
03 January 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

TinyRCE: Forward Learning Under Tiny Constraints / Pau, Danilo; Ambrose, Prem Kumar; Pisani, Andrea; Aymone,
Fabrizio M.. - (2023), pp. 295-300. (Intervento presentato al convegno 2023 IEEE International Conference on
Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE) tenutosi a Milano (ITA) nel
25-27 October 2023) [10.1109/MetroXRAINE58569.2023.10405784].

Original

TinyRCE: Forward Learning Under Tiny Constraints

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MetroXRAINE58569.2023.10405784

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2985806 since: 2024-09-23T13:19:08Z

IEEE

TinyRCE: Forward Learning Under Tiny
Constraints

Danilo Pau, FIEEE
System Research and

Development
STMicroelectronics

Agrate Brianza, Italy
danilo.pau@st.com

Prem Kumar Ambrose
System Research and

Development
STMicroelectronics

Agrate Brianza, Italy
premkumar.ambrose@st.com

Andrea Pisani
System Research and

Development
STMicroelectronics

Agrate Brianza, Italy
aptrp99@gmail.com

Fabrizio M. Aymone
System Research and

Development
STMicroelectronics

Agrate Brianza, Italy
fabrizio.aymone@gmail.com

Abstract—The challenge posed by on-tiny-devices learning
targeting ultra-low power devices has recently attracted several
machine learning researchers. A typical on-device model
learning session processes real time streams of data produced by
heterogeneous sensors. In such a context, this paper proposes
TinyRCE, a forward-only learning approach based on a hyper-
spherical classifier aiming to be deployed on microcontrollers
and, potentially, on sensors. The learning process is fed by
labeled data streams to be classified by the proposed method.
The classical RCE algorithm has been modified adding a forget
mechanism to discard useless neurons from the classifier's
hidden layer, since they could become redundant over time.
TinyRCE is fed with compact features extracted by a
convolutional neural network which could be an extreme
learning machine. In such case, the weights of the topology were
randomly initialized instead of trained offline with
backpropagation. Its weights are stored in a tiny read-only
memory of 76.45KiB. The classifier required up to 40.26KiB of
RAM to perform a complete on-device learning workload in
0.216s, running on an MCU clocked at 480MHz. TinyRCE has
been evaluated with a new interleaved learning and testing
protocol to mimic an on-tiny-device forward learning workload.
It has been tested with openly available datasets representing
human activity monitoring (PAMAP2, SHL) and ball-bearing
anomaly detection (CWRU) case studies. Experiments have
shown that TinyRCE performed competitively against a
supervised convolutional topology followed by a SoftMax
classifier trained with backpropagation on all these datasets.

Keywords— On-Tiny-Device Learning, TinyML, Hyper-
Spherical Classifier, Extreme Learning Machines, Feature
Extraction, Human Activity Recognition.

I. INTRODUCTION
Supervised Artificial Intelligence (AI) and Tiny Machine

Learning (TinyML) are nowadays widely adopted
approaches. They are deployed in many products in multiple
applications offering high performance. [1] benchmarked
multiple Deep Neural Networks (DNNs) reporting accuracy,
memory usage, complexity, and latency, showing that as the
complexity of DNNs grows to face more challenging
problems, DNNs demand more memory and computational
capability to support learning and K-fold validation, thus their
model size increases as well. The deployment of complex
DNNs on tiny devices and their use to process sensor-
generated data streams can also be affected by a confidence
drop between the accuracy achieved in training and the
inference phase [2], due to various possible causes. As a
consequence, continuous updates are required over time, thus
the DNNs need to be re-trained. The de-facto standard training
approach, adopted by many deep learning frameworks [1], is
based on backpropagation and stochastic gradient descent
(SGD). Indeed, backpropagation requires many iterations of

forward and backward workloads applied to different
partitions of the training data (K-folds) which, in turn, require
large storage. Retraining with such an approach requires
powerful computational and storage assets. Unfortunately, for
tiny devices like micro-controller units (MCU), performing
Continuous Learning (CL) becomes too costly. In the popular
cloud-based support scenario, low-complexity tiny devices
stream sensor data to the cloud, while the latter performs all
the highly resource-demanding AI workloads. Although
cloud-based solutions [3], with virtually unlimited
computational and storage resources, seem to have clear
advantages over the capability of tiny devices, they still
account for many disadvantages, including risks for privacy
and security of user data, higher latency, and the difficulty to
achieve nW to µW power consumption targets.
Backpropagation can also be heavily affected by catastrophic
forgetting (CF) [4], which is the main threat to achieve CL.
All of that represents an opportunity to reconsider supervised
learning procedures and extend the state of the art beyond
backpropagation, by conceiving new on-tiny-device learning
algorithms. This paper proposes an approach to on-tiny-device
CL without using backpropagation. Section II introduces the
problem statement and requirements to be fulfilled by the
solution; section III reviews existing related works and reports
their limitations; section IV summarizes the datasets used to
shape the case studies for experimenting the learning and
testing workloads; section V explains the proposed solution,
highlights differences with respect to the previous works and
describes how the On-Device Learning (ODL) field was
approached; section VI reports the experimental results;
section VII analyzes the complexity of the proposed solution
with respect to its deployment on MCUs, followed by the
conclusions and future works in section VIII.

II. PROBLEM STATEMENT AND REQUIREMENTS
The question posed at the beginning of the work was: can

incremental learning of multiple categories happen, totally on-
line without catastrophic forgetting or back-propagation and
be deployable on memory-constrained devices? Therefore, the
requirements were set as reported in TABLE I. The proposed
solution shall store much less sensor data than K-fold
backpropagation learning procedures. The learning shall be
determined by the few data made available at a certain time by
the sensor. On-device learning of the DNN model shall
happen within the MCU embedded memory constraints. The
DNN model should take less time to complete the learning
than to acquire the data. Most importantly, the DNN shall
learn to classify multiple sequentially presented categories of
data. The process shall maximize accuracy and be compared
against backpropagation-based learning.

TABLE I. REQUIREMENTS TO BE FULFILLED BY TINY ODL

No. Requirements
1. Real time forward learning.
2. No backpropagation.
3. Deployable in MCU, optionally in the sensor within its embedded

memory capacity.
4. Perform classification.
5. Capable of interleaved learning and testing workloads
6. Minimal storage of sensor data.
7. Limited latency to run learning workloads.

III. RELATED WORKS

A. On-device learning
CF [4] resulted from DNNs trying to learn from new data

presented sequentially. The models discarded previous
knowledge, leading to poor performances and
misclassifications. CL extended the knowledge of DNNs to
different tasks without retraining them from scratch nor
forgetting previous knowledge. [5] reviewed different CL
methods aimed to accumulate knowledge over different tasks.
[6] reported CL methods for edge devices based on Latent
Replay (LR). It was targeted for a specific 10-core Parallel
Ultra Low Power (PULP) processor called VEGA. CL was
supported with less than 64MB of memory. LR [7] consists in
storing for later replay intermediate feature maps of few old
data samples, instead of large data inputs, reducing up to 48x
the memory usage.

A.1 Edge devices. [8] introduced an approach to train the
DNN on hardware without backpropagation. HLS4ML, a
Python package for ML inference in FPGAs, was used. The
approach has not been tested on MCUs, though. [9] introduced
an anomaly detector for rotating machines, which could be
trained on-line with a low-power wireless Raspberry Pi Pico
node. On-device learning increased the model's detection
performance. TinyTL [10] proposes to update only the biases,
freezing the weights, since doing so allows to not store
intermediate activations. It also introduces a memory-efficient
bias module to account for the resulting loss in capacity. It has
been capable of achieving the same accuracy of fine-tuning
full models while providing 7.3-12.9x memory savings. It
required more than 37MB to run image classification and
perform training on a GPU.

A.2 ODL on MCU. [11], [12] reported a state-of-the-art
review for both ODL and ML on tiny devices and summarized
the importance of the challenges faced. TinyOL [13]
introduced an additional custom layer to the end of a static
DNN. This layer’s weights were fine-tuned on-device using
real time sensor data. New classes were learnt with a
customizable layer. Incremental learning removed large
storage of data. This work did not support 8-bit MCUs, and
the static model had to be trained offline. TML-CD [14] was
a K-Nearest Neighbor (KNN), capable of updating the
training set and discarding outdated knowledge after a change
was detected in the data due to concept drift (CD), which is a
serious problem faced by tiny devices when deployed in real
applications. [15] proposed an algorithm/system co-design
framework which was able to perform on-device learning
requiring only 256KiB of memory. Quantization-Aware
Scaling, a tiny training engine which supported sparse update
of the DNN, parameters were key contributions.

Other ODL approaches targeted for MCUs were based on
Reservoir Computing (RC). [16] was a deeply quantized
anomaly detector of oil leaks in wind turbines feasible on
32bit MCU. It was tested on a specific dataset [17]: inference
required 129.2KiB RAM; learning required 2.12MB of RAM.

[18] introduced an ODL-capable anomaly detector for water
distribution systems (WDS). [19] detected anomalies in ECG
signals, achieving an accuracy of 95.4% with a memory usage
of 60KiB; [20] was an Extreme Learning Machine (ELM)
method mixed with RC, which ran with less than 192KiB of
RAM and was used for field-oriented motor control.

B. Extreme Learning Machines
[21] introduced the concept of ELM on edge devices.

ELM was introduced by [22] for regression and multiclass
classification. Their training converged several times faster
than Convolutional NN (CNN) with backpropagation. [23]
clarified more the concepts behind ELM. Moreover,
homogeneous architecture-based ELM DNNs have been used
for regression tasks and to discriminate binary and multiple
classes. [24] proposed a survey of on-line ELM to let the
parameters evolve in a sequential manner, avoiding retraining
using past samples that the model already saw. [25] ELM with
Local Connections (ELM-LC) clustered inputs and hidden
neurons into groups. Compared to traditional ELM
approaches, it performed better.

C. Introduction to RCE and Hyperspherical Classifiers
RCE classifiers [26] are a branch of hyper-spherical

classifiers [27]; like K-NN classifiers they can be trained
without backpropagation. In the simplest form, they consist of
three layers: an input, hidden, and output layer. The hidden
and output layers are initialized by storing the
multidimensional features computed by the input layer, which
is usually a feature extractor. Hidden neurons are instantiated
by a selected copy of the input features and defined by a center
point and a radius. They compose the classifier's feature space.
The radius determines the space of influence its hidden neuron
forms in the feature space. Each hidden neuron is fully
connected to the input layer, while only being connected to
one neuron of the output layer. The latter is thus sparsely
connected to the hidden layer. During the learning process, a
new hidden neuron is created storing a copy of an input feature
whenever this is not found inside any existing hidden neuron’s
region of influence. To verify if an input feature is inside the
region of any already instantiated hidden neurons, a similarity
measure is computed iteratively through all of them. The
measure is calculated between the input data and each region
of influence’s center point, e.g., the Hamming distance is used
if features are binarized; alternatively, the Euclidean distance
is used. If such a distance is lower than the hypersphere’s
radius of only one hidden neuron, then the association to it is
unambiguous. Vice versa, it would be ambiguous. To create a
new hidden neuron, the copy of the uncharted input feature is
associated with the default radius value. Should a neuron
feature an infinitely small radius, it can be considered
redundant and as such be removed. Unfortunately, in a basic
implementation, that would not happen. [26] explained that
this category of classifiers can discriminate patterns from a
class that has not yet been learnt such as an unknown class.
This type of approach has been proved to be applicable
successfully to anomaly detection problems.

D. Related works on Hyperspherical classifiers
[28] was a DNN to segment hands appearing into images.

The skin-colored pixels were classified and segmented using
the RCE. An appropriate color space to analyze the skin was
strategically chosen employing a reduced number of
calculations. A new approach to reduce the neuron’s radius
has been introduced to lower the processing.

Fig. 1. Data arrangement to support both learning and testing
workloads for HAR and BBAC. 6 refers to 3-axis accelerometer and 3-
axis gyroscope integrated inside the chip’s package of inertial sensors.
Note the samples are presented in streaming order as they are
temporally produced by the sensing element at its output.

However, it did not approach removing redundant
neurons. [29] proposed a RCE inductive classifier, which was
more efficient than other similar approaches. All the above
approaches were not meant for MCU deployment, adopted
traditional offline training methods, and did not perform any
ODL processing on MCU.

IV. DATASETS
This work’s case studies and simulations focused on

Human Activity Recognition (HAR) and Ball Bearing
Anomaly Classification (BBAC) datasets.

[30] PAMAP2 is a human physical activity monitoring
dataset. Data were captured involving 9 subjects wearing 3
Inertial Measurement Units (IMU) and a heart rate monitor
device. For the experimentation of the proposed solution, both
the 3D-acceleration and 3D-gyroscope data with a G-range
equal to 16 in different carry positions (hand, chest, and ankle)
were used. A total of 24 classes is provided, but the maximum
available classes per user are 12. [31] University of Sussex-
Huawei Locomotion (SHL) is the user’s locomotion and
transport dataset. It provides data acquired using smartphones
worn in different body positions: over the hand, chest, hip, and
inside a backpack. It provides data from 3 users captured for
3 days using 4 smartphones and accumulating 59 hours of
annotated recordings each, a total of 227 hours of data divided
in 8 different classes. Case Western Reserve University
Bearing Dataset (CWRU1) was used to represent the BBAC
use case. It provides drive-end and fan-end vibration and
rotation speed data from a 2hp reliance electric motor.
Gyroscope data were collected close to the drive end and were
sampled at 12 and 48KHz. Accelerometer data collected at fan
end was sampled at 12KHz, with 10 health conditions.

This work arranged the raw sensor data, sampled at
100Hz, in frames composed of 100 samples, 6 degrees of
freedom (DOF) values each, shifted with a step size equal to
0.5s. 500 of these frames were grouped together and used by
the learning and testing workloads. 20% (100) of the 500
frames, i.e. 100s of acquisitions, were used by the learning
workload. New classes are introduced sequentially over time
and associated to the frames as shown in Fig. 1. The remaining
80% frames, capturing 400s of data acquisitions, were used by
the testing workload. Should not further learning workload be
needed (e.g. due to scarcity of available data in the datasets or
no new classes being presented over time), then the testing

1 https://engineering.case.edu/bearingdatacenter/download-data-file

could run longer than 400 seconds. Detection of concept drift
was not part of the testing scenario of this work and will be
experimented in future work. Differently from the K-fold
learning and validation procedure, where data may be sampled
in randomly ordered batches, the sequential, temporal order of
the data produced by the sensor was not altered during the
simulations of the proposed classifier. An interleaved forward
fashion for both the learning and testing workloads is thus
shown in Fig. 2.

Fig. 2. Flow diagram with the proposed TinyRCE and different feature
extraction approaches also using the SoftMax layer.

V. PROPOSED ODL ALGORITHM
Tiny Restricted Coulomb Energy (TinyRCE) NN is a

hyper-spherical classifier variant proposed by this work. Fig.
2 proposes the overall processing flow to compare the
proposed solution to a traditional backpropagation-based
approach. The raw sensor data is input for the CNN feature
extractor (FE). This was both randomly initialized (CNN-
FE_ELM) and offline trained using backpropagation (CNN-
FE_BP). Then their output features fed the TinyRCE
classifier. The CNN connected to the SoftMax (CNN-
SM_BP) was trained with backpropagation for comparison
purposes.

A. Feature Extractor (CNN, CNN-FE)
The input features of TinyRCE were computed by a 2D

CNN-FE to fulfill the requirements set in Section II. The FE
converted the raw time series into 2D features, like [32], [33]
approaches. The topology of FE was hand-crafted with trial-
and-error attempts to design a computational graph which
could output 24 values and, at the same time, be deployable
on MCU. The value 24 was chosen as a trade-off between
accuracy and computational complexity required by the
learning workload. TABLE II. reports the topology of the
CNN-FE and CNN-SM NNs. Both required FLASH memory
of 76.45KiB assuming 32-bit floating point precision weights.
CNN-FE_BP was trained offline with backpropagation. Then
by removing its last dense SoftMax layer, it was connected to
the TinyRCE classifier to run the learning and testing
workloads. However, under a challenging ODL requirement,
which excludes the use of backpropagation, the CNN-FE
model shall not be trained offline. Therefore CNN-
FE(_ELM)'s weights were initialized with a random normal
distribution; the topology performed adequately, with a
limited drop of about 1 to 3% with respect to the CNN-

FE_BP's accuracy. Thus, it removed the need for offline
training.

TABLE II. CNN_FE, CNN-SM TOPOLOGY FOR HAR AND BBAC
USE CASES

The CNN-FE compacted the features up to 25 times with
respect to the original 1s of raw data (i.e., from 6x100 to 24
features) to feed the classifier. Thus, the associated MCU
RAM storage cost was reduced from 117KiB to 4.8KiB.

TABLE III. TINYRCE (FED BY CNN-FE_ELM) VS CNN-SM_BP
PERFORMANCES ON USER 2 FOR USE CASES HAR AND BBAC

B. Proposed classifier optimized for ODL
TinyRCE was designed to address all the requirements in

TABLE I. The whole pipeline of the proposed solution
adopted the ELM variant of CNN-FE. Only the hidden
neurons of TinyRCE were optimized by the learning

procedure meant to run on the MCU. This workload happened
in two phases. During the acquisition of raw data, the user was
performing and annotating the corresponding HAR activity,
followed by feature extraction. The storage of the features in
the MCU memory happened during this phase. In the next
phase, TinyRCE optimized the hidden and output layers by
processing these stored features. Only the features and
associated labels resulting from the HAR user annotation
process were used to start the TinyRCE learning workload.
Due to the fixed size of the MCU’s embedded memory,
incremental learning, and the dynamic addition of new
neurons into TinyRCE could quickly saturate it if handled in
an uncontrolled way. Therefore, a neuron-culling mechanism
was introduced to prevent that behavior. To guide the pruning
decisions, each hidden neuron is assigned an age value. At
time t0, the age was set to 0 for each instantiated hidden
neuron; at each iteration, the age of involved neurons was
either increased or decreased. It was increased if the involved
neuron brought to a correct prediction through its activation
and decreased otherwise. Every input feature was iterated
across the list of hidden neurons during the learning step, and
the amount of increment or decrement value was the ratio (eq.
1) between the distance from the feature to the center of the
hidden neuron and its radius.

 𝑎𝑔𝑒("#$) = 𝑎𝑔𝑒(&'() ± ()*+,-!,/"0

1!
 (eq. 1)

TABLE IV. CNN-SM_BP VS CNN-FE_ELM + TINYRCE ON
PAMAP2 (HAR USE CASE): AVG. OF 8 USERS WITH 8 COMMON CLASSES

This age value enabled pruning of redundant neurons,
during the learning. The pruning mechanism was triggered if
a user-defined threshold had been exceeded. The maximum
number of hidden neurons TinyRCE could store on the MCU
was an implementation-selectable threshold, which was meant

to set an upper limit on the memory footprint allowed. This
limit depended on the specific MCU's onto which to deploy
TinyRCE. To prevent it from consuming all the on-chip
memory, the redundant neurons of the class with the lowest or
negative age values were culled. Therefore, the MCU
processing cost was reduced; and as a positive side effect, it
marginally improved the classification accuracy, by less than
1%. To prevent CF, a fixed budget of hidden neurons was
defined for each class. The pruning mechanism selected the
neurons to be pruned also considering said budget of available
neurons per class, in order to maintain a balanced pool of
hyperspheres for every class.

Furthermore, TinyRCE was meant to detect unknown
input patterns, thus reporting to the user about the need to
provide a corresponding label. As soon as the user provided
the label, it was associated to the corresponding features and
stored in temporary memory to serve the learning workload
(otherwise discarded if no label was associated). A total of
between 1 and 100 samples of the training data, each of 100B
requiring up to 9.76KiB RAM, could be stored by the
algorithm as an implementation example for HAR case study.

It is well known that hyper-spherical classifiers produce
feature spaces that overlap with each other’s classes. This
implies to activate simultaneously several hidden neurons
associated to different classes. To avoid this issue, only the
output of the hidden neuron for which the input pattern was
closest to its center was considered the most reliable.

VI. EXPERIMENTAL RESULTS
TinyRCE with CNN-FE_ELM was tested with the

proposed evaluation method, depicted in Fig. 2. It used
batches of time series raw data in which 20% of them were
used by the learning workload, and the remaining 80% were
used by the testing workload. This approach was used to
quantitatively measure TinyRCE’s performance. It mimicked
the incremental forward learning step interleaved with testing
one. It has been tested with SHL, PAMAP2 (for HAR), and
CWRU (for BBAC) datasets which provided, respectively, 8,
12, and 10 classes per user (for SHL and PAMAP2) or per
motor type (for CWRU). All three datasets were decomposed
into frames of 100 samples per second grouped into sliding
windows shifted with a hop size of 50 samples. These frames
were then composed into streams featuring classes presented
incrementally one after the other, as shown in Fig. 1. The
proposed split was the opposite of the traditional 80/20% split
used by the backpropagation with K-fold validation.

Layers Shape Parameters

Convolution 2D 10,10,64 9664

MaxPooling 2D 5,5,64 0

Convolution 2D 5,5,6 9606

MaxPooling 2D 2,2,6 0

Flatten Number of features 0

Dense Number of classes 200÷300

 Total Parameters 19,570

DNN
Training and
Validation

Method

SHL
User2,

hip carry
position

PAMAP2
User2,

hand carry
position

CWRU
Drive
end

sensor
position

CNN-SM_BP
(30 epochs)

K-fold 84.19% 77.45% 80.52%

ODL 99.68% 92.54% 97.09%

CNN-
FE_ELM with

TinyRCE

K-Fold 80% 60.3% 53.4%

ODL (2 to 6
epochs) 99.61% 91.84% 95.21%

Sensor
Carry

Position

TinyRCE
Accuracy

CNN-
SM_BP

Accuracy

TinyRCE
Variance

CNN-
SM_BP
Variance

Hand 87.62 91.13 4.95 4.54

Chest 89.67 91.71 3.08 2.97

Ankle 87.37 89.37 3.94 3.06

CNN-SM_BP was the benchmark for performance
comparison against TinyRCE. Since the interleaved workflow
that was applied represents another contribution of this work,
it was not possible to structure a comparison with the results
of existing benchmarks. For K(=5)-fold validation, the
traditional 80/20% split was used for both TinyRCE and
CNN-SM_BP. For comparison, the results of the learning
step applied to a single user are shown in TABLE III. These
results were achieved on User 2, in the scenario where the
learning is personalized per user. Said user was selected
because it featured the highest data quantity available.
TinyRCE marginally underperformed CNN-SM_BP by 0.7%
achieving an accuracy of 91.84% for the PAMAP2 dataset
(12 classes). Whereas on the SHL (8 classes) and CWRU (10
classes) datasets, TinyRCE performed against CNN-SM_BP
by a marginal difference of 0.07% and non-marginal 1.88%
drop, respectively. Furthermore, on the PAMAP2 dataset, an
extensive evaluation was performed involving eight users
with the same available eight classes across them. TABLE IV.
reports the average accuracy and variance on them and per
carry position. On average, TinyRCE underperformed by
2.52% with respect to CNN-SM_BP.

VII. COMPLEXITY ANALYSIS FOR TINY DEVICES
Input features at time t required 48B. The hidden and

output layer of TinyRCE required 30.46KiB to store the
features. The training data required a buffer of 9.76KiB (24
features plus the corresponding labels times 4B). The
classifier required buffering 2s of inputs for the inference,
whose footprint was 2.34KiB (assuming 100s of data per 6
axes sampled, 2B each, at 100 Hz). The detailed layer-wise
estimated memory usage of TinyRCE is shown in TABLE VI.

TABLE V. COMPLEXITY PROFILING WITHOUT ACCOUNTING THE
K(=5)-FOLD PROCEDURE. (*) MEANS RANDOM WEIGHTS

Metrics
CNN-

SM_BP
(single

inference)
FP32

CNN-
SM_BP

(learning)
FP32

(K
fold=1)

CNN-
FE_ELM

+
TinyRCE

(Single
inference)

FP32

CNN-
FE_ELM +
TinyRCE
(learning)

FP32
MACC 1.213 M 8 G 1.251 M 23.4 M
FLASH
(KiB) 76.45 - 76.45 (*)

RAM (KiB) 13.59 954.57 40.2
Latency

STM32L4
(ms)

@80MHz
123.4 813.25

sec 127.2 2.38 sec
Latency

STM32H7
(ms) @480

MHz
11.21 73.86 sec 11.55 216

The complexity was expressed as Multiply and
ACCumulate operations (MACC) for TinyRCE inference and
estimated accordingly to equation (eq. 2), where ℎ is the
number of hidden neurons, and 𝑛 is the number of features
input to the classifier, which for HAR and BBAC is equal to
24 features.

𝑀𝐴𝐶𝐶)"2#3#"4# = ℎ ∗ [(𝑛 ∗ 5) + 10] (eq. 2)

The latency, memory footprint, MACC for CNN-SM_BP
and TinyRCE both inference and with K(=1)-Fold learning
and validation procedure are reported in TABLE VI. The
CNN-SM_BP models were automatically analyzed with the
X-CUBE-AI ver. 7.2.0 tool. The complexity was 1.21 million
MACC per inference, while according to (eq. 2), TinyRCE
inference was estimated to be 39K MACC; this, added with
the CNN-FE_ELM’s complexity, resulted in a total of 1.25
million MACC. Thus, the inference time was estimated to be
11.55ms on the STM32H7 MCU at 480MHz and 127.2ms on
the STM32L4 MCU at 80MHz.

TABLE VI. ESTIMATED MEMORY FOOTPRINT FOR TINYRCE.
PARAMETERS ARE CODED WITH 32-BIT FLOATING POINT PRECISION

CNN-FE_ELM occupied a total of 76.45KiB FLASH to
store the weights, which were never required to be updated
by the learning workload. In a very optimized
implementation, they could potentially be generated on-line
by a random software procedure, reducing furthermore the
storage needed. TinyRCE’s hidden layer required 30.47KiB,
its output layer 12B, and the training data 9.76KiB. The total
RAM was 40.26KiB to 41.26KiB.

Even though this analysis shows that CNN-SM_BP
requires lower memory and inference time, it does not
consider the very memory-demanding K-fold learning
process, which requires to store the activations of every layer
in order for backpropagation to compute the weights’
derivatives.

TinyRCE learning’s first phase was needed to acquire raw
sensor data, convert it into features, and store the features into
temporary memory (10KiB); CNN-FE_ELM required
1.213M MACCinference to process 1s of data. TinyRCE second
phase was accountable for 23.4M MACClearning. This number
was computed by using Eq. (3):

𝑀𝐴𝐶𝐶'#53")"6 = (ℎ ∗ [(𝑛 ∗ 5) + 10]) ∗ (𝑁 ∗ 𝐸) (eq. 3)

In (eq. 3), h is the number of hidden neurons (300), n is the
number of features per input (24), N is the number of training
frames (100), and E is the number of epochs. For the
estimations, the maximum number of epochs encountered
while conducting the study (6) was used.

The total training time was estimated for STM32L4 and
STM32H7 and was computed by using 8.13 and 4.43 cycles
per each MACC (which were measured by running NN
workloads on the MCU). Results were 2.38s and 0.216s,
respectively. The learning of CNN-SM_BP with respect to
CNN-FE_ELM on the considered MCUs proved to be much
more complex (342x). The RAM footprint of the former was
close to 1MB, due to the required storage of activations for
weight updates, while the latter required just 40.2 KiB.

Use Parameters
RAM(Bytes)

Inference
RAM(Bytes)

Learning
Input layer 24 48 0

Hidden layer (200 ÷ 300) *26 31,200 31,200
Output layer 8-12 12 12

Inference
Data buffer 2*600 2400 0

Data stored
for learning (50 ÷ 100) *25 0 10,000

Other
additional 5 0 20

 Total 32.87KiB 40.26KiB

VIII. CONCLUSIONS AND FUTURE WORKS
This paper introduced TinyRCE, to perform on MCU

learning workloads of multiple classes presented sequentially
in a forward fashion. No backpropagation method was
required. A specific protocol for both learning and testing
workloads was introduced, mimicking the streaming
acquisition of raw sensor data. TinyRCE has been compared
against CNN-SM_BP trained with backpropagation. It has
also been evaluated by the K-fold protocol. TinyRCE
achieved an accuracy of 99.61% on SHL, 91.84% on
PAMAP2, and 95.21% on CWRU requiring only 40.26KiB of
RAM. 1KiB more is required for input data extra buffering.
The classifier's inference time was estimated to 11.55ms on
STM32H7 MCU clocked at 480MHz and 127.2ms on
STM32F4 MCU at 80MHz. TinyRCE proved competitive
against CNN-SM_BP’s traditional topology, while reducing
the complexity and memory needed to perform learning. As
future work, TinyRCE will be coded with low bit count
fractional arithmetic. Moreover, 8 bits quantization of the
CNN-FE will be experimented to lower the memory usage to
store the weights as low as 19.35 KiB. Footprint reduction
could enable integration into the sensor digital logic.
Furthermore, to develop concept drift detection to trigger
learning workloads. This will improve the configuration and
dynamic adaptation of the hidden layer, as well as to
investigate different model feature extractors experimented
over new datasets and case studies.

IX. REFERENCES
[1] S. Bianco, R. Cadène, L. Celona, and P. Napoletano, “Benchmark

Analysis of Representative Deep Neural Network Architectures,”
CoRR, vol. abs/1810.00736, 2018, [Online]. Available:
http://arxiv.org/abs/1810.00736

[2] D. Vela, A. Sharp, R. Zhang, T. Nguyen, A. Hoang, and O. S.
Pianykh, “Temporal quality degradation in AI models,” Sci Rep, vol.
12, no. 1, p. 11654, 2022, doi: 10.1038/s41598-022-15245-z.

[3] F. Samie, L. Bauer, and J. Henkel, “From Cloud Down to Things: An
Overview of Machine Learning in Internet of Things,” IEEE Internet
Things J, vol. 6, no. 3, pp. 4921–4934, 2019, doi:
10.1109/JIOT.2019.2893866.

[4] P. Kaushik, A. Gain, A. Kortylewski, and A. L. Yuille,
“Understanding Catastrophic Forgetting and Remembering in
Continual Learning with Optimal Relevance Mapping,” CoRR, vol.
abs/2102.11343, 2021, [Online]. Available:
https://arxiv.org/abs/2102.11343

[5] M. de Lange et al., “A Continual Learning Survey: Defying
Forgetting in Classification Tasks,” IEEE Trans Pattern Anal Mach
Intell, vol. 44, no. 7, pp. 3366–3385, Jul. 2022, doi:
10.1109/TPAMI.2021.3057446.

[6] L. Ravaglia, M. Rusci, D. Nadalini, A. Capotondi, F. Conti, and L.
Benini, “A TinyML Platform for On-Device Continual Learning with
Quantized Latent Replays,” Oct. 2021, doi:
10.1109/JETCAS.2021.3121554.

[7] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N.
Díaz-Rodríguez, “Continual learning for robotics: Definition,
framework, learning strategies, opportunities and challenges,”
Information Fusion, vol. 58, pp. 52–68, Jun. 2020, doi:
10.1016/j.inffus.2019.12.004.

[8] D. AbdulQader, S. Krishnan, and C. N. Coelho, “Enabling
Incremental Training with Forward Pass for Edge Devices,” Mar.
2021, [Online]. Available: http://arxiv.org/abs/2103.14007

[9] H. Matsutani, M. Tsukada, and M. Kondo, “On-Device Learning: A
Neural Network Based Field-Trainable Edge AI,” Mar. 2022,
[Online]. Available: http://arxiv.org/abs/2203.01077

[10] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han, “TinyTL: Reduce
Activations, Not Trainable Parameters for Efficient On-Device
Learning,” 2020.

[11] D. Pau and P. K. Ambrose, “A quantitative review of automated
neural search and on-device learning for tiny devices,” Sep. 2022,
doi: 10.36227/techrxiv.18724562.v1.

[12] D. Pau and P. Kumar Ambrose, “Automated Neural and On-Device
Learning for Micro Controllers.”

[13] H. Ren, D. Anicic, and T. Runkler, “TinyOL: TinyML with Online-
Learning on Microcontrollers,” Mar. 2021, [Online]. Available:
http://arxiv.org/abs/2103.08295

[14] S. Disabato and M. Roveri, “Tiny Machine Learning for Concept
Drift,” Jul. 2021, [Online]. Available:
http://arxiv.org/abs/2107.14759

[15] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “On-
Device Training Under 256KB Memory,” Jun. 2022.

[16] M. Cardoni, D. pietro Pau, L. Falaschetti, C. Turchetti, and M.
Lattuada, “Online Learning of Oil Leaks Anomalies in Wind
Turbines with Block Based Binary Reservoir,” 2021. [Online].
Available: https://doi.org/

[17] M. Cardoni, “Oil leak dataset.” Mendeley, 2021. doi:
10.17632/NBXZXN3FFK.1.

[18] D. Pau, A. Khiari, and D. Denaro, “Online learning on tiny micro-
controllers for anomaly detection in water distribution systems.”

[19] N. Abdennadher, D. Pau, and A. Bruna, “Fixed complexity tiny
reservoir heterogeneous network for on-line ECG learning of
anomalies,” in 2021 IEEE 10th Global Conference on Consumer
Electronics (GCCE), 2021, pp. 233–237. doi:
10.1109/GCCE53005.2021.9622022.

[20] N. O. Federici, D. Pau, N. Adami, and S. Benini, “Tiny Reservoir
Computing for Extreme Learning of Motor Control.”

[21] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme Learning
Machine: A New Learning Scheme of Feedforward Neural
Networks.”

[22] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme Learning
Machine for Regression and Multiclass Classification,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 42, no. 2, pp. 513–529, 2012, doi:
10.1109/TSMCB.2011.2168604.

[23] G.-B. Huang, “What are Extreme Learning Machines? Filling the
Gap Between Frank Rosenblatt’s Dream and John von Neumann’s
Puzzle,” Cognit Comput, vol. 7, no. 3, pp. 263–278, 2015, doi:
10.1007/s12559-015-9333-0.

[24] S. Zhang, W. Tan, and Y. Li, “A Survey of Online Sequential
Extreme Learning Machine,” in 2018 5th International Conference
on Control, Decision and Information Technologies (CoDIT), 2018,
pp. 45–50. doi: 10.1109/CoDIT.2018.8394791.

[25] F. Li, S. Yang, H. Huang, and W. Wu, “Extreme Learning Machine
with Local Connections,” Jan. 2018, [Online]. Available:
http://arxiv.org/abs/1801.06975

[26] M. J. Hudak, “RCE Networks: An Experimental Investigation,” in
IJCNN-91-Seattle International Joint Conference on Neural
Networks, Seattle, WA, USA: IEEE, 1991, pp. 849–854. doi:
10.1109/IJCNN.1991.155290.

[27] M. H. Hassoun, “Fundamentals of Artificial Neural Networks,”
Proceedings of the IEEE, vol. 84, no. 6, 2005, doi:
10.1109/jproc.1996.503146.

[28] C. Sui, N. M. Kwok, and T. Ren, “A Restricted Coulomb Energy
(RCE) neural network system for hand image segmentation,” in
Proceedings - 2011 Canadian Conference on Computer and Robot
Vision, CRV 2011, 2011, pp. 270–277. doi: 10.1109/CRV.2011.43.

[29] C. and E. F. Fanizzi Nicola and d’Amato, “ReduCE: A Reduced
Coulomb Energy Network Method for Approximate Classification,”
in The Semantic Web: Research and Applications, P. and C. F. and
C. P. and H. T. and H. E. and M. R. and O. E. and S. M. and S. E.
Aroyo Lora and Traverso, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 323–337.

[30] A. Reiss and D. Stricker, “Introducing a New Benchmarked Dataset
for Activity Monitoring,” Sep. 2012. doi: 10.1109/ISWC.2012.13.

[31] H. Gjoreski et al., “The University of Sussex-Huawei Locomotion
and Transportation Dataset for Multimodal Analytics With Mobile
Devices,” IEEE Access, vol. 6, pp. 42592–42604, 2018, doi:
10.1109/ACCESS.2018.2858933.

[32] W. Chen and K. Shi, “A deep learning framework for time series
classification using Relative Position Matrix and Convolutional
Neural Network,” Neurocomputing, vol. 359, pp. 384–394, 2019, doi:
https://doi.org/10.1016/j.neucom.2019.06.032.

[33] T. Li, Y. Zhang, and T. Wang, “SRPM–CNN: a combined model
based on slide relative position matrix and CNN for time series
classification,” Complex & Intelligent Systems, vol. 7, no. 3, pp.
1619–1631, 2021, doi: 10.1007/s40747-021-00296-y.

