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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/smilies-polito Tissue Engineering (TE) and Regenerative Medicine (RM) aim to replicate and replace tissues for curing disease.
/rLotos However, full tissue integration and homeostasis are still far from reach. Biofabrication is an emerging field
Keywords: that identifies the processes required for generating biologically functional products with the desired structural
Reinforcement learning organization and functionality and can potentially revolutionize the regenerative medicine domain, which
Optimization aims to use patients’ cells to restore the structure and function of damaged tissues and organs. However,
Simulation biofabrication still has limitations in the quality of processes and products. Biofabrication processes are often
Biofabrication improved empirically, but this is slow, costly, and provides partial results. Computational approaches can tap
Computational biology into biofabrication underused potential, supporting analysis, modeling, design, and optimization of biofabri-

cation processes, speeding up their improvement towards a higher quality of products and subsequent higher
clinical relevance. This work proposes a reinforcement learning-based computational design space exploration
methodology to generate optimal in-silico protocols for the simulated fabrication of epithelial sheets. The
optimization strategy relies on a Deep Reinforcement Learning (DRL) algorithm, the Advantage-Actor Critic,
which relies on a neural network model for learning. In contrast, simulations rely on the PalaCell2D
simulation framework. Validation demonstrates the proposed approach on two protocol generation targets:
maximizing the final number of obtained cells and optimizing the spatial organization of the cell aggregate.

1. Introduction current models often neglect biological complexity, leading to large
state spaces and necessitating metaheuristics for feasibility [15,16].
Biofabrication, involving the automated creation of biologically Previous research applied a model-based Optimization via Simu-
functional products from living cells and biomaterials, aims to replicate lation (OvS) approach using GA for the biofabrication of epithelial
the complexity of biological systems, from cell aggregates to organs [1, sheets [17,18]. This paper extends this exploration, applying Machine
2]. TE and RM leverage patient cells to repair damaged tissues and or- Learning (ML) and white-box simulation using the A2C DRL algorithm
gans [1], yet achieving full tissue integration remains challenging [3]. and PalaCell2D for simulating epithelial sheet growth [19,20]. The
The design of biofabrication processes is complex, with many variables approach aims to enhance the final cell count and geometrical configu-
influencing product quality [4]. Traditional Design Space Exploration ration, assessing the feasibility and relevance of various computational
(DSE) is costly and often relies on human effort or chance, despite DSE methods in biofabrication.
advancements in automation and digitalization [5]. The paper further details the state of the art (Section 2), methodol-
Established experimental designs like One Factor At a Time (OFAT), ogy (Section 3), validation and results (Section 4), and future research
factorial design, and Design of Experiment (DoE) help optimize re- directions (Section 5).
source use in biological experiments [6-8], but DoE struggles with the
vast experiments needed in complex fields like biofabrication [9-11]. 2. Background
Computational and Artificial Intelligence (AI) methods offer ad-
vanced support in biofabrication design and optimization [12,13]. They In the study of biological complexity, it is vital to connect pro-
enable systematic DSE, considering complex parameter interactions and tocols with their biological mechanisms to improve performance and
process outputs. Effective computational approaches require white-box explain results biologically. White-box models, which are preferred for
models that represent biological processes accurately [14]. However, this, face challenges with increased complexity and simulation time.
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Various white-box modeling methods exist, encompassing continuous,
discrete, and hybrid types [21,22]. Ordinary Differential Equations
(ODEs) are common in systems biology [23], while Agent-Based Models
(ABMs) and discrete models, though less standardized, offer significant
potential in computational biology [24-26]. Petri Nets (PN) models
stand out for their accessibility, completeness, and suitability for com-
plex biological processes, including ontogenesis and host-microbiota
interactions [27-31]. Additionally, vertex models are instrumental in
capturing dynamics in epithelial sheets [32].

OvS approaches blend simulation with optimization to explore
model behaviors under varied parameter settings, aiding in the de-
sign of biofabrication processes [17]. They assist in generating simu-
lated biofabrication protocols for lab testing, prioritizing informative
experiments, and refining the process. There are two primary OvS
categories [17]: (i) metamodel-based and (ii) model-based.

Metamodel-based OvS uses metamodels to estimate input—output re-
lations, reducing computational time but at the expense of accuracy and
explainability [33-35]. In biofabrication, this approach has optimized
bioprinting and bio-ink/scaffold combinations, primarily focusing on
non-living elements [36-41]. Its use for living parts is limited, with
some Deep Learning (DL) models predicting cellular responses [41,42],
but these lack desired explainability.

Model-based OvS relies on white-box models, offering higher ex-
plainability but at higher computational costs [17]. It addresses com-
plex design spaces using heuristic and meta-heuristic optimization
strategies [43]. However, its application in biomanufacturing is mostly
confined to non-living components and structural aspects pre-matur-
ation, using methods like Finite Elements Model (FEM) and Com-
putational Fluid Dynamics (CFD) modeling [44-51]. These models
typically require metaheuristic algorithms for optimization due to their
large state spaces [15,16,52]. A past study exemplifies a model-based
OvS approach using GA for simulating and generating biofabrication
protocols for epithelial monolayers [18]. The high computational com-
plexity of these simulations necessitates a metaheuristic optimization
approach. While effective, this method operates offline, limiting its
adaptability to real-time biofabrication processes and discarding in-
termediate simulation data valuable for optimization. Alternatively,
combining DRL with white-box simulations addresses the limitation of
large state spaces. RL, a ML method, self-learns through environment
interaction, guided by numerical rewards [53,54]. DRL, integrating DL,
is well-suited for high-dimensional challenges like biofabrication, offer-
ing continuous learning and adaptability for real-world manufacturing
optimization [16,55].

3. Materials and methods

This work proposes a computational DSE methodology where a RL
model and the A2C algorithm learn optimal biofabrication protocols to
optimize simulated biofabrication. Fig. 1 presents the implementation
of the proposed methodology.

The exploration engine (Fig. 1.A) relies on a single-agent variation
of the A2C algorithm and an ANNs as a learning model. The train-
ing process occurs through the interaction between Actor and Critic,
and learning rules and rewards adapt to the particular application
(Fig. 1.D). The simulator interface (Fig. 1.B) allows the exploration
engine to interact with the simulator of the process model. The sim-
ulator of the process model (Fig. 1.C) works as a learning environment
(Fig. 1.E) for the training process.

The training process consists of epochs. Each learning epoch aims
to generate the best possible action to take the learning environment
closer to the target and contains the three following steps (numbered
in Fig. 1).

1. Observation collection: the exploration engine reads the sim-
ulation state as an observation from the learning environment,
passing it to the learning model.
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2. Action generation: the learning model, based on the received
observation, generates an action that the exploration engine
sends to the simulator for it to perform in the learning environ-
ment.

3. Reward collection: the exploration engine reads the reward
associated with the performed action from the learning environ-
ment. It passes it to the Critic in the learning model to evaluate
the effect of the chosen action in regards to reaching the goal of
the optimization process.

Each iteration results in a generated action. At the end of the
training process, the sequence of generated actions to reach the optimal
target defines an optimal biofabrication protocol.

The following subsections provide a detailed description of the
exploration engine (Section 3.1), the learning model (Section 3.2),
and the simulator interface (Appendix C), which are the constitutive
components of the proposed methodology. Since they are application-
specific, Section 4 provides a more detailed description of the simulator
and the process model. Finally, Section 3.4 illustrates the training
process.

3.1. Exploration engine

This work relies on a RL model for learning. RL aims to find
an optimal agent behavior to get maximal rewards. In particular,
the exploration engine relies on Actor-Critic algorithms [56], which
combine Q-learning [57] and Policy Gradients [58]. Policy gradient
methods directly model and optimize a policy, representing an optimal
agent behavior. In Actor-Critic, the Actor component generates an
action to perform over the learning environment by random sam-
pling from the probability distribution of all performable actions in a
given state, relying on the same objective function as the REINFORCE
algorithm [59].

The policy z is usually modeled with a parameterized function for
the parameter vector 8: z4(a|s). The value of the reward J(6), which
works as the objective function, depends on the chosen policy (see
Eq. (1)). In Eq. (1), d"(s) is the stationary distribution of Markov
chain [60] for 7y, a € A are actions, s € S are states, V" (s) and Q" (s, a)
are, respectively, the value of state s and the value of a (s, a) pair, when
following a policy = [61].

JO)= Y d"(s)V™(s)= Y d"(s) Y, 7y(als)Q" (s, ) m
SES SES acA

The goodness of the performed action « is evaluated based on the
reward J(6) generated by its execution in the learning environment.
According to the Policy Gradient Theorem [62], the derivative of the
expected reward is the expectation of the product of the reward and
gradient of the log of the policy z,. This allows us to compute the objec-
tive function without considering the derivative of the state distribution
d™(s), untying calculations from the double dependency on action selec-
tion and states distribution [61]. In other words, the state distribution
depends on the policy parameters, but there is no dependency of the
policy gradient on the gradient of the state distribution [63]. This
simplifies the calculation of the gradient V,J(0) dramatically, as in
Eq. (2).

Ved(0) =V ) d"(s) Y, 0" (s, a)my(als)
SES acA 2
x D d"(s) Y, 0" (s,)Vymy(als)
SES acA
In Actor-Critic algorithms, the Critic component evaluates the good-
ness of the performed action a computing the reward J () as the Mean
Squared Error (MSE) between the current value and the best possible
action [63], transforming Eq. (1) into Eq. (3), where T is the last
timestep.
< 5 1 2
V,J(0) = Z& [G,+1 S logmy(1) + 3 (Q5,.a) = V(5,) ] &)
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Fig. 1. The components of the proposed framework and their interactions during the training process. (A) The exploration engine interrogates the learning model at each epoch. (B)
The simulator interface allows the exploration engine to use the simulation performed by the simulator on the process model as a learning environment. (C) The simulator simulates
the process model to simulate the application. (D) The proposed single-agent variation of the A2C algorithm interrogates the underlying ANNs, which generates distributions of
actions to learn the best policy for a specific application based on the target of the optimization process through the interaction between the Actor and Critic. During each
epoch, the optimization process flow includes these three steps, mediated by the simulator interface: (1) the communication of simulation states as observations from the learning
environment to the learning model through the exploration engine; (2) the communication of a chosen action generated by the A2C algorithm by interrogating the underlying
learning model; (3) the communication of rewards from the learning environment to the Critic in the learning model to evaluate the chosen action to further the training process.

Since random sampling from action distributions can determine
high variability in the log probabilities generated, letting the policy
converge to a sub-optimal choice, the A2C algorithm [19] adjusts the
log probabilities by multiplying them by the advantage. The advantage
is a factor that quantifies how better the chosen action compares to
other possible actions (Eq. (4)).

A(S’, at) = Q(stv at) - V(St) = rt+1 + yV(SH-l) - V(S,) (4)

By applying Eq. (4) within Eq. (3), we obtain a more stable training
process, as depicted in Eq. (5), where A(s,, a,) is the advantage.

T-1
Vol 0 = ¥ [AGsa) 2 tog my(0) + 3 (Q(s1.a) = V(5| =
=0

— (5)
-y [A(s,,a,)i log 74(1) + + ACs,. a,)z]
o 50 2

The exploration engine applies the actions generated by the ANN
model in the environment. Then, after the effect of such actions, it gen-
erates the values to compute the A2C objective function, which in turn
guides the update of the ANN weights through backpropagation [64].

Synchronous A2C [64] devises more agents acting simultaneously
and combines the results they independently obtain, resolving incon-
sistencies. Each agent is a different ANN model, comprising an Actor
and a Critic component as detailed in Section 1.

To balance the vast capabilities of DRL with the computational
feasibility of simulation-based DSE, this work proposes a simplified
variant of the A2C algorithm where learning relies on a single agent.
Overcoming the drawback of synchronizing multiple agents has a cost
in accuracy. However, it allows to speed up the interaction with the
environment while still expressing the capability to exploit response
information and dynamically adapt to the system evolution.

3.2. Learning model

The learning model leverages the general ANN structure devised
by the A2C algorithm [64]. The ANN structure includes a backbone
(Fig. 2.A) that processes the simulation states as observations and
provides its outputs as an input to both the Critic and the Actor com-
ponents. The ANN model implementation relies on the tensorflow
library (version 2.9.1) [65], while the backbone relies on the ResNet18
model [66].

3.2.1. Model structure

The Actor (Fig. 2.B) processes the backbone output to generate ac-
tions. It can produce both discrete and continuous actions. In particular,
for each discrete one, the Actor generates a single value among the
possible ones, leveraging a softmax function. The Actor component
clips the output values of variance layers and discrete action layers
between 102 and 10 to avoid numerical issues in computation during
the training phase. On the other hand, for each continuous one, it
generates two values: (u, the mean, and o, the variance of a Gaussian
distribution from which it randomly samples a value for generating the
action. The Critic subnetwork (Fig. 2.C) processes the backbone output
to generate the current state value.

3.3. Model adaptability

The ANN model adapts to the application and training process.
The Actor and Critic components have a fully connected Multi-Layer
Perceptron (MLP) as an input layer. The number of input neurons in
such layers is a hyperparameter for the training process. The size and
shape of data provided to the ANN as an input determine the size
and shape of its output layers. The width and height of the image-like
observation of the environment, and channels, which is the number of
color-like channels, set the input shape of the ANN.
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Fig. 2. Actor-Critic ANN model. (A) A single backbone processes observations from the learning environment to feed the Critic and the Actor. (B) The Actor processes the backbone
output to generate discrete and continuous actions over the learning environment. The architecture ANN adapts to the type and number of actions to generate. For discrete actions,
the number of parallel output layers (based on softmax activations) equals the number of discrete actions to be generated (in the Figure, ranging from 1 to n). Each layer has an
output size corresponding to the number of possible values for the discrete action it handles. For continuous actions, the number of action distributions in output and the number
of neurons in both mean (x) and variance (o) layers equals the number of continuous actions to be generated (in Figure, ranging from 1 to n). Distributions support sampling of
the continuous value for each of the actions considered. (C) The Critic processes the backbone output to generate the current state value.

The ANN output size adapts to the set of actions to generate, ranging
from 1 to n in Fig. 2, for both continuous and discrete actions. The
number of continuous actions to generate sets the number of action
distributions in output and the number of neurons in both the mean
(u) and the variance (o) layers. Distributions support sampling of the
continuous value for each of the actions considered. The set of possible
values for discrete actions sets the number of parallel output layers with
softmax activations.

3.4. Training process

The training process, described in Algorithm 1, relies on the train
class, which interacts both with the environment and the model, im-
plementing the A2C algorithm. The class manages training parameters,
such as the learning rate (1r) and the discount rate (gamma), and
supports getting relevant information in real-time and setting training
length and starting epoch, allowing the restoration of the training from
a previous state through the saved data if needed.

At first, the training creates the ANN model with the required input
size and its optimizer (Algorithm 1, line 1). If restoring a previous
state, it loads checkpoint files. Then, it instantiates the learning envi-
ronment (Algorithm 1, line 2) and checks its integrity. The training loop
continues until it reaches the maximum epoch number (Algorithm 1,
line 3). The loop includes data collection through a GradientTape
tensorflow section to track the data flow in the model. It is possible
to show information in real-time during the training loop. Each epoch
in the training loop consists of six main steps, operated by the train
method (Algorithm 1, line 4-10).

The first step (Algorithm 1, line 4) prepares the environment for
the next learning episode, starting from the new initial state, by calling

Algorithm 1 Training process

1: learningModel = ActorCritic(learningParameters) >
Instantiate ANN model and optimizer

2: e = PalacellEnv() > Instantiate environment

3: while current_epoch <= epochs do > Training loop

4:  e.reset() > Reset environment

5: initialObservation = e.getObservation() > Get initial
observation

6: actions = learningModel (initialObservation) >
Generate actions

7: e.step(actions) > Apply actions over the environment

8: finalObservation = e.getObservation() > Get
environment observation

9: reward = e.getReward(finalObservation) > Get

corresponding reward
10:  learningModel.applyReward(reward)
ANN model

> Apply reward to

the reset method (Algorithm 1, line 4), and getting the first obser-
vation (Algorithm 1, line 5). The learning model uses the collected
observation to generate actions (Algorithm 1, line 6). It also generates
the probability of getting the obtained action and the state value that
will support the loss computation at the end of the epoch. The step
method (Algorithm 1, line 7) applies the generated actions on the
learning environment. After that, the process gets a new observation of
the learning environment, capturing its new state after the execution
of the actions, and collects the corresponding reward (Algorithm 1,
line 8-9). The training feeds the rewards into the learning model for
learning (Algorithm 1, line 10). The Q-values and advantages, the
saved state value, and the probability of getting the obtained action
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Fig. 3. The proposed implementation of the A2C learning algorithm to support multiple training processes running in parallel. The train_manager (A), which consists of a
single function, parallel_train, runs multiple training processes, each one with a different hyperparameter set, in parallel. Each subprocess contains a whole and independent
training process based on the interactions between (B) the train class, (C) the environment file implementation, and the (D) learning model, that allows the individual A2C

agent (E) to learn by iteratively interacting with the learning environment (F).

allow computing the objective functions defined by A2C for both Actor
and Critic losses. The two losses are summed together and used by
the GradientTape section as the loss to compute the gradients for
backpropagation in the ANN through the optimizer.

The train_manager class allows implementing different environ-
ments for different sets of hyperparameters to perform distinct parallel
training processes (Fig. 3.A) via its parallel_train method, relying
on the process class from the Python module multiprocessing,
and a pipe, that is, a communication channel, passed to each sub-
process. Each subprocess contains a whole and independent training
process, based on the interactions between the train class (Fig. 3.B),
the environment file implementation (Fig. 3.C), and the learning
model (Fig. 3.D), that allow the individual A2C agent (Fig. 3.E) to learn
by iteratively interacting with the learning environment (Fig. 3.F).
Finally, each training subprocess is stored so that it is possible to
request real-time information through the pipe and wait for all the
subprocesses to end their training.

4. Results and discussion

The proposed methodology is intended to perform DSE-based pro-
tocol generation for real-world applications and physical biofabrica-
tion processes. In perspective, the optimization engine will interact
with an automatic culture system, whose specific effectors define tun-
able parameters forming a biofabrication protocol. A first step to-
wards real-world applications is optimizing protocols for simulated
biofabrication.

To obtain meaningful results, this work relies on PalaCell2D,
a simulator of the proliferation of epithelial cells oriented to tissue
morphogenesis [20]. The PalaCel12D setup allows simulating tissue
growth under different compression stimuli (see Section 4.1). The
optimization engine must communicate with the biofabrication process
to control these stimuli, which will require interaction with a bioreactor

for real-world applications. To this aim, an implementation of a simu-
lator interface (see Appendix C) supports the interaction between the
optimization engine and the PalaCell2D simulator. Consequently,
a protocol consists of a sequence of values for the PalaCell2D
tunable parameters. Eventually, the generation of optimized protocols
(see Section 4.2) aims to find the best sequence of parameter values to
optimize the final product at the end of the simulation.

4.1. The PalaCell2D environment setup

PalaCell2D relies on a vertex model [32] that represents cells
through their membrane, modeled as a set of vertices (Fig. 4). Pala-
Cel12D simulations iteratively evaluate the vertice positions for each
cell and compute the forces exerted on each vertex.

In the PalaCel12D model, the number of vertices that model a cell
changes dynamically with its size so that the density of vertices remains
uniform along the cell membrane. It supports the simulation of (i) me-
chanical properties, (ii) internal and external forces from the cellular,
and (iii) extracellular compartments over the membrane. PalaCel12D
aids in simulating cellular processes such as apoptosis and proliferation.
Simulation controls them based on the internal cellular pressure. The
latter depends on defined model parameters set for the simulation (as
in Eq. (6)): the cell mass m, the cell area A, the pressure sensitivity 7,
and the target density p,.

Pimt = ’7(% = p0) 6)

Internal pressure controls the growth of the cell mass. The mass
changes at a rate that depends on the external pressure p,,, applied on
the cell, the target area A, the mass growth rates during proliferation v
and relax v,,,,, the simulation time step dr and the pressure threshold

Pmax above which the proliferation stops as in Eq. (7).

vA(l — :“—") if proliferating

'max

_Vrelax(A - AO)(I -

dm = 7)
Pext otherwise

)dt

Pmax
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0

(b) Vertex model

Fig. 4. PalaCell2D models cell membranes as sets of vertices (the red dots) (a), basing on the vertex model approach (b) (taken from Conradin et al. 2021 [20]).

External pressure p,,, depends on the contact with other cells and
the external force F,,,. The latter is either local (i.e., the interaction of
a cell with a wall of the culture environment) or global (i.e., the force
exerted over the whole culture environment).

The simulation scenario used for validation controls cell prolifer-
ation by applying a global external force (in Eq (8)). The parame-
ter a,,;, indicates the probability of controlling the switch to the

proliferation state in cells.

a (1 — Pext if <
Pswiteh = { proltf( pmax) Pext Prmax ®

0 otherwise

In the experiment proposed in [20], F,,, models an external pressure
exerted on a deformable capsule that acts on the cellular vertices with
an intensity that depends on its distance from the center of the capsule
and the radius of the capsule.

4.2. Optimized protocol generation

The capability of the DSE is assessed by demonstrating the frame-
work capabilities to generate optimized protocols to obtain two differ-
ent targets: (1) the maximal number of cells (see Section 4.3) and (2) a
precise shape of cells, i.e., a circular patch of cells (see Section 4.4).
Both targets are relevant for the biofabrication of epithelial sheets.
The first includes maximizing the number of cells obtained, supporting
the cell density required by a biomimetic TERM product to replace
epithelia [67]. The second introduces the element of spatial control,
aiming to optimize cell density and the epithelial sheet’s position and
spatial organization within the culture system, still maximizing the
number of cells. Moreover, the latter is a first step towards controlling
the supracellular architecture, one of the significant open challenges in
TERM biofabrication [68].

As stated before, the quality of the generated protocols depends on
their ability to generate the target products at the end of a simulation.
Protocols control parameter values representing the initial position-
ing of cells and the compression stimuli along the simulation (see
Appendix B). Thus, they have two sections:

1. the initial section sets the value of the initialPos parameter
once;

2. the second section sets the value for the comprForce and
compressionAxis parameters at each simulation step.

Within this structure, the framework aims to learn the values for
each parameter in an optimal protocol. Objective-specific metrics mea-
sure the similarity of the protocol-based final product to the target.
Such a similarity is the keystone to protocol performance. The training
process evaluates and saves metrics every 5 epochs to analyze training
performance.

The following sections describe the experiments and their results,
including learning performance along the training process and optimal
protocols generated. These show the impact of different combinations
of hyperparameters on learning performance. Since an exhaustive DSE

Table 1

Highest final number of cells for Target 1 for the 1r and gamma learning hyperpa-
rameters exploration. For each experiment, the last column reports the highest final
number of cells obtained across training.

Experiments Hyperparameters Highest final
number of cells
1r gamma
Exp1 0.001 0.99 270
Exp2 0.001 0.95 269
Exp3 0.0001 0.99 267
Exp4 0.0001 0.95 266
Exp5 0.00001 0.99 267
Exp6 0.00001 0.95 268

of the target biofabrication processes is unfeasible in finite computa-
tional times [69], the results aim to analyze the evolution of learning
processes to reach optimality rather than its convergence to a global
optimum.

4.3. Target 1: maximization of the final number of cells

The first target aims to maximize the number of cells within the
epithelial sheet at the end of a simulation. The tunable parame-
ters in the protocol are compressionAxis and comprForce, and
the reward value at the end of each epoch is the increment in the
number of cells compared to the previous epoch. In the framework
setup (see Appendix B), the simulated space in the environment is
a 400x400x1 grid. The learning process targets compression stim-
uli and not the initial position of the cell, which holds constant
(initialPos=(x=200, y=200)). This section analyzes the perfor-
mance of the proposed approach by exploring different combinations
of learning (see Section 4.3.1) and simulation (see Section 4.3.2)
hyperparameters.

4.3.1. Exploring lr and gamma learning hyperparameters on Target 1

This section analyzes the performance of different combinations
of learning hyperparameters: the learning rate (1r) and the discount
rate (gamma). Each experiment runs an independent training process
based on a different combination of 1r and gamma. Each training
process includes 70 learning epochs. Each epoch corresponds to a
simulation with a total number of 3400 simulation steps. During each
epoch, the optimization engine interacts with the simulator every 20
(numIter=20) simulation steps, while performance evaluation and
saving occurs every 5 epochs. Table 1 illustrates the six combina-
tions explored, summarizing the highest absolute final number of cells
obtained as a performance measure for every setting.

Fig. 5 visualizes learning performance as the distribution of the final
number of cells obtained within six sliding windows of 20 learning
epochs (0-20, 10-30, 20-40, 30-50, 40-60, and 50-70, respectively).
Violin plots in Fig. 5 depict the distributions of these values with
probability density curves whose width represents the frequency of
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Fig. 5. RL learning performances on Target 1 - learning hyperparameter values exploration. Each panel shows the performance of one training process over six windows of
20 learning epochs, based on a different combination of the 1r and gamma learning hyperparameters.

data points in each value range inferred from the data. These are
augmented by boxplots, which detail the lower and upper quartiles
at the box’s ends and the median value inside the box. Additionally,
the lines stretching vertically from the box reach up to the maximum
non-outlier values, which are the data points lying within a distance no
more than 1.5 times the interquartile range from the box’s edges [70].

Results show that the DSE alternates exploration and exploitation
along learning phases, exhibiting a range of tendencies with different
combinations of 1r and gamma.

« Expl (1r=0.001, gamma=0.99, Fig. 5(a)) is the experiment
yielding the highest number of cells (270, see Table 1). This
process starts by exploring the upper portion of the value range
at window 1. Its learning performance marks a peak at window 4,
where the upper quartile extends to a higher value range, and the
upper whisker marks the peak value. Subsequently, performance
lowers, and the learning explores smaller value ranges.

+ Exp2 (1r=0.001, gamma=0.95, Fig. 5(b)), while yielding a
similar highest value (269, see Table 1), exhibits an overall
broader distribution of fitness at window 1, compared to Expl.
There is a remarkably higher variability among median values
across windows, and several violin plots exhibit probability den-
sity peaks in the lower range of fitness values (windows 2, 3, and
6, respectively).

Exp3 (1r=0.0001, gamma=0.99, Fig. 5(c)) shows remarkable
inter-window variability of both median values and density pro-
files, with window 2 showing an evident bimodality with two
peaks at 256 and 261, respectively. This marks an exploration
phase for the learning process, which reaches higher perfor-

mances starting at window 4, corresponding to the broadest
density profile and the highest median value along the training.
Finally, across the last windows, this training exhibits a stable
increase in the mean performance and a stable decrease in its
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Fig. 6. Compression stimuli protocols generated for Target 1 at epoch O and epoch 37 during Expl (1r=0.001, gamma=0.99). Dots represent the stimulation at each learning
episode, including the set comprForce compressionAxis values, either >X’ (orange dots) or Y’ (blue dots). Each learning episode corresponds to one interaction of the
learning process with the simulator, setting new values for stimulation parameters comprForce and compressionAxis for numIter=20 simulation steps. The 170 learning

episodes shown occur along a simulation of 3400 simulation steps.

variance, marking the training exploiting knowledge to find a
local optimum.

* Exp4 (1r=0.0001, gamma=0. 95, Fig. 5(d)) shows pronounced
exploration starting from the first window, where the distribution
of values spans the middle and lower ranges. In the following two
windows, the yield of outlier values extends to the bottom part
of the range, as indicated by the long tails of the density profiles
combined with the reduced size of the boxplot bottom whisker.
Then, the learning focuses on a limited range of values, which
still yields modest and decreasing performances.

» Exp5 (1r=0.00001, gamma=0. 99, Fig. 5(e)) starts by exploring
a broad value range at window 1 to start then to exploit knowl-
edge at window 2, showing a compact interquartile range and a
density profile peak around 263. Then it gradually progresses to-
wards increasing medians and, at the same time, broader explored
ranges.

« Exp6 (1r=0.00001, gamma=0.95, Fig. 5(f)) has a peculiar
behavior: while most windows correspond to compact interquar-
tile ranges, they also mark the presence of several outliers. This
process generally marks a passage from an initial exploration
phase to a steady, lower performance level.

Fig. 6 shows the impact of the optimization process, visualizing
the structure of the protocols generated at the beginning of train-
ing at epoch O (Fig. 6(a)) and at epoch 37 (Fig. 6(b))) of Expl
(1r=0.001, gamma=0.99). When no optimization has occurred, the
protocol obtained at epoch O exhibits a disorganized structure. The
protocol obtained at epoch 37, after training advanced, which yields
the maximum number of final cells across experiments (270), keeps the
stimulation in the very low range between comprForce=0.005 and
comprForce=0.0055 over a single compression axis
(compressionAxis=’X’). Each point in the plot marks a learning
episode in which the optimization engine interacts with the simula-
tor, setting new values for stimulation parameters comprForce and
compressionAxis. Each learning episode controls numIter=20
steps in the simulation. The x-axis represents the sequence of 170
learning episodes along a simulation of 3400 simulation steps. A low-
compression protocol is consistent with the target of maximizing the
final cell number, according to the knowledge of the process and
PalaCell2D modeling, that assumes the inverse relationship between
external force at a cell and the probability the cell proliferates [20].

4.3.2. Exploring the numi ter simulation hyperparameter on Target 1

Starting from the exploration of learning hyperparameters, this
section further analyzes the Exp3 setup (1r=0.0001, gamma=0.99)
by exploring different values of the numIter simulation hyperparam-
eter, since this hyperparameters combination exhibits a good balance
between exploration and exploitation (see Section 4.3.1).

Table 2

Highest final number of cells for Target 1 for the numIter simulation hyperparameter
exploration. Each experiment corresponds to a fixed combination of the 1r and gamma
parameters and a different numIter value. The last column reports the highest
absolute number of cells obtained during each experiment.

Experiments Hyperparameters Highest N of cells
1r gamma numIter

Exp3 0.0001 0.99 20 267

Exp7 0.0001 0.99 50 274

Exp8 0.0001 0.99 100 278

Table 2 illustrates experimental results exploring three values of
numIter: 20 (kept as a reference from the previous exploration), 50
and 100, alongside the highest final number of cells obtained for every
setting.

Fig. 7 visualizes learning performance as the evolving distribu-
tion of the values of the final number of cells obtained along train-
ing processes. Performance is evaluated within six windows of 20
epochs. Results show that increasing values for numIter improves
the overall learning performance across experiments. Indeed, Exp7
(numIter=50, Fig. 7(b)) exhibits consistently higher mean values
than Exp3 (numIter=20, Fig. 7(a)) along training. Median values
lie above 265 across all windows in Exp7, while they stay below
261 in Exp3. Also, density profiles show peaks above 265 and very
small interquartile ranges. Window 5 marks the sharpest range. Exp8
(numIter=100, Fig. 7(c)) shows even higher median values, start-
ing higher than 270 and reaching 277 in the last windows. This
training shows a clear exploitation with convergence to a local op-
timum, increasing performance and decreasing interquartile ranges
after the second window. Results indicate a remarkable impact of the
numIter simulation hyperparameter on performances, underlining
that learning-simulation interaction frequency deeply affects learning
dynamics.

4.3.3. Testing the artificial neural network learning for Target 1
Compared with existing optimization approaches from the liter-
ature, one major strength of the proposed approach is its learning
capability. This section provides the results of testing the models result-
ing from the three training processes presented in Section 4.3.2: nu-
mIter=20 (Exp3), numIter=50 (Exp7) and numIter=100 (Exp8).
Each testing process included 30 epochs. During testing, the framework
maintains the functioning described for training, excluding the ANN
learning step. The trained ANN model resulting from the training phase
is loaded at the beginning of testing. When the framework interacts
with the environment, it just leverages the trained ANN to generate
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Fig. 7. RL learning performances on Target 1 - simulation numIter hyperparameter values exploration. Each panel shows the performance of one training process over
six windows of 20 learning epochs, based on 1r=0.0001, gamma=0.99, and different numIter values.

actions and administer them to the simulator. It does not use the
resulting observations to train the ANN further.

Fig. 8 visualizes the distributions of the 30 different final numbers
of cells obtained during testing epochs, exhibiting relations to learning
performances. In particular, the ANN trained on Exp3 (numIter=20)
generates a broad distribution of fitness values ranging from 255 to
270, and the most frequent values range between 256 and 258, with
a peak at 256 (Fig. 8(a)). During training, Exp3 explores this range of
values across windows, as delimited by boxplot whiskers in Fig. 7(a)).
In addition, the central quartiles across windows lie in a similar range
to the testing fitness value distribution. The ANN trained on Exp7
(numIter=50) generates a way narrower distribution of values peak-
ing at 267 (Fig. 8(b)). This value is coherent to the narrow density
profile peaks across windows in Fig. 7(b)). In addition, the distribution
tails encompass the range where the central quartiles lie across win-
dows. Finally, the ANN trained on Exp8 (numIter=100) generates
a similarly narrow distribution of values peaking at 278 (Fig. 8(c))).
Again, this value is coherent to the density profile peaks across the last
three windows in Fig. 7(c)), and the distribution spans a range that also
characterizes values generated by training.

4.3.4. Discussion on Target 1

The results collectively illustrate the effectiveness of the RL ap-
proach in optimizing cell proliferation within the PalaCel12D sim-
ulation environment.

In summary, results on Target 1 show that the proposed RL ap-
proach is capable of:

» maximizing the final number of cells at the end of a simulation;
+ optimizing protocols of compression stimuli coherently with the
target and the modeling assumptions;

+ expressing a range of training behaviors and performances with
different combinations of learning and simulation hyperparame-
ters (1r, gamma and numIter);

+ learning and retaining knowledge within the trained ANN models,
whose testing recapitulates training performance.

In Section 4.3.1, the combination of 1r and gamma values influ-
ences how quickly the model learns and how it values immediate versus
future outcomes. Indeed, the provided grid search of value combina-
tions leads to different learning behaviors, with some combinations
leading to faster convergence at the risk of instability or gradual,
stable learning at the cost of slower convergence. This interplay be-
tween 1r and gamma is critical for tuning the ANN’s performance
to optimize outcomes in the simulated epithelial cell environment.
Indeed, the choice of the Exp3 setup (1r=0.0001, gamma=0.99)
for the subsequent numIter exploration is based on the good bal-
ance between exploration and exploitation. The numIter parameter
controls the interaction frequency between the learning algorithm and
the simulation environment. In Section 4.3.2, the lowest numIter=20
value, corresponding to more frequent updates of the learning strategy
based on feedback from the simulation, leads to quicker but less stable
learning dynamics (Fig. 7(a)). On the other hand, higher numIter=50
and numIter=100 allow for more extended periods of simulation
before each learning update, leading to a deeper understanding of
the long-term consequences of actions at the cost of slowing down
the learning process (Figs. 7(b) and 7(c)). The density profiles and
boxplots in the second part of the training suggest that the model is
overfitting when numIter=100. Limiting the number of interactions
between the learning and the environment by setting the numIter
hyperparameter can make the ANN excessively tailored to the training
data, shifting from beneficial exploration of diverse data patterns to
excessive exploitation, leading to high accuracy on training data but
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after each testing epoch. Each panel shows the performance of a trained model based on 1r=0.0001, gamma=0.99, and different numIter values.

poor generalization to new, unseen data. Results clearly show that this
balance between rapid adaptation and in-depth exploration directly
impacts the learning stability and convergence quality, exploring the
trade-off between immediate and future rewards in complex simu-
lated environments. The ability of the ANN models to generalize their
learning is evident from the testing results. When tested, each trained
model produces outcomes consistent with its training process (see
Section 4.3.3), indicating that the models have effectively learned and
internalized the patterns and dynamics of the simulation environment.
Target 1 is intrinsically limited to the functional readouts from the
environment, having the final number of cells as a measure of fitness
while sustaining a first demonstration of framework capabilities.

4.4. Target 2: precise maximization of the fraction of cells within a circular
area

Optimization in real-world applications often includes targeting cul-
ture processes’ functional and structural complexity. In this direction,
Target 2 aims to maximize the cell fraction within a circular area,
intending to fabricate a circular cell patch with a defined position and
dimension at the end of a simulation. In this case, the maximization
problem meets the goal of positioning the initial cell so that, proliferat-
ing, cells overlap a designated circular target space. The reward is the
fraction of cells within the target (fraction;,y.), as in Eq (9) where
cells;,q. and cells,, ;. are the number of cells inside and outside the
target space, and cells,;,, is the total number of obtained cells.

cells; —cells

inside

cells g

outside

fracrianinside =

9

The fraction;,,, values along training measure performance. Proto-
cols for this target control the initial cell position before the simulation

10

starts and the compression stimuli along the simulation. The frame-
work setup (see Appendix B) includes a simulated space based on a
400x400x1 grid, with the addition of a circular target area centered
in x=200 and y=250, having a radius length of 80.

The learning process targets compression stimuli and the initial
position (initialPos) of the first cell in the simulation. For all
experiments, the exploration range for initialPos lies between 90
and 310 for both starting position coordinates. Thus, the generated
protocols cover two steps:

1. initialPos parameter value setting (once, before the simula-
tion starts);

2. comprForce and compressionAxis parameters values set-
ting (along simulation).

This requires two learning processes to work together: the primary,
outer training process learns initial positions, while a secondary, inner
training process learns compression stimuli. Two learning environ-
ments, leveraging a hierarchy of subprocesses (see Appendix D)
implement this design. The inner environment recapitulates the setup
from Section 4.3. Consequently, at each epoch, the outer training
process generates a single action to set initialPos. Then, it launches
the inner training process and waits for completion. During each outer
epoch, the inner process undergoes training to learn compression-
Axis and comprForce, interacting with the simulation every nu-
mIter=20 steps. Each inner epoch comprises a simulation of 2500
simulation steps. Each nested training process runs for 70 epochs, and
performance evaluation occurs every 5 epochs.

4.4.1. Exploring 17 and gamma learning hyperparameters on Target 2
Each experiment runs an independent training process based on a
different combination of two learning hyperparameters that affect both
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Table 3

Highest fraction,,,, for Target 2 for the 1r and gamma learning hyperparameters
exploration. For each experiment, the last column reports the highest fraction
obtained across training.

inside
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Table 4
Highest final fraction of cells for Target 2 for the numIter hyperparameter values
exploration. The last column reports the highest final fraction obtained across

training for each experiment.

inside

Experiments Hyperparameters Highest fraction,,,, Experiments Hyperparameters Highest fraction,, .,
1r gamma 1r gamma numlIter

Exp9 0.001 0.99 0.647 Expl12 0.0001 0.95 20 0.638

Exp10 0.001 0.95 0.642 Expl5 0.0001 0.95 50 0.635

Expl1 0.0001 0.99 0.475 Exp16 0.0001 0.95 100 0.617

Expl2 0.0001 0.95 0.638

Exp13 0.00001 0.99 0.000

Expl4 0.00001 0.95 0.640 Fig. 10 illustrates a bi-dimensional histogram of the X and Y co-

the outer and inner training: the learning rate (1r) and the discount
rate (gamma). Table 3 illustrates the six combinations explored, sum-
marizing the highest absolute final fraction of cells obtained during
training.

Fig. 9 illustrates the learning performance by showing the final
fraction of cells across six sliding windows covering 20 epochs each
(0-20, 10-30, 20-40, 30-50, 40-60, 50-70).

Results show that the DSE alternates phases of exploration and
exploitation along learning, exhibiting a range of tendencies with dif-
ferent combinations of 1r and gamma.

« Exp9 (1r=0.001, gamma=0.99, Fig. 9(a)) yields the highest
final fraction of cells across experiments (0.647, see Table 3)
within the first window, whose broad probability density profile
and high interquartile range indicate a marked tendency towards
exploration at the beginning. Profiles become increasingly com-
pact in the fourth window, where learning stabilizes on a lower
performance. This phase evolves in additional exploration during
the last two windows, which exhibit reduced interquartile ranges,
several fitness values marked as outliers, and broad density pro-
files, indicating marked exploration that is not converging to an
optimum.

Exp10 (1r=0.001, gamma=0.95, Fig. 9(b)) has a more stable
dynamics, where after the initial two windows that generate val-
ues in a compact range centered over 0.61, the training enters an
exploration phase characterized by broader profiles and increas-
ingly wider interquartile ranges. While the median values stay
centered around 0.61, the upper quartiles progressively extend
towards higher values, approaching 0.62 at the last window.
Exp11 (1r=0.0001, gamma=0.99, Fig. 9(c)) exhibits dramati-
cally lower performances, with density profiles peaking between 0
and 0.1. Central windows include outliers spanning to the 0.4-0.5
range, which is still way lower than the ranges populated by the
previous experiments (considering this, to maximize readability,
the plot has a different scale for the fitness values).

Exp12 (1r=0.0001, gamma=0.95, Fig. 9(d)) marks a tendency
towards exploitation, where the training starts with a compact
density profile peaking close to 0.62. Profile peaks gradually
move towards higher values until reaching 0.62, while they con-
sistently grow in width, indicating training is converging towards
a local optimum.

Exp13 (1r=0.00001, gamma=0. 99, Fig. 9(e)) similarly to Exp11,
has way lower performances. Still, in this case, the learning
consistently yields null performance (again, the plot scale differs
from the rest).

Exp14 (1r=0.00001, gamma=0.95, Fig. 9(f)) illustrates the
passage from an initial prevalence of exploitation with density
profiles peaking around 0.61 towards increasing exploration, with
profiles broadening to the lower ends of the value range, while
the median stays close to the initial value across all training.

11

ordinates of initialPos values generated by the training process
based on the 1r=0.0001 and gamma=0.95 setting (Exp12). Each
panel corresponds to a learning window, covering the six windows from
Fig. 9(d). The color intensity of squared sub-areas in purple grows with
the total number of times the training chose a position within them
during the window. The red circle indicates the target area, and its
color intensity is directly proportional to the mean fraction,, ,, in the
window, normalized over the fitness value range for this experiment.
The exploration range for initialPos lies between 90 and 310
for both coordinates, and this bounds the area where initial positions
lie, with an offset linked to the bin size chosen to maximize figure
readability.

During the first window (Fig. 10(a)), the training exclusively gener-
ates initialPos value in the left bottom corner of the action space,
which is distant from the target, resulting in the lowest normalized
mean fraction,,g,, across windows. The second window (Fig. 10(b))
shows training starts to explore the adjacent positions to the bottom left
corner, determining a slight increase in fitness. In the following win-
dows, the training explores several initialPos coordinates closer to
the target, resulting in higher normalized mean performance values,
peaking at window 4 (Fig. 10(d)). The latter shows that the most
initialPos coordinates explored lie in the top left corner, which
is close to the target, and thus sustains higher mean fraction;,;,, for
the corresponding epochs. On the contrary, windows 3 (Fig. 10(c)), 5
(Fig. 10(e)) and 6 (Fig. 10(f)), while showing the same tendency to ex-
plore areas closer to the target, still have the majority of initialPos
coordinates at the bottom left corner, which limits the performance of
the corresponding epochs and lowers the mean fraction;,,-

4.4.2. Exploring the nums ter simulation hyperparameter on Target 2

This section explores the impact of the numIter hyperparameter
while learning hyperparameters hold constant values for 1r (0.0001)
and gamma (0.95) (from Expl2). This training yields a maximum
fraction;, ;4. value of 0.638. Yet, this choice is not based on the highest
performance value obtained across all training instances 0.647, which
belongs to Exp9 instead (see Table 3). The choice is rather based on the
fact this combination shows a steady and stable performance increase
(see Section 4.4.1).

Table 4 illustrates the highest absolute fraction of cells obtained
during each experiment. Results show performance is inversely pro-
portional to numIter hyperparameter values. numIter=20, as illus-
trated in Section 4.4.1, has 0.638 as the highest value. numIter=50
and numIter=100 yield highest values of 0.635 and 0.620, respec-
tively.

Fig. 11 visualizes training performances over six windows, based on
1r=0.0001 and gamma=0.95 learning hyperparameters values and
different numIter values (from the top to the bottom): numIter=20
(Exp12), numIter=50 (Exp15), numIter=100 (Expl6).

Results show that numIter hyperparameter values visibly affect
learning dynamics. Compared to Exp12 (Fig. 11(a)), based on nu-
mIter=20, Exp15 (Fig. 11(b)), based on numIter=50, shows prob-
ability density profiles with broader curves peaking at 0.60 (also the
median value) in the first three windows. The second part of the
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Fig. 9. RL learning performances on Target 2 - learning hyperparameter values exploration. Each panel shows the performance of one training process over six windows of
20 learning epochs, based on a different combination of the 1r and gamma learning hyperparameters.

training exhibits flattened interquartile ranges with a stable median
at the same value, while several outliers broaden the density profile.
This indicates the training is stabilizing over the initial performance,
meaning the exploration did not sustain any improvements starting
from there. Exp16 (Fig. 11(c)), based on numIter=100, shows that
the training starts at a similar median value close to 0.60, with a broad
density profile underlining exploration. In the following windows, both
density profiles and interquartile ranges shrink, centering their peaks
and median values around 0.59, showing that exploitation yields lower
performance than the one reached initially.

4.4.3. Testing the artificial neural network learning for Target 2

This section provides the results of testing the models from the
three training processes presented in Section 4.3.2. To obtain testing
results, the framework leverages the trained ANNs to generate actions
and administers them to the simulator, but it does not use the resulting
observations to train them.
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Fig. 12 visualizes the distributions of the 30 values obtained for
the final number of cells during testing epochs. As observed in Sec-
tion 4.3.3, testing results relate to learning performances. In particular,
the ANN trained on Exp12 (numIter=20) peaks at the interval be-
tween 0.61 and 0.62 (Fig. 12(a)), and the distribution profile recapit-
ulates density profiles across windows during training (Fig. 11(a)). In
addition, the distribution central domain encompasses the range where
the central quartiles lie, and the right tail spans close to 0.64, as the
upper whisker of the boxplot at window 6 does. The ANN trained on
Expl5 (numIter=50) generates a distribution of values whose two
peaks lie between 0.595 and 0.605 (Fig. 12(b)). This value is coherent
with the narrow density profile peaks across windows in Fig. 11(b) and
with the median value training stabilizes onto. Finally, the ANN trained
on Expl6 (numIter=100) generates a distribution shifted towards
lower values (Fig. 12(c)) which are coherent to the density profile peaks
across the last two windows in Fig. 11(c).
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Fig. 10. initialPos coordinates generated for Target 2 based on 1r=0.0001 and gamma=0.95 (Exp12). The color intensity of squared areas represents the frequency as
the initial position in 20-epochs windows within an exploration range between 90 and 310 for both coordinates. The red circle represents the target area, and its color intensity

visualizes the normalized mean fraction,,;,,.
4.4.4. Discussion on Target 2

As shown in Section 4.3.4, the RL approach is capable for opti-
mizing cell proliferation within the PalaCel12D simulation environ-
ment. These results confirm these results on Target 2, which contains
the essential elements of a complex biological system, including both
functional and structural aspects.

In summary, results on Target 2 show that the proposed RL ap-
proach is capable of:

» maximizing the final fraction of cells within the target at the end
of a simulation;

+ optimizing protocols of initial cell positions and compression
stimuli coherently with the target and the modeling assumptions;

+ expressing a range of training behaviors and performances with
different combinations of learning and simulation hyperparame-
ters (1r, gamma and numIter);
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+ learning and retaining knowledge within the trained ANN models,
whose testing recapitulates training performance.

In Section 4.4.1, the combination of 1r and gamma values re-
markably influences learning dynamics, leading two of the processes
to very inferior performances than the rest and exhibiting a range of
different balances between exploration and exploitation in general. In
this experiment, performance is measured as fraction;,;,,, the fraction
of cells within the target area. The optimization controls not only the
compression stimuli along each epoch but also the initial position of
cells at the beginning of the simulation. This causes more dramatic
oscillations in performance when the training explores divergent so-
lutions. Indeed, the initial position of cells is poised to have a huge
impact on the final performance (see Fig. 10). Suppose the training sets
a position that is too distant from the target. In that case, cells may have
null overlap with it during that epoch, ultimately resulting in a null
fitness value, even if compression stimuli are optimal. The numIter
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Fig. 11. RL learning performances on Target 2 - simulation numIter hyperparameter values exploration. Each panel shows the performance of one training process over
six windows of 20 learning epochs, based on 1r=0.0001, gamma=0.95, and different numIter values.

parameter, controlling the interaction frequency between the learning
algorithm and the simulation environment, has a different impact than
that shown in Section 4.3.4. On Target 2, performances are lower when
using higher numIter values (corresponding to fewer interactions
between the learning process and the environment). Results suggest
that, unlike in Section 4.3.2, using numIter=50 and numIter=100
resulted in underfitting. Insufficient interaction with the environment
reduced learning capacity, leading to insufficient exploration and ad-
justment of model parameters, resulting in poor performance [71].
Testing shows that the trained ANN models produce outcomes that
are consistent with its training process (see Section 4.4.3), confirming
successful retainment of learnings acquired during training.

4.5. Comparison with GA-based optimized protocol generation

GAs are a class of computational methods inspired by natural evo-
lution and selection principles, used to solve complex optimization and
search problems [72]. They create a population of potential solutions,
which evolves over successive generations through processes mirroring
natural selection, crossover, and mutation. In each generation, individ-
uals (solutions) are evaluated using a fitness function, and the fittest
individuals are likelier to be chosen as parents for producing the next
generation. GAs excel in solving problems with large, complex search
spaces, where traditional optimization methods might falter, making
them valuable in several fields, including the biomedical one [73].
This makes them perfect candidates for supporting a comparison of
the proposed RL approach with state-of-the-art approaches. In addition,
these two approaches stem from distinct problem-solving frameworks:
RL from learning through interaction [74], and GA from evolutionary
principles. Such a comparison benchmarks performance, highlighting
which method converges more efficiently to a solution. It also contrasts
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their computational resource demands with RL’s sequential updates and
GA'’s parallel solution evaluations.

To sustain the comparison, a GA-based pipeline has been built,
resorting to the PyGAD library, an open-source Python library de-
signed for the implementation of GAs [75]. GA runs were based on
a population size of eight individuals, four parents mating, devising
random mutation of solutions. Several open libraries for implementing
the GA exist. The choice of PyGAD stems from its extreme flexibil-
ity in supporting user-defined fitness functions and complete control
over GA evolution parameters. This facilitated the implementation of
the interface between the optimization engine and the PalaCell2D
simulator.

To provide a fair and broader comparison with RL performances,
the GA runs were based on different numIter values, as they can be
set for both methodologies. On the contrary, considering learning and
evolution parameters would not sustain a consistent direct comparison.
Indeed, parameters specific to the different optimization strategies
are chosen after previous exploration (in the case of the RL-based
approach) or following indications in the literature and documentation
(in the case of the GA). Table 5 reports the numIter values explored,
and the last column reports the highest absolute fraction of cells inside
the target across training for each experiment. The last column reports
the RL (1r=0.0001 and gamma=0.95) performance with the same
numlIter value. The comparison considers GA-based and RL-based
results based on different numIter values. Results show that the
RL generates higher maximum fitness values for numIter=20 and
numIter=50, while the GA surpasses it for numIter=100.

Figs. 13(a), 13(c) and 13(e) show the performance of the GA over
9 generations. The number of generations is chosen to support a fair
comparison with the RL. The RL performance (Figs. 13(b), 13(d) and
13(f)) is evaluated on 70 epochs of training for each experiment, which
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Table 5

Comparison between the highest fractions of cells obtained by GA and RL with
different numIter hyperparameter values over Target 2. Each experiment corresponds
to GA run with fixed population size (8) and number of parents mating (4) and
the corresponding RL performance based on 1r=0.0001, gamma=0.95 and different
numIter values.

Experiments numIter GA RL

Expl7 20 0.632 0.638
Exp18 50 0.629 0.635
Exp19 100 0.626 0.617

corresponds to a total of 70 simulations of 2500 steps for Target 2. Each
generation devises the simulation of 8 solutions for the GA. Thus, it
takes 9 generations to complete a similar number of simulations (72)
to the 70 simulations used by the RL trainings.

Results show that the RL generates a higher fraction;,,, (0.638)
than GA (0.632) for numIter=20 (see Table 5). Fig. 13 visualizes the
corresponding evolutionary and learning processes: Exp17 in Fig. 13(a)
and Expl2 in Fig. 13(b), respectively, which both share the range of
0.60-0.62 for their median values across generations and windows. Yet,
the RL training process generates a higher density of solutions in the
upper part of the fitness values range, as indicated by the peaks of the
density profiles, that gradually shift towards the upper boundary of
the range (0.62). On the contrary, the GA generates solutions having
a broader distribution of fitness values in all generations except for the
third one, which exhibits a similar shape to the violin plots from the RL
instead. This, combined with the steadily growing performance of the
RL, shows that the capability to retain knowledge on the environment
responses after stimulation allows the RL to dynamically adapt the gen-
erated solutions, converging to a higher-performance set of solutions.

15

Table 6
Typical CPU times of RL epochs and GA generations for Target 1 and Target 2.

Approach Target Task Typical CPU time (s)
RL 1 Epoch ~60

RL 2 Epoch ~400

GA 2 Generation ~200

For numIter=50, the RL generates a higher fraction;,s;,, (0.635)
than GA (0.629), but due to underfitting issues (see Section 4.4.4)
the training process stabilizes to lower performance levels (Expl5 in
Fig. 13(d)), while the GA more extensively explores the solution space
(Exp18 in Fig. 13(c)). Finally, for numIter=100, the RL generates a
way lower fraction;, ,, (0.617) than GA (0.626), and overall poorer
performance across training (Expl6 in Fig. 13(f)), while the GA keeps
exploring the space effectively (Exp19 in Fig. 13(e)).

4.6. Computational comparison

Eventually, this section aims to compare the computational com-
plexity of all experimental setups briefly. All experiments ran on an
AMD Ryzen 9 5950X 16-Core 2.2 GHz processor with 64 GB RAM.
The execution environment leveraged the container platform Singular-
ity [76].

Table 6 summarizes CPU times for relevant tasks across optimiza-
tion targets and experiments, distinguishing results for RL and GA.

Results display how the RL pipeline requires more computational
time than the GA one. It is worth noting that the extra cost should be
compensated not only by better results, as discussed in Section 4.5, but
also by the potential re-usage of the learned protocol and trained ANN
model.
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Fig. 13. GA and RL performances on Target 2 - numIter hyperparameter values exploration. Each panel on the left shows the performance of a GA run with population
size of 8, 4 parents mating and different numIter values over nine generations. Each panel on the right shows the performance of one training process based on 1r=0.0001,

gamma=0. 95, and different numIter values over six 20-epochs windows.

5. Conclusions

In our study, we developed a computational DSE method to opti-
mize the biofabrication of epithelial sheets, improving upon previous
research [18]. This method utilizes a variant of the A2C RL algorithm
alongside the PalaCell2D simulator [20]. We validated it through
two main objectives: increasing total cell count and enhancing cell
density in specific areas. The RL approach, influenced by compres-
sion and initial cell placement, showed varied learning dynamics and
performance in both training and testing phases.

The interplay of hyperparameters like 1r, gamma, and numIter
is crucial for balancing quick adaptation and thorough exploration.
Notably, numIter’s impact changes depending on the objective, high-
lighting the need for cautious evaluation to avoid overfitting or under-
fitting.
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In comparison to a GA method for one of the targets, the RL
approach exhibited better performance when under optimal hyperpa-
rameter setting. This underscores the importance of meta-optimization
in model-based OvS of complex simulated environments [17]. How-
ever, the RL’s capability for learning distinguishes it from evolutionary
optimization strategies in general, and makes it particularly apt for real-
world scenarios. In fact, as it integrates simulation with optimization
and RL training, this approach couples computational DSE with learn-
ing, supporting subsequent generalization to different applications.

This study, while limited to a single A2C variant and ANN architec-
ture, establishes a foundation for optimizing in silico culture processes.
Future research should focus on creating a versatile framework accom-
modating different algorithms, simulators, and use cases to increase
computational efficiency and widen its use in computational biology.
The reusability of both the optimized protocol and the trained ANN,
along with their demonstrated optimization and learning capabilities,



A. Castrignano et al.

supports the usage and further development of RL strategies for the
advancement of TE and RM biofabrication.
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Appendix A. Acronyms

A2C Synchronous Advantage Actor-Critic
ABM Agent-Based Model

Al Artificial Intelligence

ANN Artificial Neural Network
CFD Computational Fluid Dynamics
DoE Design of Experiment

DL Deep Learning

DRL Deep Reinforcement Learning
DSE Design Space Exploration

FEM Finite Elements Model

GA Genetic Algorithm

ML Machine Learning

MLP Multi-Layer Perceptron
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MSE Mean Squared Error

OFAT One Factor At a Time

ODE Ordinary Differential Equation
OvS Optimization via Simulation
PN Petri Nets

RL Reinforcement Learning

RM Regenerative Medicine

TE Tissue Engineering
Appendix B. Framework setup parameters

This section overviews relevant parameters to the framework setup,
including simulation and learning environment configuration and the
management of output files for visualization and performance metrics
calculations.

Simulation setup. The PalaCell2D simulation configuration file holds
different types of simulation parameters. Some parameters control the
simulation duration:

- numIter controls the number of simulation steps (or iterations)
to perform.

+ stopAt indicates the simulation step (or iteration) when to stop
the simulation.

Another set of parameters is the ones controlling the simulation
evolution. The biofabrication protocol sets their values according to
the actions generated by the RL algorithm along the training. This
work includes a new parameter to the ones provided in PalaCel12D:
initialPos, the position of the first cell generated in the simulation
space.

» initialPos sets the position of the initial cell, indicating its x
and y coordinate values.

+ compressionAxis sets the axis for external force application,
with either *X’ or Y’ as values.

» comprForce indicates the intensity of the external force ap-
plied.

Another set of parameters in the configuration supports the man-
agement of input and output files. Both types are .vtp files from the
Visualization Toolkit VTK [77].

+ initialVTK indicates the name of the input .vtp file from
which to restore the simulation (if this value is missing, the
simulation starts from the beginning).

+ £inalVTK indicates the name of the generated output . vtp file.

Learning environment setup. This work implements the simulator inter-
face (see Section 3) to use PalaCel12D simulations as a learning envi-
ronment. Moreover, it relies on the configure method, called by the
implemented environment, to create the configuration file needed
by the PalaCel12D simulator. The implemented PalaCell2D en-
vironment has the following parameters to interface the learning
process.

» width and height: the width and height in pixels of the obser-
vations provided to the learning model, with a default value of
300.

» numIter: the number of simulation steps per learning epoch,
with a default value of 20.

e max_iterations: the maximum number of total simulation
steps, with a default value of 4200.
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Output management. Performance evaluation relies on computing de-
fined metrics over the generated output. Data saving occurs every
five training epochs. The helper file vtkInterface.py contains the
following methods to read PalaCel12D outputs.

read_cell_num: reads the number of cells in the simulation
space from the simulation output file.
create_png_from_vtk: reads the simulation output file and
produces a visualization of the simulation space. This visualiza-
tion centers on the cellular aggregate and not on the simulation
space.

create_decentered_pil_image: reads the simulation out-
put file and produces a visualization of the simulation space. This
visualization centers on the simulation space.

add_target: adds a circular target with given center coordi-
nates and radius to a chosen image.

count_target_points: reads the simulation output file and
returns the number of cellular vertices inside and outside a spec-
ified target.

Appendix C. Simulator interface

The simulator interface contains the set of required functions and a
format for data exchange to fulfill the specific objectives and require-
ments of different applications. Each specific application requires an
implementation of the simulator interface, where the necessary func-
tions are implemented to interact with the chosen simulator. Each im-
plementation of the simulator interface creates an environment based
on the environment file, whose structure follows the one proposed
in [78]. The environment file sets the ANN model structure (see Sec-
tion 3.2) and the training process parameters for the target application.

The simulator interface includes the following required functions to
advance the training process.

reset: prepares the environment for the next episode starting
from an initial state;

render: returns an image showing the environment state;
adapt_action: transforms the actions provided by the ANN in
a format that can be used by the step method;

step: acts on the environment with the generated actions and
provides an observation of the environment, the reward value,
and a boolean value that tells whether the environment has
reached a terminal state or not to the training process.

The simulator interface also includes the following set of required
functions to manage data produced by the training process and keep
track of performance.

save_performance: indicates whether or not to collect per-
formance indexes related to the environment into environment
variables.

get_performance: saves the performance indexes in a check-
point file.

load_performance: restores the performance indexes in the
respective environment variables when restoring the training
from a previous state through checkpoint files.
check_performance: indicates whether or not to save the
collected performance indexes in a checkpoint file.
data_to_save: indicates which data to save in a checkpoint
file that is accessible after the training.

load_data_to_save: restores the collected data in the respec-
tive variables inside the environment when restoring the training
from a previous state through checkpoint files.
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Appendix D. Nested training process

To tackle Target 2 (see Section 4.4), a helper training class allows
synchronizing the two nested subprocesses. This class has the same
structure as the one already presented in Section 3.4, with the addition
of a pipe allowing communication between the two subprocesses.
The two environments perform the steps described in Algorithm 1
during the training process.

Algorithm 2 Nested training loop

1: e_main = PalacellEnv ()
2: e_inner = PalacellEnv()
3: while current_epoch_main <= epochs_main do
4: e_main.reset()
5 initialObservation_main = e_main.getObservation()
6 actions_main = learningModel(initialObservation
_main)
e_main.step(actions_main)
while current_epoch_inner <= epochs_inner do
9: initialObservation_inner =
e_inner.getObservation()
actions_inner =
(initialObservation_inner)
e_inner.step(actions_inner)
finalObservation_inner =
e_inner.getObservation()

10: learningModel

11:
12:

13: reward_inner = e_inner.getReward(finalObservation
_inner)

14: learningModel .applyReward(reward_inner)

15: finalObservation_main = e_main.getObservation()

16: reward_main = e_main.getReward(finalObservation
_main)

17:  learningModel.applyReward(reward_main)

This flow leverages communication mechanisms between sub-
processes, which supports the steps illustrated in Alg. 2. After
instantiation of the main and inner learning environments (Alg. 2,
lines 1-2), the training creates a simulation configuration file for the
inner training with the same values as in the previous experiment
(see Section 4.3). The initialPos parameter it is not constant but
rather set by actions generated by the learning model. The main
subprocess runs its training process (Alg. 2, lines 3-7) and sends
the simulation configuration to the second training process through the
pipe. The second subprocess uses it as the starting configuration
file, then runs its training process (Alg. 2, lines 8-14). This training
process runs the same number of simulation iterations per epoch as
Section 4.3 (numIter=20) for a total of 2500 simulation iterations.
When the second training process terminates, its subprocess sends
the generated output to the main subprocess through the pipe. The
main subprocess reads the output, computes performance metrics,
and produces an observation for the main training process (Alg. 2,
line 15). The main training process learns through observation and the
corresponding reward (Alg. 2, lines 15-17). Then, it proceeds to the
next epoch.
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