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Advanced elasto-plastic topology optimization of steel beams under 
elevated temperatures 
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A B S T R A C T   

A topology optimization algorithm of steel beams under the influence of elevated temperature, considering the 
geometrically nonlinear analysis of imperfect structures, is proposed in this work. The proposed methodology is 
developed for addressing topology optimization problems in the presence of initial geometric imperfections and 
thermoelastic-plastic analysis by developing the bi-directional evolutionary structural optimization (BESO) 
method. Two comprehensive examples of lipped channel beams and steel I-section beams are provided to 
demonstrate the effectiveness of the proposed approach. The considered examples explore the impact of elevated 
temperature on the topology optimization of imperfect steel beams, considering the interplay between thermal 
effects, structural imperfections, and nonlinear behavior. The results highlight the significance of integrating 
temperature effects in achieving optimal and robust steel beam designs. Furthermore, the openings generated by 
the proposed algorithm can efficiently disrupt the continuous heat flow within the material, leading to regions 
with reduced thermal conductivity compared to solid regions.   

1. Introduction 

Structural optimization aims to attain the best structural perfor
mance while considering various constraints, such as a specified mate
rial volume. There are currently three categories within structural 
optimization: topology optimization, shape optimization, and size 
optimization [1–5]. Topology optimization (TO) is a strong and versatile 
method to find the best material arrangement within a limited design 
area. It has received much attention in recent decades for solving 
numerous design challenges in several fields. Therefore, different to
pology optimization methodologies have been developed for the pur
pose of finding the optimal material layout of structures [6–12]. In the 
field of structural topology optimization, two main categories can be 
distinguished. The first category employs a density-based approach, 
where each design variable corresponds to a finite element and is used to 
assess if solid material is present (1) or absent (0). Notably, for this area, 
the bi-directional evolutionary structural optimization (BESO) 
approach, among others, has been developed [13]. In the context of the 
second category, design variables related to structural boundaries are 
the primary focus, exemplified by techniques like the phase field method 
[14] and the level set method [15]. 

The BESO method, at its core, involves simultaneously restoring el
ements with higher sensitivity numbers while removing elements with 
the lowest sensitivity numbers [16]. More recently, the BESO method 
has witnessed significant advancements, enabling its application to a 
broader range of complex problems beyond traditional structural to
pology optimization [17–20]. 

Applications of topology optimization often lead to slender structures 
that are susceptible to geometric imperfections. The global stability of 
structures can be significantly affected when structural members experi
ence compression, primarily due to the amplification of initial imperfec
tions caused by nonlinear effects. Hence, ensuring structural stability is of 
utmost importance during the optimization process [21–24]. By consid
ering uncertain geometrical imperfections, Luo and Zhan [25] proposed 
an algorithm of topology optimization for solving the worst-case buckling 
load problems. Furthermore, Movahedi et al. [26] presented a framework 
for topology optimization that accounts for reliability-based design and 
considers imperfect analysis. Meng et al. [27] presented a hybrid RBTO 
method addressing epistemic and aleatory uncertainties. It introduced a 
triple-nested RBTO model based on fuzzy and probabilistic theory, pro
posing an efficient single-loop optimization method for deterministic 
optimization. Tyas et al. [21] introduced an optimization framework that 
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integrated nominal lateral force load scenarios into a formulation of a 
plastic linear programming problem in which that approach identified 
stable solutions for truss optimization. Madah and Amir [28] employed a 
novel approach to improve truss optimization, addressing stability con
cerns by integrating structural design and incorporating prescribed initial 
deviations. Furthermore, by applying the nominal force method for geo
metric imperfections simulation, Descamps and Filomeno [29] developed 
a topological optimization algorithm considering stability constraints. 

Previous studies in structural optimization have predominantly 
concentrated on systems subjected to external loads. However, there re
mains room for improvement, especially in addressing the instabilities 
arising from thermal problems in structures. Introducing thermal models 
into the framework of topology optimization presents a valuable oppor
tunity to tackle the complexities associated with design challenges 
[30–32]. In this context, Rodrigues and Fernandes [33] expanded upon 
the conventional compliance objective by incorporating both thermal and 
mechanical loads into their analysis. Li et al. [34] further developed an 
approach focusing on the optimization of displacement by considering the 
interaction between thermal and mechanical effects. By considering 
structures undergoing large deformations, Chung et al. [35] proposed an 
algorithm that considers nonlinear thermoelasticity. A recent coupled 
thermo-mechanical RBTO model, promoting computational efficiency, 
and addressing multi-source uncertainties was proposed by Meng et al. 
[36]. Gao et al. [37] proposed a topology optimization methodology that 
accounts for both steady-state temperature and mechanical loads in 
structures composed of multiple materials. Habashneh and Movahedi 
[38] proposed a computational technique that applies probabilistic design 
to thermoelastic topology optimization, incorporating geometric nonlin
earity to enhance the optimization process. 

Optimizing the geometry of openings or voids within structural 
components can significantly impact thermal resistance. Several studies 
have explored determining the optimum geometry of holes or openings 
in these components to enhance thermal performance. For instance, Yu 
et al. [39] employed a ray tracing approach to explore how the shapes, 
alignments, and size distributions of openings impact the thermal con
ductivity of a structure. Carstensen and Ganobjak [40] introduced a 
framework aimed at enhancing the optimization of the design of struc
tural elements subjected to mechanical and thermal stresses. In the 
research conducted by Vantyghem et al. [41], a topology optimization 
technique was devised for the purpose of designing innovative insu
lating masonry blocks in which the algorithm aimed to minimize the 
thermal transmittance of these blocks. These investigations aim to strike 
a balance between structural strength and thermal efficiency and are 
crucial for achieving energy-efficient building designs. 

In our previous work, presented in a conference paper [42], our 
research endeavors to optimize the design of structures under 
high-temperature conditions by employing the bi-directional evolu
tionary structural optimization (BESO) method within the framework of 
elasto-plastic limit analysis. This early work laid the foundation for our 
current research, which expands upon it by addressing the challenges 
posed by initial geometric imperfections and incorporating a 
thermoelastic-plastic analysis. Additionally, in this paper, we explore 
the impact of the resulting optimized topology on temperature distri
bution within the structures, further advancing our understanding of 
their thermal performance. Consequently, our proposed work introduces 
a novel approach, expanding upon the conventional framework of to
pology optimization. Through the consideration of both thermal effects 
and geometric imperfections, our approach strives to produce optimized 
designs that not only fulfill material and thermal performance criteria 
but also incorporate realistic structural behavior and enhance robust
ness by utilizing the developed BESO algorithm. 

2. Analysis of thermoelastic-plastic structure 

This section considers an illustration of thermoelastic-plastic 
behavior, encompassing the theoretical foundations, mathematical 

formulations, and key considerations that govern the optimization 
problem. 

2.1. Elasto-plastic limit analysis 

The scenario presented in the plastic limit analysis involves the 
gradual application of a specific load, denoted as Fi, to an elastoplastic 
body. The formula used for this relative or single-parameter loading is as 
follows: 

Fi = ms F0 (1) 

In the given context, ms represents a scalar parameter that mono
tonically increases and is referred to as the load multiplier. Additionally, 
F0 denotes the initially predefined loads. 

2.2. Thermoelastic-plastic analysis 

This section outlines the development of a finite element framework 
for thermoelastic-plastic analysis, with a focus on incremental plasticity. 
The formulation includes considerations for temperature effects, where 
the elastic-plastic stiffness matrix Ke and incremental thermomechanical 
load ΔF explicitly account for the impact of thermal loading on the 
material. The incremental formulation in plasticity involves assuming a 
segmented linear relationship between stress and strain within the ma
terial during small load increments. Furthermore, the formulation 
employed to address nonlinear problems in this study is grounded in the 
updated Lagrangian formulation, where the reference position is set as 
the solution obtained in the preceding phase. This approach is also 
known as the modified updated Lagrangian or the Eulerian method [43]. 
Standard derivations of these equations can be found in accessible 
literature [44,45]. However, a brief description of the elastic-plastic 
stiffness matrix and the incremental thermomechanical load is 
described here. 

The elastic-plastic stiffness matrix, denoted by Ke is calculated by: 

Ke =

∫

v

B(r)T CepB(r)dv (2)  

where B(r) is the temperature field interpolation function of the position 
vector r, Cep denotes the elasto-plasticity matrix, and v represents the 
volume of deformed element. 

The incremental thermomechanical load ΔF is defined as: 

ΔF = ΔFT + ΔFM (3)  

where ΔFT and ΔFM represent the thermal load and the mechanical load, 
respectively. 

3. Developed framework of the thermoelastic-plastic topology 
optimization problem 

This section introduces the development of the thermoelastic-plastic 
topology optimization framework, encompassing both mechanical and 
thermal loading effects. It begins with the essential sensitivity analysis 
techniques. Following this, the formulation of the thermoelastic-plastic 
topology optimization problem, including considerations for heat con
duction and thermal expansion, is examined. It should be mentioned 
that this section serves as a pivotal segment in our manuscript, unveiling 
the considered novel advancements of the proposed algorithm. 

3.1. Sensitivity analysis 

Incorporating heat conduction [46] into the optimization process 
entails the calculation of sensitivity numbers, with a focus on elements 
related to temperature-dependent variables. These sensitivity numbers 
are determined by defining Xe for the e − th element, which varies based 
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on the presence or absence of the design variable; specifically, Xe can be 
(Xe = 1) when the design variable exists or (Xe = ξmin) when it does not. 
The sensitivity number, represented as αk

e for the e − th element in the k 
− th optimization loop, is established based on the incremental ther
momechanical load and includes considerations for the impact of ther
mal effects on the structural response using the following process: 

αk
e =

∂C
∂Xe

= f T ∂u
∂Xe

+
∂f T

∂Xe
u = f T ∂u

∂Xe
+

∂(FM + FT)
T

∂Xe
u = uT K

∂u
∂Xe

+
∂FT

T

∂Xe
u.

(4) 

By taking the derivative of the equation Ku = f = FM + FT, we get: 

K
∂u
∂Xe

=
∂f

∂Xe
−

∂K
∂Xe

u. (5) 

By substituting Eq. (5) into Eq. (4), we can update it as follows: 

αk
e = uT ∂f

∂Xe
+

∂f T

∂Xe
u − uT ∂K

∂Xe
u (6) 

Considering that Ku = f = FM + FT, thus: 

uT ∂f
∂Xe

=
∂f T

∂Xe
u. (7) 

From Eqs.(6) and (7), we get: 

αk
e =

∂C
∂Xe

= 2uT ∂f
∂Xe

− uT ∂K
∂Xe

u (8) 

In order to mitigate the potential problem of mesh dependence and 
checkerboard patterns, a filtering approach is used [47,48]. This tech
nique is formally stated as: 

αe =

∑Ne
j=1wejαj

∑Ne
j=1wej

(9) 

The weight, denoted as wej, is defined as: 

wej = max{0, rmin − d(e, j)} (10) 

The Euclidean distance between the centers of the e − th and j − th 
elements is represented by d(e, j), whereas the filter radius is given as 
rmin. 

3.2. The proposed thermoelastic-plastic topology optimization problem 

This section centers on the mathematical representation of opti
mizing the topology of structures within the context of thermoelastic- 
plastic analysis without delving into a comprehensive discussion of 
BESO, as it is well-documented in existing literature [13,49]. Diverse 
techniques have been devised in the domain of structural topology 
optimization to optimize the material configuration within a specified 
design domain. This research employs the BESO method as its preferred 
approach for topology optimization on account of its notable advan
tages. By implementing the BESO method, one can efficiently determine 
the most stable structure for a specified quantity of material through the 
iterative elimination and addition of components in accordance with 
their sensitivity values [50,16]. Volume constraints notwithstanding, 
this algorithm has proven to be efficacious in generating optimal de
signs. By integrating a filter strategy to mitigate the effects of checker
board patterns and mesh dependence concerns, the BESO method 
enhances both the convergence speed and accuracy of the optimization 
procedure. Furthermore, the BESO method offers adaptability when it 
comes to specifying the objective function and integrating supplemen
tary design limitations. Our objective is to surmount the constraints of 
conventional optimization methods and generate inventive and effective 
designs for steel beams through the implementation of the BESO 
method. The subsequent sections shall provide an elaborate exposition 
of the BESO algorithm. The mathematical representation for optimizing 
the topology of structures specifically involves including constraints 

related to buckling load factors, plastic limit load multiplier, and ma
terial volume is formulated as follows: 

Minimize : C = uT Ku (11.a)  

Subject to : V∗ −
∑N

i=1
Vixi = 0 (11.b)  

V∗

V0
− Vf ≤ 0 (11.c)  

xi ∈ {0, 1} (11.d)  

λj ≥ λ > 0 (11.e)  

ms − mp ≤ 0. (11.f)  

Ku = f (11.g) 

In this context, the objective is to minimize C, which denotes the 
mean compliance, u indicates displacement vectors, and K is the global 
stiffness matrix. The volume of an individual element is denoted as Vi, 
while the entire volume of the structure is represented by V*. N refers to 
the total number of elements. In addition, V0 represents the volume of 
the design domain, whereas Vf represents the percentage of volume 
fraction. The binary design variable xi takes the value of 0 when an 
element is absent and 1 when it is present. Eq. (11.e) is a representation 
of the constraint for buckling load factors. In this equation, λj represents 
the jth buckling load factor that corresponds to the specified load in
stances, while λ signifies the lower limit of buckling load factors. 

It should be mentioned that as ms increases, the plastic zones of the 
body continuously expand, reaching a state of unrestricted plastic flow 
at a well-defined intensity represented by mp. Defining the plastic limit 
state [19] it ensures that the work expended by external forces cannot be 
negative; hence, ms − mp must be less than or equal to zero. Eq. (11.f) 
incorporates the plastic limit load multiplier limitation. Based on the 
static principle, it is established that any load multiplier ms, which is 
statically acceptable, must be less than or equal to the plastic limit load 
multiplier mp that corresponds to the whole design domain. The 
constraint, denoted as (ms − mp ≤ 0), represents the plastic limit load 
multiplier and signifies the point at which the structure achieves com
plete plastic collapse, hence concluding the optimization process. 
Furthermore, this constraint is strategically employed to ensure the 
feasibility and reliability of the optimization process when dealing with 
plastic deformations. Conversely, in scenarios characterized by elastic 
solutions, especially at lower load multipliers, the mentioned constraint 
is omitted. This exclusion is aligned with the inherent characteristics of 
elastic responses and allows for a tailored approach to accommodate 
both plastic and elastic behaviors appropriately. 

While Eq. (11.g) introduces a new boundary condition related to 
thermal analysis, where the loading vector f comprises the combined 
application of both mechanical loading FM and thermomechanical 
loading FT, expressed as f = FM + FT. Therefore, the displacements that 
are quantified through the objective function inherently consider the 
impacts of thermal expansion. In summary, Section 3.3 extends the 
optimization problem to incorporate thermal considerations, presenting 
a holistic perspective on the structural response. This unique contribu
tion is pivotal for addressing real-world scenarios where the interplay of 
mechanical and thermal loading influences the topology of structures. 

4. Developed algorithm of thermoelastic-plastic topology 
optimization utilizing BESO 

Following a concise mathematical exposition of the topic, the 
methodology for addressing the thermoelastic-plastic topology optimi
zation problem under the specified constraints using the enhanced BESO 
method is shown in Fig. 1. The procedural sequence of the proposed 
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algorithm may be succinctly outlined as follows:  

1. Determining the considered design domain of the problem  
2. Performing FEA, as detailed in Section 2.2, specifically referring to 

Eqs.(2 − 3), followed by the computation of sensitivities outlined in 
Eqs.(4 − 8).  

3. Applying filtering schemes, as per Eqs.(9 − 10).  
4. Determining the desired magnitude of the volume to be achieved in 

the subsequent iteration of the procedure.  
5. The process of subtracting and adding elements  
6. Repeating the processes outlined in stages 2 to 5 iteratively until all 

specified constraints are met, and the convergence criteria in Eq. (12) 
are satisfied 

error =

⃒
⃒
∑N

i=1(Fk− i+1 − Fk− N− i+1)
⃒
⃒

∑N
i=1Fk− i+1

≤ τ (12)   

The objective function is indicated as F. N represents an integer value 
indicating the quantity of consecutive loops with consistent compliance 
values. The permissible level of convergence is symbolized by τ, while 
the current iteration number being executed is designated as k. 

The proposed methodology is implemented through a series of 
MATLAB and Abaqus scripts, facilitating the optimization process for 
the considered structural analysis. The MATLAB script serves as the 
main file orchestrating the entire optimization process. It interfaces with 
Abaqus, defines key parameters, and conducts iterations to achieve 
convergence. The script initiates the evolutionary process, adjusting 
design parameters, and interfacing with Abaqus to perform the neces
sary finite element analyses. The seamless communication between 
MATLAB and Abaqus is achieved through data transfer. Key parameters, 
design updates, and analysis results are appropriately transferred be
tween the two environments, ensuring a cohesive and integrated opti
mization process. 

Fig. 1. Flowchart depicting the updated BESO method for thermoelastic-plastic topology optimization.  
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5. Numerical examples 

The topology optimization problem of incorporating thermal anal
ysis of elastoplastic structures while also considering the influence of 
initial geometric imperfections is addressed by adopting the developed 
BESO algorithm. The proposed approach’s effectiveness and robustness 
are substantiated through the examination of two numerical models: 
Firstly, a lipped channel cold-formed steel beam (LCB) is considered the 
first example, for which the finite element model is validated based on 
the work of Dolamune and Mahendran [51]. A steel I-section beam is 
selected as the second example for validation, following the methodol
ogy outlined by Prachar et al. [52]. Unless explicitly stated, the BESO 
parameters utilized in the analysis are as follows: ER = 1%, ARmax = 1%, 
rmin = 96mm and τ = 0.1%. Additionally, the target volume fraction for 
achieving the desired material distribution is designated as Vf = 50%. 

5.1. Lipped channel cold-formed steel beam 

The first numerical example in this research focuses on optimizing a 
Lipped channel cold-formed steel beam. To address the influence of both 
global and local buckling phenomena, we introduce an initial imper
fection using the first two linear buckling modes. To validate the finite 
element model, we conduct a comparison with prior research conducted 
by Dolamune and Mahendran [51]. Fig. 2 depicts the beam model, 
which incorporates symmetrical loading and geometry conditions. 
Consequently, only half of the span is included in the illustration. 
Therefore, the considered length of the model is 1250mm. The model 
utilized shell elements with a four-node configuration, specifically S4R5 
type, with dimensions of 5mm × 10mm. The nodes at one end were 
subjected to tensile and compressive stresses, which resulted in the 

formation of a triangle force distribution throughout the section and the 
establishment of a constant bending moment over the whole of the span 
(Fig. 2.b). The dimensions and the section of the selected LCB are shown 
in Table 1. Additionally, the beam’s supports were modelled using 
simply-supported boundary conditions for the simulation. The system 

Fig. 2. FEM of LCB: (a) Symmetric plane, (b) Support and applied loads (c) Half span model.  

Table 1 
The dimensions and the section of the selected LCB.  

Specification Magnitude Cross-section illustration 

Grade 250 
t (mm) 1.95 
hw (mm) 150 
bf (mm) 60 
d (mm) 17 
bf/t (mm) 30.77 
d/t (mm) 76.92 
d/bf (mm) 2.50  
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allows for rotations along both main and minor axes, as well as sup
porting warping displacement. Simultaneously, it restricts translations 
and prevents twisting. 

Residual stresses existing within cold-formed steel elements exert a 
notable influence on both the member’s stiffness and the potential for 
premature initial yielding, ultimately resulting in a diminished ultimate 
strength of the element. Observations commonly indicate that the 
magnitude of membrane residual stresses in cold-formed steel members 
tends to be relatively minor when contrasted with flexural residual 
stresses [53]. Consequently, it is permissible to disregard residual 
stresses in the membrane. Flexural residual stresses display compressive 

attributes along the inner surface and tensile attributes along the outer 
surface of the section. In contrast, the residual stresses within the 
membrane exhibit either tensile or compressive behaviour and remain 
consistent throughout its whole thickness. Fig. 3 represents the consid
ered residual stress model of the cold-formed lipped channel. 

As the yield strength and elastic modulus of steel decrease at elevated 
temperatures, the selected steel grade (G250) and thicknesses were 
adjusted to incorporate the corresponding mechanical property re
ductions required for high-temperature conditions. Using the reduction 
factor equations developed by Kankanamge and Mahendran [54], it was 
possible to determine these reductions in yield strength and elastic 
modulus. The yield strength and modulus of elasticity values corre
sponding to each temperature value are presented in Table 2. The 
analysis made use of stress-strain curves following the model introduced 
by Ranawaka and Mahendran [55]. For steels exhibiting gradual 
yielding in their stress-strain curves, a strain-hardening material model 
was utilized. 

During the nonlinear analyses, we considered both residual stresses 
and the initial geometric imperfections. To incorporate the initial geo
metric imperfection, the elastic buckling analyses, as shown in Fig. 4, 
provided the basis for employing the lateral-torsional buckling mode. 
The choice of buckling modes significantly influences the optimization 
process, as they define the characteristic deformation patterns at critical 
loads. In other words, the optimization procedure may struggle to reach 
an ideal solution if the chosen buckling modes do not precisely reflect 
the behaviour of the structure. Furthermore, the sensitivity of the 
objective function and constraints to the design variables is crucial for 
meaningful design changes during optimization. A geometric imper
fection corresponding to L/1000 was applied. The equation devised by 
Lee et al. [56] for calculating flexural residual stresses at ambient tem
perature was incorporated into the flexural residual stress calculation. 

Fig. 3. Residual stress distribution.  

Table 2 
Mechanical property variation of the chosen steel across different temperatures.  

Temperature ( ◦C) fy (MPa) E(GPa) 

20 294.0 204.0 
300 193.3 145.9 
700 36.6 35.7  

Fig. 4. Modes of elastic lateral–torsional buckling: (a) At 20 ◦C (b) At 300 ◦C (c) At 700 ◦C.  
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The flexural residual stresses at ambient temperature were assumed to 
be 0.17fy for the flanges and webs and 0.08fy for the lips [53]. These 
stresses were assumed to vary linearly across the section’s thickness, 
with compression on the interior surface and tension on the exterior 
surface. 

Three different temperatures are considered in the optimization 
process which are 20◦C, 300◦C, and 700◦C. Accordingly, Tables 3-5 
demonstrate the gradual evolution of the material layout until reaching 
the optimal solution for different temperature conditions. It should be 
mentioned that at the beginning of the optimization process, certain 
parts were excluded and are represented by the color black. In the 
context of structural topology optimization applied to a half-length 
representation of a steel lipped section beam, the resultant optimized 
configuration exhibits a distinctive serpentine morphology at one ex
tremity of the web and perforations at the opposing end, reflecting a 
dynamic response to the imposed design constraints and loading con
ditions. It is imperative to underscore that alterations in the temperature 

conditions yield substantial disparities in the resultant optimized 
shapes, thereby underscoring the pronounced influence of elevated 
temperatures on the ultimate optimized configuration of the steel beam. 

These findings emphasize the necessity of considering multiple fac
tors, including thermal analysis, elasto-plastic behavior, and initial 
geometric imperfections, to accurately capture the intricate nature of 
structural topology optimization under varying temperature conditions. 

5.2. Steel I-section beam 

This section introduces the second numerical example in this 
research, which centers on optimizing an I-section beam. To address the 
influence of global buckling, imperfection is introduced by employing 
the first two linear buckling modes. It is presumed that the initial 
geometrical imperfection of the beam is l/1000, where l stands for the 
beam’s length. The finite element model is created and verified based on 
Prachar et al. [52]. Table 6 depicts the cross section, boundary 

Table 3 
Gradual evolution of the material layout until it reaches the optimal solution in the case of 20 ◦C.  

Table 4 
Gradual evolution of the material layout until it reaches the optimal solution in the case of 300 ◦C.  
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conditions, and geometry of the steel beam. 
Fig. 5 illustrates the assembly and the FE mesh of the steel beam in 

which at one end, the displacements along all axes are restricted. 
However, at the other end, only along the X and Y axes are constrained. 
The applied loads are considered at two locations, as it is illustrated in 
Fig. 5. Furthermore, the beam was simulated using a total of 7456 shell 
elements (S4-element), each with size of 23mm. The shell elements 
define the geometry of a body at a reference surface. In this particular 
instance, the thickness is determined by the specification of the section 
attribute. The element denoted as S4 is a comprehensive and integrated 
shell element that is designed for general use and capable of accurately 
modelling finite-membrane-strain behaviour. Each piece is equipped 
with four integration points. 

The residual stress distribution shown in Fig. 6 is taken into 
consideration in order to allocate the residual stresses to the beam 
profile. Furthermore, the reduction factors at elevated temperature, 
namely proportional limit factor (kp,(θ)), yield stress factor ky,(θ)), elastic 
modulus factor (kE,(θ)) are calculated by kp,(θ) = fp,(θ)/fp,(20), and ky,(θ) =

fy,(θ)/fy,(20), and kE,(θ) = E(θ)/E(20), respectively. Fig. 7 depicts how the 
aforementioned variables change as a function of the temperature. 
These reduction factors are obtained from established references [57]. 
The steel grade utilized in this study possesses a yield strength of 
355N/mm2 and an elastic modulus of 210 × 103MPa. The stress-strain 
data are derived from the formulations outlined in [57]. Fig. 8 ex
hibits the specific linear buckling modes that have been taken into ac
count. These modes are obtained through a preliminary linear buckling 
analysis, which enables the identification of the critical buckling 
behavior of the structure. The resulting mode shapes are subsequently 
utilized in subsequent steps for the incorporation of imperfections. 

The validity of the finite element model is established by a com
parison of the load-deflection diagram produced in this research with 
the results reported by Prachar et al. [52], in which the middle web part 
of the beam was subjected to elevated temperature. This comparison 
demonstrates a significant level of agreement, as illustrated in Fig. 9. 

This section discusses the results of topological optimization 
considering the influence of thermoelastic-plastic behavior and initial 

Table 5 
Gradual evolution of the material layout until it reaches the optimal solution in the case of 700 ◦C.  

Table 6 
The geometry, dimensions, cross-section and boundary conditions of the selected beam.  
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geometric imperfections under various temperature conditions, 
including 20◦C, 350◦C, 450◦C, 550◦C, 650◦C, and800◦C. It is essential to 
note that, in this section, only the middle web portion of the beam is 
subjected to elevated temperatures. Furthermore, it should be empha
sized that the simulation assumes a uniform temperature distribution 
along the web, maintaining a constant temperature value. 

Our analysis involves a comprehensive comparison between the 
complete structural domain of the beam and the resulting optimized 
configurations. Our primary focus is the evaluation of ultimate load 
values under varying temperature conditions, as graphically depicted in 
Fig. 10. Notably, as the temperature increases, a pronounced trend 

becomes evident, which is that the disparity in ultimate load capacity 
between the full structural domain and the optimized configuration 
steadily diminishes. This observation signifies a critical aspect of 
structural response under thermal influences. 

Fig. 5. Assembly and FE mesh of the beam.  

Fig. 6. Residual stress distribution.  
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Table 7 represents the optimized material arrangement, which is 
close to failure when subjected to plastic limit analysis. The resulting 
optimal topological shapes exhibit nearly identical material layouts 
across different temperature scenarios. This is due to considering a 
uniform temperature distribution with a constant temperature value 
across the middle part of the web. Only one temperature case is 
considered here for illustration, specifically the case at 800◦C. It’s worth 

noting that certain components were initially excluded from the opti
mization process, visually represented by the use of the color black. 
Consequently, during the optimization procedure, these excluded sec
tions remained unchanged. 

This outcome has significant implications for structural engineering, 
as it underscores the crucial role of thermal effects in shaping structural 
behavior. Furthermore, if structures can be designed to perform well 
under elevated temperatures without overdesigning, it can lead to 
resource savings, such as reduced material and construction costs. 
Accordingly, engineers and designers can use this knowledge to develop 
more robust and efficient structural solutions, optimizing materials and 
designs to enhance the safety and reliability of structures. 

To demonstrate the results of applying the elasto-plastic limit 
concept, two different temperatures are under consideration: 350◦C and 
650◦C. At a temperature of 350◦C, the plastic-limit load multiplier (mp)is 
5.2, the predefined load is denoted as F0 and equals 21.5kN, while the 
ultimate load is represented as Fult and is equal to 114kN. For clarity, we 
examine three load cases: F1 = 0.5 × F0, F2 = 3.0 × F0, and F3 = 5.0 × F0. 
Conversely, at a temperature of 650◦C, the plastic-limit load multiplier 
(mp)is 4.5, the predefined load F0 is 11kN, and the ultimate load (Fult) is 
37kN. In this scenario, the three considered load cases are F1 = 0.1 × F0, 
F2 = 2.0 × F0, and F3 = 3.0 × F0. The resulting optimized shapes of 
considering the elasto-plastic limit concept for the cases of 350◦C and 
650◦C are presented in Table 8 and Table 9, respectively. 

It is noteworthy that in the first scenario, which corresponds to 
minimal loading, the entire model exhibits elastic behavior. In the sec
ond scenario, the presence of plastic zones is nearly imperceptible. 
Conversely, in the third scenario, significant plastic zones become 
evident. 

Expanding upon our previous analysis of the persistent thermal ef
fects on the web, we redirect our focus toward an additional investiga
tive endeavor. In this phase, we investigate the implications of exposing 
the lower flange of the steel beam to elevated temperatures distributed 
uniformly across the entire beam section. This comprehensive explora
tion encompasses a meticulous examination of topologically optimized 
configurations across a range of elevated temperature scenarios. 
Furthermore, it entails a comprehensive evaluation of the associated 
load characteristics and an assessment of the ultimate load values under 
varying temperature conditions. 

Fig. 11 provides a graphical representation of the evaluation of ul
timate load values as temperature varies. This visualization illustrates 
the progressive impact of temperature on the load-bearing capacity of 
the beam when the bottom flange is subjected to fire in the cases of the 

Fig. 8. The considered buckling modes in the model (a) local (b) global.  
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full domain and the optimized design. Significantly, it can be seen that 
when the temperature rises, there is a clear and consistent reduction in 
the difference in ultimate load capacity between the whole structural 
domain and the optimized layouts. 

Table 10 illustrates the topological optimized shape considering the 
case, which is the nearest design to the failure by adopting plastic-limit 
load analysis. During the initial phases of the optimization process, 
certain components were omitted, as indicated visually by the use of the 
color black. It is important to note that these excluded sections remained 
unaltered throughout the optimization process. It should be emphasized 
that the optimized shapes resulting from the application of the 
thermoelastic-plastic topology optimization method when the temper
ature has a varied distribution exhibit nearly the same material distri
bution of the resulted in optimum designs. As an illustration, the 
considered case to show the optimized shape in Table 10 is when the 
applied temperature is 800◦C. 

To gain a deeper understanding of the effects of elevated tempera
tures, we present an analysis of the temperature distribution within the 
beam. This analysis includes a comparative study between the original 
beam shape and the optimized configuration achieved through the 
integration of the proposed thermoelastic-plastic topological optimiza
tion algorithm. Table 11 serves as a visual aid, offering temperature 
distribution contours when exposing the lower part of the flange to fire, 
specifically at temperature levels of 650 ◦C and 800 ◦C. Furthermore, 
this presentation provides insights into the resulting temperature dis
tribution of the optimized beam, emphasizing the influence of topology 
optimization on temperature profiles. 

The results suggest that optimizing the web part of a steel I-beam, 
leading to the presence of openings has a significant impact on the 
reduction of the heat distribution within the material. These openings 
disrupt the continuous flow of heat, resulting in regions with openings 
exhibiting reduced thermal conductivity compared to solid regions. This 

Table 7 
The resulting optimized shape according to the developed algorithm.  

Table 8 
The resulted topologies in the case of 350◦C according to the elasto-plastic limit concept.  

Table 9 
The resulting topologies in the case of 650◦C according to the elasto-plastic limit concept.  
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phenomenon signifies that heat may not efficiently conduct through 
areas with openings, which can be advantageous in applications where 
controlled heat dissipation or thermal insulation is desired. 

6. Conclusions 

This study builds upon the foundation laid in our earlier work [42], 
introducing the BESO-based approach to optimize the design of struc
tures under high-temperature conditions. However, this journal paper 
significantly extends the research by addressing the complexities 
introduced by initial geometric imperfections and incorporating 
thermoelastic-plastic analysis, providing a more comprehensive and 
robust approach to structural design under varying temperature condi
tions. The inclusion of thermal effects and the impact of geometric im
perfections on structural topology optimization are novel contributions 
of this work. In summary, the key points of this study can be highlighted 
as follows: 

• Our findings underscore the necessity of considering multiple fac
tors, including thermal analysis, elasto-plastic behavior, and initial 
geometric imperfections, to accurately capture the intricate nature of 
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Fig. 11. Obtained ultimate loads for different temperatures in the cases of full 
domains and optimized solutions with bottom flange exposure to fire. 

Table 10 
Resulting topologies using the developed algorithm with bottom flange exposure to fire.  

Table 11 
Temperature distribution comparison for different design domains under fire exposure.  
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structural topology optimization under varying temperature 
conditions.  

• The examination of temperature distribution inside a steel I-beam 
reveals that the optimization of the web section, resulting in the 
incorporation of apertures, has a substantial influence on the 
dispersion of heat.  

• The proposed analysis has shown a trend that indicates that as 
temperatures increase, the disparity in ultimate load capacity be
tween the full structural domain and the optimized configuration 
steadily diminishes. This observation highlights the crucial role of 
thermal effects in shaping structural behavior and has significant 
implications for structural engineering.  

• The optimized shapes adhere to the elasto-plastic limit concept, 
exhibiting no visible plastic zones under minimal load conditions and 
progressively displaying a greater presence as the load increases 
until reaching the greatest load multiplier.  

• Our work demonstrates that the strategic optimization of the web 
section in steel I-beams, which introduces openings, offers a prom
ising avenue for mitigating heat distribution within the material. The 
presence of these openings disrupts the continuous flow of heat, 
resulting in regions exhibiting reduced thermal conductivity 
compared to solid counterparts. 

The results shed light on the substantial potential of employing to
pology optimization in the field of structural engineering to actively 
manage heat distribution within structural elements. This work opens up 
exciting avenues for structural engineers, offering them the tools to 
design structures that not only withstand but thrive under extreme 
temperature conditions. By optimizing material use and strategically 
incorporating openings in structural elements, engineers can create 
more resilient, energy-efficient, and cost-effective structures. 
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