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Abstract

The quality of resistance spot welding (RSW) joints is strongly affected by the condition of the electrodes. This work develops
a machine learning-based tool to automatically assess the influence of electrode wear on the quality of RSW welds. Two
different experimental campaigns were performed to evaluate the effect of electrode wear on the mechanical strength of spot
welds. The resulting failure load of the joints has been used to define the weld quality classes of the machine learning tool,
while data from electrode displacement and electrode force sensors, embedded in the welding machine, have been processed to
identify the predictors of the tool. Some machine learning algorithms have been tested. The most performing algorithm, i.e., the
neural network, achieved an accuracy of 90%. This work provides important theoretical and practical contributions. First, the
decreasing thermal expansion of the weld nugget as the electrode degradation advances results in a strong correlation between
the difference of the maximum displacement value and the last value recorded during the welding and the relative failure
load. Then, this work offers a practical decision support tool for manufacturers. In fact, the automatic detection of low-quality
welds allows to reduce or eliminate unnecessary redundant welds, which are performed to compensate for the uncertainty of
electrode wear. This leads to savings in time, energy, and resources for manufacturers. Finally, general recommendations for
the timing of redressing or replacing the electrode are provided in the manuscript based on the company willingness to accept
some non-compliant welds or not.

Keywords Resistance spot welding - Electrode degradation - Electrode wear - Machine learning - Artificial intelligence -
Predictive maintenance

1 Introduction

Resistance spot welding (RSW) is the leading technique for
joining metal sheets in many industrial fields, especially
in the automotive industry, because of its automatability,
easy implementation, and cost-effectiveness [1]. The process
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involves the simultaneous action of electric and mechan-
ical energies. At the beginning of welding, two or more
overlapped sheets are pressed together by two Cu-based elec-
trodes. Then, a high current flows through the sheets for a
short time (hundreds of ms). The heat generated by the Joule
effect locally melts the sheet faying interface, and a weld
nugget, i.e., the joint, forms at the end of solidification [2].
Nowadays, just one car can contain between 4000 and 7000
spot welds [3, 4] and a modern production line performs
about 7 million welds daily [5].

Resistance spot welds can be classified, based on their
quality, as normal, cold, and burn-through welds [1]. A nor-
mal weld is a compliant joint. A cold weld has a weld nugget
smaller than the minimum size required, while a burn-throw
is a weld affected by a severe ejection of molten materi-
als, known as expulsion [6]. Both cold and burn-through
welds have limited strength under static and/or dynamic
loading conditions. Generally, the main causes leading to
non-compliant spot welds can be attributed to [1, 7-10]:
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e clectrodes (electrode wear, electrode misalignment, inap-
propriate electrode shape, dimensions, and material);

e process parameters (improper welding time, current, and
electrode force);

e materials (incompatible metals in dissimilar joining, resis-
tance shunting, sheet gap, edge proximity, and non-
orthogonal electrode-sheet contact).

The quality of resistance spot welds can be checked
through destructive and non-destructive tests [11]. Destruc-
tive tests are time- and cost-consuming [12], and do not
ensure the identification of every non-compliant joint since
they are performed a sample basis. Non-destructive tests
could be potentially performed on every weld, but they do not
always can accurately assess weld quality [1, 13]. Industry
4.0 and its key technologies, such as the Internet of Things
(IoT) and Artificial Intelligence (Al), offer new ways to
facilitate quality checks of RSW welds through the online
prediction of quality indicators [14]. Recently, artificial neu-
ral networks (ANNs) have been used to predict the nugget
size [15] and the failure load of spot welds [16] by ana-
lyzing the electric power and the dynamic resistance signals
acquired during the joining process. Wan et al. [17] predicted
the same quality indicators (i.e., nugget size and failure load)
from the dynamic resistance signal. A random forest algo-
rithm was applied by Xing et al. to dynamic resistance signals
to classify high-quality welds from non-acceptable ones [18].
The electrode displacement signals recorded during the weld-
ing process were exploited by Zhang et al. to build a decision
tree and classify spot weld quality based on the failure load
of the joints [19]. Convolutional neural networks and multi-
layer perception algorithms have been applied to the signals
of the main welding processes, including electric current,
dynamic resistance, electrode force, and electrode displace-
ment, to predict the nugget geometry [20]. Convolutional
neural networks have also been used on infrared thermal
videos to predict the weld nugget size [21]. The failure load of
RSW welds has been predicted with an explainable boosting
machine algorithm on welding process parameters (welding
current, welding time, welding force) [22].

Although the literature has provided some useful tools for
predicting the nugget size and/or failure load, literature has
yet to consider the effect of electrode wear on the quality
assessment of the RSW process. The conditions of the elec-
trodes is the more important factor affecting the quality of
spot welds in the industrial field [23]. Indeed, up to 60%
of defective spot welds can be caused by worn electrodes
[24]. During the welding process, the combined effects of
high mechanical pressure, elevated temperature, and atomic
diffusion between the electrodes and sheets lead to a deteri-
oration of the electrode state over time [25]. Specifically, the
electrode undergoes irreversible deformation, which causes
an increase in the contact area with the sheet and, thus, a
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decrease in the electric current density. In addition, the elec-
trode contact surface wears, leading to an increase in the
irregularity of the electric current distribution during the pro-
cess [26, 27]. As a result, the quality of spot welds reduces
with electrode deterioration, making the monitoring of weld
quality more challenging. As a mitigation solution, auto-
motive manufacturers typically perform around 20% more
welds than required to deal with the uncertainty of electrode
wear [24]. Several technical and economic advantages could
be achieved if electrode wear were monitored in real-time
on assembly production lines: fewer spots could be realized
increasing productivity; improper spot welds due to electrode
deterioration could be eliminated or significantly reduced;
electrodes could be replaced or dressed only when necessary
according to the predictive maintenance paradigm [28-30].
In this way, the number of redundant spot welds can be min-
imized and manufacturers can reduce the uncertainty of the
process and gain competitiveness [31, 32].

Traditional works [8, 25, 26, 33] have explored the
characteristics of electrode wear and their impact on spot
weld properties providing valuable insights. Statistical pro-
cess control techniques have been developed based on the
electrode displacement signals for monitoring the welding
process during electrode wear [34]. The electrode displace-
ment signal was also used to monitor the electrode wear
through a moving range chart [35] or to feed an artifi-
cial neural network to predict the electrode contact area,
commonly used as a wear indicator [36]. Fan et al. investi-
gated the relationship between the dynamic resistance signal
and the electrode tip radius. They found that the average
value of the signal during the nugget growth stage has a
strong relation with the electrode contact radius [37]. Zhou
et al. [24] used the dynamic resistance signal to evaluate
electrode wear through similarity techniques among the sig-
nals of the welding parameters. The work available at [38]
assessed inline electrode wear occurring during the weld-
ing process without the need for extra sensors. The tests
conducted demonstrate a correlation between the deformed
contact area and the change in electrode length. The study
reveals that this alteration in electrode length is discernible
in real-time process data, making it a suitable criterion for
characterizing electrode wear. In the work [39], an adap-
tive control scheme employing fuzzy Proportional-Integral
(PI) control is examined and developed to compensate the
effect of electrode wear on the electric current. Within each
control cycle, features from the dynamic resistance and
welding power serve as inputs for the fuzzy controller. By
using current closed-loop feedback control, the fuzzy PI con-
troller output manages the full bridge inverter on and off
switching to maintain a steady welding current. Simulation
and experimental outcomes demonstrate that this approach
offers several advantages compared to traditional PID con-
trol methods. The study [40], instead, investigated the effect
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of electrode wear by means of electrical-thermal-mechanical
simulations. The model validity was confirmed by comparing
simulated temperature and voltage results with experimental
measurements. Findings show that electrode wear leads to
an increase in resistance and temperature at the electrode tip
rather than a decrease. To address this, it is recommended to
lower welding parameter values instead of increasing them.
Consistently, maintaining a controlled temperature rise at
the electrode tip is crucial for ensuring welding quality in
the presence of electrode wear. Heilmann et al. [41] studied
the electrode wear in RSW of aluminum sheets. Specifically,
they proposed mitigating electrode wear by mechanically dis-
rupting the oxide layer before welding. This study explored
the impact of both translational and rotational movements of
the electrode on wear, and the findings indicate that oxide
layer disruption occurs even at low movements. However,
achieving a uniform and extensive destruction is crucial for
effectively reducing wear. More recently, Zhao et al. [42]
investigated the degradation process of electrodes in baked
hardening (BH) 220 steel. They identified several analytical
relationships between the weld number and different nugget
features, mechanical properties, and electrode characteris-
tics. Noteworthy examples include the relationships between
the weld number and the maximum displacement of the weld
sample in mechanical tests, peak load, failure energy, and
electrode diameter, with an adjusted coefficient of determi-
nation exceeding 0.90.

Although many studies have studied electrode wear in
RSW, car manufacturers are still coping with the uncer-
tainty associated with the electrode degradation process,
forcing them to perform up to 20% of redundant welds.
Previous literature on electrode wear mainly addressed qual-
itative approaches that associate changes in welding signals
with electrode wear to detect the condition of worn elec-
trode [24, 34, 35, 37], quantitative approaches that compute
electrode wear characteristics to provide more detailed infor-
mation about the electrode state [36, 38, 42], and studies
oriented toward compensating for electrode wear by con-
trolling process parameters [39—41]. No work is focused on
the prediction of the electrode wear effect on the quality of
RSW, and manufacturers currently lack real-time support for
assessing the compliance of their welds.

In contrast to the previous studies, the aim and novelty
of this work are to develop a machine learning tool capa-
ble of predicting the quality class of resistance spot welds
considering the effect of electrode wear in real-time. To the
best of the authors’ knowledge, this is the first time a pre-
dictive tool for assessing electrode wear effect on spot weld
quality has been developed. This tool allows for an auto-
matic assessment of the weld quality class based on the
electrode displacement and force signals acquired during
welding. This enables the automatic detection of low-quality
welds, providing crucial insights for maintenance operations.

By proactively replacing or dressing the electrode before it
starts producing low-quality welds, redundant welds can be
avoided or drastically reduced. Eliminating these unneces-
sary additional welds results in time, energy, and resource
savings for manufacturers, thereby contributing to a substan-
tial enhancement in the sustainability of the manufacturing
process.

2 Methodology

The methodology involves conducting two different experi-
mental campaigns to detect the influence of electrode wear
on the quality of RSW welds. Data acquired from the exper-
iments are processed to create the work dataset. Specifically,
the shear tension strength values of the spot welds are used
to create the class variable, whereas data from sensors are
processed through feature extraction and feature selection
processes to identify predictors. Different machine learning
algorithms are applied to the dataset, and the most performing
algorithm is chosen as the final quality classifier of the spot
weld. A schematic summary of the methodology is depicted
in Fig. 1.

Two experimental campaigns were conducted using dif-
ferent electrodes, materials, and process parameters involv-
ing, overall, more than 2000 welds. In each campaign,
the effect of electrode wear on resistance spot weld qual-
ity was detected through periodic shear-tension tests. The
resulting failure loads were used to create the weld qual-
ity classes. A threshold for the relative failure load was
set according to the literature to differentiate compliant and
non-compliant welds, determining the weld quality classes.
During the experiments, electrode displacement and force
signals were recorded with sensors directly embedded in the
RSW machine. Several features were extracted from sen-
sors, and only the most informative features were selected as
predictors of weld quality classes. Some machine learning
classification algorithms were applied to the collected data.
The most performing algorithm was selected as the final clas-
sifier for weld quality.

2.1 Experimental campaigns

A medium-frequency direct current RSW machine (Fig. 2),
equipped with a control unit TE700 (Tecna), was used
to conduct the experimental welding campaigns. During
the welding process, electrode displacement was measured
with a magnetostrictive linear position sensor mod. Tem-
posonics R-series (position resolution of 2 pm), while a
certified piezoelectric surface strain sensor mod. 9232A
(Kistler Italia) measured the electrode force. Both signals
were acquired with a sampling rate of 40 kHz using a NI-9862
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Fig. 1 Methodology adopted to
develop a machine learning tool Experimental
to predict the effect of electrode campaigns

wear on the quality of RSW

A

Feature extraction
from sensors

Class label based
on mechanical

tests

Feature selection

Creation of the
dataset

A

Application of ML
algorithms

Model selection

CAN interface module (National Instruments) and controlled
with LabVIEW software.

Two experimental campaigns were conducted using dif-
ferent electrode face diameters, material thicknesses, and
process parameters to weld two overlapped steel sheet
coupons. The material of the welding sheets and electrodes
were the same for both experimental campaigns. The welding
sheets were made of Zn-galvanized DP590 steel, a mate-
rial commonly used in the automotive industry [3, 8, 36],
while the electrodes were made of Cu-Cr-Zr alloy with a
truncated cone shape. In the first campaign, the steel sheet
size was 200 mm x 300 mm x 1 mm and the electrodes
had a face diameter of 6 mm. In the second campaign, the
steel sheet size was 200 mm x 250 mm x 0.8 mm, and the
electrodes had a face diameter of 5 mm. The two electrode
face diameters were chosen according to the AWS D8.9 stan-
dard [43]. The decision to investigate two different material
thicknesses and, consequently, two electrode diameters in the
experimental campaigns aimed at broadening the applicabil-
ity and generalizability of the developed tool. The bottom
electrode was always fixed, while the top electrode moved
to clamp the sheet stack. Both electrodes were cooled with
a water flow of 4 I/min. Each experimental campaign started ~ Fig.2 RSW machine adopted during the experiments
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and concluded on the same day within the laboratory environ-
ment, with an ambient temperature of approximately 20 °C.
The electrodes were inserted into the machine and were not
replaced until the end of the campaign, ensuring constant
positioning, alignment, and any other boundary conditions
throughout the process. The process parameters are shown
in Table 1, chosen according to the recommendations of the
AWS D8.9 standard [43]. More in details, based on the mate-
rial and thickness of the sheets, the standard provides values
for the electrode diameter, electrode force, and weld time.
The electric current value was set as the maximum value
before metal expulsion occurred. The RSW machine was set
in ‘current constant’ mode, with the controller TE700 main-
taining the set values of the electric current throughout the
experiments.

In each experimental campaign, several spot welds were
sequentially performed with constant process parameters to
induce electrode degradation. The spot welds were realized
on overlapped sheet coupons with edge distance and weld
spacing recommended by the AWS D8.9 standard [43], as
schematically shown in Fig. 3.

An example of overlapped sheets coupon before and after
welding is shown in Fig. 4.

The extent of electrode degradation over time was indi-
rectly evaluated through the periodic assessment of the weld
failure load obtained from shear-tension tests. The failure
load was the peak load reached during the test. The mechan-
ical tests were conducted based on JIS Z 3136 standard [44].

v pow s o6 Es €
‘ oo 6665 e
9 00 %0600 ¢

)8 e 66 50 90

IS & g coe

¢ o0 co ¢

{

Fig. 4 Example of overlapped sheets coupon before and after welding
during the experiments

The shear tension tests were carried out with a crosshead
speed of 10 mm/min using a standard testing machine. The
specimen size for the shear tension test and an example of
coupon after test are displayed in Figs. 5 and 6, respectively.

The experimental welding procedure for the first experi-
mental campaign is described in the following:

1. unused electrodes were mounted in the RSW machine;
2. theelectrodes were clamped against the sheet stack to set
the zero point for the electrode displacement;

o
q 18 N 20 Y 20
O
| r— I
23 ?O—OOOOOOOOOOOO£ ooooo:/o/ooooooo
000000000 0O0O0OOO 0019 0 ‘0.0l 0500 0 [0:0 0: 9 0
0000000000000O0O
00000000000 0O0O0OO0O0O0 00000000000060O0O0
000000000O0O0OCOOOO 00000000000000O
(@) OOOOOOOOOOOOO&O«—OQ 8 000000000OC0OODOO0OCOO
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0000000000000O0O
™ ©00000000000000 o 0000000000000 O0O
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0000000000 0O0DO0O0OO0 0000000 000000
- 15
300 250
(a) (b)

Fig. 3 Edge distance and weld spacing adopted in the experiments according to the AWS D8.9 standard: a 1st and b 2nd campaign

Table 1 Process parameters adopted in the two experimental campaigns

Squeeze time Slope up time Weld time Slope down Hold time Electric current  Electrode Electrode

(ms) (ms) (ms) time (ms) (ms) (kA) force (kN) water-cooling
(1/min)

50 100 300 100 300 8 3 4

50 0 380 0 1000 8 29 4

@ Springer
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100

30

100

Fig.5 Specimen geometry for the shear tension tests

Fig.6 Example of coupons after shear tension tests

3. three shear-tension samples were welded and three
corresponding shear tension tests were immediately per-
formed to determine the weld failure load when the
electrodes are unused;

4. 135 spot welds were performed in succession on the over-
lapped coupons;

5. three shear-tension samples were welded and tested to
determine the weld failure load at the current level of
electrode degradation;

6. points4 and S5 are cyclically repeated up to approximately
1200 spot welds.

The same procedure was repeated in the second exper-
imental campaign with an inspection frequency of 90 spot
welds (point 4), instead of 135. For both experimental cam-
paigns, the inspection frequencies comply with the AWS
DS8.9 standard [43], which recommends detecting the weld
strength for electrode wear assessment at least every 200
welds.

An example of electrode before and after the experimental
campaign is displayed in Fig. 7.

@ Springer

Fig.7 Example of electrode before and after the experiments

2.2 Definition of the class label

The failure load has been used to build the class label because
it determines whether the spot weld is compliant or not. Since
the joint size is different in the two experiments, the failure
loads are also different. Therefore, the failure load values
have been normalized with respect to the initial value to
establish a general relationship:

Fmax, i

Fro,i = Vien (1)

Fmax, initial’

Fre1,i is the relative failure load, Fmax, initial is the
failure load when the electrode is unused, Fmax, i is the
failure load of the i-th inspection, and n is the number of the
inspected spot welds.

According to the literature [8, 33, 36], the electrode can
be considered worn and to be replaced or dressed when the
mechanical strength of spot welds decreases by 20% com-
pared to that obtained with unused electrodes. This means
that each spot weld can be assigned to one of the following
two classes:

e positive class (1) for the non-compliant spot weld (worn
electrodes),

e non-positive class (0) for the compliant spot weld.

Because of this, the class label y can be defined as follows:

y =0,
y=1,

if Frei,i > 0.8
otherwise.

2

2.3 Feature extraction from sensors

Data acquired from sensors during the experimental cam-
paigns, namely the electrode displacement signal and the
electrode force signal, have been processed to extract infor-
mative features for the class variable. Following the approach
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Fig. 8 Electrode displacement
curves obtained at the beginning,
middle, and end of the 1st

. . 75
experimental campaign

50

25

Electrode Displacement (um)

0 100

of Panza et al. [36], the time interval for the analysis of the
electrode displacement signal includes the current flow and
an electrode hold time of 200 ms (sufficient time for the
curve to flatten out). Therefore, the time interval is 700 ms
and 580 ms for the first and second experimental campaigns.
The time interval for the analysis of the force signal only
concerns the current flow, that is, 500 ms and 380 ms for the
first and second campaigns.

2.3.1 Electrode displacement

The electrode displacement signals corresponding to the
weld specimens for the shear tension tests have been analyzed
and processed. For example, Fig. 8 displays the electrode
displacement curves obtained at the beginning (1st weld),
middle (692nd weld), and end (1245th weld) of the first
experimental campaign.

As the deterioration process advances, the electrode
requires a longer stroke to clamp the sheet stack due to the
axial contraction of the electrode, resulting from its plastic
deformation and wear. Initially, the electrode displacement
ranges from approximately — 50 to — 100 pwm from the first
spot weld to the 1200th, as shown in Fig. 8. The amplitude of
the displacement curves decreases with the number of spot
welds. The wear of the electrode tip leads to an uneven dis-
tribution of contact resistance between the electrode and the
sheet. During welding, this causes localized heating on the
electrode tip surface, and oxidation may occur over time.
The enlargement of the contact area results in a decrease in
the electric current density, while wear and oxidation of the

— 1 weld

692 weld
— 1245 weld

200 300 400 500 600 700
Time (ms)

contact surface lead to an irregular electric current distribu-
tion through the electrodes and the sheets. Consequently, the
thermal power developed at the faying interface of the sheets
decreases and becomes non-uniform over time [45]. As a
result, less metal is melted, and the welded joint volumetri-
cally expands less than it did at the beginning of the endurance
test. Figure 8 illustrates how the amplitude of the displace-
ment curves, measured as the distance between the start and
the peak value of the electrode displacement, decreases from
about 150 to 75 pm. For the same reason, the slope of the
electrode displacement curve reduces, particularly in the final
cooling (hold) stages [36].

These effects have been considered to extract quantitative
features from the displacement curves and relate them to the
class variable. Data have been arranged in a vector:

D":[ ;’,...,d},...,d;‘v](um) 3)

D' is the electrode displacement signal vector correspond-
ing to the i-th spot weld; di is the first displacement value
during the i-th spot weld; N is the total number of electrode
displacement values considered for each inspected spot weld.

Accordingly, the following features have been computed:

e Maximum displacement value d., . :

d = max(D" )(;Lm) (4)

@ Springer
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e Time in correspondence of the maximum displacement
di

max_time"*

dﬂqax,zime = index(d.,,) - 0.01(s) 5)
o Difference between the maximum displacement value and

i .
the last value dmax_la”.

rlnaxJast = dtlnax - d;\l (um) (6)
o Difference between the maximum displacement value and

the first value dfnax First:

Iinax_first = d5p1ax - i(:um) @)

e Difference between the maximum displacement value and
the last value divided by the corresponding time interval
i

i .
slope_aftermax -

i
slope_aftermax

i
dmax_l ast

B [index(dfv) — ina’ex(di

max

Toor () ®

e Median of the absolute deviations from the displacement

. i .
data median d;, dian_abs

i _ .
dmedian_abs - medlan(

di — median(Di ) D(um) )

e Standard deviation of the displacement values d;'t 4

. 1 . . 2
;fd = \/m Z;vzl (d; - d;neun> (:um) (10)

Such features underwent a feature selection process to
identify the more informative features of the class variable.
The process is detailed in Sect. 2.4.

2.3.2 Electrode force

The electrode force signals have also been examined to
extract explanatory features of the class variable. For exam-
ple, Fig. 9 displays the electrode force curves recorded at the
beginning (1st weld), middle (692nd weld), and end (1245th
weld) of the first experimental campaign.

The electrode force is achieved by applying a specific
pressure, regulated by the control unit TE700 of the RSW
machine. Electrode force provides valuable insights into the
process, as it is directly linked to how electrodes interact with
the work sheets. As can be observed in Fig. 9, it shows a rapid
growth when the welding current is applied, reaching its peak
before the current stops. The initial increase is attributed to
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the thermal expansion of the weld nugget caused by the Joule
effect (similar to the displacement). Then, heat increases with
welding time and the electrode force falls when the weld zone
becomes softer and consequently less resistance is encoun-
tered [46].

It turns out that the same considerations highlighted for
the electrode displacement curves also hold for the electrode
force signals, and they were used to extract quantitative fea-
tures from the curves. As for the electrode displacement, data
recorded from the electrode force sensor can be arranged in
a vector:

Fi:[ff,...,f;,...,f]{,](kN) (11)

where F' is the electrode force signal vector corresponding
to the i-th spot weld; ff is the first force value during the i-th
spot weld, N is the total number of electrode force values
considered for each inspected spot weld.

The extracted features from the electrode force signal are:

e Time in correspondence of the maximum force f ...
i
max_time

= index(f! )-0.01(s) (12)

max

e Maximum force value divided by the corresponding time
i .
max_over_time*

. fi kN
f; rlnax_over_time = i& T (13)
max_time

e Difference between the maximum force and the last value

divided by the corresponding time interval fs"lope aftermax-

i
f slope_aftermax

 [index(f) — index(fi,y)]-0.01 \ s

e Difference between the maximum force and the first value

divided by the corresponding time interval fsllope befmax -

: fvax = N (kN )
i — ax N 15
f slope_beforemax in dex( frf1 ax) .0.01 S 15)

e Median of the absolute deviations from the force data

. i .
median fmediun_abs'

median_abs

i :median(‘f; —median(Fi)

kN (16)

e Standard deviation of the force values fsit 4

fsild = \/ﬁ Z;V:l (f/l - rl;zean)z(kN) (17
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Fig. 9 Electrode force curves

relating to the beginning, the 33— T weld
middle, and the end of the st 692 weld
experiment —— 1245 weld
32
Z 31
0
2
2
o 30
9
2
k3]
2
k29
2.8
2.7
0
e Coefficient of variation of the force values f,jariatiomz
id
i st
fvariations =7 (18)

mean

e Skewness of the force values to measure the asymmetry
data around its mean f, :

3
Fikew = 2 () ) 3 (19)

(\/ I (£ - f,i;ean)z)

e Difference between the 75th and 25th percentiles of the

force data f; qrs'

= Flo75 — Floos5 (kN) (20)

zqrs

2.4 Feature selection

The electrode displacement and force features were subjected
to a feature selection process. The Minimum Redundancy
Maximum Relevance (MRMR) algorithm was used for this
purpose, aiming to identify a set of features that are both max-
imally dissimilar from one another and highly effective in
representing the response variable [47]. The algorithm identi-
fies the best set S of features that maximizes Vg, the relevance
of S concerning the response variable y, and minimizes Wy,
the redundancy of S.

100

/‘—’\

200 300 400 500
Time (ms)

Vs and Wy are defined using the mutual information 7:

= —Zl(x ») 21)
sz

I 22

Ws = |S|2x§js (x, 2) (22)

|S| Is the cardinality of S, x and z are two generic fea-
tures belonging to the feature set, i.e., the extracted features
in Sect. 2.3. For each feature, the algorithm computes the
mutual information quotient M1 Q ., which is used to select
the most important features.

MIQ, = % (23)

X

V. and W, are the relevance and redundancy of a feature:

Vi=1(x,Yy) (24)
W, =15 Zl(x 2) (25)
zeS

MIQ, Can be used to rank features through an impor-
tance score. In this way, the feature selection process can be
quantitively performed. The MRMR algorithm was imple-
mented in MATLAB. More information are in MATLAB
documentation [48].
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2.5 Classification algorithms

A classification approach has been adopted to develop a prac-
tical data-driven tool capable of automatizing decisions about
the quality compliance of the spot welds based on electrode
wear. The features selected in Sect. 2.4 were used as predic-
tors of the spot weld quality class using machine learning
algorithms. Specifically, five state-of-the-art machine learn-
ing algorithms have been applied to the dataset: logistic
regression, support vector machine, k-nearest neighbors, ran-
dom forest, and artificial neural network [49].

Logistic regression (LR) is an extension of linear regres-
sion to deal with classification problems. The method aims
to identify a fitting model that represents the connection
between an output variable and a group of input factors.
Instead of fitting a straight line or hyperplane (as in linear
regression), the logistic regression model uses a sigmoid
function to map any real input number into binary output
values. Because the sigmoid function is interpretable as a
probability function, every output greater than 0.5 will be
classified as 1, and any output less than 0.5 will be classified
as 0 [50].

Support Vector Machine (SVM) is considered as a large
margin classifier because its decision boundary is achieved
by the hyperplane that has the largest distance to the nearest
training-data point of any class. Instead of relying only on the
sigmoid function, SVM can adopt different Kernel functions,
such as linear, polynomial, radial basis function, etc. In this
way the separation between data classes is widened even for
non-linear problems. Unlike LR, it works as a discriminant,
not as an estimator of probability [49]

K-Nearest Neighbors (KNN) algorithm relies on the idea
that similar data are close to each other. It assigns the class
label to a sample by computing the most frequent label among
the nearest k samples. The distance between samples is usu-
ally computed with the Euclidean distance. If k = 1, then the
sample is assigned to the class of that single nearest neighbor
[51].

Random Forest (RF) extends the decision tree classifier
by creating multiple decision trees and assigning the class
selected by most trees to a sample. Each decision tree assigns
a class based on a series of decision rules applied to some
explanatory features. The first decision rule is applied at the
root node and splits the dataset into two subsets of data rep-
resenting the branches of the tree. New decision rules are
applied at other splitting nodes along the branches until the
leaf node is reached, which contains the algorithm predic-
tion. The decision rule is selected at each splitting node to
maximize purity, which refers to the node ability to divide
all data into a single class [49].

Artificial Neural Network (ANN) algorithm can make pre-
dictions on a class variable by considering the values of the
input explanatory features. The network consists of multiple
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layers, each containing various computation units, referred
to as activations units or neurons. The first layer of the net-
work is made up of the input feature vector. The second
layer, known as the first hidden layer, is created by multi-
plying the input feature vector by a weight matrix. The result
is then added to a bias vector and an activation function is
applied. This process can be repeated to create additional hid-
den layers until the output layer is reached, which contains
the algorithm prediction. Common choices for the activation
function are the sigmoid function, the rectified linear unit
(ReLU), and the tanh function [49].

All the aforementioned models have been applied to the
dataset created in this work. The accuracy of each model
has been optimized by tuning one or more hyperparame-
ters. Each algorithm has been applied using the leave-one-out
cross validation (LOOCYV) technique. It is a special type of
cross validation in which the number of folds equals the num-
ber of instances in the dataset. It means that the algorithms
are applied using, for every run, one sample as a test set and
all the others as a training set [52].

2.6 Model selection

The last step of the methodological framework is the selec-
tion of the more performing classification algorithm. The
assessment procedure relies on the following definitions:

e True Positive (TP)—the algorithm correctly predicts the
positive class;

e True Negative (TN)—the algorithm correctly predicts the
non-positive class;

e False Positive (FP)—the algorithm predicts the positive
class when it is non-positive;

e False Negative (FN)—the algorithm predicts the non-
positive class when it is positive.

According to these definitions, the performance of the
algorithm can be assessed by computing the accuracy of the
classifier, expressed as the ratio between the correct predic-
tions and the total predictions:

B TP+TN
" TP+TN+FP+FN

(26)
It is a proper metric to evaluate the overall performance

of the algorithms. The model with the highest accuracy is

considered as the final spot weld quality classifier.

3 Results and discussion

In this section the results obtained from the application of
the methodology are presented and discussed. The first step
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involved the execution of two different experimental cam-
paigns in which the quality of spot welds was periodically
investigated through shear-tension tests. The latter were used
to build the class variable based on the relative failure load
as previously discussed in Sect. 2.2. The trend of the relative
failure load as a function of the number of welds is displayed
in Fig. 10.

As outlined in the methodological Sect. 2.2, any failure
load exceeding 80% of the failure load obtained with a new
electrode, i.e., a relative failure load greater than 0.8, was
categorized as class ‘0’. These welds are considered com-
pliant because they exhibit acceptable mechanical strengths.
On the contrary, any failure load equal to or less than 80%
of the failure load obtained with a new electrode, i.e., rela-
tive failure load equal to or less than 0.8, was categorized as
class ‘1’. These welds are non-compliant, characterized by
low mechanical strength due to the electrode deterioration
and, hence, are deemed not acceptable. The machine learning
algorithm will automatically predict the weld quality class
(‘0O’ or ‘1’) based on data from sensors.. It is noticeable that
the created classes are fairly balanced. Most data belonging
to the class ‘1’ occur after a high number of welds, starting
around 600 welds, because of the electrode wear process.

The conducted tests provide a broad guideline. Up to
approximately 600 welds, the electrode consistently pro-
duces compliant welds (class ‘0’) with limited variability
in the relative failure load. Between 600 and 1000 welds, the
number of non-compliant (class ‘1”) welds begins to increase,
although a significant number remains compliant. During this
phase, the welding process becomes unstable due to elec-
trode degradation, characterized by an enlarged variability
in the relative failure load. Beyond 1000 welds, the variabil-
ity in the relative failure load remains high, but the majority
of spot welds produced are non-compliant. This behavior

Number of welds

aligns with findings in previous literature [26, 33, 36, 53]
and provides general recommendations: if a company can-
not tolerate any non-compliant welds, the electrode should be
redressed or replaced at the first instance of non-compliance.
Alternatively, if the company is willing to accept some non-
compliant welds and compensate them with redundant welds,
the limit for electrode replacement can be set at 1000 welds.

Several features were extracted from sensors for each
inspected weld, as explained in Sect. 2.3. Overall, 16 features
have been extracted, 7 regarding the electrode displacement
and 9 regarding the electrode force. Figure 11 displays the
scatter plots of the features extracted from the electrode dis-
placement signals and the corresponding Pearson correlation
coefficients.

As outlined in Sect. 1, the electrode degradation leads
to a decrease in electric current density, resulting in a
smaller weld nugget and, consequently, diminished mechan-
ical strength. The decreased size of the weld nugget also
implies a restriction on its thermal expansion during weld-
ing. This limitation is evident in two key features of each
detected spot weld: the reduced difference between the max-
imum displacement value and the last recorded (dfmx last?
Eq. (6), Fig. 11c) and the diminished slope of the dis-
placement curve in the declining phase (délopeaﬂemax ,Eq. (8),
Fig. 11e). These two features exhibit the highest correlation
between the electrode displacement with the relative failure
load (which defines the weld quality classes) with a Pear-
son correlation coefficient of 0.63 and 0.60, respectively.
Conversely, the difference between the maximum displace-
ment value and the first value recorded from the sensor
(drinax,first’ Eq. (7), Fig. 11d) is the feature with the lowest
correlation, close to 0.22. This feature shows a strong non-
linearity with the relative failure load, not captured by the
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Fig. 11 Scatter plots of the features extracted from the electrode displacement signals; the plots represented from a) to g) refer to the features

defined from Eq. (4) to Eq. (10)

computation of the Pearson correlation coefficient. This non-
linearity arises from the simultaneous competition between
the factor influencing the maximum displacement value -the
thermal expansion of the weld nugget- and the initial elec-
trode displacement—the axial wear of the electrode. In fact,
as explained previously, the electrode undergoes with the pro-
gression of the deterioration process an axial contraction due
to plastic deformation and wear, necessitating a longer stroke
to clamp the sheet stack. Similarly, a correlation coefficient
of less than 0.25 is observed for the maximum displacement
value in the spot weld (d’,,,, Eq. (4), Fig. 11a), making it
a non-informative feature of the relative failure load. How-
ever, the time at which this maximum displacement value
occurs (d" Eq. (5), Fig. 11b), has a better correla-

max_time’
tion coefficient, equals to -0.46. This is primarily due to the
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progression of electrode degradation, causing the nugget to
take longer to form, and its thermal expansion to occur later.
Therefore, higher values of this feature correspond to lower
values of the relative failure load. A similar correlation coeffi-
cient, but with an opposite sign, is observed for the median of
the absolute deviations from the displacement data median
(djnedian abs» B4- (9), Fig. 11f). This metric, related to the
amplitude of the electrode displacement curve, shows higher
values correspond to higher relative failure loads. Similar
information is provided by the standard deviation of the dis-
placement values (d;l 4> Bq. (10), Fig. 11g), which exhibits
a positive correlation with the relative failure load, equal to
0.44.
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Fig. 12 Scatter plots and correlation coefficients of the features extracted from the electrode force signals; the plots represented from a) to i) refer

to the features defined from Eq. (12) to Eq. (20)

Figure 12 shows the scatter plots and the Pearson correla-
tion coefficients of the features extracted from the electrode
force signals.

As previously mentioned, electrode wear results in
reduced weld nugget thermal expansion. The most impor-
tant features, in terms of Pearson correlation, are the time
when the peak is reached ( félax rime» B4 (12), Fig. 12a) with
a coefficient of -0.65, and the velocity of achieving such a
maximum (fl;ax over rime» B4 (13), Fig. 12b), with a cor-
relation coefficient of 0.54. These two features suggest that
as the degradation process progresses and, consequently, the
thermal expansion of the nugget decreases, there is a slower
instantaneous velocity at the point of maximum force and a
delayed attainment of the maximum force during welding.

A group of four features has similar absolute coefficients,
ranging between 0.36 and 0.30. The average slope before
reaching the peak value ( f! Eq. (15), Fig. 12d),

slope_beforemax?

unlike the feature flim time» Calculates the average veloc-
ity of force growth between the initial value of the vector
F' (Eq. (11) and the peak. The other three features of this
group are related to the variability of the force values along
the welding (f4, Eq. (17), Fig. 1_2f), (fyariations> £9- (18),
Fig. 12g) and to the skewness (fg.,» Eq. (19), Fig. 12h),
which measures the asymmetry of the curves.

The less important features, with low correlation, include
the slope after maximum ( fsilope_sftermax, Eq. (14), Fig. 12¢)
with a coefficient of -0.10 and other two indicators of statis-
tical dispersion: the median absolute deviation ( friledian abs?
Eq. (16), Fig. 12e), with a correlation index of 0.17, and the
interquartile range ( i’;]rs,Eq. (20), Fig. 12i), with a coefficient
of 0.16.

Features extracted from the electrode force signals are
generally more scattered with lower correlation coefficients
than the features extracted from the electrode displacement
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signals. However, the features related to the time correspond-
ing to the maximum force ( frfﬂax time» B4 (12)) and to the
maximum force value divided by the corresponding time
( félax over time» £4- (13)) have a modulus of correlation coef-
ficients higher than 0.50.

After feature extraction, a feature selection process has
been performed with the MRMR algorithm, as explained in
Sect. 2.4. This algorithm computes an importance score for
each extracted feature to identify the most dissimilar fea-
tures capable of predicting the class variable effectively. In
this way, a ranking can be established to select the most infor-
mative features. The Pareto chart has been built based on the
feature importance scores to show the results of the feature
selection process, as shown in Fig. 13.

The difference between the maximum displacement value
and the last recorded value during the spot weld dfnax_lm is
clearly the most informative feature of the relative failure
load, with the highest importance score of 0.1765. The sec-
ond most important feature is the time in correspondence
of the maximum displacement dr’;lax_t ime With an importance
score of 0.0646. Next, the maximum force value divided by
the corresponding time félax over time 18 Tanked third with
an importance score of 0.0425. The average descending
slope after the maximum displacement value délopeiaftermax
also shows a non-negligible contribution with an importance
score of 0.0265. Finally, the time in correspondence of the
maximum force fr’;]ax rime Zives very little contribution to
the prediction of the class variable, with an importance score
of 0.0083. All the other extracted features have a negligible
importance score.

It should be noted that all the selected features have a
Pearson correlation coefficient higher than 0.5. Moreover,
the selected features exhibit a very different trend with the
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dslopeiaﬁennax. This demonstrates that the feature selection

process adopted in this work can identify the most dissimi-
lar, but informative, features of the class variable.

The five selected features identified in Fig. 13 were used to
feed the classification algorithms described in Sect. 2.5. LR,
SVM, KNN, and RF algorithms were implemented in Python
open-source library Scikit-learn [54], whereas the ANN algo-
rithm was implemented in Keras [55]. SVM, KNN, RF, and
ANN have been optimized to achieve the highest accuracy
by tuning one or more hyperparameters. For LR, instead, the
number of maximum iterations the algorithm performs to
achieve convergence has been varied. Despite this, the algo-
rithm accuracy remained stable at 0.855 for every number of
iterations implemented from 20 to 1000. Thus, the number
of iterations has been set equal to 20. The process of hyper-
parameters optimization for the other algorithms is shown
in Fig. 14. Specifically, Fig. 14a) depicts the graph bar of
the accuracy of SVM for different types of Kernel functions,
Fig. 14b) the variation of KNN accuracy when the number of
nearest neighbors is varied, Fig. 14c) the performance of RF
algorithm for different numbers of decision trees, Fig. 14d)
the accuracy achieved by the selected ANN architecture for
different values of batch size. The ANN architecture was
selected by varying the number of hidden layers and the num-
ber of neurons, as detailed thereafter.

Various Kernel functions have been applied to SVM algo-
rithm, Fig. 14a): linear, polynomial of second and third
degree, radial basis function, and sigmoid function. The high-
est accuracy, 0.870, has been achieved with the linear Kernel.
For the KNN algorithm, different values of K, representing
the number of nearest neighbors, have been tested. K varied
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Fig. 14 Hyperparameters optimization of machine learning algorithms: a SVM; b KNN; ¢ RF; d ANN

from 1 to 20, significantly affecting the algorithm perfor-
mance. As shown in Fig. 14b), K = 5 provides the highest
accuracy, 0.884. The RF algorithm has been tested by imple-
menting a varied number of decision trees, ranging from 3
to 100, Fig. 14c). RF exhibits the optimal performance as
the number of decision trees is 10, equal or exceeds 50, with
a classification accuracy of 0.855. The number of decision
trees implemented in RF has been chosen 10 to streamline
the computational process. The optimization of the ANN has
involved more hyperparameters than the other algorithms
due to its complexity. Four hyperparameters were varied: the
number of hidden layers, the number of neurons, the batch
size, and the number of epochs. The number of layers ranged
from 1 to 3, the implemented neurons was 4, 8, and 12, the
batch size was 16, 32, and 64, the number of epochs var-
ied from 100 to 1000. The most efficient ANN architecture
has been obtained with 1 hidden layer and 8 neurons. For
this configuration, the accuracy for different batch sizes and
the number of epochs is displayed in Fig. 14d). The highest
accuracy, 0.899, has been obtained with a batch size of 64
and the number of epochs set to 300.

Model selection

SVM KNN RF ANN

Machine Learning algorithm
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Fig. 15 Comparison among the accuracy of the examined Machine
Learning algorithms

Finally, the accuracy of each classification algorithm has
been compared to select the most performing model, Fig. 15.

Overall, all the models are satisfying with an accuracy
between 0.8 and 0.9. ANN shows the highest accuracy, 0.899,
and it has been selected as the final weld quality classifier.
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As detailed in Sect. 1, in contrast to previous studies, this
research provides direct support to manufacturers in eval-
uating the impact of electrode wear on spot weld quality.
By collecting data from electrode displacement and force
sensors, these data can be processed and used by an ANN
algorithm for a real-time prediction of the weld quality class
with an accuracy close to 90%. This tool provides manufac-
turers with more precise information about spot welds falling
into the non-compliant category due to the electrode degra-
dation process.

4 Conclusions

This work introduces a machine learning-based tool for
assessing the effect of electrode wear on the quality of resis-
tance spot welds. Two experimental campaigns, differing
in material thickness, electrode tip diameter, and process
parameters, were conducted to indirectly detect the electrode
wear effect on weld quality.

The relative failure load of the spot weld, expressed as the
ratio between the actual failure load and the failure load at the
beginning of the experimental campaigns, was used to define
the class variable. Data were allocated to two classes based
on a threshold value of 0.8, as recommended in the litera-
ture. Predictors of the class labels were computed from data
collected during the welding process by electrode displace-
ment and electrode force sensors directly embedded in the
RSW machine. Different features were extracted applying
several statistics to the collected signals. The most dissimilar
features capable of predicting weld quality effectively were
selected through a MRMR algorithm. Five different classifi-
cation algorithms were applied to the dataset created in this
work, with each model optimized by tuning its hyperparam-
eters. Finally, the most performing algorithm, an artificial
neural network, was selected, achieving the highest accuracy
of 0.899 and serving as the final weld quality classifier.

This work provides both theoretical and practical contri-
butions to the field of electrode wear assessment in RSW. The
main theoretical finding is that the electrode displacement
signal during welding provides valuable information corre-
lated with the electrode degradation process. Specifically,
the difference between the maximum electrode displacement
value during welding and the electrode displacement value
at the end of welding is the most informative predictor of the
relative failure load of the joint. This is pointed out by the
high Pearson correlation coefficient and the highest impor-
tance score calculated during the feature selection process.
This outcome validates and expands previous discussions
in the literature. A prior study found that the electrode dis-
placement signal could be employed to predict the electrode
contact area, which serves as a reliable electrode wear indica-
tor [36]. More in detail, the average electrode descent speed,
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calculated as the difference between the maximum displace-
ment value and the last value divided by the corresponding
time interval (Eq. 8), was found to be the most correlated
feature with the electrode contact area. In this work, the dif-
ference between the maximum displacement value and the
last value (Eq. 6) emerges as the most informative feature
with the relative failure load. This strengthens the electrode
displacement as a highly informative signal for the electrode
wear process.

From a practical standpoint, a predictive tool for the weld
quality class is developed by leveraging a machine learn-
ing algorithm. This tool automatically assess weld quality
(class ‘0’ for compliant welds, ‘1’ for non-compliant welds)
based on the electrode displacement and electrode force sig-
nals acquired during welding. This facilitates the automatic
detection of low-quality welds, providing valuable insights
for maintenance operations. Proactively replacing or dress-
ing the electrode before it produces low-quality welds helps
avoid or significantly reduce redundant welds, leading to
savings in time, energy, and resources for manufacturers,
contributing significantly to the sustainability of the man-
ufacturing process. Manufacturers can be supported during
their operations with a real-time informative tool. Further-
more, this study offers guidance on the timing for electrode
dressing or replacement. If a company does not tolerate non-
compliant welds, it is advisable to redress or replace the
electrode at the first occurrence of non-compliance, around
600th weld in this study. On the other hand, if the com-
pany would accept some non-compliant welds, compensating
with redundant welds, the threshold for electrode replace-
ment/dressing can be established at 1000 welds.

Future research could focus on quantifying the resource
savings achieved through the utilization of the developed
tool, balancing the savings in time, energy, and resources due
to the avoided redundant welds against the cost of acquiring
and operating sensors in the machine. Future research could
also enhance the data-driven capabilities of the developed
tool by considering other types of welding defects beyond
electrode wear. Identifying predictors of defects such as resis-
tance shunting, sheet gap, edge proximity, non-orthogonal
electrode-sheet contact, etc., would contribute to improving
the monitoring of the RSW process.
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