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Abstract We study the local interaction of the gravitational
field with a superfluid condensate. To this end, we exploit
the Ginzburg–Landau formalism with generalized Maxwell
fields. The analysis shows that a slight local alteration of
the gravitational field in a thin superconducting film can be
achieved by laser pulses with particular characteristics.

1 Introduction

In the classical theory of gravitation, as well as in general
relativity, the local gravitational field cannot be affected by
any medium or device of reasonable density and size. The
situation changes, as shown theoretically by Modanese [1,
2], if the stress–energy tensor is subjected to an appropriate
contribution from a suitable macroscopic quantum system (a
superconductor or a more general superfluid condensate).

In previous works, we have already studied the possibil-
ity that supercondensate systems can locally affect the grav-
itational field [3–8]. From an experimental point of view,
observable phenomena require a sufficiently long time scale
and intensity of the interplay. Our research is then aimed at
studying particularly favorable situations, where the intensity
of the effect and its duration are maximized. In this regard, we
are going to explore the effects of particular electromagnetic
fields on a supercondensate immersed in a weak gravitational
field. With respect to our previous analyses, we will exploit
the additional effects of incident laser beams, bringing the
system into a more convenient condition for experimental
observations.

As one might expect, the increase in system complex-
ity is reflected in troubles with the mathematical formal-
ism describing the interplay. To study the new setting with
a tractable mathematical formulation, we will consider a
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simple system consisting of a thin superconducting film,
with thickness smaller than the superconductive penetration
depth. The latter film is then hit, orthogonally to its cen-
ter, by a laser beam with suitable time-dependent frequency
and intensity. This will generate an external vector potential
and associated generalized electric field, driving the effec-
tive interaction between the supercondensate and the local
gravitational field. The chosen setup allows to neglect the
spatial dependence of the physical quantities involved, so
that the behavior of the system can be described in terms of
time-dependent differential equations of the first order. This
also provides a simpler framework in which to determine the
most favorable situation for a localized interaction with the
gravitational field.

The paper is organized as follows. In Sect. 2 we briefly
describe the gravito-Maxwell formalism, giving rise to the
generalized Maxwell fields. In Sect. 3 we give an explicit
formulation for the physical interaction by means of a gen-
eralized time-dependent Ginzburg Landau (TDGL) theory,
taking into account the effects of the laser pulses. In Sect. 4
we analyse the experimental predictions about the local grav-
itational affection and study how to determine the most favor-
able situation for a macroscopic effect; this, in turn, requires
an optimization of the input parameters in the Ginzburg–
Landau equations, in order to maximize the interaction.
Finally, in Sect. 5 we summarize our results and give some
insights about possible future developments.

2 Gravito-Maxwell formalism

Our starting point for a well-defined model, leading to
explicit experimental predictions, is the appearance of gen-
eralized fields and potentials in superconductors, induced by
the presence of a local gravitational field coupled to the super-
condensate [9–21]. The latter phenomenon can be suitably
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characterized by an effective model, where the precise def-
inition of the generalized fields emerge from a weak-field
expansion for the Earth local gravitational field. In the fol-
lowing, we briefly summarize the mathematical formulation
of this gravito-Maxwell approach [3,22].

Let us consider a weak gravitational background, where
the (nearly-flat) spacetime metric gμν is expressed as

gμν � ημν + hμν, (1)

with ημν = diag(−1,+1,+1,+1) and where hμν is a small
perturbation of the flat Minkowski spacetime.1 If we now
introduce the symmetric traceless tensor

h̄μν = hμν − 1

2
ημν h, (2)

with h = hσ
σ , it can be shown that the Einstein equations in

the harmonic De Donder gauge ∂μh̄μν � 0 can be rewritten,
in linear approximation, as [3–6,23,24]

Rμν − 1

2
gμν R = ∂ρGμνρ = 8πG Tμν, (3)

having also defined the tensor

Gμνρ ≡ ∂[ν h̄ρ]μ + ∂σ ημ[ρ h̄ν]σ � ∂[ν h̄ρ]μ. (4)

We then introduce the fields [3,13]

Eg = −1

2
G00i = −1

2
∂[0h̄i]0,

Ag = 1

4
h̄0i , Bg = 1

4
εi

jk G0 jk, (5)

for which we get, restoring physical units, the set of equations
[3,4,13,25]

∇ · Eg = −4πG ρg, ∇ · Bg = 0,

∇ × Eg = −∂Bg

∂t
, ∇ × Bg = −4πG

1

c2 jg + 1

c2

∂Eg

∂t
,

(6)

having defined, in a comoving reference frame, the mass
density ρg ≡ T00 and the mass current density jg ≡ −T0i .

2

The above equations have the same formal structure of the
Maxwell equations, with Eg and Bg gravitoelectric and grav-
itomagnetic field, respectively.
Generalized fields and equations.Now we introduce gener-
alized electric/magnetic fields, scalar and vector potentials,
featuring both electromagnetic and gravitational contribu-
tions [3,4,13,26]:

E = Ee + m

e
Eg, B = Be + m

e
Bg,

1 Here we work in the ‘mostly plus’ convention and natural units c =
h̄ = 1.
2 The latter identifications differ by a sign with respect to our previous
works, and determine minus signs in (6) and subsequent (8).

φ = φe + m

e
φg, A = Ae + m

e
Ag, (7)

where m and e identify the mass and electron charge, respec-
tively. The generalized Maxwell equations for the new fields
read [3–6,13,24]:

∇ · E =
(

1

ε0
− 1

εg

)
ρ, ∇ · B = 0,

∇ × E = −∂B
∂t

, ∇ × B = (μ0 − μg) j + 1

c2

∂E
∂t

, (8)

where ε0 and μ0 are the vacuum electric permittivity and
magnetic permeability. In the above equations, ρ and j iden-
tify the electric charge density and electric current density,
respectively, while the mass density and the mass current
density vector can be expressed in terms of the latter as

ρg = m

e
ρ, jg = m

e
j, (9)

while the vacuum gravitational permittivity εg and perme-
ability μg read

εg = 1

4πG

e2

m2 , μg = 4πG

c2

m2

e2 . (10)

3 The model

3.1 Time-dependent Ginzburg–Landau formulation

Let us consider a superconducting sample on the Earth sur-
face, in the presence of an external magnetic field B0. The
standard Ginzburg–Landau equations describing the system
can be written as [27–29]:

h̄2

2m


(
i ∇ + 2 e

h̄
A

)2

ψ − a ψ + b |ψ |2 ψ

= − h̄2

2m
 D
(

∂

∂t
+ 2 i e

h̄
φ

)
ψ, (11a)

∇ × ∇ × A − ∇ × B0 = μ0
(
jn + js

)
, (11b)

where m
 is the mass of a Cooper pair, D the diffusion coef-
ficient, σ the conductivity in the normal phase. We already
pointed out that the interaction with the local weak gravita-
tional field leads to the appearance of effective generalized
Maxwell fields (7), so the above equation refer to generalized
external magnetic field B0 and vector potential A, featuring
both electromagnetic and gravitational contributions. The a
and b coefficients read

a ≡ a(T ) = a0 (T − Tc), b ≡ b(Tc), (12)

a0,b being positive constants. The contributions related to the
normal current and supercurrent densities can be explicitly
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written as

jn = −σ

(
∂A
∂t

+ ∇φ

)
,

js = −i h̄
e

m


(
ψ∗ ∇ψ − ψ ∇ψ∗) − 4 e2

m


|ψ |2 A. (13)

The boundary and initial conditions are

(
i ∇ψ + 2 e

h̄
Aψ

)
· n = 0

∇ × A · n = B0 · n
A · n = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

on ∂� × (0, t),

ψ(x, 0) = ψ0(x)

A(x, 0) = A0(x)

}
on �, (14)

where ∂� is the boundary of a smooth and simply connected
domain inRN. We denote byA0 andφ0 the external vector and
scalar potentials, coinciding with the internal values when
the sample is in the normal state and the material is very
weakly diamagnetic. Finally, ψ0(x) is the order parameter in
the unperturbed superfluid state.

Dimensionless Ginzburg–Landau equations. Let us put
ourselves in the Coulomb gauge ∇ ·A = 0 so that, when B0

is uniform,

∇2A = −μ0 (jn + js) . (15)

In order to write Eqs. (11) in a dimensionless form, we intro-
duce the quantities

ψ2
0 (T ) = |a(T )|

b
, ξ(T ) = h̄√

2m
 |a(T )| ,

λ(T ) =
√

b m


4 μ0 |a(T )| e2 , k = λ(T )

ξ(T )
,

τ (T ) = λ2(T )

D , η = μ0 σ D,

Bc(T ) =
√

μ0 |a(T )|2
b

= h̄

2
√

2 e λ(T ) ξ(T )
, (16)

where λ(T ), ξ(T ) and Bc(T ) are the penetration depth,
coherence length and thermodynamic critical field, respec-
tively. We also define the dimensionless quantities

t ′ = t

τ
, x ′ = x

λ
, y′ = y

λ
, z′ = z

λ
, ψ ′ = ψ

ψ0
, (17)

and the dimensionless potentials, fields and currents can be
then expressed as:

A′ = A k√
2 Bc λ

, φ′ = φ k√
2 BcD

, E′ = E λ k√
2 BcD

,

B′ = B k√
2 Bc

, j′ = jμ0 λ k√
2 Bc

. (18)

Finally, we define the dimensionless parameter [3]

g
 = λ(T ) k m
 g√
2 e Bc2 D

� 1, (19)

proportional to the Earth surface gravity acceleration g.
Using (17) and (18) in Eqs. (13) and (11) we find the

dimensionless time-dependent Ginzburg–Landau (TDGL)
equations in a bounded, smooth and simply connected
domain in R

N [27,30]3:

∂ψ

∂t
+ i φ ψ + k2

(
|ψ |2 − 1

)
ψ + (i ∇ + A)2 ψ = 0,

(20a)

∇ × ∇ × A − ∇ × B0 = jn + js = − η

(
∂A
∂t

+ ∇φ

)

− i

2

(
ψ∗∇ψ − ψ∇ψ∗) − |ψ |2 A, (20b)

k, η e A0 being the three parameters describing our sys-
tem. The boundary and initial conditions (14) become, in the
dimensionless form,

(i ∇ψ + Aψ) · n = 0

∇ × A · n = B0 · n
A · n = 0

⎫⎪⎬
⎪⎭ on ∂� × (0, t);

ψ(x, 0) = ψ0(x)

A(x, 0) = A0(x)

}
on �. (21)

In the (dimensionless) Coulomb gauge, ∇ ·A = 0, the above
(20) read

∂ψ

∂t
+ i φ ψ + k2

(
|ψ |2 − 1

)
ψ + ( − �ψ + i A · ∇ψ

)
+ A2 ψ = 0, (22a)

− �A=−η

(
∂A
∂t

+∇φ

)
− i

2

(
ψ∗ ∇ψ − ψ ∇ψ∗)−|ψ |2 A.

(22b)

3.2 Laser pulse

We now examine in detail the experimental setting introduced
in Sect. 1 and the relevant physical implications.

Let us consider an horizontal thin superconducting film
of thickness L , see Fig. 1. The origin of a cartesian refer-
ence system is put at the center of the film, at mid-thickness,
with uy , uz parallel to the ground and 	ux along the vertical
direction and perpendicular to the film surface. At t = 0, the
film is struck by an orthogonal laser pulse, giving rise to an

3 From now on, we drop the primes for the sake of notational simplicity.
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Fig. 1 Schematic representation of the system under consideration: a
superconducting thin film is excited by a normally incident, x-polarized
electromagnetic pulse

external electromagnetic vector potential A0(t) of the form4

A0 = −A0 θ(t) 	ux , (23)

where θ(t) is the Heaviside function.
Then, we consider the presence of the constant, external

Earth gravitational field along the vertical direction. The lat-
ter constitutes the gravitational component E0g = −g
 	ux of

an external generalized electric field.5 We then write

E0g = E0g 	ux = −g
 	ux = −∇φ0g , (24)

with a related scalar potential φ0g = g
 x .
Following the discussion of Sect. 2, the external general-

ized field E0 is then expressed as

E0 = −∇φ0g − ∂A0

∂t
= E0g 	ux + A0 δ(t) 	ux . (25)

4 From now on, we denote by a zero subscript the values of the initial
external potentials and fields.
5 In dimensional units, E0g = −m

e g 	ux .

Let us now consider equations (22). In order to find an inten-
sity scale at which possible gravitational effects in the super-
conductor become observable, we make the assumption that
the order parameter ψ varies slowly in the spatial variables,
being the film thin and the perturbations homogeneous. This
in turn allows to neglect the spatial dependence of ψ [31],
allowing for a simplification of (22). Equation (22a) can be
then rewritten as

∂ψ

∂t
+ i φ ψ + k2

(
|ψ |2 − 1

)
ψ + A2 ψ = 0. (26)

In the absence of the laser pulse and neglecting the gravita-
tional field we would have

k2
(
|ψ |2 − 1

)
= 0, (27)

that implies, for these conditions, ψ = ψ0 = 1. We then
look for general solutions inside the superconductor of the
form

ψ(t) = ψ0 + ψ1(t) + g
 ψ2(t),

A(t) = A1(t) + g
 A2(t),

φ = φ0g = g
 x, (28)

where we stopped the expansion at first order in g
, being
g
 � 1. Here, A(t) denotes the magnitude of the vector
potential modified by the presence of the superconductor.
The terms ψ1(t) and A1(t) are connected to the perturbation
of the system due to the presence of the laser, while ψ2(t)
and A2(t) are determined by the presence of the gravitational
field. In this regard, we are interested in the laser effect on the
superconducting condensate, analysing a possible enhance of
the local perturbation on the gravitational field.

Let us now derive the equations for ψ1(t), ψ2(t), A1(t)
and A2(t). To this end, we will analyse the contributions in
the TDGL equations at different orders in g
.

Inserting (28) in (26) we obtain for ψ1 the relation

∂ψ1(t)

∂t
+ k2 ψ3

1 (t) + 3 k2 ψ2
1 (t) +

(
k2 + A2

1(t)
)

ψ1(t)

= −A2
1(t), (29)

at zero-order in g
, with the initial condition ψ1(0) = 0.
The variation of the ψ2 component comes from the expan-

sion at first-order in g
 and reads

∂ψ2(t)

∂t
+

(
3 k2(1 + ψ1(t)

)2 − k2 + A2
1(t)

)
ψ2(t)

= −(
2 A1(t) A2(t) + i x

)(
1 + ψ1(t)

)
. (30)

We assume that, when the laser is turned on at t = 0, the
superconductor has already been subjected to the external
static gravitational field for a sufficiently long time. This
ensures that the effect of any gravitational transient on the
supercondensate has already vanished [3] so that, before the
laser pulse, the system is in equilibrium. We are therefore
exploring physical effects other than [3,6,7], since the local
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alteration does not arise from the transition of the sample to
the superconducting state, but from its interaction with the
laser pulse at subsequent times.

In order to simplify calculations, we study what happens
at the center of the superconductor, corresponding to x = 0.
This gives for ψ2

∂ψ2(t)

∂t
+

(
3 k2(1 + ψ1(t)

)2 − k2 + A2
1(t)

)
ψ2(t)

= −2 A1(t) A2(t)
(
1 + ψ1(t)

)
, (31)

with the initial condition ψ2(0) = 0.
Using (28) in (22b), from the zero-order in g
 we obtain

the variation of the A1 contribution

η
∂A1(t)

∂t
= −A1(t)

(
1 + ψ1(t)

)2
, (32)

with the initial condition A1(0) = −A0, see (23).
Finally, from the contribution at first-order in g
, we find

for A2

η

(
∂A2(t)

∂t
+ 1

)
= −A2(t)

(
1 + ψ1(t)

)2

−2 A1(t) ψ2(t)
(
1 + ψ1(t)

)
, (33)

with the initial condition A2(0) = −η. The latter condition
is found starting from Eq. (25) at first order in g


− ∂φ0g

∂x
− g


∂A2

∂t

∣∣∣∣
t=0

= −g
 ⇒ ∂A2

∂t

∣∣∣∣
t=0

= 0, (34)

so that from (33) we obtain

0 = η
∂A2

∂t

∣∣∣∣
t=0

= −A2(0)
(
1 +������ψ1(0)

)2

−2 A1(0)������ψ2(0)
(
1 + ψ1(0)

) − η. (35)

To solve the resulting system of four equations, we initially
put in Eqs. (29) and (31) the initial conditions

A1(0) = −A0,

A2(0) = −η, (36)

and then we solve for ψ1(t) and ψ2(t). Subsequently, we use
the latter results to obtain A1(t) and A2(t) from Eqs. (32)
and (33). The process converges already at the first iteration.

In the special case under consideration, with a laser
impulse of the form (23), it is possible to find cumbersome
analytical solutions for ψ1(t), ψ2(t), A1(t), A2(t), that we
report in Appendix A.

4 Discussion

From a general point of view, when solving the Ginzburg–
Landau equations describing our framework, it is necessary

to respect the physical prescription

A0 < k, (37)

since the condition A0 ≥ k would cause the system under
consideration to return to its normal state.

Figures 2 and 3 show the calculated local alteration of the
gravitational field, for different values of A0, for two super-
conductors, YBCO and Pb. The former is an high critical
temperature superconductor of the second type, while the
latter is low critical temperature superconductor of the first
type. In particular, we study the magnitude of the ratio

E − E0g

g


, (38)

where E0g is given by the constant contribution of the stan-
dard Earth gravitational field (24), while E is given by

E = −∇φ − ∂A
∂t

, (39)

and represents the perturbed generalized field, affected by the
presence of the superconductor, whose form is found using
the solutions (28) of the Ginzburg–Landau equation.

Every variation is calculated at a sample temperature T 


such that the ratio

Tc − T 


Tc
(40)

is approximately the same in the two materials. The latter T 


is chosen so that the material is in the superconducting inter-
val of temperatures where the Ginzburg–Landau formulation
apply and a mean field approximation can be exploited. The
described situation takes place for a range of temperatures
close to the critical Tc, but sufficiently far from it so as to
prevent the appearance of fluctuations. The results show that
the local gravitational affection is maximized for values of
A0 that are close to k, and the extent of the response is similar
for the two superconductors.

Restoring dimensional quantities through (18) we would
find

A0 → A0
k√

2 Bc λ
= A0

An
, An =

√
2 Bc λ

k
, (41)

so that the dimensional version of condition (37), involving
the maximum allowed value for the vector potential magni-
tude, is given by

A0

An
< k ⇒ A0 <

√
2 Bc λ = A

max

0 (42)

then depending on penetration depth and thermodynamic
critical field.

Apparently, there is a great difference in the characteristic
times of the phenomenon for the two superconductors. How-
ever, restoring again dimensional quantities through Eqs. (17)
and (18), we roughly obtain comparable time intervals, of
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Fig. 2 Gravitational field
alteration as a function of time
(adimensional units) for an
YBCO film

the order of 10−9 s. The latter result can be directly obtained
multiplying by time units τ (from Table 1) the time scales
deduced from the plots.

We can also see from Figs. 2 and 3 that an initial time
range exists where the altered gravitational field receives a
positive contribution. After this phase, there is a time inter-
val where the field is decreased with respect to the standard
external intensity. Finally, the field relaxes returning to the
unperturbed value.

4.1 Oscillating vector potential

Now we examine the effects originating from the presence
of an oscillating laser pulse. We study the particularly simple
case

A0(t) = A0 cos (ω t) 	ux . (43)

In this case, it is no longer possible to obtain affordable ana-
lytical solutions of the system given by the Ginzburg–Landau
equations (29)–(33) for the fields (28), but the behavior of
system can still be studied by numerical simulations.

In this new physical situation, the input parameters for the
system are given by A0 and ω. The latter affects not only
the periodicity of the local effect, but also its intensity. The
limitation (37), A0 < k, still apply.

The results of the simulations are shown in Figs. 4 and
5. As in the former case, the local gravitational field in the
film is subject to positive and negative variations, that in this
case are periodic in accordance to the form (43) of the vector
potential.

From the same figures we can also see that the intensity
of the local variation of the gravitational field increases as
k and ω increase. On the other hand, higher values of ω

result in higher frequency rates of the oscillations: this in
turn means that, from an experimental point of view, it would
be more difficult to observe the phenomenon due to reduced
time scales, since the average effect also tends to zero.

In view of the above discussion, the best physical setup
for experimental detection involves an amplitude A0 close
to k and a value of ω that is not too large. The latter choice
is dictated by the discussed difficulties in time resolution for
standard measurement systems.
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Fig. 3 Gravitational field
alteration as a function of time
(adimensional units) for a Pb
film

Table 1 Physical quantities related to YBCO and Pb

YBCO Pb

Tc 89 K 7.2 K

T ∗ 85 K 6.9 K

ξ(0) 1.8 × 10−9 m 9.0 × 10−8 m

ξ(T ∗) 8.5 × 10−9 m 4.4 × 10−7 m

λ(0) 1.7 × 10−7 m 4.0 × 10−8 m

λ(T ∗) 8.0 × 10−7 m 2.0 × 10−7 m

Bc2 (0) 61.0T 6.5 × 10−2 T

Bc2 (T
∗) 2.5 × 10−1 T 3.1 × 10−3 T

D 3.2 × 10−4 m2/s 1.0 m2/s

k 94.4 4.8 × 10−1

η 1.0 × 10−3 6.6 × 103

g
(T ∗) 1.4 × 10−10 1.2 × 10−16

A
max

0 (T ∗) 2.8 × 10−7 V s/m 8.8×10−10 V s/m

τ(T ∗) 5.0 × 10−10 s 3.2 × 10−14 s

5 Concluding remarks

In this work we have seen that suitable laser pulses can be
used to maximize and amplify a local affection of the static
Earth’s gravitational field, in the simultaneous presence of
a superconducting condensate. In particular, we have con-
sidered the vector potential associated to the laser pulse and
its interaction with a superconducting thin film. This local
interplay gives rise to a generalized electric-like field, fea-
turing a gravitational component, and its explicit form can
be obtained by studying the associated Ginzburg–Landau
equations. We have then compared the latter perturbed field
with the unperturbed value of the Earth’s gravitational field,
analysing the magnitude of the interaction and the time scales
in which the phenomenon manifests itself.

A major challenge definitely consists in simultaneously
optimizing the magnitude and duration of the effect, exploit-
ing particular values of the input parameters, such as the
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Fig. 4 Gravitational field
alteration as a function of time
(adimensional units) for an
YBCO film subject to an
oscillating external vector
potential
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Fig. 5 Gravitational field
alteration as a function of time
(adimensional units) for a Pb
film subject to an oscillating
external vector potential

intensity of the laser pulse and the physical characteristics
of the superconductors. In this regard, most of the detection
difficulties reside in reduced time scales for the occurrence
of the local interplay. However, recent experimental setups
should be able to probe effects taking place in time intervals
well below nanoseconds [32].
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Appendix A: Analytical solutions

Here we report the analytical form of the solutions (28) to the
Ginzburg–Landau equations (29)–(33) for a vector potential
of the form (23):
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ψ1(t) = −1 +
√

k2 − A2
0

k2 − A2
0 exp

(−2 k2 t − 2 A2
0 t

) ,

ψ2(t) = η A0√
k2 − A2

0

−k2 exp
(
3 k2 t

) +
(
− 2 A4

0 t + k2
(
1 + 2 A2

0 t
) )

exp
(
2 A2

0 t + k2 t
)

(
k2 exp

(
2 k2 t

) − A2
0 exp

(
2 A2

0 t
) )3/2 ,

A1(t) = A0 θ(t) exp

(
−

∫ t

0

(
1 + ψ1(t)

)2

η
dt

)
,

A2(t) = η exp

(
−

∫ t

0

(
1 + ψ1(t)

)2

η
dt

)
− 2

∫ t

0
A1 ψ2(t)

(
1 + ψ1(t)

)
exp

(∫ t

0

(
1 + ψ1(t)

)2

η
dt

)
dt. (A.1)
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