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A B S T R A C T

Hybrid High-Order (HHO) methods are a recently developed class of methods belonging to
the broader family of Discontinuous Sketetal methods. Other well known members of the
same family are the well-established Hybridizable Discontinuous Galerkin (HDG) method,
the nonconforming Virtual Element Method (ncVEM) and the Weak Galerkin (WG) method.
HHO provides various valuable assets such as simple construction, support for fully-polyhedral
meshes and arbitrary polynomial order, great computational efficiency, physical accuracy and
straightforward support for ℎ𝑝-refinement. In this work we propose an HHO method for the
indefinite time-harmonic Maxwell problem and we evaluate its numerical performance. In
addition, we present the validation of the method in two different settings: a resonant cavity
with Dirichlet conditions and a parallel plate waveguide problem with a total/scattered field
decomposition and a plane-wave boundary condition. Finally, as a realistic application, we
demonstrate HHO used on the study of the return loss in a waveguide mode converter.

. Introduction

Discontinuous Galerkin (DG) methods are very successful discretization methods for the numerical solution of PDEs. Such
iscretizations rely on discrete spaces made out of broken polynomials, yielding discontinuous discrete solutions. Because of the
ntrinsic nature of DG methods, they typically yield a number of degrees of freedom much higher than classical Finite Elements,
nd this has been a source of criticism about DG. Hybrid methods were therefore introduced to mitigate this issue while retaining
ll the advantages typical of DG, like full polyhedral support and arbitrary polynomial order. The strategy behind hybrid methods
s, very informally, to define some element-local problems and subsequently couple them via face unknowns only: in this way one
btains a global problem posed only in terms of face-based unknowns, contrary to DG which yields a global problem posed in terms
f cell-based unknowns. Since unknowns of the global problem are face-based, this class of methods is also known as Discontinuous
keletal (DS) methods.

A recent development in the family of Discontinuous Skeletal methods is the Hybrid High-Order method (HHO in the
ollowing) [1,2]. The main features of HHO are the approximation of the solution with arbitrary order polynomials, support for fully
olyhedral meshes and easy ℎ𝑝-refinement. In addition, HHO methods are constructed independently from the geometric dimension
nd the element shape, allowing fully generic [3] software implementations. In HHO the unknowns are placed both in the cells and
n the faces of the mesh, in order to approximate a pair including the primal variable in the cells and its trace on the skeleton.
n particular, these unknowns are used by (i) a reconstruction operator, which reconstructs a high-order field in the cell and (ii)
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by a stabilization operator, which weakly enforces in each mesh cell the matching of the traces of the cell functions with the face
unknowns. These two operators are then combined in a local bilinear form which, after local static condensation, is assembled into
a global problem posed only on the face unknowns.

HHO methods have been used successfully in several fields of computational mechanics, for example solid mechanics [4–6],
ontact problems [7], obstacle problems [8] and fluid mechanics [9,10]. Recent applications of HHO to acoustic time-domain wave
roblems can be found in [11,12]. To the best of our knowledge however, the only application to electromagnetics, and specifically
o magnetostatics, is found in [13].

Bridges and unifying viewpoints between HHO and other DS methods have progressively emerged. One of the most important
onnections was established in [14], where HHO methods were embedded in the Hybrid Discontinuous Galerkin (HDG) setting [15,
6]. Differently from HHO, HDG approximates a triple including the primal variable, its trace and the dual variable, in addition
he analysis of the two methods relies on different theoretical ingredients. Weak Galerkin [17] (WG) methods were bridged to HDG
n [18] and therefore are also closely related to HHO. HHO and WG were developed independently, but they share the common point
f view of combining a reconstruction (called weak gradient in WG) and a stabilization, however HHO employs a more sophisticated
tabilization which allows to achieve higher convergence rates. In [14], also a connection to the nonconforming Virtual Element
ethod [19] was established.

HDG has a rich literature documenting that has been employed successfully in electromagnetics, we cite in particular [20,21]
or magnetostatics and [22–26] for electromagnetic wave propagation.

In this work we present the construction of an HHO method for the time-harmonic Maxwell problem. As the time-harmonic
axwell problem is notoriously hard to solve with iterative methods [27,28], direct solvers are frequently employed, together
ith domain decomposition techniques. Direct solvers however require huge amounts of memory, and for this reason efficient,
igh-order discretization techniques are of utmost importance. By employing skeletal (face-based) unknowns, hybrid methods are
xcellent candidates for this task.

This work is a numerical investigation, and is structured as follows: we first present the construction of the basic method, without
roviding a full analysis. Subsequently we proceed to a numerical validation on a problem with analytical solution to confirm the
xpected convergence rates, and we analyse the computational advantage of HHO compared to DG applied to the same problem.
n the following sections we devise in the HHO context two tools of practical importance, namely a plane wave source and a Total
ield/Scattered Field decomposition. We then proceed to the numerical validation of such tools. We finally use our method to
imulate a real-world microwave device and validate our results against a commercial tool.

. Continuous setting

Let 𝛺 be an open, simply connected subset of R3. (The method is suitable for any spatial dimension, we take 𝑑 = 3 for conciseness;
he restriction to 2D is performed as usual by choosing a Transverse Electric (TE, no electric field in the direction of propagation)
r Transverse Magnetic (TM, no magnetic field in the direction of propagation) mode and employing a 2-variate vector for one
ield and a scalar for the other.) Standard notations will be used in what follows: in particular 𝐿2(𝛺) denotes the Lebesgue space

of square integrable functions, 𝐻1(𝛺) the space of functions in 𝐿2(𝛺) whose gradient is square-integrable and 𝐻(curl;𝛺) the space
of functions in 𝐿2(𝛺) whose curl is square-integrable. In addition, we denote as 𝐻0(curl;𝛺) the subspace of 𝐻(curl;𝛺) composed
of the functions of 𝐻(curl;𝛺) whose trace is zero on 𝜕𝛺. Finally, we denote with (⋅, ⋅)𝐿2(𝛺) the inner product on 𝐿2(𝛺) and with
⋅‖𝐿2(𝛺) the corresponding norm.

We consider initially the time-harmonic problem with homogeneous Dirichlet boundary conditions
{

∇ × (𝜇−1∇ × 𝒆) − 𝜔2𝜖𝒆 = 𝒇 in 𝛺

𝒏̂ × 𝒆 = 0 on 𝜕𝛺
, (1)

here 𝜔 is the angular frequency, 𝜇, 𝜖 are piecewise constant material parameters, 𝒆 ∈ C3 is the unknown electric field and
∶= −𝑖𝜔𝒋 ∈ C3 is the divergence-free source current density. Problem (1) is readily translated in weak form: let 𝑉 ∶= 𝐻0(curl;𝛺);
e seek 𝒆 ∈ 𝑉 such that

(𝜇−1∇ × 𝒆,∇ × 𝒗)𝐋2(𝛺) − 𝜔
2(𝜖𝒆, 𝒗)𝐋2(𝛺) = (𝒇 , 𝒗)𝐋2(𝛺), ∀𝒗 ∈ 𝑉 . (2)

3. Discrete setting

Let ( , ) be a polyhedral mesh with # cells and # faces. A generic cell is denoted as 𝑇 ∈  , whereas a generic face as
𝐹 ∈  . Each cell 𝑇 has diameter ℎ𝑇 and each face 𝐹 has diameter ℎ𝐹 . The mesh size is defined as ℎ = max𝑇∈ ℎ𝑇 . We attach to each
lement 𝑇 a cell-based vector-valued polynomial 𝐏𝑘3(𝑇 ) and to each one of its 𝑛 faces 𝐹 ∈ 𝜕𝑇 a face-based vector-valued polynomial
𝐏𝑘2(𝐹 ) of degree 𝑘 ≥ 1. Cell-based polynomials are 3-variate, have values in C3 and are evaluated directly in the physical element.
On the other hand, for each 𝐹 ∈ 𝜕𝑇 let 𝐻𝐹 be the hyperplane supporting 𝐹 : face-based polynomials have values in C2 tangential
to 𝐻𝐹 and are evaluated using an affine mapping 𝐓𝐹 ∶ R2 → 𝐻𝐹 . We therefore set

𝐏𝑘2(𝐹 ) ∶= 𝐏𝑘2◦(𝐓
−1
𝐹 )

|𝐹 .

We remark that an entirely similar procedure can be applied to evaluate face-based functions in the case 𝑑 = 2 (the implementation
2

details are available in [3]); in addition in that case the face-based polynomials will be scalar-valued. Generally speaking, the
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Fig. 1. Visual representation of the local HHO space: to each mesh element we attach a cell-based function 𝗎𝑇 and one face-based function 𝗎𝐹 for each face 𝐹 .
otice that on the vertices the face-based function are discontinuous.

Fig. 2. Visual representation of the global HHO space. On the left, the result of assembling the local contributions; notice that the face-based functions are
ingle-valued. On the right, the HHO stencil, were we remark that the cell-based unknowns communicate via the face-based unknowns. Cell-based unknowns
re eliminated locally via a Schur complement, so they do not appear in the global linear system.

hoice of the tangential face-based polynomial spaces descends directly from the tangential continuity requirement that exists in
he 𝐻(curl;𝛺) space at the continuous level.

By collecting the cell-based and face-based polynomials attached to an element, the element-local space of degrees of freedom
s formed and denoted as

𝖴𝑘𝑇 ∶= 𝐏𝑘3(𝑇 ) ×
{

⨉

𝐹∈𝜕𝑇
𝐏𝑘2(𝐹 )

}

.

The elements of 𝖴𝑘𝑇 are denoted as the pairs 𝗎𝑇 ∶= (𝗎𝑇 , 𝗎𝜕𝑇 ). In turn, 𝗎𝑇 ∈ 𝐏𝑘3(𝑇 ) and 𝗎𝜕𝑇 = (𝗎𝐹1 ,… , 𝗎𝐹𝑛 ), 𝗎𝐹𝑖 ∈ 𝐏𝑘2(𝐹𝑖) are the
ell-based and the collection of face-based polynomials respectively (see Fig. 1). By collecting all the local polynomials attached to
he mesh elements, the global discrete problem space is introduced as

𝖴𝑘ℎ ∶=

{

⨉

𝑇∈
𝐏𝑘3(𝑇 )

}

×

{

⨉

𝐹∈
𝐏𝑘2(𝐹 )

}

,

here we remark that the face-based unknowns are single-valued (we remark that the unknowns are vector-valued polynomials, see
ig. 2). We will denote as 𝗎ℎ ∈ 𝖴𝑘ℎ the elements of the global discrete space and 𝗎ℎ the cell-based part of 𝗎ℎ. Homogeneous Dirichlet
oundary conditions are enforced strongly by setting to zero the unknowns associated to the boundary faces by considering the
ubspace of 𝖴𝑘ℎ

𝖴𝑘ℎ,0 ∶=
{

𝗎ℎ ∈ 𝖴𝑘ℎ ∣ 𝗎𝐹 = 0 ∀𝐹 ∈ 𝜕𝛺
}

.

s the values of the face-based polynomials are vectors tangential to the faces of the elements, this way of imposing the Dirichlet
onditions naturally enforces at the discrete level a vanishing tangential component.

.1. The HHO operators

As the HHO space is composed of hybrid unknowns, we are first faced with the problem of reducing general functions to the HHO
pace. To this aim, given 𝒖 ∈ 𝐿2(𝑇 ), we denote as 𝜋𝑘 ∶ 𝐿2(𝑇 ) → 𝐏𝑘 2 𝑘 2 𝑘
3

𝑇 3(𝑇 ) the standard cell-based 𝐿 projector and 𝜋𝐹 ∶ 𝐿 (𝐹 ) → 𝐏2(𝐹 )
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the standard face-based 𝐿2 projector. In addition, we define the tangential trace on the face 𝐹 as 𝛾𝑡,𝐹 (𝒖) ∶= 𝒏̂𝐹 × (𝒖 × 𝒏̂𝐹 ), with 𝒏̂𝐹
eing the outward normal vector to 𝐹 . Subsequently, we define the local reduction operator 𝑘𝑇 such that

𝑘𝑇 (𝒖) ∶= (𝜋𝑘𝑇 (𝒖), 𝜋
𝑘
𝐹1
(𝛾𝑡,𝐹 (𝒖)),… , 𝜋𝑘𝐹𝑛 (𝛾𝑡,𝐹 (𝒖))).

tarting from the last definition, the global reduction operator 𝑘ℎ is obtained trivially by collecting all the contributions of the local
perator applied to each mesh element.

The general idea behind skeletal methods is to define some element-local problem which couples to the neighbouring elements
ia face-based unknowns only. Subsequently, cell-based unknowns are eliminated locally via a Schur complement, allowing to obtain
global transmission problem posed in terms of face unknowns only. In HHO, such local problems are built out of a reconstruction
perator and a stabilization [2]. The reconstruction is typically derived from an integration by parts formula. In the present case we
mploy the formula

(∇ × 𝒖, 𝒗)𝐋2(𝑇 ) = (𝒖,∇ × 𝒗)𝐋2(𝑇 ) + (𝒖, 𝒗 × 𝒏̂)𝐋2(𝜕𝑇 ), (3)

o derive a curl reconstruction [13] operator  ∶ 𝖴𝑘𝑇 → 𝐏𝑘3(𝑇 ). By replacing 𝒖 with 𝗎𝑇 in the volume term on the right-hand side, and
with 𝗎𝜕𝑇 in the face term, the curl reconstruction operator  is defined to be the solution of the local, well-posed problem

(𝗎𝑇 , 𝒗)𝐋2(𝑇 ) ∶= (𝗎𝑇 ,∇ × 𝒗)𝐋2(𝑇 ) +
∑

𝐹∈𝜕𝑇
(𝗎𝐹 , 𝒗 × 𝒏̂𝐹 )𝐋2(𝐹 ), ∀𝒗 ∈ 𝐏𝑘3(𝑇 ). (4)

The actual computation of  requires inverting a mass matrix in each element; this is done just once if a reference element is
available (see [29, Chapter 8] for the implementation details). The crucial property of the curl reconstruction operator is that it is
polynomially consistent up to polynomial order 𝑘: indeed, for all 𝒖 ∈ 𝐻(curl; 𝑇 ), by plugging 𝑘𝑇 (𝒖) in the previous definition we
obtain for all 𝒗 ∈ 𝐏𝑘3(𝑇 )

((𝑘𝑇 (𝒖)), 𝒗)𝐋2(𝑇 ) = (𝜋𝑘𝑇 (𝒖),∇ × 𝒗)𝐋2(𝑇 ) +
∑

𝐹∈𝜕𝑇
(𝜋𝑘𝐹 (𝛾𝑡,𝐹 (𝒖)), 𝒗 × 𝒏̂𝐹 )𝐋2(𝐹 )

= (𝒖,∇ × 𝒗)𝐋2(𝑇 ) +
∑

𝐹∈𝜕𝑇
(𝒖, 𝒗 × 𝒏̂𝐹 )𝐋2(𝐹 )

= (∇ × 𝒖, 𝒗)𝐋2(𝑇 ),

where in the first step the projections were removed owing to the facts that ∇ × 𝒗 ∈ 𝐏𝑘−13 (𝑇 ) ⊂ 𝐏𝑘3(𝑇 ) and 𝒗 × 𝒏̂𝐹 ∈ 𝐏𝑘2(𝐹 ), whereas
in the second step we applied (3). In addition, notice that the definition of the curl reconstruction relies on a constant normal,
therefore element faces must be planar (HHO for curved elements was devised in [30]).

Since  has a nontrivial kernel [29, Chapter 1], we also need a stabilization that penalizes the difference between the face-
based functions 𝗎𝜕𝑇 and the tangential component of the cell-based function 𝗎𝑇 on 𝜕𝑇 . This ultimately imposes weakly a tangential
continuity requirement between elements. Let 𝜋𝑘𝛾,𝐹 ∶= 𝜋𝑘𝐹 ◦𝛾𝑡,𝐹 . We employ a Lehrenfeld–Schöberl-like stabilization [22,29], defined
as

𝑠𝑇 (𝗎𝑇 , 𝗏𝑇 ) ∶=
∑

𝐹∈𝜕𝑇
𝜁 (𝗎𝐹 − 𝜋𝑘𝛾,𝐹 (𝗎𝑇 ), 𝗏𝐹 − 𝜋𝑘𝛾,𝐹 (𝗏𝑇 ))𝐋2(𝐹 ), (5)

where 𝜁 is a scaling factor chosen in order to make the stabilization term dimensionally consistent. In the usual HHO construction
one would take 𝜁 = (𝜇ℎ𝑇 )−1, however dimensional consistency is achieved also by taking 𝜁 = 𝜔

√

𝜖∕𝜇 (a similar approach concerning
the choice of the penalization parameter is taken in [22] in the HDG context, in addition we remark that anisotropic coefficients
can be handled as described in [31]). In the following we will assume 𝜁 = 𝜔

√

𝜖∕𝜇, but in the validation section we will provide
numerical tests comparing the two alternatives.

Notice that the definitions of the reconstruction and the stabilization are completely element-local, and this feature will allow us
to apply a local Schur complement and eliminate cell-based unknowns during assembly.

With this construction, owing to the polynomial consistency property of  stated above, we expect a convergence rate of 𝑂(ℎ𝑘+1)
or the 𝐿2-norm of the error ‖𝒆̂ − 𝖾ℎ‖𝐋2(𝛺), where 𝒆̂ is such that 𝒆̂

|𝑇 = 𝜋𝑘𝑇 (𝒆), 𝒆 is the solution of (1) and 𝖾ℎ|𝑇 = 𝖾𝑇 for all 𝑇 ∈ .

3.2. The discrete problem

In order to build the discrete problem we use the curl reconstruction to mimic locally the curl–curl term of (2). We collect this
term alongside with the stabilization and the discrete equivalent of the mass term of (2) plus the right-hand side in the bilinear
form 𝑎𝑇 ∶ 𝖴𝑘𝑇 × 𝖴𝑘𝑇 → R and linear form 𝑙𝑇 ∶ 𝖴𝑘𝑇 → R as

𝑎𝑇 (𝖾𝑇 , 𝗏𝑇 ) ∶= 𝜇−1(𝖾𝑇 ,𝗏𝑇 )𝐋2(𝑇 ) + 𝑠𝑇 (𝖾𝑇 , 𝗏𝑇 ) − 𝜔
2𝜖(𝖾𝑇 , 𝗏𝑇 )𝐋2(𝑇 ),

𝑙𝑇 (𝗏𝑇 ) ∶= (𝒇 , 𝗏𝑇 )𝐋2(𝑇 ),

where we remark that the mass term (𝖾𝑇 , 𝗏𝑇 )𝐋2(𝑇 ) is purely cell-based and the source 𝒇 is tested only against cell-based basis functions.
Static condensation is applied locally to eliminate cell-based DOFs; we refer the reader to [3] for the details. The global problem is
obtained by a standard finite element assembly of the bilinear form 𝑎ℎ(𝖾ℎ, 𝗏ℎ) ∶ 𝖴𝑘ℎ,0 ×𝖴𝑘ℎ,0 → R and the linear form 𝑙ℎ(𝗏ℎ) ∶ 𝖴𝑘ℎ,0 → R

𝑎ℎ(𝖾ℎ, 𝗏ℎ) ∶=
∑

𝑎𝑇 (𝖫𝑇 𝖾ℎ,𝖫𝑇 𝗏ℎ),
4

𝑇∈
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Table 1
Computational cost comparison between HHO vs. SIP-DG on a tetrahedral mesh of 3072
elements.
Degree HHO SIP-DG

Memory Mflops Memory Mflops

k = 1 0.5 Gb 8.723 0.3 Gb 20.040
k = 2 0.9 Gb 66.759 2.4 Gb 313.133
k = 3 2.6 Gb 309.072 9.3 Gb 2.560.647

Table 2
Cost comparison between HHO vs. SIP-DG on a polyhedral mesh of 1210 elements (DBLS10 mesh
of the FVCA6 benchmark).
Degree HHO SIP-DG

Memory Mflops Memory Mflops

k = 1 0.4 Gb 16.264 0.3 Gb 12.646
k = 2 1.4 Gb 130.122 1.6 Gb 211.267
k = 3 3.7 Gb 584.182 6.2 Gb 1.690.146
k = 4 8.6 Gb 1.971.620 18.5 Gb 8.539.361

Table 3
Computational effort required for HHO to attain roughly the same 𝐿2-norm error at different polynomial orders.
Mesh ℎ 𝑘 Error Mflops DOFs Memory

0.103843 2 3.56e−5 4 089 984 571 392 11.7 Gb
0.207712 3 1.38e−5 309 072 115 200 2.6 Gb
0.415631 4 1.98e−5 16 287 20 160 0.5 Gb
0.832917 6 1.24e−5 1265 4032 0.1 Gb

𝑙ℎ(𝗏ℎ) ∶=
∑

𝑇∈
𝑙𝑇 (𝖫𝑇 𝗏ℎ),

where 𝖫𝑇 is the classical global-to-local face numbering mapping. We finally solve the global discrete problem of finding 𝖾ℎ ∈ 𝖴𝑘ℎ,0
such that

𝑎ℎ(𝖾ℎ, 𝗏ℎ) = 𝑙ℎ(𝗏ℎ) ∀𝗏𝑇 ∈ 𝖴𝑘ℎ,0.

3.3. Numerical validation

The described HHO method is implemented in the open-source numerical library DiSk++ (https://github.com/wareHHOuse/
diskpp). The numerical validation is done on a resonant cavity problem in the domain [0, 1]3. The RHS is chosen to obtain the
solution 𝒆 = (0, 0, 𝑠𝑖𝑛(𝜔𝑥)𝑠𝑖𝑛(𝜔𝑦))𝑇 with 𝜔 = 𝜋 and 𝜈 = 𝜖 = 1. The objective of the validation is to verify that the method converges
with the expected rates and to assess its computational cost in comparison with a classical Symmetric Interior Penalty Discontinuous
Galerkin (SIP-DG) discretization [32]. The linear systems obtained from the HHO and SIP-DG discretizations are solved using the
PARDISO linear solver found in the Intel MKL library.

The convergence rates and the computational cost of the matrix factorization are summarized in Fig. 3. The error convergence
rate in 𝐿2-norm results are verified to be 𝑂(ℎ𝑘+1), as expected. In addition, the computational cost of HHO results to be much lower
than that of SIP-DG. HHO being a skeletal discretization, the number of DOFs of the global system grows as (# ⋅ 𝑘𝑑−1), compared
to (# ⋅ 𝑘𝑑 ) in SIP-DG. As such, especially at high polynomial order and on meshes composed mainly of ‘‘standard’’ elements
(tetrahedra or hexahedra), HHO is expected to perform much better than SIP-DG. Tables 1 and 2 provide additional confirmation
to that expectation. Table 1 reports the number of operations done by PARDISO when deployed on the linear systems obtained
from the discretization of the test problem with a tetrahedral mesh of 3072 elements. In Table 2, on the other hand, we report the
computational advantage of HHO on the DBLS10 polyhedral mesh of the FVCA6 benchmark [33]. As expected the HHO advantage,
especially at low order, is slightly lower than in the tetrahedral case.

We conclude the computational performance evaluation with Table 3, in which we show the cost of HHO to attain a certain
fixed error while varying mesh size and polynomial order.

We would like to stress the fact that HHO is one of the many possible points of view over the hybridization of the classical DG
method, others being the already mentioned HDG, ncVEM and WG. Despite the different points of view however, bridges have been
established between HHO, HDG, ncVEM and WG and indeed they all yield a skeleton-based discrete problem. This fact suggests
that all these discretizations should obtain similar computational advantages over DG. We would also like to remark that the DG
assembly should, in general, be a little less expensive, as hybrid methods require the solution of a small local problem in each
mesh element. However, as our goal is to decrease the memory usage during the solution phase, we consider that a slightly heavier
5

assembly process is of secondary importance.

https://github.com/wareHHOuse/diskpp
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Fig. 3. On the left panel, the 𝐿2-norm convergence rates of HHO compared to SIP-DG on tetrahedral meshes. On the right panel, the number of floating point
operations done by the linear solver. HHO error is slightly higher than DG error, however at higher polynomial orders HHO is one order of magnitude cheaper
than SIP-DG.

Fig. 4. In the left panel, the fields, vectors and surfaces involved in the definition of the plane wave boundary condition. In the right panel, the domains and
interfaces involved in the TF/SF decomposition. On 𝛺𝑡 the full field is computed, whereas in 𝛺𝑠 only the reflections produced in 𝛺𝑡 are computed.

4. Additional boundary conditions and field sources

Practical applications frequently require specialized treatment of boundaries and sources. In this section we discuss a plane wave
boundary condition [34] and a total field/scattered field decomposition, and in particular we detail their realization in the HHO
framework. The former is basically a non-homogeneous Robin condition and is used either to impose an active plane wave source
or a passive absorbing boundary condition on a boundary 𝛤𝑍 ⊂ 𝜕𝛺. The latter is a common technique to impose sources in the
FDTD method and study reflection coefficients; it has been successfully used also in FETD (Finite-Element Time-Domain) [35] and
other frequency domain methods [36,37].

4.1. Plane wave boundary condition

With reference to Fig. 4(a), let 𝑬+ denote the complex amplitude of the known electric field of a wave entering 𝛺 through 𝛤𝑍
and propagating in direction 𝒅. Similarly, let 𝑬− denote the complex amplitude of the unknown electric field of a wave exiting 𝛺
through 𝛤𝑍 and propagating in direction 𝒏̂. In addition, let 𝜅2 = 𝜔2𝜇𝜖. In this setting, the total electric field on 𝛤𝑍 at the point
𝒙 ∈ 𝛤𝑍 is given by

𝒆(𝒙) = 𝑬+𝑒
−𝑖𝜅(𝒅⋅𝒙) + 𝑬−𝑒

−𝑖𝜅(𝒏⋅𝒙). (6)

By taking the curl of (6) and applying the vector calculus identity ∇ × (𝜓𝑨) = 𝜓(∇ ×𝑨) + ∇𝜓 ×𝑨, we obtain

∇ × 𝒆 = −𝑖𝜅
(

𝒅 × 𝑬+𝑒
−𝑖𝜅(𝒅⋅𝒙) + 𝒏̂ × 𝑬−𝑒

−𝑖𝜅(𝒏̂⋅𝒙)
)

. (7)

We now post-multiply by 𝒏̂ and replace (6) in the result to obtain

(∇ × 𝒆) × 𝒏̂ + 𝑖𝜅 (𝒏̂ × (𝒆 × 𝒏̂)) = 𝑖𝜅
(

(𝒏̂ − 𝒅) × 𝑬+𝑒
−𝑖𝜅(𝒅⋅𝒙)) × 𝒏̂. (8)

By pre-multiplying both sides of (8) by 𝜇−1 we can make the wave admittance 𝑌 =
√

𝜖∕𝜇 explicit

(𝜇−1∇ × 𝒆) × 𝒏̂ + 𝑖𝜔𝑌 𝒆 = 𝑖𝜔𝑌 𝒆+(𝒅), (9)
6
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where we replaced the two double-cross-product terms of (8) with the shorthands 𝒆𝑡 ∶= 𝒏̂× (𝒆× 𝒏̂) and 𝒆+𝑡 (𝒅) ∶=
(

(𝒏̂ − 𝒅) × 𝑬+𝑒−𝑖𝜅(𝒅⋅𝒙)
)

×
𝒏̂ respectively. The condition just obtained goes under the name of plane wave condition. It can then be incorporated in the strong
form Maxwell problem as

⎧

⎪

⎨

⎪

⎩

∇ × (𝜇−1∇ × 𝒆) − 𝜔2𝜖𝒆 = −𝑖𝜔𝒋 in 𝛺

𝒏̂ × 𝒆 = 0 on 𝛤𝐷
(𝜇−1∇ × 𝒆) × 𝒏̂ + 𝑖𝜔𝑌 𝒆𝑡 = 𝑖𝜔𝑌 𝒆+𝑡 (𝒅) on 𝛤𝑍

, (10)

here 𝒋 is the divergence-free current density, 𝛤𝑍 ∪ 𝛤𝐷 = 𝜕𝛺 and 𝛤𝑍 ∩ 𝛤𝐷 = ∅. Let 𝐻𝑖(curl;𝛺) be the space defined as

𝐻𝑖(curl;𝛺) ∶= {𝝓 ∈ 𝐻(curl;𝛺) ∣ 𝛾𝑡,𝛤𝑍 (𝝓) ∈ 𝐿2(𝛤𝑍 ) on 𝛤𝑍 , 𝒏̂ × 𝝓 = 0 on 𝛤𝐷}.

With standard manipulations, Problem (10) is translated to weak form, where we look for 𝒆 ∈ 𝐻𝑖(curl;𝛺) such that the expression

𝜇−1(∇ × 𝒆,∇ × 𝒗)𝐋2(𝛺) − 𝜔
2𝜖(𝒆, 𝒗)𝐋2(𝛺) + 𝑖𝜔𝑌 (𝒆𝑡, 𝒗)𝐋2(𝛤𝑍 ) = 𝑖𝜔𝑌 (𝒆+𝑡 (𝒅), 𝒗)𝐋2(𝛤𝑍 ) − 𝑖𝜔(𝒋, 𝒗)𝐋2(𝛺), (11)

holds for all the test functions 𝒗 ∈ 𝐻𝑖(curl;𝛺). In the local HHO bilinear forms, the new impedance and boundary source terms
appearing in (11) translate to a face-based mass matrix and a face-based right-hand side respectively, as in

𝑎𝑇 (𝖾𝑇 , 𝗏𝑇 ) ∶= 𝜇−1(𝖾𝑇 ,𝗏𝑇 )𝐋2(𝑇 ) + 𝑠𝑇 (𝖾𝑇 , 𝗏𝑇 ) − 𝜔
2𝜖(𝖾𝑇 , 𝗏𝑇 )𝐋2(𝑇 ) +

∑

𝐹∈𝜕𝑇∩𝛤𝑍

𝑖𝜔𝑌 (𝗎𝐹 , 𝗏𝐹 )𝐋2(𝐹 )

𝑙𝑇 (𝗏𝑇 ) ∶=
∑

𝐹∈𝜕𝑇∩𝛤𝑍

𝑖𝜔𝑌 (𝒆+𝑡 (𝒅), 𝗏𝐹 )𝐋2(𝐹 ) − 𝑖𝜔(𝒋, 𝗏𝑇 )𝐋2(𝑇 )

The global system assembly procedure remains unchanged, except for the discrete global space of the problem, which is now

𝖴𝑘ℎ,𝑖 ∶=
{

𝗎ℎ ∈ 𝖴𝑘ℎ ∣ 𝗎𝐹 = 0 ∀𝐹 ∈ 𝛤𝐷
}

.

.2. Total field/scattered field decomposition

The total/scattered field (TF/SF) decomposition is a technique [36,37, Section 3.2] used to place surface field sources inside a
omputational domain, and it is usually employed to study the reflection characteristics of a device (e.g. the return loss).

A TF/SF decomposition splits the computational domain 𝛺 in two partitions 𝛺𝑡 and 𝛺𝑠 such that 𝛺𝑡 ∪𝛺𝑠 = 𝛺, 𝛺𝑡 ∩𝛺𝑠 = ∅ and
𝛺𝑡 ∩ 𝛺𝑠 = 𝛤𝑡𝑠 (see Fig. 4(b)). The field in 𝛺𝑠 is then the result of the scatterings occurring in 𝛺𝑡, minus the source applied on the
interface 𝛤𝑡𝑠 and radiating into 𝛺𝑡. For simplicity in this work 𝛤𝑡𝑠 is fitted to the mesh; HHO supports also unfitted interfaces as
demonstrated in [38] for elliptic problems and in [10] for the Stokes problem.

In our setting, we consider the source applied on 𝛤𝑡𝑠 to be a plane wave with electric field 𝒆̃ ∶ 𝛤𝑡𝑠 → C3 and magnetic field
𝒉̃ ∶ 𝛤𝑡𝑠 → C3. Therefore, denoting with 𝑌 the wave admittance, it holds

𝒉̃ × 𝒏̂ = 𝑌 𝒏̂ × (𝒆̃ × 𝒏̂).

By setting 𝒔𝐷 ∶= 𝒏̂ × (𝒆̃ × 𝒏̂) and invoking the Faraday–Neumann law on the left hand side of the above equation, we define
𝒔𝑁 ∶= −𝑖𝜔𝑌 𝒔𝐷. The TF/SF decomposition can therefore be formulated as the problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ × (𝜇−1∇ × 𝒆) − 𝜔2𝜖𝒆 = 0 in 𝛺

[[𝒏̂ × 𝒆 × 𝒏̂]] = 𝒔𝐷 on 𝛤𝑡𝑠
[[(𝜇−1∇ × 𝒆) × 𝒏̂]] = 𝒔𝑁 on 𝛤𝑡𝑠

𝒏̂ × 𝒆 = 0 on 𝜕𝛺

, (12)

where we denote with [[⋅]] the standard jump operator and the normal is oriented towards the total field part on 𝛤𝑡𝑠 and outwards
on 𝜕𝛺.

The discontinuous skeletal nature of the HHO method makes particularly convenient to impose the jump conditions on 𝛤𝑡𝑠: only
the Dirichlet jump requires a slightly specialized treatment, the Neumann jump is handled as if it were a regular Neumann condition
on a domain boundary.

Let 𝑇 𝑡 and 𝑇 𝑠 be two elements (we use triangles for illustration purposes, the reasoning applies to all polygons/polyhedra) sharing
a face on 𝛤𝑡𝑠 (Fig. 5). The faces of 𝑇 𝑡 are denoted as 𝐹 𝑡1, 𝐹

𝑡
2, 𝐹

𝑡
𝛤 ; similarly the faces of 𝑇 𝑠 are denoted as 𝐹 𝑠1 , 𝐹 𝑠2 , 𝐹 𝑠𝛤 . The faces with

the subscript 𝛤 lie on 𝛤𝑡𝑠 and, from the point of view of the global discrete problem, 𝐹 𝑡𝛤 = 𝐹 𝑠𝛤 . The associated local unknowns are
denoted as follows: for 𝑇 𝑡 we have the cell-based contribution 𝖾𝑇 𝑡 and the face-based contributions 𝖾𝐹 𝑡1

, 𝖾𝐹 𝑡2 and 𝖾𝐹 𝑡𝛤
, whereas on 𝑇 𝑠

we have the cell-based contribution 𝖾𝑇 𝑠 and the face-based contributions 𝖾𝐹 𝑠1
, 𝖾𝐹 𝑠2 and 𝖾𝐹 𝑠𝛤

.
The face-based unknowns of the global discrete problem, as already mentioned, are single-valued and the face-based quantities

𝐹 𝑡𝛤
and 𝖾𝐹 𝑠𝛤

contribute to the same global unknown (Fig. 5). Therefore, it must be chosen whether the global unknown on 𝛤𝑡𝑠
epresents a total field or a scattered field quantity. In this work, we chose the latter.

From a local point of view the previous choice allows to reason as follows. First, let 𝒆𝑠 ∶= 𝒆
|𝛺𝑠 and 𝒆𝑡 ∶= 𝒆

|𝛺𝑡 , so the Dirichlet
ump condition of (12) is rewritten as 𝒏̂ ×𝒆 × 𝒏̂ = 𝒏̂ ×𝒆 × 𝒏̂ +𝒔 on 𝛤 . Then, as at the discrete level the face-based degrees
7
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Fig. 5. On the left, the unknowns of two elements across the TF/SF boundary. The two face-based values across the interface marked 𝛤 (dashed circle) contribute
to the same unknown of the global problem. On the right, the two elements after assembly: in our setting we consider that unknowns on 𝛤𝑡𝑠 are scattered field
unknowns.

Fig. 6. Computational domain used to setup a parallel-plate waveguide for the validation of the impedance boundary condition and the TF/SF decomposition.

of freedom are vectors tangential to the face itself, the discrete equivalent on 𝑇 𝑡 of the previous relation is 𝖾𝐹 𝑡𝛤
= 𝖾𝐹 𝑠𝛤

+ 𝗌𝐷, where
𝗌𝐷 = 𝜋𝑘

𝐹 𝑡𝛤
(𝛾𝑡,𝐹 (𝒔𝐷)). On 𝑇 𝑡 we thus define the local reconstruction as

(𝖾𝑇 𝑡 , 𝒗)𝐋2(𝑇 𝑡) ∶= (𝖾𝑇 𝑡 ,∇ × 𝒗)𝐋2(𝑇 𝑡)+
∑

𝑖∈{1,2,𝛤 }
(𝖾𝐹 𝑡𝑖 , 𝒗 × 𝒏̂𝐹 𝑡𝑖 )𝐋2(𝐹 𝑡𝑖 )

= (𝖾𝑇 𝑡 ,∇ × 𝒗)𝐋2(𝑇 𝑡) +
∑

𝑖∈{1,2}
(𝖾𝐹 𝑡𝑖 , 𝒗 × 𝒏̂𝐹 𝑡𝑖 )𝐋2(𝐹 𝑡𝑖 )

+ (𝖾𝐹 𝑠𝛤 + 𝗌𝐷, 𝒗 × 𝒏̂𝐹 𝑡𝛤 )𝐋2(𝐹 𝑡𝛤 )
.

(13)

Plainly speaking, the only difference with the standard reconstruction (4) is that the face term on 𝐹 𝑡𝛤 has been modified to take into
account both the unknown scattered field contribution and the known source contribution. On the other hand, the reconstruction
operator on 𝑇 𝑠 remains unchanged, as the unknown on 𝐹 𝑠𝛤 is already a scattered field quantity.

From the above considerations, the local discrete bilinear form and linear form on 𝑇 𝑡 are readily derived as

𝑎𝑡𝑠𝑇 (𝖾
♭
𝑇 , 𝗏𝑇 ) ∶= 𝜇−1(𝖾♭𝑇 ,𝗏𝑇 )𝐋2(𝑇 ) − 𝜔

2𝜖(𝖾𝑇 , 𝗏𝑇 )𝐋2(𝑇 ) + 𝑠𝑇 (𝖾
♭
𝑇 , 𝗏𝑇 ), (14)

𝑙𝑡𝑠𝑇 (𝗏𝑇 ) ∶= −𝑎𝑡𝑠𝑇 (𝗌𝐷, 𝗏𝑇 ) + (𝒔𝑁 , 𝗏𝐹 𝑡𝛤 )𝐋2(𝐹 𝑡𝛤 )
, (15)

where 𝗌𝐷 ∶= 𝑘𝑇 (𝒔𝐷) and the subscript ♭ indicates that some face-based contributions in 𝖾♭𝑇 are on 𝛤𝑡𝑠 and therefore are scattered
field quantities.

From an implementation point of view, the TF/SF decomposition requires special handling of only the elements of 𝛺𝑡 touching
𝛤𝑡𝑠. In particular, on those elements only additional contributions on the right-hand side arise. The left-hand side is identical to the
non-TF/SF case.

5. Numerical validation of additional conditions and sources

In this section we provide some validation results about the impedance boundary condition and the total field/scattered field
decomposition developed for the HHO framework. To this aim, we set up a parallel-plate waveguide problem whose analytical
solution can be readily obtained by basic transmission line theory considerations [39]. In particular, we will consider the propagation
of an electromagnetic wave through a material discontinuity with various degrees of impedance mismatch. In this setting, we study
the convergence to the analytical solution and the convergence of the return loss measured at the source.

5.1. Detailed validation setup

We consider the domain 𝛺 = (0, 0.1) × (0, 0.1) × (−0.2, 2). Additionally, we subdivide 𝛺 along the coordinate 𝑧 in three subregions
3, 𝛺1 and 𝛺2 (Fig. 6). The region 𝛺3 extends in the interval (−0.2, 0) along 𝑧 and is a scattered field region, whereas 𝛺1 and
2 are both total field region which cover the 𝑧 intervals (0, 1) and (1, 2) respectively. On the boundaries parallel to the 𝑥𝑧-plane a
omogeneous Dirichlet boundary condition (𝒏̂×𝒆 = 0) is applied, whereas on the boundaries parallel to the 𝑦𝑧-plane a homogeneous
eumann boundary condition (𝒉 × 𝒏̂ = 0) is applied. A plane wave source of amplitude 𝑬 = (0, 1, 0)𝑇 is applied via (14)–(15) in
8
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Table 4
The parameters of the three situations considered as validation cases. For a given value of 𝜖𝑟, the analytical values of the reflection
coefficient, transmission coefficient, return loss in dB and VSWR respectively are reported.

Situation 𝜖𝑟 𝛾12 𝜏12 RL (dB) VSWR

Almost matched 1.44 −1/11 10/11 −20.8279 1.2:1
Moderate mismatch 4 −1/3 2/3 −9.5424 2:1
Severe mismatch 64 −7/9 2/9 −2.1829 8:1

Fig. 7. Analytical solution at 300 MHz in the three considered test cases. The symbol 𝜖2 denotes the relative permittivity in the subregion 𝛺2 of the testing
domain.

the plane at 𝑧 = 𝑧0 = 0, whereas on the planes 𝑧 = 𝑧3 = −0.2 and 𝑧 = 𝑧2 = 2 an impedance boundary condition is imposed. In the
regions 𝛺3 and 𝛺1 the material parameters are set to 𝜖 = 𝜖0 and 𝜇 = 𝜇0, simulating free space. On the other hand, in 𝛺2 we set
𝜖 = 𝜖𝑟𝜖0 and 𝜇 = 𝜇0 in order to obtain a material discontinuity on the plane at 𝑧 = 𝑧1 = 1. In turn, this gives on the same plane a
reflection coefficient 𝛾12 and a transmission coefficient 𝜏12 (seen from 1 to 2).

In this setting, the reference solution can be defined piecewise by resorting to the standard transmission line theory (Fig. 7). We
start with 𝛺1 by observing that there will be a forward wave due to the excitation at 𝑧0, and a backward wave reflected by the
material discontinuity at 𝑧1. The expression of the forward wave is easily deduced to be 𝑬0𝑒−𝑖𝜅1(𝑧−𝑧0); in addition we notice that
at the point 𝑧1 the phase is 𝜙1 = −𝑖𝜅1(𝑧1 − 𝑧0). Subsequently, by using the last observation and the fact that at 𝑧1 the reflection
coefficient is 𝛾12, we deduce that the backward wave originating at 𝑧1 can be written as 𝑬0 𝛾12 𝑒𝑖𝜅1(𝑧−𝑧1)𝑒𝜙1 . Concerning 𝛺2, as the
domain is terminated by a matched impedance condition, we expect only a forward wave with initial amplitude 𝑬0 𝜏12 and initial
phase 𝜙1. Finally, as 𝛺3 is a scattered field region, we expect to see only the backward wave originating at 𝑧1, whose expression
was already derived above. The complete, piecewise reference solution can finally be written as follows:

𝒆ref(𝒙) =
⎧

⎪

⎨

⎪

⎩

𝑬0 𝛾12 𝑒
𝑖𝜅1(𝑧−𝑧1)𝑒𝜙1 in 𝛺3

𝑬0𝑒
−𝑖𝜅1(𝑧−𝑧0) + 𝑬0 𝛾12 𝑒

𝑖𝜅1(𝑧−𝑧1)𝑒𝜙1 in 𝛺1

𝑬0 𝜏12 𝑒
−𝑖𝜅2(𝑧−𝑧1)𝑒𝜙1 in 𝛺2

(16)

5.2. Validation results

For the validation we consider three different situations: an almost matched situation, a situation with a moderate mismatch
and one with a severe mismatch. In particular we will consider the values of 𝜖𝑟 in 𝛺2 reported in Table 4.

In the three situations we expect different magnitudes of forward and reflected waves; the analytical solution of the problem is
reported in Fig. 7.

We recall [39] that the wave impedance in the domain 𝛺𝑖 is computed from the material parameters as 𝑍𝑖 =
√

𝜇∕𝜖. Given two
different, adjacent domains 𝛺𝑖 and 𝛺𝑗 , the reflection and transmission coefficients at the interface from 𝛺𝑖 to 𝛺𝑗 are computed as
𝛾𝑖𝑗 =

𝑍𝑖−𝑍𝑗
𝑍𝑖+𝑍𝑗

and 𝜏𝑖𝑗 = 2 𝑍𝑗
𝑍𝑖+𝑍𝑗

respectively; the return loss in decibels at the same interface is computed as RL (dB) = 20log10|𝛾𝑖𝑗 | and

he voltage standing wave ratio as VSWR = 1+|𝛾𝑖𝑗 |
1−|𝛾𝑖𝑗 |

. We recall that the return loss is given also by the ratio between the reflected
and incident power at a given interface as 𝑅𝐿 (dB) = 10log10(𝑃ref∕𝑃fwd). Finally, the power 𝑃 flowing at a given interface 𝛤 is
obtained by evaluating the flux of the Poynting vector [40, Section 5.1] as 𝑃 = ∫𝛤 |𝒆|2∕𝑍𝑑𝛤 , where 𝑍 is the impedance of the
domain adjacent to 𝛤 .

The results of the validation are reported in the Figs. 8–10. We considered polynomials degrees 𝑘 = 1 (top row in the figures)
and 𝑘 = 2 (bottom row in the figures) and we ran the computations on a sequence of meshes of size ℎ ∈ {0.16, 0.08, 0.04, 0.02, 0.01}.
In all cases the error decays with the expected rate ((ℎ2) in the case 𝑘 = 1 and (ℎ3) in the case 𝑘 = 2), see left column of
Figs. 8–10. On the right column of the figures we reported the convergence of the return loss at the interface at 𝑧0; we remark that
this computation, especially in the severely mismatched situation, benefits greatly from higher order. In addition, we notice that
there is no ‘‘direction’’ in the convergence of the value of the return loss: in some cases the convergence is from above, in some
cases from below and in other cases there is an oscillation (getting smaller with smaller ℎ) around the true value. This behaviour
is in accordance with what was already observed in [41] in the context of the Discrete Geometric Approach (DGA) method.
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r

Fig. 8. Almost matched (VSWR 1.2:1), on the top row polynomial order 𝑘 = 1 and on the bottom row polynomial order 𝑘 = 2. On the left column the convergence
ate to the reference solution is reported, whereas in the right column the convergence of the return loss is depicted.

Fig. 9. Moderate mismatch (VSWR 2:1), on the top row polynomial order 𝑘 = 1 and on the bottom row polynomial order 𝑘 = 2. On the left column the
convergence rate to the reference solution is reported, whereas in the right column the convergence of the return loss is depicted.

6. On the choice of the stabilization parameter

The traditional stabilization of the HHO methods descends directly from the norms associated to the discrete space in use [29,
Chapter 1] and employed to prove the stability and convergence of the method. Therefore, according to the HHO theory, material
parameters should appear in the stabilization to achieve dimensional consistency. A possibility is to take 𝜁 ∶= (𝜇ℎ )−1 in (5) when
10
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c
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d

r

Fig. 10. Severe mismatch (VSWR 8:1), on the top row polynomial order 𝑘 = 1 and on the bottom row polynomial order 𝑘 = 2. On the left column the convergence
rate to the reference solution is reported, whereas in the right column the convergence of the return loss is depicted.

Fig. 11. Comparison of the two stabilization parameters in the almost matched case. With the modified parameter, the error is slightly higher, however the two
hoices remain essentially equivalent.

aterial parameters are taken into account as in (2). Taking inspiration from the impedance boundary condition however, one can
educe that also 𝜁 ∶= 𝜔

√

𝜖∕𝜇 yields a dimensionally-consistent stabilization.
In this section we provide some empirical data about the behaviour of the method using the two different parameters. We will

efer to the choice 𝜁 ∶= (𝜇ℎ𝑇 )−1 as ‘‘standard’’ and to the choice 𝜁 ∶= 𝜔
√

𝜖∕𝜇 as ‘‘modified’’.
We ran the validation problem of Section 5 at 𝑓 ∈ {200, 250, 300} MHz (as the error is the highest) using the two stabilization

parameters. In the almost matched case, even if the modified stabilization parameter produces a slightly higher error, the two choices
remain equivalent for practical purposes (Fig. 11); for conciseness we report the results only for 𝑘 = 1 as with 𝑘 = 2 the behaviour
is comparable.

In the moderately mismatched case, for which we report the results for 𝑘 = 1 (Fig. 12), we observe that the error behaviour is
improved only for the coarsest meshes; on the finer meshes the choices are equivalent up to some slight increase of the error.

In the severely mismatched case we observe that the modified stabilization parameter greatly improves the error behaviour of
the method in case 𝑘 = 1 but especially in the case 𝑘 = 2; we report both in Fig. 13.

To conclude the comparison between the standard and the modified stabilization parameters, we evaluated the error for the
two cases along the line from (0.05, 0.05,−0.2) to (0.05, 0.05, 2), in order to determine if, in the cases where the modified parameter
yielded a better error, the improvements were localized or global. In general we observed global improvements, in Fig. 14 we
report the comparison in the moderately mismatched case, ℎ = 0.16, 𝑘 = 1, 𝑓 = 300 MHz and the severely mismatched case,
11
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s

Fig. 12. Comparison of the two stabilization parameters in the moderately mismatched case. With the modified stabilization, on the coarse meshes the method
attains a lower error.

Fig. 13. Comparison of the two stabilization parameters in the severely mismatched case, 𝑘 = 1 in the top row and 𝑘 = 2 in the bottom row. With the modified
stabilization the method attains a lower error in all but the last mesh of the test sequence.

Fig. 14. Error of the method with the two stabilization parameters vs. position inside the domain. The distribution of the error appears similar for the two
tabilizations.
12
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Fig. 15. Structure of the simulated mode converter. The structure is built in a WR-90 waveguide and the dielectric rods (blue circles) have a relative permittivity
𝜖𝑟 = 24. The input port is on the left (𝑇𝐸10 mode) and the output port is on the right (𝑇𝐸20 mode).

Fig. 16. On the left the computed return loss between 7 and 11 GHz, where the mode conversion does not take place. On the right the computed return loss
as TE10 mode between 13 and 17 GHz, where a TE10 to TE20 mode conversion takes place.

. Study of a TE10 to TE20 mode converter

To conclude the numerical evaluation of the proposed HHO method, we consider a realistic test case of a waveguide mode
onverter. In this setting a waveguide is a hollow metallic pipe used to transport electromagnetic energy from a generator to a load
for example a transmitter and an antenna). Practical waveguides are typically rectangular or circular and, as prescribed by the
lectromagnetic theory [39], the electromagnetic field inside a waveguide travels in discrete transverse modes indexed by integers
and 𝑛. A mode converter is a microwave device capable of changing the propagation mode of a field in a waveguide, and can be

sed for example to split the power between two loads.
We consider a TE10 to TE20 waveguide mode converter of the type studied in [42, Chapter 14] and depicted in Fig. 15. We

re interested in determining the TE10 reflection coefficient at the Port 1 (i.e. the 𝑆-parameter 𝑆11 [39]) of the structure in the
frequency ranges between 7 and 11 GHz, where the mode conversion does not take place, and between 13 and 17 GHz, where
mode conversion takes place (Fig. 17). We compare our solution with the solution computed by a commercial multiphysics FEM
package.

In the FEM model, the structure is terminated at both ends with Perfectly Matched Layers (PMLs) and excited with a waveguide
port, as an impedance boundary condition equivalent to the one used for HHO is not available in the FEM package. On the other
hand, in our HHO model we use an impedance boundary condition to terminate the structure: on the left side the impedance
condition is matched to the wave impedance of the TE10 mode, whereas on the right side the termination is matched to the
impedance of the output mode. The reason why we do not employ PMLs in HHO is that their development requires a better
understanding of the HHO behaviour when complex wavenumbers appear. Indeed, as observed also with the HDG method [43],
HHO too appears to not behave entirely as expected in this setting. To the best of our knowledge however, the HDG receipt [43]
seems to not be straightforwardly applicable to HHO, therefore more investigation (which we will leave for a future contribution)
is needed in this area.

The FEM mesh is composed of tetrahedral elements, whereas the HHO mesh is composed – in order to put in evidence the
polyhedral nature of HHO – by a single layer of triangular prisms. In both the FEM and HHO models the amplitude of the reflected
field is evaluated by exploiting the orthogonality between modes [40, Section 5.1.3] as

𝑎TE10 ∶=
∫𝛤 (𝒆 − 𝒆10) ⋅ 𝒆10 d𝛤

∫𝛤 𝒆10 ⋅ 𝒆10 d𝛤
, (17)

where 𝛤 is the interface corresponding to Port 1 (Fig. 15), 𝒆 is the computed total field on 𝛤 and 𝒆10 is the excitation applied on 𝛤 .
The amplitude is then used to compute the return loss 𝑆11 in decibels (Fig. 16). In both regimes we observe a good match between
the FEM solution and the HHO solution; the slight differences, negligible in practice, can be attributed to the slightly different
models we employed.
13
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Fig. 17. Field pattern at 15.5 GHz. From the left to right one can observe the scattered field region, the TF/SF transition where the excitation is applied and
the total field region, where the mode conversion takes place. The left end is terminated with the impedance of the TE10 mode, whereas right end is terminated
with the impedance of the TE20 mode.

8. Conclusions

We introduced a numerical method for the indefinite time-harmonic Maxwell problem inspired on the design philosophy of the
original HHO method for elliptic problems, and we evaluated experimentally its computational performance against the classical
SIP-DG method. As expected from hybrid methods, HHO requires far less computational effort than SIP-DG, which is an important
advantage on the solution of the indefinite time-harmonic Maxwell problem. More importantly, HHO also helps in reducing the
quantity of memory required by the linear solver when compared to SIP-DG.

Subsequently we described the HHO realization of two important tools, namely a plane wave boundary condition and a total
field/scattered field decomposition, which we validated obtaining the expected convergence of the considered quantities.

As a more real-world problem, we presented the study of a waveguide mode converter and we compared our results with those
obtained from a commercial code. Satisfactory agreement was found.

There are many aspects of the method that still need to be understood, we leave deeper theoretical studies, as well as the
introduction of other important numerical tools such as the PMLs, for a future contribution.
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