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Abstract—The challenge posed by on-tiny-devices learning 
targeting ultra-low power devices has recently attracted several 
machine learning researchers. A typical on-device model 
learning session processes real time streams of data produced by 
heterogeneous sensors. In such a context, this paper proposes 
TinyRCE, a forward-only learning approach based on a hyper-
spherical classifier aiming to be deployed on microcontrollers 
and, potentially, on sensors. The learning process is fed by 
labeled data streams to be classified by the proposed method. 
The classical RCE algorithm has been modified adding a forget 
mechanism to discard useless neurons from the classifier's 
hidden layer, since they could become redundant over time. 
TinyRCE is fed with compact features extracted by a 
convolutional neural network which could be an extreme 
learning machine. In such case, the weights of the topology were 
randomly initialized instead of trained offline with 
backpropagation. Its weights are stored in a tiny read-only 
memory of 76.45KiB. The classifier required up to 40.26KiB of 
RAM to perform a complete on-device learning workload in 
0.216s, running on an MCU clocked at 480MHz. TinyRCE has 
been evaluated with a new interleaved learning and testing 
protocol to mimic an on-tiny-device forward learning workload. 
It has been tested with openly available datasets representing 
human activity monitoring (PAMAP2, SHL) and ball-bearing 
anomaly detection (CWRU) case studies. Experiments have 
shown that TinyRCE performed competitively against a 
supervised convolutional topology followed by a SoftMax 
classifier trained with backpropagation on all these datasets. 

Keywords— On-Tiny-Device Learning, TinyML, Hyper-
Spherical Classifier, Extreme Learning Machines, Feature 
Extraction, Human Activity Recognition. 

I. INTRODUCTION 
Supervised Artificial Intelligence (AI) and Tiny Machine 

Learning (TinyML) are nowadays widely adopted 
approaches. They are deployed in many products in multiple 
applications offering high performance. [1] benchmarked 
multiple Deep Neural Networks (DNNs) reporting accuracy, 
memory usage, complexity, and latency, showing that as the 
complexity of DNNs grows to face more challenging 
problems, DNNs demand more memory and computational 
capability to support learning and K-fold validation, thus their 
model size increases as well. The deployment of complex 
DNNs on tiny devices and their use to process sensor-
generated data streams can also be affected by a confidence 
drop between the accuracy achieved in training and the 
inference phase [2], due to various possible causes. As a 
consequence, continuous updates are required over time, thus 
the DNNs need to be re-trained. The de-facto standard training 
approach, adopted by many deep learning frameworks [1], is 
based on backpropagation and stochastic gradient descent 
(SGD). Indeed, backpropagation requires many iterations of 

forward and backward workloads applied to different 
partitions of the training data (K-folds) which, in turn, require 
large storage. Retraining with such an approach requires 
powerful computational and storage assets. Unfortunately, for 
tiny devices like micro-controller units (MCU), performing 
Continuous Learning (CL) becomes too costly. In the popular 
cloud-based support scenario, low-complexity tiny devices 
stream sensor data to the cloud, while the latter performs all 
the highly resource-demanding AI workloads. Although 
cloud-based solutions [3], with virtually unlimited 
computational and storage resources, seem to have clear 
advantages over the capability of tiny devices, they still 
account for many disadvantages, including risks for privacy 
and security of user data, higher latency, and the difficulty to 
achieve nW to µW power consumption targets. 
Backpropagation can also be heavily affected by catastrophic 
forgetting (CF) [4], which is the main threat to achieve CL. 
All of that represents an opportunity to reconsider supervised 
learning procedures and extend the state of the art beyond 
backpropagation, by conceiving new on-tiny-device learning 
algorithms. This paper proposes an approach to on-tiny-device 
CL without using backpropagation. Section II introduces the 
problem statement and requirements to be fulfilled by the 
solution; section III reviews existing related works and reports 
their limitations; section IV summarizes the datasets used to 
shape the case studies for experimenting the learning and 
testing workloads; section V explains the proposed solution, 
highlights differences with respect to the previous works and 
describes how the On-Device Learning (ODL) field was 
approached; section VI reports the experimental results; 
section VII analyzes the complexity of the proposed solution 
with respect to its deployment on MCUs, followed by the 
conclusions and future works in section VIII. 

II. PROBLEM STATEMENT AND REQUIREMENTS 
The question posed at the beginning of the work was: can 

incremental learning of multiple categories happen, totally on-
line without catastrophic forgetting or back-propagation and 
be deployable on memory-constrained devices? Therefore, the 
requirements were set as reported in TABLE I. The proposed 
solution shall store much less sensor data than K-fold 
backpropagation learning procedures. The learning shall be 
determined by the few data made available at a certain time by 
the sensor. On-device learning of the DNN model shall 
happen within the MCU embedded memory constraints. The 
DNN model should take less time to complete the learning 
than to acquire the data. Most importantly, the DNN shall 
learn to classify multiple sequentially presented categories of 
data. The process shall maximize accuracy and be compared 
against backpropagation-based learning.  

TABLE I.  REQUIREMENTS TO BE FULFILLED BY TINY ODL 



No. Requirements 
1. Real time forward learning. 
2. No backpropagation. 
3. Deployable in MCU, optionally in the sensor within its embedded 

memory capacity. 
4. Perform classification. 
5. Capable of interleaved learning and testing workloads 
6. Minimal storage of sensor data. 
7. Limited latency to run learning workloads. 

 

III. RELATED WORKS 

A. On-device learning 
CF [4] resulted from DNNs trying to learn from new data 

presented sequentially. The models discarded previous 
knowledge, leading to poor performances and 
misclassifications. CL extended the knowledge of DNNs to 
different tasks without retraining them from scratch nor 
forgetting previous knowledge. [5] reviewed different CL 
methods aimed to accumulate knowledge over different tasks. 
[6] reported CL methods for edge devices based on Latent 
Replay (LR). It was targeted for a specific 10-core Parallel 
Ultra Low Power (PULP) processor called VEGA. CL was 
supported with less than 64MB of memory. LR [7] consists in 
storing for later replay intermediate feature maps of few old 
data samples, instead of large data inputs, reducing up to 48x 
the memory usage. 

A.1 Edge devices. [8] introduced an approach to train the 
DNN on hardware without backpropagation. HLS4ML, a 
Python package for ML inference in FPGAs, was used. The 
approach has not been tested on MCUs, though. [9] introduced 
an anomaly detector for rotating machines, which could be 
trained on-line with a low-power wireless Raspberry Pi Pico 
node. On-device learning increased the model's detection 
performance. TinyTL [10] proposes to update only the biases, 
freezing the weights, since doing so allows to not store 
intermediate activations. It also introduces a memory-efficient 
bias module to account for the resulting loss in capacity. It has 
been capable of achieving the same accuracy of fine-tuning 
full models while providing 7.3-12.9x memory savings. It 
required more than 37MB to run image classification and 
perform training on a GPU. 

A.2 ODL on MCU. [11], [12] reported a state-of-the-art 
review for both ODL and ML on tiny devices and summarized 
the importance of the challenges faced. TinyOL [13] 
introduced an additional custom layer to the end of a static 
DNN. This layer’s weights were fine-tuned on-device using 
real time sensor data. New classes were learnt with a 
customizable layer. Incremental learning removed large 
storage of data. This work did not support 8-bit MCUs, and 
the static model had to be trained offline. TML-CD [14] was 
a K-Nearest Neighbor (KNN), capable of updating the 
training set and discarding outdated knowledge after a change 
was detected in the data due to concept drift (CD), which is a 
serious problem faced by tiny devices when deployed in real 
applications. [15] proposed an algorithm/system co-design 
framework which was able to perform on-device learning 
requiring only 256KiB of memory. Quantization-Aware 
Scaling, a tiny training engine which supported sparse update 
of the DNN, parameters were key contributions. 

Other ODL approaches targeted for MCUs were based on 
Reservoir Computing (RC). [16] was a deeply quantized 
anomaly detector of oil leaks in wind turbines feasible on 
32bit MCU. It was tested on a specific dataset [17]: inference 
required 129.2KiB RAM; learning required 2.12MB of RAM. 

[18] introduced an ODL-capable anomaly detector for water 
distribution systems (WDS). [19] detected anomalies in ECG 
signals, achieving an accuracy of 95.4% with a memory usage 
of 60KiB; [20] was an Extreme Learning Machine (ELM) 
method mixed with RC, which ran with less than 192KiB of 
RAM and was used for field-oriented motor control.  

B. Extreme Learning Machines 
[21] introduced the concept of ELM on edge devices. 

ELM was introduced by [22] for regression and multiclass 
classification. Their training converged several times faster 
than Convolutional NN (CNN) with backpropagation. [23] 
clarified more the concepts behind ELM. Moreover, 
homogeneous architecture-based ELM DNNs have been used 
for regression tasks and to discriminate binary and multiple 
classes. [24] proposed a survey of on-line ELM to let the 
parameters evolve in a sequential manner, avoiding retraining 
using past samples that the model already saw. [25] ELM with 
Local Connections (ELM-LC) clustered inputs and hidden 
neurons into groups. Compared to traditional ELM 
approaches, it performed better. 

C. Introduction to RCE and Hyperspherical Classifiers 
RCE classifiers [26] are a branch of hyper-spherical 

classifiers [27]; like K-NN classifiers they can be trained 
without backpropagation. In the simplest form, they consist of 
three layers: an input, hidden, and output layer. The hidden 
and output layers are initialized by storing the 
multidimensional features computed by the input layer, which 
is usually a feature extractor. Hidden neurons are instantiated 
by a selected copy of the input features and defined by a center 
point and a radius. They compose the classifier's feature space. 
The radius determines the space of influence its hidden neuron 
forms in the feature space. Each hidden neuron is fully 
connected to the input layer, while only being connected to 
one neuron of the output layer. The latter is thus sparsely 
connected to the hidden layer. During the learning process, a 
new hidden neuron is created storing a copy of an input feature 
whenever this is not found inside any existing hidden neuron’s 
region of influence. To verify if an input feature is inside the 
region of any already instantiated hidden neurons, a similarity 
measure is computed iteratively through all of them. The 
measure is calculated between the input data and each region 
of influence’s center point, e.g., the Hamming distance is used 
if features are binarized; alternatively, the Euclidean distance 
is used. If such a distance is lower than the hypersphere’s 
radius of only one hidden neuron, then the association to it is 
unambiguous. Vice versa, it would be ambiguous. To create a 
new hidden neuron, the copy of the uncharted input feature is 
associated with the default radius value. Should a neuron 
feature an infinitely small radius, it can be considered 
redundant and as such be removed. Unfortunately, in a basic 
implementation, that would not happen. [26] explained that 
this category of classifiers can discriminate patterns from a 
class that has not yet been learnt such as an unknown class. 
This type of approach has been proved to be applicable 
successfully to anomaly detection problems. 

D. Related works on Hyperspherical classifiers 
[28] was a DNN to segment hands appearing into images. 

The skin-colored pixels were classified and segmented using 
the RCE. An appropriate color space to analyze the skin was 
strategically chosen employing a reduced number of 
calculations. A new approach to reduce the neuron’s radius 
has been introduced to lower the processing. 



 
Fig. 1. Data arrangement to support both learning and testing 
workloads for HAR and BBAC. 6 refers to 3-axis accelerometer and 3-
axis gyroscope integrated inside the chip’s package of inertial sensors. 
Note the samples are presented in streaming order as they are 
temporally produced by the sensing element at its output. 

However, it did not approach removing redundant 
neurons. [29] proposed a RCE inductive classifier, which was 
more efficient than other similar approaches. All the above 
approaches were not meant for MCU deployment, adopted 
traditional offline training methods, and did not perform any 
ODL processing on MCU. 

IV. DATASETS 
This work’s case studies and simulations focused on 

Human Activity Recognition (HAR) and Ball Bearing 
Anomaly Classification (BBAC) datasets. 

[30] PAMAP2 is a human physical activity monitoring 
dataset. Data were captured involving 9 subjects wearing 3 
Inertial Measurement Units (IMU) and a heart rate monitor 
device. For the experimentation of the proposed solution, both 
the 3D-acceleration and 3D-gyroscope data with a G-range 
equal to 16 in different carry positions (hand, chest, and ankle) 
were used. A total of 24 classes is provided, but the maximum 
available classes per user are 12. [31] University of Sussex-
Huawei Locomotion (SHL) is the user’s locomotion and 
transport dataset. It provides data acquired using smartphones 
worn in different body positions: over the hand, chest, hip, and 
inside a backpack. It provides data from 3 users captured for 
3 days using 4 smartphones and accumulating 59 hours of 
annotated recordings each, a total of 227 hours of data divided 
in 8 different classes. Case Western Reserve University 
Bearing Dataset (CWRU1) was used to represent the BBAC 
use case. It provides drive-end and fan-end vibration and 
rotation speed data from a 2hp reliance electric motor. 
Gyroscope data were collected close to the drive end and were 
sampled at 12 and 48KHz. Accelerometer data collected at fan 
end was sampled at 12KHz, with 10 health conditions.  

This work arranged the raw sensor data, sampled at 
100Hz, in frames composed of 100 samples, 6 degrees of 
freedom (DOF) values each, shifted with a step size equal to 
0.5s. 500 of these frames were grouped together and used by 
the learning and testing workloads. 20% (100) of the 500 
frames, i.e. 100s of acquisitions, were used by the learning 
workload. New classes are introduced sequentially over time 
and associated to the frames as shown in Fig. 1. The remaining 
80% frames, capturing 400s of data acquisitions, were used by 
the testing workload. Should not further learning workload be 
needed (e.g. due to scarcity of available data in the datasets or 
no new classes being presented over time), then the testing 

 
1 https://engineering.case.edu/bearingdatacenter/download-data-file 

could run longer than 400 seconds. Detection of concept drift 
was not part of the testing scenario of this work and will be 
experimented in future work. Differently from the K-fold 
learning and validation procedure, where data may be sampled 
in randomly ordered batches, the sequential, temporal order of 
the data produced by the sensor was not altered during the 
simulations of the proposed classifier. An interleaved forward 
fashion for both the learning and testing workloads is thus 
shown in Fig. 2. 

Fig. 2. Flow diagram with the proposed TinyRCE and different feature 
extraction approaches also using the SoftMax layer. 

V. PROPOSED ODL ALGORITHM  
Tiny Restricted Coulomb Energy (TinyRCE) NN is a 

hyper-spherical classifier variant proposed by this work. Fig. 
2 proposes the overall processing flow to compare the 
proposed solution to a traditional backpropagation-based 
approach. The raw sensor data is input for the CNN feature 
extractor (FE). This was both randomly initialized (CNN-
FE_ELM) and offline trained using backpropagation (CNN-
FE_BP). Then their output features fed the TinyRCE 
classifier. The CNN connected to the SoftMax (CNN-
SM_BP) was trained with backpropagation for comparison 
purposes. 

A. Feature Extractor (CNN, CNN-FE) 
The input features of TinyRCE were computed by a 2D 

CNN-FE to fulfill the requirements set in Section II. The FE 
converted the raw time series into 2D features, like [32], [33] 
approaches. The topology of FE was hand-crafted with trial-
and-error attempts to design a computational graph which 
could output 24 values and, at the same time, be deployable 
on MCU. The value 24 was chosen as a trade-off between 
accuracy and computational complexity required by the 
learning workload. TABLE II. reports the topology of the 
CNN-FE and CNN-SM NNs. Both required FLASH memory 
of 76.45KiB assuming 32-bit floating point precision weights. 
CNN-FE_BP was trained offline with backpropagation. Then 
by removing its last dense SoftMax layer, it was connected to 
the TinyRCE classifier to run the learning and testing 
workloads. However, under a challenging ODL requirement, 
which excludes the use of backpropagation, the CNN-FE 
model shall not be trained offline. Therefore CNN-
FE(_ELM)'s weights were initialized with a random normal 
distribution; the topology performed adequately, with a 
limited drop of about 1 to 3% with respect to the CNN-

 



FE_BP's accuracy. Thus, it removed the need for offline 
training.  

TABLE II.  CNN_FE, CNN-SM TOPOLOGY FOR HAR AND BBAC 
USE CASES 

The CNN-FE compacted the features up to 25 times with 
respect to the original 1s of raw data (i.e., from 6x100 to 24 
features) to feed the classifier. Thus, the associated MCU 
RAM storage cost was reduced from 117KiB to 4.8KiB.  

TABLE III.  TINYRCE (FED BY CNN-FE_ELM) VS CNN-SM_BP 
PERFORMANCES ON USER 2 FOR USE CASES HAR AND BBAC 

B. Proposed classifier optimized for ODL 
TinyRCE was designed to address all the requirements in 

TABLE I. The whole pipeline of the proposed solution 
adopted the ELM variant of CNN-FE. Only the hidden 
neurons of TinyRCE were optimized by the learning 

procedure meant to run on the MCU. This workload happened 
in two phases. During the acquisition of raw data, the user was 
performing and annotating the corresponding HAR activity, 
followed by feature extraction. The storage of the features in 
the MCU memory happened during this phase. In the next 
phase, TinyRCE optimized the hidden and output layers by 
processing these stored features. Only the features and 
associated labels resulting from the HAR user annotation 
process were used to start the TinyRCE learning workload. 
Due to the fixed size of the MCU’s embedded memory, 
incremental learning, and the dynamic addition of new 
neurons into TinyRCE could quickly saturate it if handled in 
an uncontrolled way. Therefore, a neuron-culling mechanism 
was introduced to prevent that behavior. To guide the pruning 
decisions, each hidden neuron is assigned an age value. At 
time t0, the age was set to 0 for each instantiated hidden 
neuron; at each iteration, the age of involved neurons was 
either increased or decreased. It was increased if the involved 
neuron brought to a correct prediction through its activation 
and decreased otherwise. Every input feature was iterated 
across the list of hidden neurons during the learning step, and 
the amount of increment or decrement value was the ratio (eq. 
1) between the distance from the feature to the center of the 
hidden neuron and its radius. 

           𝑎𝑔𝑒("#$) = 𝑎𝑔𝑒(&'() ± ()*+,-!,/"0

1!
                  (eq. 1) 

TABLE IV.  CNN-SM_BP VS CNN-FE_ELM + TINYRCE ON 
PAMAP2 (HAR USE CASE): AVG. OF 8 USERS WITH 8 COMMON CLASSES 

This age value enabled pruning of redundant neurons, 
during the learning. The pruning mechanism was triggered if 
a user-defined threshold had been exceeded. The maximum 
number of hidden neurons TinyRCE could store on the MCU 
was an implementation-selectable threshold, which was meant 

to set an upper limit on the memory footprint allowed. This 
limit depended on the specific MCU's onto which to deploy 
TinyRCE. To prevent it from consuming all the on-chip 
memory, the redundant neurons of the class with the lowest or 
negative age values were culled. Therefore, the MCU 
processing cost was reduced; and as a positive side effect, it 
marginally improved the classification accuracy, by less than 
1%. To prevent CF, a fixed budget of hidden neurons was 
defined for each class. The pruning mechanism selected the 
neurons to be pruned also considering said budget of available 
neurons per class, in order to maintain a balanced pool of 
hyperspheres for every class. 

Furthermore, TinyRCE was meant to detect unknown 
input patterns, thus reporting to the user about the need to 
provide a corresponding label. As soon as the user provided 
the label, it was associated to the corresponding features and 
stored in temporary memory to serve the learning workload 
(otherwise discarded if no label was associated). A total of 
between 1 and 100 samples of the training data, each of 100B 
requiring up to 9.76KiB RAM, could be stored by the 
algorithm as an implementation example for HAR case study. 

It is well known that hyper-spherical classifiers produce 
feature spaces that overlap with each other’s classes. This 
implies to activate simultaneously several hidden neurons 
associated to different classes. To avoid this issue, only the 
output of the hidden neuron for which the input pattern was 
closest to its center was considered the most reliable. 

VI. EXPERIMENTAL RESULTS 
TinyRCE with CNN-FE_ELM was tested with the 

proposed evaluation method, depicted in Fig. 2. It used 
batches of time series raw data in which 20% of them were 
used by the learning workload, and the remaining 80% were 
used by the testing workload. This approach was used to 
quantitatively measure TinyRCE’s performance. It mimicked 
the incremental forward learning step interleaved with testing 
one. It has been tested with SHL, PAMAP2 (for HAR), and 
CWRU (for BBAC) datasets which provided, respectively, 8, 
12, and 10 classes per user (for SHL and PAMAP2) or per 
motor type (for CWRU). All three datasets were decomposed 
into frames of 100 samples per second grouped into sliding 
windows shifted with a hop size of 50 samples. These frames 
were then composed into streams featuring classes presented 
incrementally one after the other, as shown in Fig. 1. The 
proposed split was the opposite of the traditional 80/20% split 
used by the backpropagation with K-fold validation. 

Layers Shape Parameters 

Convolution 2D 10,10,64 9664 

MaxPooling 2D 5,5,64 0 

Convolution 2D 5,5,6 9606 

MaxPooling 2D 2,2,6 0 

Flatten Number of features 0 

Dense Number of classes 200÷300 

 Total Parameters 19,570  

DNN 
Training and 
Validation 

Method 

SHL 
User2, 

hip carry 
position 

PAMAP2 
User2, 

hand carry 
position 

CWRU 
Drive 
end 

sensor 
position 

CNN-SM_BP 
(30 epochs) 

K-fold 84.19% 77.45% 80.52% 

ODL 99.68% 92.54% 97.09% 

CNN-
FE_ELM with 

TinyRCE 

K-Fold 80% 60.3% 53.4% 

ODL (2 to 6 
epochs) 99.61% 91.84% 95.21% 

Sensor 
Carry 

Position 

TinyRCE 
Accuracy 

CNN-
SM_BP 

Accuracy 

TinyRCE 
Variance 

CNN-
SM_BP 
Variance 

Hand 87.62 91.13 4.95 4.54 

Chest 89.67 91.71 3.08 2.97 

Ankle 87.37 89.37 3.94 3.06 



CNN-SM_BP was the benchmark for performance 
comparison against TinyRCE. Since the interleaved workflow 
that was applied represents another contribution of this work, 
it was not possible to structure a comparison with the results 
of existing benchmarks. For K(=5)-fold validation, the 
traditional 80/20% split was used for both TinyRCE and 
CNN-SM_BP. For comparison, the results of the learning 
step applied to a single user are shown in TABLE III. These 
results were achieved on User 2, in the scenario where the 
learning is personalized per user. Said user was selected 
because it featured the highest data quantity available. 
TinyRCE marginally underperformed CNN-SM_BP by 0.7% 
achieving an accuracy of 91.84% for the PAMAP2 dataset 
(12 classes). Whereas on the SHL (8 classes) and CWRU (10 
classes) datasets, TinyRCE performed against CNN-SM_BP 
by a marginal difference of 0.07% and non-marginal 1.88% 
drop, respectively. Furthermore, on the PAMAP2 dataset, an 
extensive evaluation was performed involving eight users 
with the same available eight classes across them. TABLE IV. 
reports the average accuracy and variance on them and per 
carry position. On average, TinyRCE underperformed by 
2.52% with respect to CNN-SM_BP. 

VII. COMPLEXITY ANALYSIS FOR TINY DEVICES 
Input features at time t required 48B. The hidden and 

output layer of TinyRCE required 30.46KiB to store the 
features. The training data required a buffer of 9.76KiB (24 
features plus the corresponding labels times 4B). The 
classifier required buffering 2s of inputs for the inference, 
whose footprint was 2.34KiB (assuming 100s of data per 6 
axes sampled, 2B each, at 100 Hz). The detailed layer-wise 
estimated memory usage of TinyRCE is shown in TABLE VI.  

TABLE V.  COMPLEXITY PROFILING WITHOUT ACCOUNTING THE 
K(=5)-FOLD PROCEDURE. (*) MEANS RANDOM WEIGHTS 

Metrics 
CNN-

SM_BP 
(single 

inference) 
FP32 

CNN-
SM_BP 

(learning) 
FP32 

(K 
fold=1) 

CNN-
FE_ELM 

+ 
TinyRCE 

(Single 
inference) 

FP32 

CNN-
FE_ELM + 
TinyRCE 
(learning) 

FP32 
MACC 1.213 M 8 G 1.251 M 23.4 M 
FLASH 
(KiB) 76.45 - 76.45 (*) 

RAM (KiB) 13.59 954.57 40.2 
Latency  

STM32L4 
(ms) 

@80MHz 
123.4 813.25 

sec 127.2 2.38 sec 
Latency  

STM32H7 
(ms) @480 

MHz 
11.21 73.86 sec 11.55 216 

The complexity was expressed as Multiply and 
ACCumulate operations (MACC) for TinyRCE inference and 
estimated accordingly to equation (eq. 2), where ℎ  is the 
number of hidden neurons, and 𝑛 is the number of features 
input to the classifier, which for HAR and BBAC is equal to 
24 features. 

𝑀𝐴𝐶𝐶)"2#3#"4# = ℎ ∗ [(𝑛 ∗ 5) + 10]                             (eq. 2) 

The latency, memory footprint, MACC for CNN-SM_BP 
and TinyRCE both inference and with K(=1)-Fold learning 
and validation procedure are reported in TABLE VI. The 
CNN-SM_BP models were automatically analyzed with the 
X-CUBE-AI ver. 7.2.0 tool. The complexity was 1.21 million 
MACC per inference, while according to (eq. 2), TinyRCE 
inference was estimated to be 39K MACC; this, added with 
the CNN-FE_ELM’s complexity, resulted in a total of 1.25 
million MACC. Thus, the inference time was estimated to be 
11.55ms on the STM32H7 MCU at 480MHz and 127.2ms on 
the STM32L4 MCU at 80MHz. 

TABLE VI.  ESTIMATED MEMORY FOOTPRINT FOR TINYRCE. 
PARAMETERS ARE CODED WITH 32-BIT FLOATING POINT PRECISION 

CNN-FE_ELM occupied a total of 76.45KiB FLASH to 
store the weights, which were never required to be updated 
by the learning workload. In a very optimized 
implementation, they could potentially be generated on-line 
by a random software procedure, reducing furthermore the 
storage needed. TinyRCE’s hidden layer required 30.47KiB, 
its output layer 12B, and the training data 9.76KiB. The total 
RAM was 40.26KiB to 41.26KiB. 

Even though this analysis shows that CNN-SM_BP 
requires lower memory and inference time, it does not 
consider the very memory-demanding K-fold learning 
process, which requires to store the activations of every layer 
in order for backpropagation to compute the weights’ 
derivatives.  

TinyRCE learning’s first phase was needed to acquire raw 
sensor data, convert it into features, and store the features into 
temporary memory (10KiB); CNN-FE_ELM required 
1.213M MACCinference to process 1s of data. TinyRCE second 
phase was accountable for 23.4M MACClearning. This number 
was computed by using Eq. (3):  

𝑀𝐴𝐶𝐶'#53")"6 = (ℎ ∗ [(𝑛 ∗ 5) + 10]) ∗ (𝑁 ∗ 𝐸)           (eq. 3) 

In (eq. 3), h is the number of hidden neurons (300), n is the 
number of features per input (24), N is the number of training 
frames (100), and E is the number of epochs. For the 
estimations, the maximum number of epochs encountered 
while conducting the study (6) was used.  

The total training time was estimated for STM32L4 and 
STM32H7 and was computed by using 8.13 and 4.43 cycles 
per each MACC (which were measured by running NN 
workloads on the MCU). Results were 2.38s and 0.216s, 
respectively. The learning of CNN-SM_BP with respect to 
CNN-FE_ELM on the considered MCUs proved to be much 
more complex (342x). The RAM footprint of the former was 
close to 1MB, due to the required storage of activations for 
weight updates, while the latter required just 40.2 KiB. 

Use Parameters 
RAM(Bytes) 

Inference 
RAM(Bytes) 

Learning 
Input layer 24 48 0 

Hidden layer (200 ÷ 300) *26 31,200 31,200 
Output layer 8-12 12 12 

Inference 
Data buffer 2*600 2400 0 

Data stored 
for learning (50 ÷ 100) *25 0 10,000 

Other 
additional 5 0 20 

 Total 32.87KiB 40.26KiB 



VIII. CONCLUSIONS AND FUTURE WORKS 
This paper introduced TinyRCE, to perform on MCU 

learning workloads of multiple classes presented sequentially 
in a forward fashion. No backpropagation method was 
required. A specific protocol for both learning and testing 
workloads was introduced, mimicking the streaming 
acquisition of raw sensor data. TinyRCE has been compared 
against CNN-SM_BP trained with backpropagation. It has 
also been evaluated by the K-fold protocol. TinyRCE 
achieved an accuracy of 99.61% on SHL, 91.84% on 
PAMAP2, and 95.21% on CWRU requiring only 40.26KiB of 
RAM. 1KiB more is required for input data extra buffering. 
The classifier's inference time was estimated to 11.55ms on 
STM32H7 MCU clocked at 480MHz and 127.2ms on 
STM32F4 MCU at 80MHz. TinyRCE proved competitive 
against CNN-SM_BP’s traditional topology, while reducing 
the complexity and memory needed to perform learning. As 
future work, TinyRCE will be coded with low bit count 
fractional arithmetic. Moreover, 8 bits quantization of the 
CNN-FE will be experimented to lower the memory usage to 
store the weights as low as 19.35 KiB. Footprint reduction 
could enable integration into the sensor digital logic. 
Furthermore, to develop concept drift detection to trigger 
learning workloads. This will improve the configuration and 
dynamic adaptation of the hidden layer, as well as to 
investigate different model feature extractors experimented 
over new datasets and case studies. 
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