stack as an integrated structure. This would still
allow a compact platform at normal incidence, but the grat-
ing design and BSW stack design would not be independent
anymore. As a first drawback, the splitter grating would
most likely have to be rather thick (~k0) to suppress the
zeroth transmitted order, preventing the possibility of etch-
ing it in the top ML layer. As a consequence, a strong
degrading effect in the excited BSWs would be expected.
Alternatively, one could use a highly index-modulated split-
ter grating with a flat top surface immediate below the
stack. This would partially alleviate the dependency in
the ML and the grating design, but presumably the BSWs
would be less affected.

7 Conclusions

In summary, we considered grating design for 2-way, 4-way,
and 6-way BSW coupling at normally incident but arbitrar-
ily polarized illumination of gratings with linear, square,
and hexagonal symmetries. The plane-wave designs feature
ideal TE-mode BSW coupling in the two-wave case. In the
other cases the non-resonant parts of the excitation orders
cannot be eliminated simultaneously, and they actually
dominate the resonant (r polarized) parts by a factor of
~2.8 in the 4-wave case. The 6-wave case reveals the oppo-
site observation with the resonant part dominating by a fac-
tor of ~1.968 making them ideal candidate for TE-mode
BSW excitation. Nevertheless, in the 4-wave case all four
coupling ratios can be made equal, and in the 6-wave case
practically equal, for several input polarization states of
practical significance.
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