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Simple Summary: Prostate cancer (PCa) is one of the leading causes of mortality for men worldwide.
PCa aggressiveness affects the patient’s prognosis, with less aggressive tumors, i.e., Grade Group
(GG) 1 and 2, having lower mortality and better outcomes. For this reason, the aim of this study is to
distinguish between GG ≤ 2 and ≥3 PCa using an automatic and noninvasive approach based on
artificial intelligence methods. The results obtained are promising, as the system achieved robust
results on a multicenter external dataset. If further validated, this approach, combined with the
expert knowledge of urologists, could help identify PCa patients who have a better prognosis and
may benefit from less invasive treatments.

Abstract: In the last years, several studies demonstrated that low-aggressive (Grade Group
(GG) ≤ 2) and high-aggressive (GG ≥ 3) prostate cancers (PCas) have different prognoses and
mortality. Therefore, the aim of this study was to develop and externally validate a radiomic model
to noninvasively classify low-aggressive and high-aggressive PCas based on biparametric magnetic
resonance imaging (bpMRI). To this end, 283 patients were retrospectively enrolled from four centers.
Features were extracted from apparent diffusion coefficient (ADC) maps and T2-weighted (T2w)
sequences. A cross-validation (CV) strategy was adopted to assess the robustness of several classifiers
using two out of the four centers. Then, the best classifier was externally validated using the other
two centers. An explanation for the final radiomics signature was provided through Shapley additive
explanation (SHAP) values and partial dependence plots (PDP). The best combination was a naïve
Bayes classifier trained with ten features that reached promising results, i.e., an area under the
receiver operating characteristic (ROC) curve (AUC) of 0.75 and 0.73 in the construction and external
validation set, respectively. The findings of our work suggest that our radiomics model could help
distinguish between low- and high-aggressive PCa. This noninvasive approach, if further validated
and integrated into a clinical decision support system able to automatically detect PCa, could help
clinicians managing men with suspicion of PCa.
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1. Introduction

Prostate cancer (PCa) is the most common cancer in men in Western countries, account-
ing for about 25% of new cancer diagnoses [1,2]. Since 2020, the European Association of
Urology added a strong recommendation to perform multiparametric magnetic resonance
imaging (mpMRI) in PCa patients before either planning a re-biopsy or in biopsy-naïve
men [3] to better identify PCa suspicion and to target the biopsy to retrieve more precise
information about cancer aggressiveness [4]. However, biopsies are known to suffer from
limitations that negatively impact the therapeutic path and patients’ outcomes [5]. Indeed,
they are known to be invasive, affected by large inter-observer variability, and not able to
provide information on spatial tumor heterogeneity [6,7].

In the last years, radiomics analysis to characterize PCa has been demonstrated as a
potential alternative to overcome the main biopsy drawbacks [8,9]. The radiomics approach
is challenging, and researchers have mainly focused on the identification of clinically
significant ones (GG ≥ 2) [10], reaching considerably high performances [11]. However, a
more precise separation between GG2 and GG3 is necessary since GG3 PCas show more
aggressive behavior, with higher rates of biochemical failure, systemic recurrence, cancer-
specific death [12–14], and lower probability of 5-year biochemical risk-free survival [4].
Only a few studies have classified GG ≤ 2 and GG ≥ 3 PCas [15–18] through radiomics
analyses, but the generalization of their results has not been fully addressed yet. Moreover,
these studies did not adopt an explainable approach [15–18]. A not-explained approach
limits transparency, trustworthiness, and, therefore, application in real-world clinical
practice [19]. To our knowledge, there is no study validating a machine learning classifier to
predict GG ≤ 2 and GG ≥ 3 PCas on an external validation set and proposing an explainable
AI approach.

The aims of this study are to develop a model to noninvasively distinguish between
GG ≤ 2 and GG ≥ 3 PCa through a radiomics signature based on bpMRI and to validate
this model on a multicenter dataset composed of images acquired with different MRI
manufacturers, including both 1.5T and 3T scanners, also providing an explanation for the
signature. The proposed pipeline is noninvasive, as it uses already available acquisitions
from MRI without endorectal coil and contrast agent administration. Our model showed
robust results on the external validation set, suggesting that, if further validated, it could be
used as a noninvasive tool to select low-aggressive PCas, which, if confirmed by additional
clinical evaluations, could avoid destructive and invasive treatments.

2. Materials and Methods
2.1. Patients

This is a multicenter retrospective study that includes four institutes: University
Hospital “Città della Salute e della Scienza” of Turin (center A), “Mauriziano Umberto I”
Hospital of Turin (center B), Candiolo Cancer Institute (center C), and Federico II Hospital
of Naples (center D). Patients who underwent prostate MRI between November 2015 and
October 2018 at sites A, B, and D and between May 2017 and February 2020 at site C were
included in the study. The following inclusion criteria were applied: (1) patients with
suspicion of PCa; (2) patients who underwent MRI examination before biopsy, including
at least diffusion-weighted (DWI) and T2-weighted (T2w) axial images; and (3) imaging
performed without endorectal coil. Exclusion criteria were as follows: (1) the presence
of strong artifacts on the MRI examination; (2) patients who underwent transurethral
resection of the prostate (TURP); (3) no match between the tumor location detected by the
biopsy and the MRI’s findings; and (4) absence of pathologically confirmed (either biopsy
or prostatectomy) PCa.
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2.2. MRI Acquisition and Reference Standard

MRI examinations were performed using 1.5T scanners at centers A, B, and C (Achieva
Philips Medical Systems, Ingenia Philips Medical Systems, and Optimae GE Healthcare,
respectively) and a 3T scanner at center D (Magnetom Trio Siemens Medical Solutions).
The reference standard for this study was the GG obtained after targeted biopsy or prosta-
tectomy, when available, on the lesions detected on MRI. More information on scanner
parameters can be found in Supplementary Section S1. For patients with available prosta-
tectomy results, the exact location of the tumor was found by comparing the MRI with
the microscopic slices of the surgical specimen [19]. When the results of the prostatectomy
were not available, the tumor was localized on MRI using the detailed report provided
by uropathologists [20]. Dedicated uropathologists examined the hematoxylin- and eosin-
stained slides and recorded the GG. Finally, PCas were dichotomized into low-(GG ≤ 2)
and high-(GG ≥ 3) aggressive cancers, hereafter considered as the negative and positive
class, respectively.

2.3. Tumor Segmentation and Feature Extraction

Four radiologists (one for each of the recruiting centers) with more than 5 years
of experience manually segmented on T2w imaging all PCas using ITK Snap 3.8 [21]
(www.itksnap.org, accessed on 29 December 2023), and the available contouring or report
provided by uropathologists as a reference, as previously described in [22]. During the
segmentation step, the radiologist checked that the mask of the tumor also matched the
tumor on the ADC maps, and in case of misalignment, they reviewed the mask to segment
only the common areas, as previously reported [22]. Then, an experienced senior radiologist
reviewed and eventually corrected all the segmentations from the four centers. After a
step of image preprocessing where both T2w sequences and ADC maps were normalized
and pixels showing outlier signal intensities were removed, 169 first and second-order
features were extracted (more details are available in Supplementary Section S2). Features
were extracted in Python 3.8 using the open-source Python package Pyradiomics 3.0.1 [23],
compliant with the Image Biomarker Standardization Initiative [24]. Figure 1A reports the
main steps from image acquisition to feature extraction.
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2.4. Model Development and Validation

During the development of the radiomics signature, 26 combinations of feature se-
lection (FS) methods and classifiers/regressors were fine-tuned using only patients from
centers A and B (construction dataset). Specifically, the feature selection methods included
(1) minimum redundance maximum relevance, (2) affinity propagation, feature ranking
based on (3) chi-squared test or (4) Mann–Whitney U test, and (5) stepwise binomial logistic
regressor. These 5 FS methods were combined with the following classifiers/regressors:
(1) decision tree, (2) support vector machine, (3) ensemble learner (e.g., random forest),
(4) naïve Bayes, and (5) binomial logistic regression. In addition, we evaluated the LASSO
logistic regressor. Before performing the FS step, all features were normalized between
0 and 1 using the min-max scaling. The radiomics pipeline is reported in Figure 1. All
algorithms were implemented in MATLAB® 2021b.

To select the best-performing model, a cross-validation (CV) strategy has been adopted,
in which 4 folds (training a stratified 5-fold cross-set) were iteratively used to train a
model that was subsequently tested on the left-out fold (test set). During the CV, all the
combinations of FS and classifiers were evaluated. The parameters of the models were
tuned, and models not reaching a mean area under the receiver operating characteristic
(ROC) curve (AUC) ≥ 0.6 on the left-out folds were discarded. More details about the FS
methods and classifiers are described in Supplementary Section S3.

Once all the FS/classifier/parameters combinations were tested, the one reaching
the highest mean AUC on the left-out folds was selected and re-trained using the whole
construction set (Figure 1B).

The validation step was performed by applying the previously selected model on the
validation set, which included only patients that were left out from the model development
phase, i.e., from centers C and D (Figure 1C). We decided to use centers A and B as the
construction set to develop the model on a strong reference standard since all their patients
had the prostatectomy results available and to train a model on 1.5T MRI images and
evaluate its generalization capability on both 1.5T and 3T (center D) MRI images. The
validation set was normalized using the min-max scaling, with the maximum and minimum
values of the construction set.

2.5. Statistical Analysis

Correlation between all pairs of features employed in the best model was computed
using Spearman’s correlation test (MATLAB® 2022b). Balanced accuracy, sensitivity, speci-
ficity, positive predictive value (PPV), and negative predictive value (NPV) obtained using
the cut-off corresponding to the Youden Index on the construction set were computed
as an example of general model performances. Sensitivity was defined as the number of
correctly classified high-aggressive PCas over the total number of high-aggressive PCas;
specificity was defined as the number of correctly classified low-aggressive PCas over the
total number of low-aggressive PCas; NPV was defined as the number of correctly classified
low-aggressive PCas over the total number of patients classified as low-aggressive PCas;
and PPV was defined as the number of correctly classified high-aggressive PCas over the
total number of patients classified as high-aggressive PCas.

For the 5-fold CV, the difference in the mean of the six performance indexes between
train and test sets was calculated to evaluate the robustness of the models and exclude those
combinations that tend to overfit. Since in the literature, there is no commonly accepted
criterion to identify overfitting models, in this analysis, a decrease in performances from
the training set to the test set greater than 30% was considered overfitting. For the final
classifier, changes in the performances obtained between the construction set and the
validation set and between centers C and D were evaluated using the N−1 chi-squared
test performed for each of the performance metrics, while AUCs were compared based on
the DeLong test. A p-value < 0.05 was considered statistically significant. All the statistical
analyses were computed on MedCalc Statistical Software version 20.105 (MedCalc Software
bv, Ostend, Belgium).
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2.6. Explanation of the Classification Model

To better understand the signature of the final radiomics model and the role of the
selected features in the classification task, Shapley additive explanation (SHAP) values
were computed for the external validation set. The SHAP values of a feature explain the role
of that feature in “pushing” the model output toward positive or negative predictions [25].
Then, the feature importance was calculated as the average of the absolute SHAP values per
feature across the external validation set. In addition to features explanation, we provided
a global interpretation of the signature by computing the partial dependence plot (PDP) of
each feature employed in the model. The PDP displays the marginal effect that a feature
has on the predicted outcome, showing whether the relationship between the output and
that feature is linear or more complex (see also Supplementary Section S4).

3. Results
3.1. Patient Characteristics

The multicenter dataset included a total of 299 PCas from 283 patients. The construc-
tion set included 175 PCas (132 from A and 43 from B, 77 low- and 98 high-aggressive),
while the validation set was composed of 124 PCas (78 from C and 46 from D, 69 low-
and 55 high-aggressive). More details are described in Figure 2. GG was derived from
prostatectomy in 86% (243/283) of patients, while in the remaining patients, we used the
GG provided by targeted biopsy. The review of the segmentations performed by the expert
senior radiologist resulted in less than 10% of changes in the tumor masks provided by the
four centers.
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Figure 2. Flowchart of dataset division. In each box: N is the total number of PCas; in parentheses
are reported the number of low-and high-aggressive PCas. Under each box: the number of lesions for
each of the 5 GGs is reported in the circles. GG = grade group, MRI = magnetic resonance imaging,
TURP = transurethral resection of the prostate.

3.2. Best Model

The naïve Bayes classifier trained using ten features selected by the affinity propa-
gation algorithm was chosen as the best model based on its AUC of the left-out folder
(Section 2.4) (see Supplementary Sections S5 and S6 for more details). The Spearman corre-
lation coefficient (r) for the different combinations of the ten selected features showed a fair
correlation (r ≤ 0.50) [26] for 40/45 pairs and a moderate correlation (0.50 < r ≤ 0.70) only
in 5/45 pair comparisons. No highly correlated features, i.e., higher than 0.70, were found
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in the selected subset. The results of the final classifier trained with all patients enrolled
from centers A and B and then externally validated with the cases from centers C and D
are reported in Table 1. On the validation set, the classifier achieved results comparable
to those obtained on the construction set, i.e., AUC of 0.75 and 0.73, respectively. No
significant differences were found in the performance metrics between the construction and
external validation sets (Table 1). In the comparison of the performances between centers
C and D, only specificity was significantly lower in center D (p-value < 0.05) (Table 1).
Figure 3 shows the discrete non-smoothed ROC curves of the construction and valida-
tion set. For completeness and transparency of reports of the diagnostic accuracy of this
study, we reported the Standards for Reporting of Diagnostic Accuracy Studies (STARD)
diagram [27] in Supplementary Section S7. The waterfall plots of the output signature of
the classifier for the construction and validation sets are displayed in Figure 3. As we can
see, the classifier is highly accurate when assigning a likelihood of a high-aggressive tumor
equal to zero (<1%). Indeed, 11 out of 15 lesions of the training set (Figure 4A) and all
15 lesions of the validation set (Figure 4B) with assigned likelihood equal to zero are true
low-aggressive PCas.

Table 1. Performances of the best model and results of the N−1 chi-squared test for the comparison of
two proportions and of the DeLong test for the comparison of AUCs. Numbers in brackets represent
the number of correctly classified cases over the total number of each class. Specifically, the resulting
p-value, performances, and their differences are reported for centers A + B (construction set) and
centers C + D (validation set) and individually for center C and center D. In bold, p-value < 0.05.

Construction Set (Sample 1) vs. Validation Set (Sample 2) Center C (Sample 1) vs. Center D (Sample 2)

AUC
(95%CI)

Balanced
Accu-

racy (%)

Sensitivity
(%)

(95%CI)

Specificity
(%)

(95%CI)

PPV (%)
(95%CI)

NPV (%)
(95%CI)

AUC
(95%CI)

Balanced
Accu-

racy (%)

Sensitivity
(%)

(95%CI)

Specificity
(%)

(95%CI)

PPV (%)
(95%CI)

NPV (%)
(95%CI)

Sample 1
0.75

(0.68–
0.81)

72.2

70.4
[69/98]
(60.3–
79.2)

74.0
[57/77]
(62.8–
83.4)

77.5
[69/89]
(69.8–
83.7)

66.3
[57/86]
(58.5–
73.3)

0.77
(0.67–
0.86)

69.4

55.2
[16/29]
(35.7–
73.5)

83.7
[41/49]
(70.3–
92.7)

66.7
[16/24]
(49.5–
80.3)

75.9
[41/54]
(67.4–
82.8)

Sample 2
0.73

(0.65–
0.81)

67.9

61.8
[34/55]
(47.7–
74.6)

73.9
[51/69]
(61.9–
83.7)

65.4
[34/52]
(54.7–
74.7)

70.8
[51/72]
(62.8–
77.7)

0.63
(0.56–
0.77)

59.6

69.2
[18/26]
(48.2–
85.7)

50.0
[10/20]
(27.2–
72.8)

64.3
[18/28]
(52.0–
74.9)

55.6
[10/18]
(37.7–
72.1)

p-value 0.731 0.423 0.278 0.989 0.120 0.546 0.143 0.274 0.290 0.004 0.857 0.103

|Diff|
(95% CI)

0.02
(−0.1–

0.1)

4.3
(−6.0–
14.9)

8.6
(−6.5–
24.1)

0.1
(−13.9–

14.3)

12.1
(−2.9–
27.6)

4.5
(−10.0–

18.5)

0.15
(−0.1–

0.3)

9.8
(−7.3–
26.9)

14.0
(−11.3–

36.7)

33.7
(9.95–
55.2)

2.4
(−22.6–

26.4)

20.3
(−3.4–
44.1)

AUC = area under the receiver operating characteristic curve, CI = confidence interval, Diff = difference,
PPV = positive predictive value, NPV = negative predictive value.
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3.3. Explanation of the Best Model

Figure 5 displays the bar diagram reporting features in decreasing order of importance.
The ‘ADC-GLRLM- Run Length Non-Uniformity’ was the most important feature, changing
the predicted high-aggressive PCa probability, on average, by 14.5 percentage points,
followed by the ‘ADC-GLRLM- Run entropy’ changing the prediction, on average, by
7.2 percentage points. The SHAP summary plot is reported in Figure 6, displaying on
the y-axis all features of the NB classifier ordered by importance and on the x-axis their
corresponding SHAP values, with color representing the value assumed by the feature,
from low (red) to high (blue). It can be seen how the highest absolute SHAP values
of the first most important feature were positive, meaning that the feature contributed
more to the high-aggressive PCa predictions than to the low-aggressive ones. Vice versa,
the second most important feature is characterized mainly by negative SHAP values,
highlighting that it mainly contributed to the low-aggressive PCa predictions. Interestingly,
low values of ‘ADC-GLRLM- Run entropy’ reduce the predicted high-aggressive PCa risk.
In Figure 7, a local visualization of the SHAP values of a true positive and true negative
prediction randomly selected from the external validation set is shown. As a corroboration
of what has been deduced from the SHAP summary plot, the local visualization shows
how, in the case of a true positive prediction (Figure 7a), the most important feature in
Figure 5 has the highest SHAP value (0.434), thus highlighting its relevant contribution to
that final prediction of a high-aggressive PCa. Similarly, for the true negative prediction
example (Figure 7b), the second most important feature contributed far more than the
others to the final classification, decreasing the predicted high-aggressive PCa probability of
24 percentage points, thus pushing the predictions toward the low-aggressive class.
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4. Discussion

In this study, we developed and validated a radiomics model to distinguish between
GG ≤ 2 and GG ≥ 3 PCas using bpMRI. Regarding the classification GG ≤ 2 and GG ≥ 3,
to the best of our knowledge, this is the first study that externally validated a classification
model and that provided an explanation for the model’s output. External validation is
a challenging task since MRI suffers from high variability due to differences in scanners
and acquisition protocols and researchers are struggling to develop AI-based models
dealing with multicenter datasets. However, thanks to the engineering of the pipeline
that we used to obtain the most robust and generalizable model, we reached promising
results on both the construction and the external validation set, which included different
scanners and magnetic field strengths. An important element of our system is that we
provided, together with the binary classification, the likelihood of the tumor being high-
aggressive. The latter can be considered to tune the classification output to maximize either
NPV or PPV. Considering the value of this score, our studies showed an important result:
all 15 lesions in the validation set having a likelihood of being high-aggressive equal to zero
were indeed either GG1 or GG2 lesions. If further validated on a larger dataset, this might
impact the management of this subgroup of patients for whom an invasive procedure
might be avoided.

In the literature, several studies developed AI-based algorithms to characterize PCa
aggressiveness, mainly focusing on distinguishing clinically significant PCas (GG1 vs. GG
≥ 2) [10] and reaching promising results in multicenter datasets [11]. However, only a
few studies focused on the distinction of GG1/GG2 lesions from higher aggressive PCas,
obtaining a cross-validated AUC from 0.75 to 0.77 using different machine learning algo-
rithms [16,17]. Cuocolo et al. [18] evaluated the relationship between shape features and
low/high aggressive tumors through a multivariable logistic analysis, reaching an AUC
of 0.78 with a specificity and sensitivity of 97% and 56%, respectively, on the training set.
Bertelli et al. [15] developed an ensemble learner classifier obtaining an AUC of 0.79 on an
internal validation set, i.e., using a monocenter dataset. However, all these studies included
only one center in their dataset, and none of them validated their results on an external set.
Our results are comparable to those in the literature but with the remarkable advantage of
keeping two centers as an external validation set, demonstrating the generalization capabil-
ity of the radiomics classifier (no significant differences were found in the performances of
the construction and validation set). As an additional strength of this work, we obtained a
radiomics quality score (RQS) [8] of 11 (Supplementary Section S8), which is higher than
the average RQS score of 7.93 previously calculated for prostate radiomics studies [28].

Finally, the innovative side of this study is that we have provided an explainable model,
deriving relevant information about the importance of selected features. More specifically,
seven out of ten features used by the best model were extracted from the ADC map,



Cancers 2024, 16, 203 10 of 13

including the ADC mean, whose value was demonstrated to have a negative relationship
with the probability of high-aggressive PCa (Figure 6 and Supplementary Section S5).
This is consistent with the literature since ADC values are demonstrated to be moderately
correlated to GG of peripheral zone lesions [29] and to have a role in differentiating GG2 and
PCa with higher grades [16,30–32]. Moreover, it was demonstrated that high-aggressive
peripheral zone tumors are associated, on the ADC map, with high values of entropy
and low values of energy [33]. Interestingly, considering features individually, we found
that entropy plays a crucial role in distinguishing between low and high aggressive PCas,
also in our algorithm. Indeed, the ‘ADC–GLRLM–Run Entropy’, the second feature in
decreasing order of importance (Figure 5) that measures the uncertainty/randomness in
the distribution of run lengths, i.e., sequences in a straight scan direction of pixels with
identical image value, and gray levels, was found to play a relevant role in the prediction of
low-aggressive PCas. Low values of this feature, i.e., high homogeneity, were found to push
predictions towards a lower probability of high-aggressive PCas (Figure 6). Conversely,
the most important feature of the model, the ‘ADC-GLRLM- Run Length Non-Uniformity’
(Figure 5), drives the classification of PCa towards the high-aggressive class.

Nevertheless, our study has some limitations. The first limitation regards the limited
sample size of the four centers, which affected several aspects of the results of this study.
First, the sample size of center D not only impacts the robustness of the results of center D,
but it might also be responsible for the significant difference in specificities that we found
between centers C and D of the validation set. Indeed, it is important to notice that center D
includes only 20 low-aggressive lesions, and therefore, the obtained p-value, close to 0.05, is
highly influenced by the sample size. An increase in the number of low-aggressive lesions
acquired with a 3T scanner would be beneficial to either confirm or reject the hypothesis that
specificities between 1.5T and 3T datasets are significantly different. Second, an increase
in the sample size of all four centers would have allowed us to perform cross-validation,
permuting two centers in the construction set and then externally validating the models
on the two remaining ones. This permutation strategy was implemented as our first
attempt at the radiomic pipeline, but it did not result in acceptable performances, probably
due to the low sample size and the unbalanced number of patients per class across the
different centers. Third, we found that all of the 15 lesions of the validation set with a null
likelihood of being high-aggressive were indeed GG ≤ 2; however, this was not true in the
construction set, where 4/15 lesions with a null likelihood of being high-aggressive were
misclassified. This difference may be due to the number of GG1 PCa in the validation set
(n = 20), which was higher than in the construction set (n = 1). Therefore, an increase in the
sample size of the centers would be of key importance to confirm the generalizability of the
model in classifying low-aggressive PCas. A second limitation is that we did not perform a
preliminary step of detection of outliers, which affected the values of some features. As
can be seen in the colors of the SHAP plot of the construction and validation sets, since the
construction set contained some elements with particularly high or low values of some
features, after min-max normalization, these features were skewed towards, respectively,
low or high values. However, we believe that this does not affect the predictions since
for those methods using the distribution of values (e.g., Bayesian), the distribution is not
impacted by the presence of one/two outliers, while for those methods using hyperplanes
(e.g., SVM), again, the position of the hyperplanes is not influenced by the presence of a few
outliers. A third limitation is that the reference standard of 14% of patients was based on
target biopsy. However, the model was trained using only patients having prostatectomy
as the reference standard; therefore, bias might be introduced only in the validation set.
Finally, we did not account for intra-lesion heterogeneity to stratify GG2 and GG3 PCas
according to the percentage of Gleason pattern 4. In the future, it would be useful to
provide a probability map of tumor grade heterogeneity together with the aggressiveness
index to spatially characterize different tissue characteristics.
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5. Conclusions

In this study, we developed a radiomics model, based on texture features from bpMRI,
that automatically assigns a PCa aggressiveness class to selected suspicious lesions, distin-
guishing tumors with a good prognosis, i.e., low-aggressive PCas, from more aggressive
ones. Predicting high-aggressive PCa with radiomics remains very challenging; however,
this noninvasive approach, if further validated and integrated into a clinical decision
support system, could help clinicians to manage men with suspicion of PCa, suggesting
personalized treatments and selecting patients that might benefit from radical treatment
and those that could enter surveillance protocols or undergo less destructive treatments,
avoiding biopsy discomfort and related complications.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/cancers16010203/s1. Supplementary Section S1 Reporting Guidelines:
from image acquisition to data conversion; Supplementary Section S2 Reporting Guidelines: from
image preprocessing to features calculation steps; Supplementary Section S3 Feature selection algo-
rithms and classifiers; Supplementary Section S4 Partial dependence plot; Supplementary Section S5
Comparison of feature selection techniques and classifiers; Supplementary Section S6 List of features
selected by the affinity propagation algorithm and used to train the final classifier; Supplementary
Section S7 Standards for Reporting of Diagnostic Accuracy Studies (STARD) diagram; Supplementary
Section S8 Radiomics quality score (RQS).
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