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Abstract.

Objective. Recent trends in brain-computer interface (BCI) research concern the

passive monitoring of brain activity, which aim to monitor a wide variety of cognitive

states. Engagement is such a cognitive state, which is of interest in contexts such as

learning, entertainment or rehabilitation. This study proposes a novel approach for

real-time estimation of engagement during different tasks using electroencephalography

(EEG). Approach. Twenty-three healthy subjects participated in the BCI experiment.

A modified version of the d2 test was used to elicit engagement.Within-subject

classification models which discriminate between engaging and resting states were

trained based on EEG recorded during a d2 test based paradigm. The EEG was

recorded using eight electrodes and the classification model was based on Filter-Bank

Common Spatial Patterns and a Linear Discriminant Analysis. The classification

models were evaluated in cross-task applications, namely when playing Tetris at

different speeds (i.e., slow, medium, fast) and when watching two videos (i.e.,

advertisement and landscape video). Additionally, subjects’ perceived engagement was
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quantified using a questionnaire. Main results. The models achieved a classification

accuracy of 90% on average when tested on an independent d2 test paradigm

recording. Subjects’ perceived and estimated engagement were found to be greater

during the advertisement compared to the landscape video (p = 0.025 and p < 0.001,

respectively); greater during medium and fast compared to slow Tetris speed (p <

0.001, respectively); not different between medium and fast Tetris speeds. Additionally,

a common linear relationship was observed for perceived and estimated engagement

(rrm = 0.44, p < 0.001). Finally, theta and alpha band powers were investigated,

which respectively increased and decreased during more engaging states. Significance.

This study proposes a task-specific EEG engagement estimation model with cross-task

capabilities, offering a framework for real-world applications.

Keywords : engagement, brain-computer interface, passive BCI, EEG, d2 test, tetris,

video

Submitted to: J. Neural Eng.

1. Introduction

A brain-computer interface (BCI) provides a human-computer communication channel

based solely on brain activity, without the need to physically move body parts [1]. For

decades, researchers widely investigated BCI systems to help patients with severe motor

disabilities to communicate with the outside world and indirectly restore motor function.

However, direct access to brain activity can also be used to improve and support human-

machine interaction in general, providing an additional implicit communication channel.

So-called passive BCIs are based on brain activity that is not voluntarily modulated

by the user to control an application [2]. This activity is then interpreted so that the

computer can adapt to the user’s mental state. In general, users can perform their daily

activities and a system records changes in their cognitive state. With passive BCIs, a

wide variety of cognitive states can be investigated, e.g., fatigue [3], vigilance, working

memory load [4], attention, frustration [5], emotions, and engagement.

Engagement is a positive state comprising several dimensions, including workload

state, attention, motivation, interest, emotions, and perceived time spent on a given

task [6,7]. Measuring the level of engagement is of great interest in many contexts. For

example, in a healthcare scenario, the level of patient engagement may decrease during

a rehabilitation session and a pause is necessary. Keeping patient engagement high can

improve treatment outcomes [8]. In the context of education, engagement detection

could be a new input channel of an adaptive automatic teaching platform to improve

learning effectiveness [9–11]. In an entertainment context, a video game could adapt to

the player’s level of engagement to keep it high, for example, by introducing obstacles

or increasing the speed of a game [12].

Concerning the measurability of engagement, evaluation grids and self-assessment

questionnaires, interviews, and direct observation in the field or in a controlled
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environment have traditionally been the most widely used methods [13]. In recent years,

engagement is estimated indirectly using biosignals such as galvanic skin response [14],

heart rate [15] or electroencephalography (EEG) [7, 16, 17]. Among these modalities,

EEG seems to be one of the most promising technologies as a wide range of information

on the subject’s mental state can be derived from it.

One of the best-known parameters in the literature for measuring EEG-based

engagement is the engagement index [7,16–19]. It is defined as the ratio between the beta

power and the sum of theta and alpha powers associated with certain EEG channels.

It is based on the hypothesis that an increase in beta-band power is correlated with

an attentive state of the brain, such as the performance of a mental task, activation

of the visual system, and movement planning activity [7]. In contrast, increases in

alpha and theta activity correlated with decreased vigilance and mental alertness. In

particular, decreases in alpha-band power are related to the processing of important

information [20], and increases in this power are associated with a resting state. For

these reasons, theta, alpha, and beta bands are among the prominent frequency bands

in the estimation of engagement. However, this engagement index seems to not take

into account the different dimensions of engagement. In [9], cognitive and emotional

engagement in learning was detected using a filter bank common spatial patterns (CSP)

approach, which provided superior performance compared to the engagement index.

In [21], a hybrid system based on eye tracking and engagement-based BCI is proposed

to play a hands-free version of the Tetris game. The level of user engagement is again

detected by means of a filter bank CSP and was used to control the speed of the game.

In EEG-based engagement detection, features are extracted from the signal and

then classified using machine learning techniques. In a supervised approach, the

algorithm has to be trained to distinguish different mental states. Therefore, subjects

must be put in these specific states to obtain the training data. Eliciting these mental

states can be achieved using psychometric tests. These tests are based on the assumption

that what they measure is also required to perform the test. However, there is no

specific test that measures engagement. Instead several different tests are commonly

used for this aim. Examples of common tests are the continuous performance task, a test

used in neuropsychology for the assessment of sustained and selective attention [9, 22];

the Stroop test that is used in psychology to determine the flexibility of cognitive

thinking [23]; the d2 test that is a neuropsychological measure of selective and sustained

attention and visual scanning speed [24,25]; the n-back test that measures the working

memory capacity [26]; other memory tests [21].

This study focuses on the research and development of a passive BCI that

continuously estimates participants’ engagement using neural oscillations recorded by

EEG. A computerized and modified version of the d2 test is proposed to increase the level

of user engagement and elicit distinctive features for within-subject classifier training.

Subsequently, the generalizability of the trained classifier to estimate the user’s level of

engagement was evaluated online during different tasks.
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2. Materials and Methods

2.1. Subjects

Twenty-three healthy subjects [S01-S23, seven females and sixteen males, age: 34 (7)

years in mean (SD)] participated in the experiment. Subjects did not receive any prior

training regarding this experiment and had normal or corrected to normal vision.

The study was conducted in accordance with the principles embodied in the

Declaration of Helsinki and approved by the Comitè d’Ética de la Recerca de la UVic-

UCC (code 156/2021), Catalonia, Spain. All subjects provided written informed consent

before taking part in the experiment.

2.2. Experimental protocol

Figure 1 shows the experimental procedure. The experiment included two recordings of

the d2 test paradigm followed by two tasks: playing Tetris and watching videos. The d2

test paradigm consists of an alternation between engaging and resting state. Specifically,

the d2 test and a fixation cross were used for this purpose.

Figure 1: Experimental procedure. Subjects performed two d2 test paradigms, resulting in

two recordings. The first recording was used to train a classification model to discriminate

between the engaging (d2 test) and resting (fixation cross) states. The second recording was

used as an independent data set to evaluate the predictive power of the classification model.

Then, the classification model was used to estimate subjects’ engagement during two different

tasks in real-time. Specifically, subjects played Tetris at three different speeds and watched an

engaging and non-engaging videos. After both the Tetris and video paradigms subjects filled

out a subjective questionnaire quantifying their perceived engagement.

The d2 test is a neuropsychological measure of selective and sustained attention

and visual scanning speed [25]. The task for the user is to select any letter “d” with two

marks above it, or with two marks below it, or even with one mark above and one mark
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below it. The surrounding distractors are similar to the target stimulus, for example

the letter ”d” with one, three or four marks, and also the letter “p” with one to four

marks above and below it. The test comprises 14 lines with a maximum time of 20

seconds/line.

In the present study, some modifications were made to the classic d2 pencil and

paper test. Specifically, a new computerized version was developed to try to elicit

engagement in the subjects. First, compared to the traditional d2 test, a likely more

difficult version of the d2 test was performed, including also the letters “b” and “q” with

one to four marks above and below them as distractors. Moreover, the test proposed

in this paper comprises 12 lines and 57 items per line. A total of one minute was given

for the test. Second, the computerized version provides the user with feedback related

to the correct d2, making the task more engaging. Specifically, correctly selected d2s

are shaded in blue, as incorrect selections are shaded in red. In addition, a blue bar

indicates to subjects how much time they have left to complete the task. This bar was

added with the aim of increasing motivation and engagement during the d2 test but it

may also induce stress. An example of the proposed d2 test is shown in Figure 2.

Figure 2: Example of the proposed d2 test showing the first 6 out of 12 lines with 57 items

per line. Subjects were instructed to click on all d2s as quickly as possible. Correctly selected

d2s are shaded in blue, whereas incorrect selections are shaded in red. The blue bar at the

top indicates the time (fills from left to right).

Before the experiments, subjects were instructed on how to perform the d2 test

with an example. They also played Tetris to get familiar with the keys on the keyboard

to use.

The first part of the experiment consisted of EEG data collection to train the

classification model to discriminate between the engaging and resting states of the

subject. Subjects were instructed to perform the d2 test line by line as fast as possible,

from left to right, to keep their level of engagement high. Conversely, they were

instructed to relax as much as possible during the fixation cross while keeping their

eyes open and fixated on the cross. In total, two d2 test paradigms were recorded
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(Figure 1). The first recording was used to train the classification model, whereas the

second was used as an independent dataset to evaluate the predictive power of the

classification model.

Each recording comprised two 1-min blocks of the d2 test and two 1-min blocks of

the fixation cross. The conditions were alternated; however, the starting condition was

randomized for each of the two recordings. Between each block a 5-second pause was

inserted for subjects to briefly relax.

At the end of the first recording, the developed application estimated how accurate

the model was in detecting the two mental states. If the classification accuracy was

above 75%, the second d2 test paradigm was recorded (see Section 2.4.1). Otherwise,

the first recording was repeated and the model was re-trained based on solely the newly

acquired data. Subjects who did not not reach the specified threshold, even after re-

training, nevertheless proceeded with the rest of the experiment.

After the two recordings of the d2 test paradigm, the same classification model was

used to estimate the subjects’ level of engagement during different tasks, namely playing

Tetris and watching videos.

During the Tetris paradigm, subjects played Tetris at three speeds: slow, medium,

and fast. Each speed level lasted one minute with a 30-second pause between the games.

The order of the Tetris speeds was randomized. Subjects were instructed to move the

blocks left and right or rotate them using the arrow keys on the keyboard, but they

could not push the blocks down.

Regarding videos, two types were provided. One was expected to be engaging,

as the scenes changed rapidly and it was a short advertisement ‡, the other as non-

engaging, as it was a video of a landscape §. Each video lasted one minute and the

order of the two videos was randomized. Both videos were provided without sound. No

specific instructions were given to the subjects for this task.

Also the Tetris and video paradigms themselves were randomized.

After both the Tetris and video paradigms subjects filled out a subjective

questionnaire in order to quantify their perceived engagement. Based on its definition

[6,7], the questions investigated five dimensions of perceived engagement using a 7-point

Likert scale [27]:

• The [X] was challenging.

• I felt that time passed too quickly during the [X].

• What happens in the [X] moved me emotionally.

• It was easy to focus on the [X].

• The [X] was visually pleasing.

where [X] is replaced for each of the three speeds of Tetris (i.e., slow, medium, and

fast) and the two videos (i.e., short advertisement and landscape).

‡ https://www.youtube.com/watch?v=vgM4jfii4B8
§ https://www.youtube.com/watch?v=8vyVw0qcpe4
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2.3. BCI system description

2.3.1. EEG device The EEG was recorded with the Unicorn Hybrid Black system

(g.tec medical engineering GmbH, Austria). It comprises 8 hybrid EEG electrodes, i.e.,

it is possible to acquire EEG both with and without gel. Instead of the standard device

assembly with the electrodes positioned at Fz, C3, Cz, C4, Pz, PO7, Oz, PO8, the

parieto-occipital region of the brain was covered. Hence, electrodes were placed at P3,

P4, PO3, POz, PO4, O1, Oz and O2. This choice was made to reduce the possibility of

adversely biasing the classification model and the reason was twofold. Firstly, electrodes

over motor areas may be influenced by motor actions due to mouse movements during

the d2 test. Secondly, the chosen posterior electrode locations are less affected by eye

movements and blinking compared to more anterior electrodes. Moreover, previous

studies have shown involvement of parieto-occipital areas in cognitive processes such as

working memory, processing of visual and sensory information, particularly in relation

to arousal [18,28–31].

The ground and reference were placed on the subject’s left and right mastoids,

respectively, using disposable adhesive surface electrodes. The EEG signal was acquired

at a sampling rate of 250Hz and a resolution of 24 bits.

The device was connected to a personal computer via the integrated Bluetooth

interface. In this study, the EEG signal was acquired with wet electrodes. Therefore,

the hybrid electrodes were filled with conductive gel.

2.3.2. Application A dedicated application for the stimuli presentation, EEG

acquisition and online processing of the acquired data was developed. Specifically, the

application processes the EEG data, estimates the level of users’ engagement, and is

able to provide them with feedback (i.e., current engagement estimate) in real-time.

Prior to the measurements, the signal quality can be assessed in the application. In

addition, information on the number of noisy channels is available throughout the use

of the application. The application allows for the selection of the paradigm to perform.

As described in Section 2.2, the d2 test paradigm is exploited to train the classification

model. The paradigm consists of the d2 test and the fixation cross.

Reliable performance scores [25, 32, 33] are calculated by the application after the

d2 test paradigm:

(i) total processed items: sum of the number of items processed;

(ii) error of omission: sum of the number of target items not canceled;

(iii) total correctly processed: total items processed minus total errors made;

(iv) accuracy: total correctly processed items divided by all processed items;

(v) concentration performance: total number of correctly canceled minus total number

incorrectly canceled items.

In the classic paper and pencil version, the scores are separately calculated for each

of the 14 lines of the test [33]. In the proposed computerized version, the performance
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scores were calculated considering all the processed items (i.e., from the first item until

the last selected one) in one minute.

Regarding the fixation cross, the application shows a cross in the center of the

screen. As with the d2 test, the time passed is indicated by the blue bar.

After the first d2 test paradigm, the application assesses the goodness of the

classification model in discriminating between the engaging (d2 test) and resting

(fixation cross) states. Additionally, the application offers the possibility to re-train

the model (see Section 2.4.1 for details). This calibration phase, including gelling of the

electrodes, d2 test paradigm and training of the classification model takes approximately

5min.

Once the model is trained, it is possible to perform any task, even outside the

application, and to check the user’s level of engagement during these tasks in real-time.

2.4. Proposed classification model

The computational cost of the EEG processing pipeline was kept low as it is intended to

be used in online (i.e., real-time) BCI experiments. Therefore, a filter bank CSP-based

approach was used for estimating engagement. Models were trained in a within-subject

manner, meaning every subject had their own model which was exclusively trained on

their EEG data.

The raw EEG recordings were notch-filtered at 50Hz by means of a 2nd order

Butterworth filter. Then, data were filtered using a filter bank with 4Hz to 8Hz,

6Hz to 10Hz, and 8Hz to 12Hz band-pass filters. Higher frequency components (e.g.,

beta) were not included as they may be contaminated by muscle artifacts. Specifically,

as subjects were looking at a computer screen while performing a visually demanding

task (i.e., d2 test), the tension in the neck and back muscles may contaminate higher

frequency components in the EEG.

The EEG data was segmented into non-overlapping 1-second windows in order

to also achieve a 1-second resolution for the online processing. This resulted in 120

segments for each the d2 test and resting classes. Features were extracted for these

EEG segments using the CSP algorithm [34]. Specifically, CSPs maximize the variance

between the two classes and reduces the number of features. A similar approach was

also proposed in [9] and was found to be successful in detecting engagement. Finally,

the features obtained were used to train the Linear Discriminant Analysis (LDA) [35].

The LDA returns two outputs, namely the LDA label and the LDA score. The former is

a binary value reflecting the predicted class and can thus be used to assess the accuracy,

whereas the latter is a continuous numerical value and was used to estimate subjects’

engagement.

2.4.1. Goodness of the classification model After the calibration phase (i.e., first d2 test

paradigm), the goodness of the proposed classification model was assessed. Specifically,

the non-overlapping 1-second EEG segments of this first paradigm were used to obtain
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a 10-fold cross-validation accuracy. In the current study, the model was re-trained once

if the cross-validation accuracy was below 75%. Note that temporal correlations may

still persist between consecutive non-overlapping 1-second EEG segments, attributable

to filtering processes. However, here these 1-second segments can be assumed to be

statistically independent as they only contain frequency components above 4Hz (see

Section 2.4).

2.4.2. Classification accuracy for independent recording To evaluate the predictive

power of the classification model, the classification model trained on the first d2 test

paradigm was tested on an independent recording (see Figure 1). For this purpose, the

LDA labels were used to assess the accuracy for the second d2 test paradigm.

For comparative purposes, the results obtained with the proposed approach were

compared with the ones obtained by means of a classical approach, namely the

engagement index [7,18]. Specifically, the engagement index was computed as the ratio

between the beta (13Hz to 30Hz) power and the sum of theta (4Hz to 8Hz) and alpha

(8Hz to 12Hz) powers according to equation 1. The band powers were computed for

the same non-overlapping 1-second windows and channels. The resulting engagement

indices were then used as features for the LDA.

EI =
β

α + θ
(1)

Again, the LDA labels were used to assess the accuracy for the second d2 test

paradigm. The accuracy obtained was then compared with the one obtained using the

proposed approach.

2.4.3. Online engagement estimation After the two recordings of the d2 test paradigm,

the classification model was used online to estimate the subjects’ engagement during the

Tetris and Video recordings (see Figure 1). Again, the features were computed based

on non-overlapping 1-second windows as described in Section 2.4. The LDA scores were

used to quantify the estimated engagement.

2.5. Statistical analysis

The statistical analyses were performed using MATLAB R2021b (MathWorks Inc.,

United States). The normality of data was tested using the Shapiro–Wilk test [36].

The statistical test was chosen according to the normality of the sample, so either the

paired t-test or the Wilcoxon signed rank test was used.

Descriptive statistics are reported as mean and the standard deviation (SD), or

median and the interquartile range (IQR) (i.e., 25th and 75th percentile). The Bonferroni

correction was used in the case of multiple comparisons to control for type I errors.

The difference in subjects’ d2 test performance between the two d2 test recordings

was investigated. Therefore, the obtained performance scores were compared between

the two recordings and the p-values were Bonferroni corrected. The perceived
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engagement was analyzed based on the sum of the engagement dimensions of the Tetris

game questionnaire. Additionally, the scores of the classification model during the four

conditions (rest period, low speed, medium speed, and fast speed) were compared in

pairs recordings and the p-values were Bonferroni corrected. Perceived engagement

during the two videos was also analyzed based on summing up engagement dimensions

of the questionnaire for the two videos, as well as the scores of the classification model

during the two conditions (engaging and non-engaging video).

Finally, a correlation analysis was performed to investigate the relationship between

perceived engagement and estimated engagement. As subject-specific models were

generated, the scores provided by these models are also subject specific. In other words,

scores should not be compared between subjects but must be compared within subjects

or in a paired manner as previously described. In this analysis, each subject’s estimated

engagement during the five conditions (low speed, medium speed, fast speed, engaging

video and non-engaging video) were standardized to achieve a common scale across

subjects. Then, the median z-score (i.e., median standardized estimated engagement)

during each condition was calculated for each subject. Finally, a repeated-measures

correlation was performed to investigate the common linear relationship between

perceived and estimated engagement [37–39]. The repeated-measures correlation was

utilized as each subject was present five times in the dataset due to the five conditions.

Therefore, the observations in the dataset are no longer be independent, violating the

assumption of independence of the classic regression/classification [40].

2.6. Topography plots

A group level analysis was carried out to investigate changes in the frequency bands,

which were used for creating the classification models. Specifically, the theta and alpha

frequency bands were further investigated.

In this offline analysis, each subjects’ EEG data during the training, Tetris and

video paradigms were processed using the FastICA algorithm [41]. This was done to

extract and remove components that reflect artifacts such as muscle, movement, and

cardiac artifacts. Before applying the FastICA, EEG data were notch filtered at 50Hz

and high-pass filtered at 1Hz using a 2nd order Butterworth filter. After removing

components, which showed obvious artifacts, the data were back-projected to electrode

(i.e., channel) level and the short-time Fourier transform was used to estimate the power.

A 4-second Hamming window with 50% overlap was employed, resulting in a frequency

resolution of 0.25Hz. The frequency bins for each of the two frequency bands (i.e., theta

and alpha bands) were then averaged and log-transformed, resulting in the two log-

transformed band power signals for each channel. Finally, the median log-transformed

band power was computed during each condition (e.g., d2 test and resting condition in

the d2 paradigm).

The following comparisons were performed for each frequency band and channel:

during the training recording of the d2 paradigm, the difference in log-transformed band
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Figure 3: Classification accuracy for each subject (S01 to S23) discriminating between

engaging (d2 test) and resting (fixation cross) states obtained for an independent recording

using the proposed model (i.e., filter-bank common spatial patterns). The error bar on the

mean reflects the standard error of the mean, and the classification accuracy was 94.6 [88.5,

97.4] % in median [IQR].

power was calculated between d2 test and resting condition. During the Tetris paradigm,

the differences between each speed and the resting condition were computed. During

the video paradigm, the difference between the engaging and non-engaging video was

computed. Differences reflect the mean difference across all subjects. Additionally,

Cohen’s dz (one sample, paired statistics) was calculated to quantify the observed

effect size [42]. Finally, the computed log-transformed band power differences for each

electrode and comparison were visualized using a 3D model of the MNI-152 template

brain (Montreal Neurological Institute, Canada). A custom software (g.tec medical

engineering GmbH, Austria) was used to visualize the changes in band power according

to [43, 44] on the scalp of the 3D model. Additionally, electrodes were color-coded to

infer the observed effect sizes.

3. Results

3.1. d2 test paradigm

None of the subjects required re-training of the classification model. In other words,

all of them exceeded 75% estimated classification accuracy based on the 10-fold cross-

validation on the first d2 test paradigm.

Figure 3 shows the classification accuracy for discriminating between engaging (d2

test) and resting (fixation cross) states for the independent recording, namely the second

d2 test paradigm. Specifically, both the accuracy for individual subjects and the across-

subject mean together with the associated type A uncertainty (90± 3%) are reported.

Twenty out of the twenty-three subjects exceeded 80% accuracy for their independent

recording.

In the offline analysis, the classification accuracy for discriminating between
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Measure Training Evaluation ∆ p-value

Total processed items 466.6 (86.7) 456.2 (78.4) -10.3 (53.4) 1.000

Omissions 6.0 (4.7) 4.1 (3.2) -1.8 (4.3) 0.281

Total correctly processed 460.3 (85.1) 451.6 (77.1) -8.7 (52.3) 1.000

Accuracy (%) 97.6 (1.7) 98.2 (1.3) 0.6 (1.7) 0.535

Concentration Performance 18.8 (7.5) 18.4 (7.7) -0.3 (8.5) 1.000

Table 1: d2 test performance scores computed for the training and evaluation recording. The

results are reported across subjects as mean (SD). The difference in performance scores (∆)

is computed as training minus evaluation. Depending on the normality of the differences,

the Wilcoxon signed rank test or paired t-test were used for statistical testing. Finally, the

p-values were Bonferroni corrected.

engaging and resting states was also calculated using the engagement index. In this

case, the across-subject mean accuracy together with the associated type A uncertainty

was equal to 81 ± 3%, losing about 10% in mean accuracy compared to the proposed

approach.

In order to also take into account how subjects performed the d2 test during the

two recordings, the performance scores calculated by the application were evaluated.

Table 1 shows the results as mean (SD) for each recording and for the difference of

them. No difference in d2 test performance between the two recordings was found.

3.2. Tetris

Figure 4(A) shows the subjective answers for each included engagement dimension.

Specifically, the median of the answers across subjects for each speed and dimension is

reported. Figure S2 in the Supplementary material presents the same data and results

as Figure 4(A), with the inclusion of individual data points for each subject. The sums

of the engagement questionnaire dimensions were observed to be 14.5 (3.2), 22.9 (3.8)

and 24.9 (4.7) points in mean (SD) for the slow, medium, and fast speed, respectively.

Subjects experienced the medium and fast speeds as more engaging than the slow speed

(p < 0.001, respectively), whereas no difference was observed between medium and fast

speeds (p = 0.081).

Figure 4(B) shows the results of subjects’ estimated level of engagement provided

by the classification model as a score for each Tetris condition. The y-axis shows the

classification model score. Negative score values reflect states which are closer to the

resting state (i.e., fixation cross), whereas positive score values reflect states closer to

the engaging state (i.e., d2 test). The boxplots reflect the median scores during each

condition and for each subject. Overall, a difference in median score can be observed

between the conditions with predominantly negative values during rest between the three

speeds. For the other three conditions, the values are predominantly positive. Table 2
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Figure 4: Tetris paradigm: Across subject results. (A) Subjective answers (i.e., perceived

engagement) from the questionnaire (7-point Likert) are reported as median value per each

question. (B) Objective results from the proposed classification model (i.e., estimated

engagement), specifically each boxplot reflects subjects’ median LDA scores. In addition,

individual data points for each subject are shown, indicating their median LDA score in the

respective condition.

Tetris ∆ p-value

Rest < Slow 2.2 [0.4, 5.5] < 0.001

Rest < Medium 3.6 [2.1, 6.7] < 0.001

Rest < Fast 4.2 [2.1, 7.1] < 0.001

Slow < Medium 1.5 [0.7, 3.8] < 0.001

Slow < Fast 2.0 [0.6, 3.3] < 0.001

Medium = Fast 0.1 [-0.5, 0.8] 0.345

Table 2: Tetris paradigm: Across subject statistical analysis using the Wilcoxon signed

rank test. Subjects’ estimated engagement (median LDA score) obtained by the proposed

classification model were used. The difference in estimated engagement (∆) for the respective

comparison was calculated by subtracting the latter condition from the former (e.g., Slow

minus Rest). The differenes are reported as median [IQR]. Depending on the normality of

the differences, the Wilcoxon signed rank test or paired t-test were used for statistical testing.

Finally, the p-values were Bonferroni corrected.

shows the results across subjects, comparing the difference between the four conditions

in pairs. As expected, the three Tetris speeds were found to be more engaging than the

rest period (p < 0.001, respectively). The same applies to the medium and fast speeds

compared to the slow speed (p < 0.001, respectively). Similarly, as for the subjective

questionnaire, no difference was observed between the medium and fast speeds (p =

0.345). Taken together, subjects’ perceived engagement is in line with the objective

evidence put forward by the classification model scores.
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3.3. Video

Figure 5(A) shows the subjective answers for each included engagement dimension.

Note, that the “Challenging” dimension was set to 1 for comparison purposes, as it

was not asked for the videos. The median of the answers across subjects per each

video and per each dimension is reported. Figure S3 in the Supplementary material

presents the same data and results as Figure 5(A), with the inclusion of individual

data points for each subject. The sum of the engagement questionnaire dimensions

during the video paradigm was observed to be 16.7 (4.6) and 20.3 (5.1) points in mean

(SD) for the landscape and advertisement videos, respectively. Subjects experienced the

advertisement video to be overall more engaging than the landscape video (p = 0.025).

Figure 5: Video paradigm: Across subject results. (A) Subjective answers (i.e., perceived

engagement) from the questionnaire (7-point Likert) are reported as median value per each

question. As the “Challenging” dimension was not asked for the video paradigm and was set

to 1 for comparison purposes. (B) Objective results from the proposed classification model

(i.e., estimated engagement), specifically, each boxplot reflects subjects’ median LDA scores.

In addition, individual data points for each subject are shown, indicating their median LDA

score in the respective condition.

Figure 5(B) shows the results of the subjects’ estimated level of engagement

provided by the classification model as a score for each video condition. The

interpretation of this figure is analogous to Figure 4(B). A difference in estimated

engagement is evident between the two videos, with predominantly negative or close to

0 values (i.e., associated with resting state) for the landscape video and predominantly

positive values (i.e., associated with engaging state) for the advertising video. Finally,

the across subject delta resulted in 1.8 [1.2, 3.5] in median [IQR] comparing the difference

between the advertising and landscape videos. Consistent with the subjects’ perceived

engagement, the advertisement was observed to be more engaging by the classification

model (p < 0.001).

3.4. Perceived and estimated engagement

Figure 6 shows the relationship between the perceived and standardized estimated

engagement. The repeated-measures correlation shows a significant common linear
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relationship between the perceived and standardized estimated engagement rrm =

0.44 (95% CI: 0.26 to 0.59), p < 0.001 (Figure 6(A)). Figure 6(A) shows for each

subject (color-coded) the respective perceived and estimated engagement, including a

linear regression with a common slope across subjects according to [39]. Additionally,

Figure 6(B) and Figure 6(C) present the same data again but this time color-coded by

condition, showing qualitatively that the perceived as well as estimated engagement are

lower for slow Tetris speed and non-engaging video followed by medium and fast Tetris

speeds.

Figure 6: Relationship between perceived and standardized estimated engagement of the

proposed classification model for both (A), (B) and (C). (A) Each subject’s data are color-

coded and separate linear regressions lines with common across subject slope are fit for each

subject according to [39]. (B) Data are color-coded for the three Tetris game speed conditions:

slow, medium and fast. (C) Data are color-coded for the engaging and non-engaging video.

3.5. Topography plots

Figure 7 shows the mean difference in log-transformed power between the conditions for

the theta and alpha frequency bands.

Subjects had greater parieto-occipital theta power and lower parietal alpha power

while performing the d2 test in comparison to the resting condition. While not shown

here, the same phenomenon was also observed for the subjects’ evaluation recording of

the d2 paradigm. Furthermore, the changes in these two band powers between resting

and d2 test condition were able to predict subjects’ d2 test concentration performance

(p = 0.041), as shown in a cross-validated regression analysis in the Supplementary

material. A positive relationship between theta power and Tetris game speed can

be observed over parietal and occipital areas. Specifically, greater Tetris speed was

associated with greater theta band power. In contrast, parieto-occipital alpha power

was decreased while playing Tetris and was modulated to a lesser extent during the fast

Tetris speed.

Finally, parieto-occipital theta power was greater while subjects watched the

engaging video, in comparison to the non-engaging video.
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Figure 7: Topographic plots were used to visualize the spatial distribution of power

modulation in theta (4Hz to 8Hz) and alpha (8Hz to 12Hz) frequency bands on the surface of

the scalp. Specifically, they show the mean change in log-transformed theta and alpha power

between the respective conditions (e.g., d2 test minus Rest) across all subjects with values

reflecting dB. The eight points on the scalp represent the positions of the eight electrodes

used to acquire the EEG signals. They are color-coded to infer effect size, quantified by the

absolute value of Cohen’s dz with brighter colors indicating greater effect size.

4. Discussion

4.1. d2 test paradigm

This work showed that the proposed approach is able to discriminate between states

of engagement and rest. Consistent with literature [9], it also confirmed that the

engagement index is not as accurate as the filter-bank CSP algorithm. Notably,

compared to the proposed approach, the accuracy obtained using the engagement index

was about 10% lower across subjects. This result could be related to (i) modulations in

the beta band being smaller over parieto-occipital compared to more frontal regions [45]

and/or (ii) theta power being positively related to engagement in the current study.

The scores computed based on the d2 test performance (Table 1) show that the

subjects processed approximately 4 lines in one minute with a low error of omission and

high accuracy. The concentration performance index was kept constant during the two

recordings.

Although the most common performance scores were used [25, 32, 33], a direct

comparison with the results in literature can not be made as a modified version of the

d2 test was used in the present study. The reported performance scores were calculated

considering all processed items during both the d2 tests in each recording (Section 2.3.2),

however the test duration was 2min in the proposed version compared to 4min in the
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original version. Nonetheless, the total processed items, number of omissions and total

correctly processed are all comparable to the results in literature, when adjusting for the

difference in test duration [25, 32]. On the other hand, the concentration performance

score can not be compared due to the increased complexity of the proposed d2 test,

which incorporates more distractors compared to the original version. Consequently,

the number of correctly canceled items in the current version is substantially lower than

the one reported in literature for the original d2 test.

No differences in d2 test performance score was observed between the two

recordings, as the d2 tests were performed within minutes of each other.

4.2. Cross-task validity

The algorithm previously trained on the d2 test paradigm was used to estimate the

subjects’ level of engagement while playing Tetris and watching two videos. Engagement

in gaming is of great interest both to improve player experience and because serious

games are increasingly used, for example, to promote learning or in rehabilitation

[6, 13, 46]. On the other hand, engagement while watching videos or movies could be

used to predict population preferences in neuromarketing [47].

In the current study, both perceived and estimated engagement differentiate as

well as correlate across different speeds of Tetris and the two video stimuli. For the

Tetris game, the slow speed was found to be boring for the subjects as it was very

slow. However, it allowed them to find the optimal location for each block and was

associated with the greatest focused attention. In contrast, the fast speed was so

fast that subjects had difficulty moving and rotating the blocks quickly enough. In

comparison to the Tetris game, both videos were found to be engaging. One explanation

for this observation could be that subjects have never previously watched these videos.

Therefore, they paid attention to the details in the scene. For landscape video, the level

of engagement may decrease over time as the scenes are mainly the same. In contrast,

during advertisement videos, subjects may feel engaged throughout the duration of the

video as the scenes change rapidly.

This was confirmed by the subjective questionnaire answers to the dimensions of

challenging and perception of time (Figure 4(A) and Figure 5(A)). The subjects also

reported that the medium and fast speeds, as well as the advertisement video, were more

emotionally moving compared to the slow speed and the landscape video. In contrast to

previous findings, no difference in aesthetic pleasure was found for the two videos [48]

and the three Tetris speeds.

Future work could use this approach to adapt applications to users’ estimated level

of engagement, as proposed in [21]. Notably, while proposing adaptive modifications, [21]

did not present any quantitative results.



Real-time estimation of EEG-based engagement in different tasks 18

4.3. Topography plots

The d2 test requires substantial visual processing and attention [24,25], as subjects are

performing visual pattern matching under the pressure of time. It is worth noting that

the filter bank exploited in this study included the theta and alpha band as these two

frequency bands are associated with cognitive demands, visual processing and spatial

attention [49–53]. All of these aspects are expected to be greater during engaging tasks.

Additionally, alpha power is inversely related to blood oxygenation level dependent

(BOLD) activity, as well as connectivity in the visual system [54]. This is of relevance

as visual cortex BOLD activity was recently shown to be able to predict subjective time

(i.e., subjective reports of elapsed time) [55], which is a dimension of engagement.

Here, parietal and occipital increases in theta band power were observed during

the d2 test, which were greatest over the occipital lobe. This activation of occipital

theta is thought to be associated with control of cognitive demands [49] and the visual

identification and recognition of patterns [50].

The same association was found with increasing Tetris game speed and for the

engaging compared to the non-engaging video. This is to be expected, as the required

cognitive demands, such as attention, increased with Tetris speed. Similarly, cognitive

demands were greater during the engaging video, as it has changes in scenes, as well as

short storylines including a person for the engaging video.

Additionally to increases in theta band power, decreases in parietal alpha band

power were observed during the d2 test, which likely reflect spatial attention [51].

Specifically, alpha rhythms over the parieto-occipital area are known to desynchronize

during the anticipation and processing of visual stimuli [52, 53] and can even predict

visual target performance [56]. In line with [56], a similar result was found in this

study, when using both theta and alpha band powers, providing insights regarding

a possible causal brain-behaviour relationship. Decreases in alpha band power over

parieto-occipital areas were also observed for all Tetris speeds, whereas no difference was

observed for the two videos, with only the right occipital area showing a modulation.

The results for the videos warrant further investigation, to ensure that it is not a spurious

finding. However, the right hemisphere was found to be involved during processing of

emotionally arousing stimuli [57, 58].

4.4. Limitations

Although this study provides insights into real-time classification of task-specific

training-based engagement and cross-task applications of training models, some

limitations should be pointed out.

Engagement involves multiple interdependent processes, including attention,

working memory, emotions, decision making, and interest. Consequently, these

behaviours are not confined to single brain regions. Rather, they involve a network

of brain regions [59]. This network spans from the frontal region to parieto-occipital

regions. The former is related to cognitive processes and the interpretation of emotional
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engagement, especially in the context of valence, whereas the others contribute to

the processing of visual and sensory information, particularly in relation to arousal

[18, 29–31]. In this study, the electrode locations were chosen to eliminate or attenuate

the influence of ocular artifacts, as well as event-related desynchronization (ERD) over

the sensorimotor cortex due to hand movements during the d2 test. However, ERD may

still be observed over parietal electrodes (i.e., P3 and P4) due to volume conduction.

Future research could explore the integration of the frontal region to further understand

the complexities of the engagement network within the brain.

In the current study videos were presented without audio, but future experiments

could consider additional sensory modalities, such as the combination of visual and

auditory elements. Furthermore, videos including people could also be chosen for the

non-engaging video to further refine the modelling process.

The proposed classification model is able to estimate users’ level of engagement

during two distinct videos and different Tetris game speeds. However, it was trained

on the d2 test paradigm, which is primarily a visual searching task. Thus, the model’s

performance may be influenced by perceptual factors related to the visual stimuli rather

than solely reflecting cognitive engagement. One such factor is visual complexity which

was found to be positively related to subjects’ perceived engagement. Indeed, decoupling

engagement from visual complexity would be difficult in the current setup, but future

works may investigate this aspect.

5. Conclusion

This work focused on developing and evaluating a novel application for the real-time

estimation of EEG-based engagement during different tasks. A classification model

is trained to distinguish between users’ brain activity during an engaging task (i.e.,

modified version of d2 test) and resting state. Once the model is trained, users may

perform tasks either inside or outside this application, as the application continuously

estimates the users’ engagement. In this study playing Tetris and watching videos were

tested.

The application was validated with an experimental campaign involving 23 subjects.

The results show that the proposed classification model estimated levels of users’

engagement consistent with users’ perceived engagement. Furthermore, perceived and

estimated engagement were found to be linearly related to each other. Finally, theta

band power over parietal-occipital areas increased with increasing task engagement.

The opposite association was found for alpha band power. These results are in line with

studies investigating visual processing and attention.

The ability of the proposed method to estimate engagement should be further

investigated by applying it to additional tasks. Furthermore, instead of using the

application to estimate engagement, the application itself may even modulate different

aspects of a game (e.g., difficulty) according to its estimate.
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