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Abstract
Aggregations are emergent features common to many biological systems. Mathe-
matical models to understand their emergence are consequently widespread, with
the aggregation–diffusion equation being a prime example. Here we study the
aggregation–diffusion equation with linear diffusion in one spatial dimension. This
equation is known to support solutions that involve both single and multiple aggre-
gations. However, numerical evidence suggests that the latter, which we term
‘multi-peaked solutions’ may often be long-transient solutions rather than asymp-
totic steady states. We develop a novel technique for distinguishing between long
transients and asymptotic steady states via an energy minimisation approach. The
technique involves first approximating our study equation using a limiting process
and a moment closure procedure. We then analyse local minimum energy states of
this approximate system, hypothesising that these will correspond to asymptotic pat-
terns in the aggregation–diffusion equation. Finally, we verify our hypotheses through
numerical investigation, showing that our approximate analytic technique gives good
predictions as to whether a state is asymptotic or transient. Overall, we find that
almost all twin-peaked, and by extension multi-peaked, solutions are transient, except
for some very special cases. We demonstrate numerically that these transients can be
arbitrarily long-lived, depending on the parameters of the system.
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1 Introduction

Aggregation phenomena are widespread in biology, from cell aggregations (Budrene
andBerg 1995) to the swarming (Roussi 2020), schooling (Makris et al. 2009), flocking
(Clark and Mangel 1984), and herding (Bond et al. 2019) of animals. When modelled
from a continuum perspective (as opposed to via interacting particles), the principal
tools take the form of partial differential equations with non-local advection, some-
times combined with a diffusive term (Topaz et al. 2006). Indeed, such equations are
often called aggregation equations (Laurent 2007), highlighting their importance in
modelling aggregations, or aggregation–diffusion equations (Carrillo et al. 2019) if
there is a diffusion term.

As well as modelling aggregated groups of organisms, such equations have also
been used to model aggregation-like phenomena elsewhere, such as animal home
ranges and territories (Briscoe et al. 2002; Potts and Lewis 2016) and consensus
convergence in opinion dynamics (Garnier et al. 2017). This very broad range of
applications, together with the mathematical complexity in dealing with nonlinear
nonlocal partial differential equations (PDEs), has led to a great amount of interest
from applied mathematicians in understanding the properties of these PDEs (Painter
et al. 2023).

Of particular interest from a biological perspective are the pattern formation proper-
ties of aggregation–diffusion equations, since these can reveal the necessary processes
required for observed patterns to emerge. Many analytic techniques for analysing pat-
tern formation, such as linear stability analysis andweakly nonlinear analysis, focus on
the onset of patterns from small perturbations of a non-patterned (i.e. spatially homo-
geneous) state. However, patterns observed in actual biological systems will often be
far from the non-patterned state, and not necessarily emerge from small perturbations
of spatially homogeneous configurations (Krause et al. 2020; Veerman et al. 2021a).

Sometimes observed patterns will be asymptotic steady states or other types of
attractors. But frequently biological systems will be observed in transient states (Hast-
ings et al. 2018; Morozov et al. 2020). These transient states may persist for a very
long time, sometimes so long that they are hard to distinguish from asymptotic states.
As in previous studies (e.g. Morozov et al. 2020), we refer to such solutions as ‘long
transient’ solutions (noting that we make no pretence of rigour in the definition of
‘long’, but simply using the word heuristically to highlight the sort of solutions that
are likely to be mistaken for asymptotic steady states without unusually thorough
analysis). As well as long transients being difficult to decipher from observations of
biological systems, they can also be tricky to determine from numerical solutions of
a PDE model. Therefore analytic techniques are required to guide those engaging
in numerical analysis of PDEs [including continuation methods (Uecker 2022)] as to
whether the solution they are observing is likely to be a long transient or an asymptotic
state.

Our aim here is to provide such analytic techniques for a class of 1D aggregation-
diffusion equations of the following form

∂u

∂t
= D

∂2u

∂x2
− γ

∂

∂x

[
u

∂

∂x
(K ∗ u)

]
, (1)
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where K is a non-negative averaging kernel, symmetric about 0, with ‖K‖L1 = 1,
and

K ∗ u(x) =
∫

�

K (z)u(x + z, t)dz (2)

is a convolution, where � is the spatial domain of definition. Here, D and γ are con-
stants, and� is the circle given by interval [−L, L]with periodic boundary conditions
imposed. This choice of boundary conditions is made purely for analytic simplicity,
as it is a non-trivial problem to define other types of boundary condition for spatially
non-local advection (Hillen and Buttenschön 2020).

Our approach is not exact, in the sense that we approximate our study PDE
through the limit as D/γ → 0, and via a moment closure assumption. However, this
approximation allows us to analyse the associated energy functional, finding explicit
mathematical expressions for local energy minima. Our conjecture is that local energy
minima of the approximate system are qualitatively similar to the asymptotic patterns
observed in the aggregation-diffusion equation we are studying, but any states that do
not represent local energy minima of the approximate system are transient states. We
then test this numerically in some specific cases.

Of particular interest is the question of whether multi-peaked solutions are asymp-
totic steady states or long transients. Various numerical studies of Eq. (1), and similar
equations, report multi-peaked solutions (Armstrong et al. 2006; Buttenschön and
Hillen 2020; Carrillo et al. 2019; Daneri et al. 2022). However, merging and decaying
of peaks have also been observed. Furthermore, analytic investigations into chemotaxis
equations, which have some similarities with aggregation equations, have demon-
strated that multi-peaked solutions can often be long transients (Potapov and Hillen
2005).

Our work demonstrates that, except for the very specific case where peaks are of
identical heights and evenly-spaced, any two-peaked solutions will eventually evolve
into a solution with at most one peak, as the smaller peak decays to zero. The time it
takes for the smaller peak to decay grows rapidly with the start height of the smaller
peak, eventually tending to infinity as the difference in start heights between the two
peaks tends to zero. We show that a key parameter governing the speed of this decay is
the diffusion constant D, with higher diffusion constants leading to faster decays. We
conjecture that, as D → 0, the time to decay tends to infinity, meaning that two-peaked
solutions become stable.

Finally, we investigate the effect of incorporating logistic growth of the population
into our model, leading to a Fisher–KPP model with non-local advection (e.g. Hamel
and Henderson 2020). The motivation for this is that, in situations where transient
solutions exists for a long time, it is no longer biologically reasonable to assume that
we are working in situations where births and deaths are negligible. We show that, for
a given set of parameters and initial condition, there is a critical net reproduction rate,
below which the smaller peak will decay and above which it will persist.

This paper is organised as follows. In Sect. 2, we detail our methodological
approach. Section 3 deals with minimum energy configurations of single-peaked solu-
tions. Section 4 examines twin-peaked solution, their merging (Sect. 4.1) and decaying
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(Sect. 4.2) dynamics, and the effect of including population growth (Sect. 4.3). Sec-
tion 5 gives some discussion and concluding remarks.

2 Methodological Approach

Our study is motivated by an observation. Often, when simulating Eq. (1), multiple
aggregationsmay form and persist for a very long time. This can give the appearance of
multi-peaked asymptotic stable states. For example, Fig. 1 shows a numerical solution
where two peaks have formed by time t = 1. These appear stable on timescales up
to two orders of magnitude longer than the time they took to form: even by time
t = 100, the solution has not changed very much (Fig. 1a). However, if we keep
running the simulation, we see one of the peaks decay and the other slowly swallow
up the former’s mass. The question then arises whether multi-peaked solutions to
Eq. (1) are ever actually stable, or are they always just long transients?

To answer this question, our approach will start not by analysing Eq. (1) directly,
but rather taking two approximations, simplifying the system and thus enabling us to
perform exact calculations. From this starting point, we will then drop these approxi-
mations and examine Eq. (1) numerically. This will enable us to ascertain the extent
to which numerical solutions of Eq. (1) correspond to our analytic insights of the
approximate system.

One approximation we make is to consider the limit as D/γ → 0. Further, we
assume that K has finite second moment and is sufficiently narrow to make the fol-
lowing moment closure approximation

K ∗ u(x, t) ≈ u + σ 2

2

∂2u

∂x2
(3)

where

σ 2 =
∫ L

−L
x2K (x)dx (4)

is the second moment of K . This leads to the following approximate version of Eq. (1)

∂u

∂t
= −γ

∂

∂x

[
u

(
∂u

∂x
+ σ 2

2

∂3u

∂x3

)]
. (5)

This is a 1D version of an equation recently proposed by Falcó et al. (2023) for
modelling biological aggregations. Note that Eqs. (1) and (5) both preservemass when
solved with periodic boundary conditions (i.e. u(L, t) = u(−L, t) and ∂u

∂x (L, t) =
∂u
∂x (−L, t)), so that if we define

p :=
∫ L

−L
u(x, 0)dx (6)
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Fig. 1 Numerical solutions of Eq. (1) starting with initial conditions that are a small random fluctuation of
the constant steady state (noise generated uniformly at random from [−0.005, 0.005] at each point in space).
By t = 1 clear aggregations have formed that might seem stable were the solution only run to around time
t = 100. However, if we run the solution further in time, we see that the middle peak is gradually decaying,
and this decay is speeding up over time, so that by t = 460 the peak in the middle is much smaller than the
other peak. Here, D = 1, γ = 10, and K is a top-hat kernel (Eq. 19) with δ = 0.1

then

∫ L

−L
u(x, t)dx = p, (7)

for all t > 0.
Our tactic will be to search for minimum energy solutions to Eq. (5) using the

following Cahn–Hilliard type energy functional

E[u] = −
∫ L

−L
u

(
u + σ 2

2

∂2u

∂x2

)
dx . (8)

This type of energy is well-known to be non-increasing in time and unchanging
when the system is at steady state (e.g. Novick-Cohen 1988). However, for the sake
of completeness, we include the relevant calculation as follows

∂E

∂t
= −

∫ L

−L

[
∂u

∂t

(
u + σ 2

2

∂2u

∂x2

)
+ u

(
∂u

∂t
+ σ 2

2

∂2

∂x2
∂u

∂t

)]
dx

= −
∫ L

−L
2
∂u

∂t

(
u + σ 2

2

∂2u

∂x2

)
dx

= 2γ
∫ L

−L

∂

∂x

[
u

∂

∂x

(
u + σ 2

2

∂2u

∂x2

)] (
u + σ 2

2

∂2u

∂x2

)
dx
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= −2γ
∫ L

−L
u

∂

∂x

(
u + σ 2

2

∂2u

∂x2

)
∂

∂x

(
u + σ 2

2

∂2u

∂x2

)
dx

= −2γ
∫ L

−L
u

[
∂

∂x

(
u + σ 2

2

∂2u

∂x2

)]2
dx . (9)

Here, the second and fourth equalities use integration by parts, together with the peri-
odic boundary conditions. We are interested in non-negative solutions to Eq. (5),
as these are biologically relevant. Such solutions are known to exist in general
(e.g. Novick-Cohen and Segel 1984; Chen et al. 2019), and in particular were always
observed in our numerical experiments with non-negative initial data. In this case the
final expression in Eq. (9) is non-positive, so that E[u] is non-increasing and zero
when the system is at steady state.

Equation (9) shows that critical points, u∗(x), of the energy functional occur when

∫ L

−L
u∗

[
∂

∂x

(
u∗ + σ 2

2

∂2u∗
∂x2

)]2
dx = 0, (10)

which means that, on any connected subset of [−L, L], either u∗(x) = 0 or

u∗ + σ 2

2

∂2u∗
∂x2

= C

�⇒ u∗(x) = C + A sin

(
x
√
2

σ

)
+ B cos

(
x
√
2

σ

)
(11)

for constants A, B, and C . These constants must be picked so that the initial and
boundary conditions on u(x, t) are met, but other than that they are arbitrary. Part
of the aim moving forwards is to determine which constants minimise the energy in
different specific situations.

To make our search for minimum energy solutions tractable, our investigations
are informed by observations from numerical solutions. These numerics suggest that
Eq. (1) tends towards a solution containing one or many aggregations, interspersed by
constant sections close or near to zero (e.g. Fig. 1). We want to construct differentiable
solutions that have this type of qualitative appearance, yet also correspond to critical
points of E[u]. These can be constructed piecewise from Eq. (11). For example, as
long as πσ <

√
2L , a single-peaked solution can be given as follows

u∗(x) =
{

ε + cε

[
1 + cos

(
x
√
2

σ

)]
, if x ∈

(
−πσ√

2
, πσ√

2

)
ε, otherwise,

(12)

where ε ∈ [
0, p

2L

]
and cε are constants. One can also construct multi-peaked solutions

in a similar way (which we will do later in the case of two peaks). Notice that such
solutions are continuously differentiable, i.e. u∗ ∈ C1([−L, L]), but not necessarily
twice differentiable, so need to be understood in a weak sense (Evans 2022).
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By Eq. (7), a direct calculation gives

cε = p − 2εL√
2πσ

(13)

so that the only free parameter in Eq. (12) is ε. Since the energy, E[u], is non-increasing
over time, the question arises as to which value of ε minimises E[u] across the set of
all functions of the form in Eq. (12). Our approach is to derive such minima, both in
the example from Eq. (12) and in various multi-peaked examples, conjecturing that
such minima ought to approximate asymptotic solutions to the original problem in
Eq. (1). We then test these conjectures by investigating Eq. (1) numerically.

3 Single Peak

Combining Eqs. (8) and (12) gives

E[u∗] = −
∫ L

−L
u∗

(
u∗ + σ 2

2

d2u∗
dx2

)
dx . (14)

Now, for −πσ/
√
2 < x < πσ/

√
2, we have that

u∗(x) = ε + cε

[
1 + cos

(
x
√
2

σ

)]
(15)

which is a solution to

u∗ + σ 2

2

d2u∗
dx2

= ε + cε . (16)

Hence

E[u∗] = −
∫ πσ√

2

− πσ√
2

[
ε + cε

(
1 + cos

(√
2x

σ

))]
(ε + cε)dx − 2

∫ L

πσ√
2

ε2dx

= −πσ
√
2(c2ε + 2εcε) − 2Lε2. (17)

Using Eq. (13) and rearranging gives

E[u∗] = 2L

πσ
(πσ − √

2L)ε2 + 2p

πσ
(
√
2L − πσ)ε − p2√

2πσ
. (18)

Since πσ <
√
2L (see above Eq. 12), this is a negative quadratic in ε. Furthermore,

the maximum is where ε = p
2L . Now, ε ∈ [

0, p
2L

]
, so E[u∗] is an increasing function

of ε on the interval
[
0, p

2L

]
. Hence the minimum energy is where ε = 0. [Note that

the same minimum energy configuration for Eq. (5) was found by Falcó et al. (2023,
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Section 2.3.1). However, there the authors find the energy minimum over a differ-
ent set of functions from those described by Eq. (12) here. Specifically, they search
through compactly supported single-peaked solutions (so ε = 0) but allow for non-
differentiable (but still continuous) solutions. Then the support of u∗(x) is (−r , r) for
0 < r ≤ πσ/2 and their search is for the value of r that minimises the energy, which
they show is r = πσ/2 (in our notation).]

Our analysis suggests that if a numerical solution to either Eq. (1) or (5) results
in a single peak at long times, we might expect that peak to be of a similar form to
Eq. (12) with ε = 0. We test this conjecture by solving Eq. (1) numerically with
initial conditions given by Eq. (12) for various different values of ε ∈ [

0, p
2L

]
, fixing

p = L = 1. For these simulations, we set D = 1, γ = 10, and

K (x) =
{

1
2δ for − δ < x < δ

0 otherwise,
(19)

so that σ = δ/
√
3.

Numerics reveal that the system does indeed tend towards a single-peaked solution,
where the width of the peak is approximately

√
2πσ and the solution is zero elsewhere

(Fig. 2). However, the asymptotic distribution is more flat-topped than the initial con-
dition, owing to the fact that the initial condition arises from amoment closure approx-
imation of K ∗ u. This approximation reduces the analytic solution to a single Fourier
mode, whereas the numerical solution could have arbitrarily many Fourier modes.

For our numerics, we use a forward difference approximation with 	t = 10−5 and
	x = 0.01. Each of the ‘End’ distributions in Figs. 2, 3, 4 and 5 have the property that
|u(x, T−1000	t)−u(x, T )| < 10−6,where T is time atwhich the ‘End’ distributions
are calculated. The Python code we used to perform numerics is available at https://
github.com/jonathan-potts/PottsPainter.

Finally note that, in the case ε = 0.3 (Fig. 2c, f), a second peak emerges around
x = ±1 (which are identified due to the periodic boundaries, recalling that L = 1).
However, this decays by about t = 4. We will return to this phenomenon of decaying
secondary peaks in the next section.

4 Twin Peaks

In this section, we examine situations where there are two peaks (results from which
can be extended to multiple peaks). First, we look at situations where the peaks are
the same height, then at cases where one peak is smaller than the other.

4.1 Peaks of Identical Height

Similar to the single-peak case, here we want to understand whether it is energetically
favourable for a solution to have no mass outside the two peaks. More precisely, we
examine the energy of the following solution to Eq. (5), which is a critical point of
E[u]
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Fig. 2 When the initial condition is a single peak surrounded by an area of constant density ε, that area
becomes sucked-up into the peak. The respective ε-values are a, d ε = 0.1; b, e ε = 0.2; c, f ε = 0.3. In
c, a second peak emerges at x = ±1 but decays by around t ≈ 4, to leave a single-peaked final state. The
time–evolution of Eq. (1) is shown in a–c. The initial conditions (blue curves) and final states (black) are
given in d–f. In all panels, D = 1, γ = 10, p = 1, L = 1, and K is a top-hat kernel (Eq. 19) with δ = 0.1
(so σ = 0.1/

√
3). The labels ‘Start’ and ‘End’ in d–f refer respectively to the initial and final distributions

of the corresponding space–time plots in a–c (Color figure online)

Fig. 3 Similar to the single peak case (Fig. 2), when we start with two peaks of equal heights, surrounded
by an area of constant density ε, that area becomes sucked-up into the peak. We see this for x0 = 0.5 and
ε = 0.2 in a, b, where both peaks remain. For x0 < 0.5, peaks merge, shown in c for x0 = 0.25. The time
to merge as a function of x0 is given in d. Parameters D, γ , p, L , and K are as in Fig. 2

u∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

ε + cε

[
1 + cos

(
(x+x0)

√
2

σ

)]
, if x ∈

(
−x0 − πσ√

2
,−x0 + πσ√

2

)
,

ε + cε

[
1 + cos

(
(x−x0)

√
2

σ

)]
, if x ∈

(
x0 − πσ√

2
, x0 + πσ√

2

)
,

ε, otherwise.

(20)
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Fig. 4 a Numerical solution of Eq. (5) with initial condition given by Eq. (23) with cB = 1.5. b Snapshots
of the initial and final distributions from a. Notice that the smaller peak has decayed almost completely by
t ≈ 15. The graph in c is constructed from numerical solutions of Eq. (5) with initial condition given by
Eq. (23) but with cB taking a variety of values, giving different start heights for the smaller peak (note that
the start height is 2cB ). Both c and d plot the time it takes for the smaller peak to decay to a maximum
height of < 0.1. This increases exponentially as a function of the start height, explaining the appearance of
long-transient multi-peaked solutions to Eq. (5) (c). Conversely, the decay time decreases as D is increased,
showing how diffusion can speed up decay of the smaller peak (d). In a–c, D = 1. In d, cB = 1. In all
panels, γ = 10, p = 1, L = 1, and K is a top-hat kernel (Eq. 19) with δ = 0.1. The value of cA is
determined by Eq. (24)

Fig. 5 Effect of growth parameter. Examples are given in a, b, showing the initial condition (blue) and
solution at time t = 10 (black) where the parameters are γ = 10, D = 1, and R = 5. In a, r = 0.23
whereas b has r = 0.24. This demonstrates a transition in long-term patterns, whereby the smaller peak
decays for r ≤ 0.23 but grows for r ≥ 0.24. In c, we observe that the transition point, rc , decreases
exponentially as the strength of attraction, γ , increases (Color figure online)

Here, x0 ∈
(

πσ√
2
, L
2

)
is half the (shortest) distance between the centres of the two

peaks. As in the single-peak case, we can use Eq. (7) to calculate

cε = p − 2Lε

2
√
2πσ

. (21)

A direct calculation using the definition of E[u] from Eq. (8) leads to

E[u∗] =
√
2L

πσ
(
√
2πσ − L)ε2 +

√
2p

πσ
(L − √

2πσ)ε − p2

2
√
2πσ

. (22)
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Since
√
2πσ < L , this is a negative quadratic in ε. The unique turning point is a

maximum at ε = p
2L , so E[u∗] is an increasing function of ε on the interval [0, p

2L ].
Hence the minimum energy in the two-peaked case is where ε = 0, as with the one-
peaked case. However, comparing the ε = 0 situation with one peak (Eq. 18), against
that with two peaks (Eq. 22), we see that the single peak is a lower-energy solution.
This suggests that we might also see a merging of the two peaks, as well as the mass
outside the peaks tending to zero.

Indeed, in our numerical experiments, we saw a merging of peaks except in the
special case where x0 = 0.5, so that the initial peaks are evenly-spaced. Figure 3a,
b shows an example where x0 = 0.5 but ε > 0. Here two peaks remain but the
mass outside those two peaks is absorbed into the peaks over time. Figure 3c gives
an example of peak merging for x0 < 0.5 whilst Fig. 3d shows how the time it takes
for peaks to merge increases dramatically as x0 increases towards x0 = 0.5. Here, the
time to merge is defined as the time at which the centre of the two initial peaks drops
below 0.1. Whilst this is a rather arbitrary definition, other definitions lead to similar
trends.

Notice that our energy analysis does not give direct insight into why merging does
not happen for x0 = 0.5. However, physical intuition suggests evenly-spaced peaks
means that there is no ‘preferred’ direction for them to move in order to coalesce.
Therefore they remain as two peaks. This symmetry of multi-peaked solutions was
also shown in a similarmodel byButtenschön andHillen (2020), using group-theoretic
arguments.

4.2 Peaks of Differing Heights

In Sect. 4.1, we examined situations where there are two peaks with precisely equal
height, finding that both peaks persisted indefinitely when they are evenly-spaced.
However, we have already seen in Fig. 1 that when peaks are of different heights,
the smaller one can shrink over time, whereas the larger one grows. If this continues
indefinitely, the smaller peak could decay completely and only one peakwould remain,
although it might take a long time for this to happen.

Here, we seek to explain this phenomenon using our energy approach, ascertaining
whether we should always expect a smaller peak to end up decaying to zero, or whether
there are situations where two peaks remain. To this end, we examine steady state
solutions with the following functional form

u∗(x) =

⎧⎪⎪⎨
⎪⎪⎩
cA

[
1 + cos

(
(x+x0)

√
2

σ

)]
, if x ∈

(
−x0 − πσ√

2
,−x0 + πσ√

2

)
cB

[
1 + cos

(
(x−x0)

√
2

σ

)]
, if x ∈

(
x0 − πσ√

2
, x0 + πσ√

2

)
0, otherwise.

(23)

In this case, we can use Eq. (7) to calculate

cA = p − 2Lε√
2πσ

− cB . (24)
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We see immediately that, in order for cA and cB to be non-negative, we must have

cA, cB ∈
[
0, p√

2πσ

]
. A direct calculation using the definition of E[u] from Eq. (8)

leads to

E[u∗] = −2
√
2πσc2B + 2pcB − p2

πσ
√
2
. (25)

This is a negative quadratic in cB with critical point at cB = cA = p
2
√
2πσ

. Therefore

the energy minima occur either when cB = 0, cA = p√
2πσ

or cA = 0, cB = p√
2πσ

.
In other words, they occur when there is just one peak. Consequently, away from the
critical point where cA = cB , we would expect the smaller peak to slowly decay to
zero over time, leaving just one peak. Indeed, this is what we see in numerical solutions
of Eq. (5) (e.g. Fig. 4a,b). However, the time it takes for the smaller peak to decay
can be very large (Fig. 4c). This is exacerbated by decreasing the diffusion constant,
D (Fig. 4d). Here, numerics hint that, as D → 0, the decay time may tend to infinity,
meaning that the second peak may persist indefinitely if there is no diffusion to allow
the smaller to seep into the larger.

4.3 Including Population Growth

So far, we have studied a system where the population size remains constant. This
assumes that there are negligible births or deaths on the timescales thatwe are studying.
Our focus has beenonexamining thedifferencebetween long transients and asymptotic
solutions. However, in any real biological system, the effect of births and deaths will
become non-negligible at some point in time. Therefore there is a limit to which
transient solutions in these systems are biologically realistic: if the transients persist
for too long, it will become necessary to account for the effect of births and deaths in
any biologically meaningful model.

We therefore examine the extent to which incorporating growth might enable a
second peak to persist, by solving the following equation numerically

∂u

∂t
= D

∂2u

∂x2
− γ

∂

∂x

[
u

∂

∂x
(K ∗ u)

]
+ ru

(
1 − u

R

)
, (26)

with initial conditions given by Eq. (23).
Depending upon the values of γ , D, R, and cB , we found that there is a critical value

r = rc above which the second hump persists, and below which it decays. Figure 5a,
b shows this in the case γ = 10, D = 1, R = 5, cB = 1, whereby rc ≈ 0.23.
Figure 5c demonstrates how rc depends upon the aggregation strength γ : the greater
the aggregation strength, the higher the required growth rate to enable a second peak
to persist.
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5 Discussion

Distinguishing between asymptotic solutions and long transients in numerical PDEs is
a thorny issue, with perhaps no one-size-fits-all solution. Typically, researchers decide
that a solution has reached an asymptotically-stable state when some measure (e.g.
the change in L p norm for some p ∈ [1,∞]) is below a small threshold value (see
e.g. Burger et al. 2014; Giunta et al. 2022a; Schlichting and Seis 2022). However, this
means that if transient solutions are changing slower than this threshold value then
they will be mistaken for asymptotically-stable solutions. Therefore it is valuable to
have some analytic insight to guide the user as to whether the solution is (or is likely
to be) a long transient or an asymptotically-stable solution.

Here, we have provided such a deductive technique for the aggregation–diffusion
equation in Eq. (1). Rather than studying this equation directly, we instead study an
approximation given in Eq. (5). This approximate formulation is simple enough to
solve for steady state solutions. It also possesses an energy functional, which allows
us to search for local minimum energy solutions amongst the steady state solutions,
an approach employed successfully in a previous multi-species study (Giunta et al.
2022b). Our hypotheses are first that these local minimum energy solutions are stable
solutions to Eq. (5), whereas other steady states are not; and second that this categori-
sation carries over to the steady states of Eq. (1). In the examples we tested, numerical
experiments confirmed these hypotheses, with the sole exception of twin-peaked solu-
tions where the peaks are of identical height and evenly-spaced.We therefore conclude
that this method is a useful way for guiding users (i.e. those wanting to solving Eq. 1
numerically) as to whether a solution they are observing is likely to be stable or
not, whilst also recommending that they verify these calculations up with numerical
experiments.

Regarding the examples we tested, we found two main results: first, that stable
aggregations are likely to resemble compactly-supported solutions, rather than being
non-zero everywhere; second, that multi-peaked solutions will always be transient
unless either D = 0 or the peaks are precisely the same height and evenly-spaced.
In addition to these central messages, further numerical investigations revealed that
these twin-peaked transient solutions can be arbitrarily long-lived if the peaks are
arbitrarily close to being evenly-spaced (Fig. 3) and the heights of these peaks are
arbitrarily similar (Fig. 4).

That said, the consideration of very long transients in a model that operates on
timescales where births and deaths are negligible is not terribly realistic, so we also
examined the effect of adding a small amount of (logistic) growth. We found that
arbitrarily small amounts of growth will not stop the smaller peak from decaying.
However, there appears to be a critical growth rate, dependent upon the model param-
eters, below which the smaller peak will decay and above which it will grow (Fig. 5).
Therefore, if long transients appear when using Eq. (1) to model biological aggrega-
tion, it is valuable to think about the effect of net reproductive rate in the system being
modelled, and whether this is sufficient to arrest the decay of the smaller peak.

Whilst our principal equation of interest is Eq. (1), it is worth noting that our approx-
imate analytic techniques can also be applied to various other equations. For example,
the cell adhesion equations introduced in Armstrong et al. (2006) have a very similar
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functional form that can usually be formally related to Eq. (1) or modifications thereof
(Painter et al. 2023). Chemotaxis equations are also somewhat similar to Eq. (1), but
here the non-local self-interaction is replaced with a diffusing chemical. The organ-
isms interact with the chemical rather than directly with one another. It turns out that
the resulting models are equivalent to a type of aggregation-diffusion equation with
advection that is nonlocal in both space and time (Knútsdóttir et al. 2014; Shi et al.
2021). This contrasts with Eq. (1), which is nonlocal in space alone. However, similar
patterns are observed in these systems, including long-transient multi-peaked solu-
tions similar to those studied here (Potapov and Hillen 2005). We also note that the
moment closure we use in Eq. (1) leads to a fourth-order PDE of Cahn–Hilliard type
(Novick-Cohen 2008), for which there is a long history of studies on metastability
(Bates and Xun 1994; Reyna and Ward 1995; Scholtes and Westdickenberg 2018)
and has recently been proposed in the context of biological aggregations (Falcó et al.
2023).

Passing from the non-local aggregation–diffusion equation (1) to the fourth-order
local equation (5) involved two simplifying assumptions: the limit D/γ → 0, and the
moment closure approximation (3). However, these assumptions were concurrently
applied, in that no definitive order was invoked. Separated out, two distinct inter-
mediate models emerge: a non-local hyperbolic equation, if we first apply the limit
D/γ → 0, or a fourth-order local parabolic equation (with nonlinear diffusion) if we
first assume (3). Deeper insights may be gained into the connection between models
by investigating these distinct passages in detail. In particular, it would be of interest to
explore the extent to which the two forms for the intermediate model exhibit qualita-
tively distinct properties from either the nonlocal aggregation–diffusion equation (1),
or its approximation (5).

Following on from these observations, it is worth noting that while the version
of the aggregation–diffusion equation that we study involves linear diffusion, the
combined assumptions ‘convert’ this into a nonlinear quadratic diffusion of the form
(uux )x . In fact, there has also been considerable interest in nonlocal aggregation-
diffusion equation that include nonlinear diffusion from the outset, i.e. uxx replaced
with (uux )x in Eq. (1). An advantage of this formulation is that Eq. (1) has the form
ut = [u(D − γ K ∗ u)x ]x , making it amenable to a analysis without taking the limit
D/γ → 0. This fact has been exploited, for example, by Ellefsen and Rodriguez
(2021) and Carrillo et al. (2018). However, here we have chosen to focus on linear
diffusion is important to study as it often arises naturally from models of organism
movement (Armstrong et al. 2006; Potts and Schlägel 2020; Painter et al. 2023).
Future work on the nonlinear case could reveal analytic insights about the effect of D
vs. γ on asymptotic patterns, which we were only able to examine numerically in this
study. Likewise, the consideration of higher spatial dimensions (particularly 2D and
3D) would be a biologically-important topic for future study, but we caution that the
pattern formation properties can be rather more complicated (Jewell et al. 2023).
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