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Abstract—Hardware-aware Neural Architectural Search
(NAS) is gaining momentum to enable the deployment of deep
learning on edge devices with limited computing capabilities.
Incorporating device-related objectives such as affordable
floating point operations, latency, power, memory usage, etc.
into the optimization process makes searching for the most
efficient neural architecture more complicated, since both
model accuracy and hardware cost should guide the search.
The main concern with most state-of-the-art hardware-aware
NAS strategies is that they propose for evaluation also trivially
infeasible network models for the capabilities of the hardware
platform at hand. Moreover, previously generated models
are frequently not exploited to intelligently generate new
ones, leading to prohibitive computational costs for practical
relevance. This paper aims to boost the computational efficiency
of hardware-aware NAS by means of a neuro-symbolic
framework revolving around a Probabilistic Inductive Logic
Programming module to define and exploit a set of symbolic
rules. This component learns and refines the probabilities
associated with the rules, allowing the framework to adapt and
improve over time, thus quickly narrowing down the search
space toward the most promising neural architectures.

I. INTRODUCTION

Deep learning is a dominant machine learning technique
that is pushing the frontiers of a growing number of high-
impact applications such as language translation [1], speech
recognition [2], speech synthesis [3], image recognition [4]
and image synthesis [5].

The current unmatched accuracy that deep learning is
achieving in the above and other realms is the outcome of
a historical trend where model performance optimization has
been pursued as a virtually exclusive goal. This has resulted
in the supervised training of complex neural network architec-
tures using large quantities of labeled data. This approach is
currently running out of steam.

On the one hand, the computational requirements of deep
learning are quickly becoming economically, technically and
environmentally unsustainable as limits are stretched, thus
calling for less computationally-intensive methods of improve-
ment [6]. On the other hand, as deep learning is gaining

momentum for extracting meaningful information from raw
sensor data from Internet-of-Things devices, matching its
computational requirements with the tight resource budgets of
such devices is becoming a daunting challenge. More specifi-
cally, edge computing platforms vary hugely in terms of their
computation capabilities, memory capacities or power budgets,
as well as performance targets. Thus, a neural network needs
to be optimized for the hardware platform it will be deployed
on since no-one-model fits all.

This context motivates a renewed surge of interest in Net-
work Architecture Search (NAS) approaches. NAS has been
long investigated as an effective way of overcoming manually-
designed models through automatic generation [7]. However,
while considerable effort has been historically devoted to
accuracy optimization, hardware constraints are increasingly
incorporated into multi-objective search strategies to fit the
resource budgets of the inference platform at hand [8]–[11].
The most advanced approaches target holistic optimization
encompassing both the hardware platform and the model
architecture [12]–[16].

To date, the most daunting challenge common to NAS
frameworks with different degrees of hardware awareness
consists of the prohibitive computational cost for exploring
a large and complex search space. Specifically, a NAS is
composed of three main elements: Search Space (i.e., all
possible architectures that can be generated during the op-
timization process), Search Strategy (the methods to explore
the Search Space), and Performance Estimation Strategy (the
possible methods for measuring the quality of the generated
models) [17]. There are different search strategies that can
be used to explore the search space of neural architectures:
random search, Bayesian Optimization [18], reinforcement
learning [19], gradient-based methods [20] and evolutionary
algorithms [17], [21]. The main problem of these strategies
is that they propose for evaluation also trivially infeasible
network models for the hardware platform at hand. Moreover,
many of them do not exploit the previously generated models



to intelligently generate new ones, leading to a more time- and
resource-consuming search.

The main goal of this paper is to boost the computational
efficiency of hardware-aware NAS through an adaptive search
strategy that accounts for previous experience during the
generation of new model architectures. The new approach
revolves around Symbolic DNN-Tuner [22], [23], a neuro-
symbolic framework [24] driving the training of a DNN, using
the symbolic part to analyse the performance of each training
experiment and to guide the choice of Hyper-Parameters (HPs)
to obtain a network with better performance. In particular, the
symbolic part uses a Probabilistic Inductive Logic Program-
ming [25] module to define and exploit a set of symbolic rules.
This component learns and refines the probabilities associated
with the rules, allowing the system to adapt and improve over
time. This adaptive learning capability increases the system’s
effectiveness in exploring the search space over time, and
finding neural architectures that satisfy hardware constraints.

Without lack of generality, hardware awareness is gained
through a commonly-used constraint on the number of floating
point operations (FLOPS) that is affordable for the computing
platform at hand [9]. More accurate models of the underlying
hardware (e.g., encompassing latency and power) are left
for future work, while the emphasis of this paper is on
demonstrating the potential of the new NAS approach. To
the best of our knowledge, this is the first time the problem
of hardware-aware NAS is solved with a rule-based learning
component based on probabilistic logic languages.

Last but not least, the use of logical rules makes the system
strongly declarative as their meaning is clear to the user. In this
way, operations like additions or updates of rules can be easily
done, making the system easily extensible. As a result, this
work is the the first step towards an extensible, declarative, and
intelligent hardware-aware NAS approach, which can possibly
be used, thank to its declarativeness, by users not expert in the
deep learning domain.

The proposed NAS framework is validated through a com-
parison with the Efficient Neural Architecture Search (ENAS)
[19] implemented in Autokeras1 [18], one of the most widely
used open source NAS frameworks, which was extended in or-
der to incorporate the FLOPS constraint. Autokeras efficiently
explores the search space by developing a neural network
kernel and a tree-structured acquisition function optimization
algorithm. It integrates network morphism [26] and utilizes
Bayesian Optimization (BO) [27] to move efficiently through
the search space by selecting the most promising operations
each time.

When comparing the proposed NAS framework with Autok-
eras to synthesize neural architectures for a set of hardware
platforms with increasing compute capabilities, the former
takes on average 78% less time while achieving an inference
accuracy that is 31% higher.

The paper is organized as follows: Section II discusses
the related works. Section III presents the Neural Architec-

1https://autokeras.com/

ture Search and the Autokeras framework, while Section IV
presents the proposed approach to NAS. Finally, Section V
illustrates the experiments while Section VI concludes the
paper.

II. RELATED WORKS

In this section, we review previous work that addresses the
NAS problem with physical constraints, i.e., the search for
optimal neural architectures while satisfying time, resource,
or accuracy constraints.

Constrained NAS arises as a crucial challenge in the opti-
mization of neural architectures. Several studies have proposed
innovative approaches to achieve a balance between the search
for high-performance architectures and the imposition of com-
putational constraints.

In [28], the authors present a NAS system for micro-
controllers where the search space is being reduced from
respecting physical constraints due to limited resources, and
is explored by a multi-objective function. This function takes
into account constraints such as the maximum memory used,
storage space required, and time efficiency. Two search al-
gorithms are discussed in [28]: Aging Evolution (AE) and
Bayesian Optimization (BO). The former performs a local
search by applying a random morphism at each iteration,
i.e. by introducing random changes or modifications to the
architecture, such as adding or removing layers, changing layer
sizes, or altering the connectivity patterns between layers. The
latter approximates the target function using a surrogate model
and guides the search through unexplored regions of the search
space.

In [29] the authors propose a progressive search strategy to
identify Pareto-optimal neural architectures while considering
constraints of the target device. The approach relies on an
initial pool of candidate architectures and iteratively selects
promising solutions to generate new architectures, optimizing
the trade-off between accuracy and computational resources.
Other approaches popular in the literature are NAS using Rein-
forcement Learning (RL) with various physical constraints, i.e.
computational resources, memory and latency constraints [8],
[9], [30], and also energy efficiency constraints [9].

Monas [30] combines RL with a multi-objective formulation
to explore the trade-off between multiple objectives, resulting
in Pareto-optimal architectures. Mnasnet [8] incorporates RL
for mobile-specific architecture search, considering platform
awareness and resource constraints. RENA [9] uses RL tech-
niques to optimize neural architectures based on resource
efficiency, enabling the discovery of efficient models.

These RL-based NAS approaches demonstrate the effective-
ness of reinforcement learning in guiding the search process,
considering various goals and constraints specific to different
application scenarios.

Multi-target genetic algorithms are also utilized in the
literature. In [31], the power of genetic algorithms is harnessed
to explore the search space and optimize multiple objectives
simultaneously. Specifically, it aims to find solutions that
satisfy a combination of goals, generating a set of high-quality



neural architectures that represent the Pareto front of optimal
solutions. NSGA-Net [31] provides an effective alternative
for optimizing neural architectures by considering multiple
objectives concurrently, typically encompassing model accu-
racy, required computational resources (such as memory or
runtime), and other desired performance metrics. The same
multi-target optimization evolutionary engine is used in [32]
that makes a neural network population to evolve from a
pre-trained starting super-net to smaller networks satisfying
optimization targets for specific data-sets.

In the context described above, our approach distinguishes
itself by using a neural-symbolic framework based on sym-
bolic tuning rules that guide the search in the search space.
The set of rules allows an easier addition and modification of
the search strategy and the management of constraints for the
search space.

III. BACKGROUND

A. Neural Architecture Search

NAS is a technique for automating the design of DNN
architectures. It is strictly correlated to AutoML [33]. The
three main elements that compose a NAS are Search Space,
Search Strategy and Performance Estimation Strategy. Search
Space refers to the space of all possible architectures that can
be generated by the NAS and strictly depends on the hyper-
parameters (HP) set for the model search. Search Strategy
refers to the methods to explore the search space with the
canonical exploration-exploitation trade-off. Performance Es-
timation Strategy refers to the methods to measure the perfor-
mance of the built neural network [17]. Given a Search Space,
there are many Search Strategies that can be used to explore
this space. These strategies include: random search, Bayesian
Optimization (BO) [18], reinforcement learning [19], gradient-
based methods [20] and evolutionary algorithms like genetic
algorithms [17], [21]. We can group NAS in two branches: the
standard and the one-shot NAS [34]. Standard NAS follows
the traditional search approach also used by Grid Search,
where each generated DNN runs as an independent train.
One-shot NAS uses weight sharing among models in neural
architecture search space to train a super-net and uses this to
select better models. This type of algorithm reduces compu-
tational resources compared to the classical NAS algorithm.
The state-of-the-art of one-shot NAS are: Efficient Neural
Architecture Search (ENAS) [19], Differentiable Architecture
Search (DARTS) [20], Single Path One-Shot (SPOS) [35] and
ProxylessNAS [36].

B. The Benchmark: Autokeras

Many of the mentioned NAS approaches require a huge
amount of time and computational power to reach good results.
Reducing the computational complexity of NAS approaches is
thus becoming a critical research area. Network morphism,
which keeps the functionality of a neural network while
changing the model architecture [26], is one of the most
promising approaches and is thus considered in this paper
as a benchmark. Autokeras is a state-of-the-art open-source

software that integrates network morphism: the key idea is to
explore the search space via morphing the neural architectures
(e.g., inserting a layer or adding a skip-connection) guided
by the BO algorithm. This algorithm iteratively runs three
steps: trains the underlying Gaussian process model with the
existing architectures and their performance, generates the next
architecture to be observed by optimizing a delicately defined
acquisition function and obtains the actual performance by
training the generated neural architecture.

For the sake of homogeneous comparison with the proposed
NAS framework, Autokeras’ flexibility has been exploited to
incorporate the FLOPS constraint into the architecture search
process. More specifically, the modification made to Autokeras
consists of calculating the number of FLOPS of any new
generated DNN and discarding it in case it exceeds the FLOPS
limit, forcing the algorithm to regenerate another one. This
process is iterated until a network is generated that meets the
imposed limits.

The choice of Autokeras as a validation benchmark is
due to two main factors. First, Autokeras is one of the
most widely used open source NAS. Second, it is strongly
connected with Tensorflow, the framework used by Symbolic
DNN-Tuner to manage neural networks. Many other related
systems are based on different neural network frameworks
or are not implemented with the aim of making them easily
extensible as Autokeras. We believe that in order to compare
two systems fairly, it is necessary to put them both under the
same conditions and be sure that these conditions are optimal
for both. With this in mind, considering two systems having
the same underlying framework for neural networks makes it
possible to obtain directly comparable results.

IV. PROPOSED NEURO-SYMBOLIC NAS

A. Symbolic DNN-Tuner

The approach proposed by this paper leverages ”Neuro-
symbolic Artificial Intelligence” technology. Neuro-symbolic
AI refers to a field of research and applications that com-
bines machine learning methods based on artificial neural
networks, such as deep learning, with symbolic approaches
to computing and AI, as can be found for example in the AI
subfield of knowledge representation and reasoning. Central
to our approach is the extension of a state-of-the-art neuro-
symbolic framework named Symbolic DNN-Tuner [22], [23]
to incorporate hardware-level objectives in the search strategy.

In short, Symbolic DNN-Tuner drives the training of a DNN
by analysing the performance of each training experiment and
automating the choice of Hyper-Parameters (HPs) to obtain a
network with better performance. This system exploits Prob-
abilistic Logic Programming (PLP) to analyse the network’s
performance and exploits probabilistic symbolic rules to drive
the choice of both HPs and the network architecture.

More specifically, Symbolic DNN-Tuner can be seen as
a symbolic Hyper-Parameters Optimization (HPO) algorithm
or a symbolic NAS with HPs optimization based on BO.
This framework combines an automatic tuning approach with
some tricks usually used in manual approaches [37]. For the



automatic approach, we use BO [27]. This choice is motivated
by the fact that tuning DNNs is computationally expensive
and the BO algorithm limits the evaluations of the objective
function (in this case, DNNs training and validation) by more
intelligently choosing the next set of HPs values.

The techniques used in the manual approach are mapped
to non-deterministic and probabilistic Symbolic Tuning Rules
(STRs). These tuning rules are designed to edit the HP search
space, add new HPs, or update the network structure. Each
STR encapsulates a Tuning Action (TA) associated with a
problem like overfitting, underfitting, or wrong learning rate
values. The activation of these rules allows one to avoid such
network problems and to guide the entire learning process to
better results.

Symbolic DNN-Tuner is composed of two parts: a Neural
Block that contains the neural network, the HPs search space
and the application of the TAs, and a Symbolic Block that
diagnoses problems and identifies the (most probable) TA to
be applied on the network architecture based on the network
performance and computed metrics after each training. The
whole execution pipeline of Symbolic DNN-Tuner and its
blocks is shown in Figure 1.

Fig. 1. Symbolic DNN-Tuner execution pipeline with the Neural Block and
the Symbolic Block.

An example of STRs is shown in Figure 2. Each STR is
triggered depending on the problem detected on the network
and defines a possible TA to do to solve the detected problem.
A probability value associated with each STR determines the
probability of application of its TA, in case the associated
problem is diagnosed. For example, the first rule proposes to
perform data augmentation in case of overfitting, while the
second to decrease the learning rate in case of underfitting.

The probabilistic weights are learned from the experience
(called evidence) gained from previous iterations. This expe-
rience becomes the set of training examples for a ”Learning
from Interpretation (LFI)” program [25], a kind of Inductive
Logic Programming. Then, the LFI program is composed of
two parts: the program and the evidence, as shown in Figure 2.
The program contains the actions to apply with the correspond-
ing probability value learned during the tuning. The evidence
tells whether the application of a specific action improved
the model performance. Accumulating evidence forms the LFI

% Rules
0.7::action(data_augment):-

problem(overfitting).
0.3::action(decr_lr):-

problem(underfitting).
...
% ============ LFI Program ============ %
% Program
t(0.5)::action(data_augment).
t(0.2)::action(decr_lr).
...
% - - - - - - - - - - - - - - - - - - - %
% Evidence
evidence(action(data_augment), True).
evidence(action(decr_lr), False).

Fig. 2. Symbolic Tuning Rules in the Symbolic Block of Symbolic DNN-
Tuner.

training set that is used to tune the probabilities in the program.

B. Incorporating Hardware Objectives

The optimization process of Symbolic DNN-Tuner is based
on the optimization performed by BO. Differently from the
original tool, in this work these optimization methods will be
used to optimize the neural architecture with respect to both
network performance and device-related objectives.

More specifically, we considered the number of FLOPS
(FLOating Point OperationS) as a constraint to fulfil during the
tuning of the model. It is an approximate metric that quantifies
the available computing power in the underlying execution
platform.

Similar to other NAS approaches [9], in this early stage of
tool development the goal is not to model hardware cost in the
most precise way, but rather to show that when approximate
metrics are considered the proposed NAS can efficiently
optimize them. This leads to a precise cost quantification in
terms of the fundamental operations and to easily interpretable
results without an excessive specialization of the NAS frame-
work for the hardware platform at hand.

Overall, the aim is to maximize model accuracy and obtain
a network architecture to be deployed in resource-constrained
platforms with a number of FLOPS as close as possible to a
predetermined threshold. Hence, the focus of BO is on solving
the problem:

min
x∈D

fflops (1)

where fflops is the objective function, the input x is in Rd, d
is the number of HPs and D is the search space which can
be seen as a hyper-cube where each dimension is a hyper-
parameter. In detail, fflops is

fflops = −|Acci − |FLOPSth − FLOPSi| × ϵ| (2)

with Acci and FLOPSi the accuracy and the number of
FLOPS of the ith model respectively, and FLOPSth the



0.4::action(dec_neurons,thr_exceeded):-
problem(thr_exceeded).

0.7::action(dec_layers,thr_exceeded):-
problem(thr_exceeded).

Fig. 3. STRs for imposing the constraint on the number of FLOPS.

threshold of the FLOPS that the hardware can manage. ϵ
is an HP used to balance and adjust the contribution of the
calculated gap between the FLOPS on the objective function. ϵ
has been empirically set to 0.33 performing parameter sweep.
FLOPSi and FLOPSth are normalized between 0 and 1.

In order for Symbolic DNN-Tuner to optimize DNNs tak-
ing into account the FLOPS constraint, it is necessary to
create a new Symbolic Tuning Rule that activates when the
created DNN exceeds the FLOPS limit. We defined a new
problem(thr_exceeded), occurring when the number of
FLOPS exceeds the threshold, and two new Tuning Actions.
The first TA decreases the number of neurons in the various
layers and the second one removes the last convolutional
layer and any other layer related to it (for example, pooling
layer, dropout etc.). This is to maintain consistency in the
neural network architecture after removing the convolutional
layer. Figure 3 shows the two new STRs with their respective
probabilistic weights. These weights are randomly initialized
and adaptively tuned during the execution of the system.

In the extended Symbolic DNN-Tuner, the designer knowl-
edge is embedded in the rules used at each iteration to mutate a
HP that is likely to be a problem in the current network model.
This is a very different approach with respect to Autokeras,
where the network is mutated in a way that is unaware of its
possible problems. As it is will be shown in the experimental
results, this approach improves the growth rate of the quality
of produced solutions.

V. EXPERIMENTAL RESULTS

We evaluated the extended Symbolic DNN-Tuner and the
modified version of AutoKeras with matched hardware aware-
ness on image classification problems using the CIFAR10
dataset [38]. Both frameworks were put at work in 8 different
experiments, distinguished by various and progressively re-
laxed FLOPS thresholds to be met: 10M, 30M, 40M, 80M,
90M, 100M, 110M, and 120M FLOPS. This experimental
campaign corresponds to the design space exploration that
designers of edge devices may perform to characterize the
accuracy-cost trade-off: high-end neural network models are
likely to result in violations of the resource budget, while small
models would not provide sufficient levels of accuracy.

A. Results

The experiments with both Autokeras and Symbolic DNN-
Tuner demonstrate two very different behaviours. In the for-
mer, the exploration phase produces many neural networks
achieving very low accuracy. Also, the computation of the
accuracy tipically requires a long time as the network must be

trained. On the other hand the latter, thanks to an intelligent
exploration, can find a good model in the very beginning that
is then improved by fine-tuning the hyper-parameters. This
behaviour is shown for both systems in Figure 4. Each ×
represents the accuracy (y-axis) for a given value of FLOPS (x-
axis) for every model trained by Autokeras, while each circle
represents the same for Symbolic DNN-Tuner. The colors of ×
and circles correspond to the FLOPS thresholds, represented
by vertical lines. As can be seen, × are more sparse, showing
that very different models are tested by Autokeras. A large
number of × are placed in the lower portion of the graph,
corresponding to models with low accuracy. Symbolic DNN-
Tuner finds a good model and gradually improves that model,
instead of trying very different architectures. The accuracy
trend of the two frameworks for each FLOPS threshold is
highlighted in Figure 5: Symbolic DNN-Tuner always exceeds
Autokeras, with an average improvement of 31%.

Execution times are displayed in Figure 6: for every thresh-
old Symbolic DNN-Tuner is the fastest system, with an aver-
age improvement that is as large as 78%. This is because of the
previously mentioned Autokeras behaviour: its execution time
is unnecessarily increased by the construction and training
of networks that have a high probability of never reaching
the optimum. This behaviour demonstrates one of the main
capabilities of the Symbolic DNN-Tuner: the symbolic block
enables one to adaptively change the search space, saving time
by dynamically excluding HPs values that would move the
optimization away from a potential optimum.

In the context of this work, it is interesting to see the
symbolic analysis made by Symbolic DNN-Tuner and which
Tuning Rules were activated. Tables I, II, III, IV show the
diagnosis and TAs used by Symbolic DNN-Tuner for the eight
experiments. In bold one can see every time that the sym-
bolic analysis detected when the threshold of the maximum
FLOPS had been exceeded. As also highlighted in Figure
7, the FLOPS threshold is exceeded in the range 10-90M
FLOPS. From 100M FLOPS onwards this phenomenon was
not detected anymore. This behaviour is also visible in Figure
4, where there are dots for Symbolic DNN-Tuner presenting
a number of FLOPS higher than the fixed threshold (e.g., two
red dots for the 800M threshold are placed around 100M and
130M FLOPS). We could interpret this result as an indication
of the basic size (or capacity) of the DNN: networks allowing
less than 10M FLOPS are not usable on this dataset or for this
specific experiment. DNNs with more than 90M may work
best for this task. Thus, we can tackle the problem of how to
find the best dimensioning of a DNN given a dataset.

VI. CONCLUSIONS

This paper leverages neuro-symbolic artificial intelligence
technology for efficient hardware-aware NAS, which quickly
guides the learning process toward optimized neural architec-
tures in terms of both network performance and device-related
objectives. The framework consistently and significantly out-
performs a popular open-source Automated Machine Learning
system based on Keras with matched hardware awareness



Fig. 4. Comparison between Symbolic DNN-Tuner (blue area) and Autokeras (orange area) accuracy at various FLOPS thresholds. MFLOPS are represented
on the x-axis, and the accuracy obtained by the various models is shown on the y-axis. The FLOPS set for each experiment are represented by vertical lines
and reported in the legend. Models generated by Symbolic DNN-Tuner and Autokeras are indicated with a × and a circle, respectively.

Fig. 5. Comparison of the accuracy of Autokeras (orange line) and Symbolic
DNN-Tuner (blue line), both of which were tested at various FLOPS thresh-
olds. The thresholds are represented on the x-axis, and the accuracy attained
by the best models is shown on the y-axis.

when exploring neural architectures for a range of hardware
platforms with increasing compute capabilities.

The proposed approach to NAS comes with two distinctive
benefits. On the one hand, the probabilistic weights of tuning
actions are learned from the experience gained in previous
iterations. This enables to quickly narrow down the search
space toward the most promising solutions, thus cutting down
on the computation cost associated with the evaluation of
trivially-infeasible solutions for the capability of underlying

Fig. 6. Autokeras (orange line) and Symbolic DNN-Tuner (blue line) time
comparisons at various FLOPS thresholds. The thresholds are shown on the
x-axis, and the time taken by each framework to complete 30 iterations with
a given FLOPS constraint is shown on the y-axis.

hardware. On the other hand, the declarative nature of the tool
makes it easily extendible, with the specification of logic rules
and tuning actions that are potentially within reach of non-
experts in the deep learning domain as well. In future work,
the tool will be further extended to gain deeper awareness
of the underlying hardware through refined cost models of
heterogeneous computing platforms.



TABLE I
DIAGNOSIS & TUNING WITH 10M AND 30M FLOPS RESPECTIVELY

(ACRONYMS OF THE TUNING RULES ARE AVAILABLE IN TABLE 2 OF [22]
AND FIGURE 3)

Step 10M FLOPS 30M FLOPS

Diagnosis Tuning rule Diagnosis Tuning rule

1 reg l2 overfitting inc lr low lr
data augmentation overfitting dec layers thr exceeded
inc lr low lr
dec layers thr exceeded

2 inc lr low lr reg l2 overfitting
inc batch size floating loss data augmentation overfitting
dec neurons thr exceeded inc lr low lr

3 inc lr underfitting reg l2 overfitting
inc batch size floating loss data augmentation overfitting
dec neurons thr exceeded decr lr underfitting

inc batch size floating loss

4 inc lr underfitting decr lr underfitting
inc batch size floating loss
dec neurons thr exceeded

5 inc lr low lr decr lr underfitting
inc batch size floating loss
dec neurons thr exceeded

TABLE II
DIAGNOSIS & TUNING WITH 40M AND 80M FLOPS RESPECTIVELY

(ACRONYMS OF THE TUNING RULES ARE AVAILABLE IN TABLE 2 OF [22]
AND FIGURE 3)

Step 40M FLOPS 80M FLOPS

Diagnosis Tuning rule Diagnosis Tuning rule

1 reg l2 overfitting decr lr underfitting
data augmentation overfitting dec layers thr exceeded
inc lr low lr
dec layers thr exceeded

2 decr lr underfitting reg l2 overfitting
inc batch size floating loss data augmentation overfitting
dec layers thr exceeded decr lr underfitting

dec layers thr exceeded

3 decr lr underfitting decr lr underfitting
dec layers thr exceeded inc batch size floating loss

dec layers thr exceeded

4 decr lr underfitting decr lr underfitting
inc batch size floating loss

5 decr lr underfitting decr lr underfitting
inc batch size floating loss inc neurons underfitting
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