
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Jacobi Processes with Jumps as Neuronal Models: A First Passage Time Analysis / D'Onofrio, Giuseppe; Patie, Pierre;
Sacerdote, Laura. - In: SIAM JOURNAL ON APPLIED MATHEMATICS. - ISSN 0036-1399. - 84:1(2024), pp. 189-214.
[10.1137/22M1516877]

Original

Jacobi Processes with Jumps as Neuronal Models: A First Passage Time Analysis

Publisher:

Published
DOI:10.1137/22M1516877

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2985732 since: 2024-04-04T08:34:00Z

SIAM Society for industrial and applied mathematics



JACOBI PROCESSES WITH JUMPS AS NEURONAL MODELS : A FIRST
PASSAGE TIME ANALYSIS

GIUSEPPE D’ONOFRIO, PIERRE PATIE, AND LAURA SACERDOTE

Abstract. To overcome some limits of classical neuronal models, we propose a Markovian gen-
eralization of the classical model based on Jacobi processes by introducing downwards jumps to
describe the activity of a single neuron. The statistical analysis of inter-spike intervals is performed
by studying the first-passage times of the proposed Markovian Jacobi process with jumps through a
constant boundary. In particular, we characterize its Laplace transform which is expressed in terms
of some generalization of hypergeometric functions that we introduce, and deduce a closed-form
expression for its expectation. Our approach, which is original in the context of first passage time
problems, relies on intertwining relations between the semigroups of the classical Jacobi process
and its generalization, which have been recently established in [11]. A numerical investigation of
the firing rate of the considered neuron is performed for some choices of the involved parameters
and of the jumps distributions.

1. Introduction

Among the models used for the description of single neuron’s activity the leaky integrate-and-fire
(LIF) model is still an extremely useful tool, despite its age and simplicity [16, 53]. The LIF model
describes the time evolution of the voltage across the membrane of the neuron until it reaches
a certain threshold. This event is called action potential (or spike) and it is believed that the
distribution of these spikes encodes the information that the neurons transfer. It is assumed that
the neuron under study is point-like and receives inputs from the surrounding network of neurons
that are summed up (integrate) producing a change in the voltage value. The term leaky indicates
that, in the absence of input, the membrane potential decays exponentially to its resting value. In
accordance with the model, the spikes are instantaneous events that are generated as soon as the
voltage reaches a certain value for the first time (fire). After that, the process is reset to its starting
value and the evolution starts over again. Sometimes a refractory period is added to the model, i.e.
there is a time interval after a spike in which a nerve cell is unable to fire an action potential.

Since for some types of neurons the incoming inputs are frequent and relatively small, a diffusion
limit over the discrete process, see [56], describing the membrane potential evolution is performed
to gain the higher mathematical tractability of the Ornstein-Uhlenbeck process [50]. The latter
has been widely used for decades, although it presents some drawbacks. The Ornstein-Uhlenbeck
process, indeed, allows unlimited values for the neuronal potential, it does not include that the
changes in the potential of a nerve cell depend on its actual value and it does not take into account
the geometry of the neuron. Some models with multiplicative noise have been proposed to overcome
the first two unrealistic features of the classical LIF model [10],[37]. Among them, recently, a Jacobi
process has been proposed for the description of the activity of a neuronal membrane [18]. The
Jacobi process has a bounded state space, that is the value of the membrane potential is confined
below and above by two fixed values that, for physiological reasons, are called the inhibitory and
excitatory reversal potentials. Moreover, the change in the membrane potential determined by an
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incoming input depends on the distance between its actual state and the two reversal potentials, fact
that is well established about the physiology of the synapses, see [21] or [30] for classical references.

However, the pure-diffusion models do not account for the spatial geometry of the neurons and do
not discriminate among different sources of incoming inputs. In fact, more realistic models should
assign different weights for the synaptic contribution impinging the neuron in different points of the
membrane depending on whether they are more or less close to the trigger zone, as a first attempt
to overcome the point-size assumption, in the spirit of multi-compartmental models, see for instance
[52]. In order to include these features in the model, and since not all the inputs are infinitesimal and
their frequencies may prevent a diffusion limit, jump-diffusion models have been proposed [23, 55].
These models have been proven to describe the activity of motor neurons and pyramidal neurons
[32, 42]. Here, we investigate the features of a neuronal model in which the membrane potential
evolves, between two consecutive spikes, according to a Jacobi type process with state-dependent
downward jumps.

To develop the analysis on its firing activity, we investigate the first-passage-time (FPT) problem
for the Jacobi process with jumps, that is the mathematical counterpart of the time of generation
of the action potential. To this end, we propose an original approach in this context, which is based
on intertwining relationships between the semigroups of the generalized Jacobi processes and the
one of the classical Jacobi diffusion process which were identified recently in [11], see also [44] for
further analytical results on these semigroups. Intertwining relations are a type of commutation
relations that form a classification scheme for linear operators. They have proved to be a natural
and powerful concept in a variety of contexts in mathematics ranging from the construction of
new Markov semigroups to the spectral and ergodicity theory of non-self-adjoint semigroups, see
[11, 12, 33, 49, 47] and the references therein. This paper provides an additional application of such
concept in the potential theory of Markov processes by transferring q-invariant functions from a
reference semigroup to semigroups that are in its (intertwining) orbit. This device enables us to
characterize the Laplace transform of the first passage time of the process through a boundary (or in
the modeling framework the firing time of the neuron) in terms of some generalized hypergeometric
functions that we introduce, thanks to the relationship with the classical Jacobi model. We point out
that the intertwining approach could also be used to map q-invariant functions, or more generally
q-excessive functions, between semigroups associated to Markov processes with arbitrary jumps.

The strengths of the presented model rely on the improved adherence to phenomenological reality:
the jumps are state-dependent and are able to reduce the firing rate and introduce saturation.
The latter feature is observed in other models only if a non-zero refractory period is introduced.
Otherwise the firing rate can generally grow unbounded, and this is clearly unrealistic. Moreover
the high degree of freedom in the choice of the jump distribution allows the description of different
situations.

Finally we stress that, despite the application in the context of mathematical neurosciences, the
results on the Jacobi process with jumps and its first passage time through a constant boundary are
novel and of a general nature. We mention that Jacobi processes have been popular in applications
such as population genetics, under the name Wright-Fisher diffusion, see e.g. Griffiths et al. [28, 27],
Huillet [31], and Pal [46], and in finance, see e.g. Delbaen and Shirikawa [17] and Gourieroux and
Jasiak [25].

The paper is organized as follows. In Section 2, we introduce the neuronal model based on the
jump-diffusion Jacobi process through its infinitesimal generator and a qualitative description of
the dynamics together with the involved parameters. Mathematical results on the non-local Jacobi
operator, necessary for the analysis of the model, are obtained in Section 3 using intertwining
relations between the classical Jacobi semigroup and the non-local one. In particular we show that
the process under study has only downward jumps and we provide and explicit form of the Laplace
transform of the related first-passage time. Using these results, in Section 4, an analysis of the firing
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activity of the neuron described by a Jacobi process with jumps is carried out focusing on some
illustrative examples. In particular, we show that the jumps reduce the firing rate and introduce
a saturation effect, despite the absence of a refractory period. We point out that the readers with
stronger interest in the biophysical aspect of this work may skip the mathematical details provided
in Section 3.

2. A Jacobi process with jumps as a neuronal model

We describe the evolution of the neuronal membrane potential between two consecutive spikes of a
single neuron as the Markovian realization X = (Xt)t⩾0 of a non-local perturbation of the generator
JV of the classical Jacobi neuronal model V = (Vt)t⩾0. We recall that the latter is obtained as a
Kurtz-type diffusion approximation of a Stein’s model with reversal potentials [56]. In that model
two independent homogeneous Poisson processes represent the excitatory and inhibitory neuronal
inputs, with intensities νE > 0 and νI > 0, respectively. They describe the arrival of excitatory and
inhibitory potentials and are such that the input parameters are

(2.1) µe = eνE and µi = iνI

where i and e are constants such that −1 < i < 0 < e < 1. Denoting by VI < 0 < VE the inhibitory
and excitatory reversal potentials, respectively, we recall that V is a diffusion on EV = [VI , VE ]
solving the following stochastic differential equation

(2.2) dVt =

(
−1

τ
Vt + µe(VE − Vt) + µi(Vt − VI)

)
dt+ σ

√
(VE − Vt)(Vt − VI)dWt.

where the diffusion coefficient σ > 0 controls the amplitude of the noise, W = (Wt)t⩾0 is a standard
Wiener process and τ > 0 is the membrane time constant taking into account the spontaneous
voltage decay (leak) toward the resting potential (set equal to zero here) in the absence of inputs,
µe and µi. Finally, the refractory period is assumed equal to zero. The model V = (Vt)t⩾0 often
goes under the name of leaky integrate-and-fire with reversal potentials [37].

Alternatively V can be described through its infinitesimal generator taking the form, for a smooth
function f on EV ,

(2.3) JV f(x) =
σ2

2
(VE − x)(x− VI)f

′′(x)−
(
1

τ
x− µe(VE − x)− µi(x− VI)

)
f ′(x),

throughout the paper this way of writing will be more convenient.
A limit of neuronal models based on diffusion processes is that all the inputs which affect the mem-

brane potential are summed together and homogenized disregarding their origin or strength, with
the advantage of a continuous trajectory for the dynamics. In [55], [23], [57] there are first attempts
to introduce jumps but occurring at exponential times. Moreover the mathematical tractability
requested the use of jumps of constant amplitude or the use of numerical simulations. Taking ad-
vantage of the intertwining approach here we introduce and study mathematically the case of jumps
that are state-dependent both in frequency and amplitude. The dynamics of the voltage X between
two consecutive spikes of the new class of neuronal models that we propose here is described as a
Markov (in fact, a Feller) process on EV with càdlàg trajectories whose infinitesimal generator, for
a smooth function f on EV , is given as the following non-local perturbation of the generator of the
classical Jacobi process

JXf(x) = JV f(x) +

∫ VE

VI

(f (r)− f (x))NV (x, dr)(2.4)

where the kernel NV (x, dr) =
VE−VI
x−VI

ΠV (x, dr)I{r<x} with ΠV the measure image, by the mapping
r 7→ ln(x−VI

r−VI
)I{r<x}, of Π a finite non-negative Radon measure on R+ with

∫∞
0 rΠ(dr) < ∞. We shall
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show in Proposition 3.1 that the family (indexed by Π) of linear operators JX is the infinitesimal
generator of a Feller process admitting an unique stationary measure. This will be achieved by
identifying a homeomorphism, i.e. an intertwining relation à la Dynkin, between these semigroups
and the one of Jacobi processes with jumps on (0, 1) recently introduced in [11], where the process
jumps from state x to state e−rx at a frequency given by Π(dr)/x, that is inversely proportional to
the achieved state.

We point out that the assumptions on the measure Π ensure that the operator defined in (2.4),
endowed with its domain, is the generator of a Markov process. We also remark that the jumps
are only downwards, but, both the amplitude and the intensity of the jumps are state-dependent.
In fact if the voltage approaches the inhibitory reversal potential, the number of jumps is high but
the corresponding depolarization is small. Conversely for higher values of the voltage the frequency
of jumps decreases whereas their amplitude depends on Π. See Fig. 1 for an example of a possible
path of the proposed model.

If the jump kernel is a finite measure, which is the case of ΠV here, there is a nice and more formal
path interpretation of the Markov process that can be read off from its generator, see e.g. Bass [6].
Indeed, one has the following description of dynamics of the voltage X: the potential starts by
undergoing the same dynamics than the classical Jacobi neuronal model V until being killed at a

random time T whose survival probability up to time t is given by e
−VE−VI

Xt−VI
Π(R+), where we used

the fact that NV (x,EV ) =
VE−VI
x−VI

Π(R+). At the time of death T , restart it (in a sense made precise

through for instance the work of Meyer [43]) with distribution NV (XT −,dr)
NV (XT ,EV ) , where Xt− = lims↑tXs

stands for the left-limit, and, repeat the procedure. In other words, the neuronal model X behaves
like the classical Jacobi neuronal model but at some random times performs downwards jumps
(as we have, by definition, the support of the kernel NV (x, dr) is VI < r < x) according to the
distribution given above. In particular, the closer x gets to the inhibitory reversal potential VI , the
larger NV (x,EV ) is, that is the number of jumps becomes more frequent but the corresponding
hyperpolarization is small, as the support of the distribution of the amplitude of jumps is [0, x−VI ].
Also, different choices of Π allow different sizes of the jumps: the more mass Π concentrates around
zero, the smaller is the amplitude of jumps, if Π admits large values with high probability, the voltage
can be almost reset after the jump. We stress that the latter scenario could be the result of a rare
event for the type of measures Π considered in the following. We consider the case when Π(dr) =

e−αrdr, α, r > 0. Then, easy computation yields that NV (x, dr) = (VE − VI)
(r−VI)

α−1

(x−VI)α+1 I{r<x}dr and
thus NV (x,EV ) = VE−VI

α(x−VI)
. In this case, the probability that there is a jump of amplitude lower

than y ∈ (0, x− VI) is given by
(
1− y

x−VI

)α+1
.

At first sight, one may be surprised that the dynamics of the neuronal stochastic model is de-
scribed in terms of the generator compared to the usual path definition of diffusions as solution to a
stochastic differential equation. However, this is probably the most natural way when one is dealing
with state dependent jumps processes. Indeed, the theory of stochastic differential equations for
Markov processes with jumps is still incomplete regarding for instance the existence and uniqueness
of a solution, and when available for state dependent jumps processes, it involves integral with
respect to some Poisson random measures which makes its interpretation scarcely intuitive.

Remark 2.1. For a better understanding of the dynamics and the interpretation of the involved
parameters, we draw a parallel between the model (2.4) and the equation of a conductance-based
neuronal model. The evolution in time of the potential difference Ṽ = (Ṽt)t⩾0 across the membrane
of a neuron is given by

(2.5) C
dṼt

dt
= −gLṼt + Isyn + I = −gLṼt − gE(t)(Ṽt − VE) + gI(t)(Ṽt − VI) + I,

4



Figure 1. A realization of a Jacobi process with jumps (bottom figure) and corre-
sponding number of jumps (top figure). The jump frequency increases if the depo-
larization Vt approaches VI (in the figure VI = −10, VE = 100), as it can be seen
from the two plots for t > 0.6, while the amplitude of the jumps decreases.

where C > 0 is the membrane capacitance, gL > 0 is the conductance of the leak current, while
gE(t) > 0 and gI(t) > 0 are the conductances of the excitatory and inhibitory components of
the synaptic current Isyn, see e.g. [51]. The current I accounts for large or external inhibitory
inputs that cannot be considered in the diffusion limit. Differently from classical external currents
considered in the literature, that are constant or periodic functions, here I has random components.
The dynamics (2.5) with I = 0 is analogous to the deterministic version of the leaky integrate and
fire model (2.2), with C/gL playing the role of the membrane constant τ . Moreover at time tk, the
time of the arrival of the k-th incoming excitatory pulse, distributed according to a Poisson process
with parameter νe, the conductance gE(t) increases by a factor of Ce. Consequently the increase
in the voltage is ∆V = e(VE − Vt), where e is a dimensionless constant measuring the strength of
the synapse (similarly for gI(t) and νi). This increment corresponds to the one of the LIF model
before taking the diffusion limit. Analogously the current I (the jump part in the proposed model)
describes a possibly external (or strong) inhibitory current that at random times τk, determined by
a measure Π, decreases instantaneously the voltage of a quantity that depends on NV as described
above, but in any case of a quantity smaller than (Vτk − VI).

The motivation for considering the Jacobi process with state dependent jumps as a model of
neuron’s activity are several folds. On the one hand, the inhibition is well known to be regulatory
of neuronal excitability and has a role in information transmission. The study, for state-dependent
inputs, of the effect of inhibition on output indicators like signal to noise ratio, effective diffusion
coefficient of the spike count and degree of coherence demonstrates that inhibitory input acts to
decrease membrane potential fluctuations increasing spike regularity, see for example [4, 5, 19, 55].
Moreover the state dependence of the jumps preserves the fundamental improvement with respect
to the Ornstein-Uhlenbeck model that the changes in the potential depends on its actual value. In
addition it allows the possible description of the sites in which the neuron receives the inputs giving
the chance to relax the assumption that the cell is point-like.
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We prove in Lemma 3.1 that, under assumptions motivated by realistic interpretation of the
involved parameters, X has only downward jumps. This property suggests to apply, possibly, the
model to the probabilistic study of the effect of anti-epileptic drugs on a neuron whose firing activity
is too intense, see [58].

3. Jacobi processes with jumps and their first passage time problems

In this section, we start by providing a homeomorphism between the neuronal model X defined
in the previous section and generalized Jacobi processes with jumps that have been introduced in
[11]. Then, we proceed by characterizing the Laplace transform of the first passage time to a fixed
level by these generalized Jacobi processes.

3.1. Jacobi processes and neuronal models with jumps. Let us denote by Y = (Yt)t⩾0 the
generalized Jacobi process with jumps defined in [11] as follows. It is a Feller process on [0, 1] whose
infinitesimal generator is given, for a smooth function f on [0, 1], by

(3.1) JY f(y) = Jµf(y) +

∫ ∞

0
(f(e−ry)− f(y))

Π(dr)

y

where Jµ is the classical Jacobi operator

Jµf(y) =
σ2

2
y(1− y)f ′′(y)− (λy − µ) f ′(y)

with σ2 > 0, Π is, as in (2.4), a finite, non-negative Radon measure on R+ with ℏ =
∫∞
0 rΠ(dr) < ∞,

and, we have set, to simplify the notation,

(3.2) λ =
1

τ
+ µe − µi and µ = µe −

VI

τ(VE − VI)
,

where these parameters were introduced in (2.1) and (2.3). Throughout, we impose the following
assumption that guarantees that VI is an entrance boundary

(3.3) µe > ℏ+
σ2

2
+

VI

τ(VE − VI)
or, equivalently, λ > µ > ℏ+

σ2

2
,

since µi < 0. Note that in [11], σ2 = 2, and we shall explain in Lemma 3.4 below how to relate
our generator JY to the one of [11]. In what follows, we recall some basic results from [11] that
will be useful for our analysis by adapting them, in an obvious way, for any σ2 > 0. For instance,
the condition (3.3) is the appropriate modification of the standing assumption in [11]. Next, let us
write, for u ⩾ 0,

(3.4) ϕ(u) = u+
2

σ2

(
µ− ℏ− σ2

2
+

∫ ∞

0
(1− e−ur)Π(r)dr

)
where Π(r) =

∫∞
r Π(du). We observe that the condition (3.3), i.e. µ > ℏ+ σ2

2 , is also equivalent to

(3.5) ϕ(0) =
2

σ2

(
µ− ℏ− σ2

2

)
> 0.

Under this condition, it is not difficult to check that ϕ is a Bernstein function, i.e. ϕ : [0,∞) → [0,∞)
is infinitely differentiable on R+ and (−1)n+1 dn

dunϕ(u) ⩾ 0, for all n = 1, 2, . . . and u ⩾ 0, see
Schilling et al. [54] for a thorough exposition on Bernstein functions and subordinators. We denote
throughout by BJ the subset of Bernstein functions of the form (3.4) which satisfies the condition
ϕ(0) > 0.

We also observe that JY (resp. ϕ) is uniquely determined by σ2,Π, µ and λ (resp. σ2,Π, µ) so
that, for a fixed λ, there is a one-to-one correspondence between ϕ and JY .
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Next, we set, Wϕ(1) = 1 and for any n ⩾ 1,

(3.6) Wϕ(n+ 1) =
n∏

k=1

ϕ(k)

Note that Wϕ is solution to the recurrence equation Wϕ(n+1) = ϕ(n)Wϕ(n), with Wϕ(0) = 1, and
we refer to Patie and Savov [48] for a thorough account on this set of functions that generalizes the
gamma function, which appears as a special case when ϕ(n) = n. Then, it is shown, in [11, Theorem
2.1], that there exists an absolutely continuous probability measure whose support is [0, 1], with
a continuous density denoted by β that is positive on (0, 1). Being of compact support, its law is
moment determinate, and, more specifically, one has, for any n ∈ N,

(3.7)
∫ 1

0
ynβ(y)dy =

Wϕ(n+ 1)Γ(2λ
σ2 )

Γ(2λ
σ2 + n)

.

Note that, in particular, using (3.4), one gets the following expression for the first moment of β

(3.8)
∫ 1

0
yβ(y)dy = σ2ϕ(1)

2λ
= σ2 (

2
σ2µ− 2

σ2ℏ) + 2
σ2

∫∞
0 (1− e−r)Π(r)dr

2λ
=

µ−
∫∞
0 e−rΠ(r)dr

λ
.

We also point out that when ϕ(u) = u, β boils down to the Beta distribution, which is easily
identified from the expression of its moments as in this case Wϕ(n + 1) = n!. Other examples will
be provided in Section 4.1. β turns out to be the stationary measure of the Feller semigroup Q,
that is for all f ∈ C([0, 1]), the Banach space of continuous functions on [0, 1] equipped with the
sup-norm || · ||∞, and t ⩾ 0,

(3.9) β[Qtf ] = β[f ] =

∫ 1

0
f(y)β(dy)

where the last equality serves as a definition for the notation β[f ]. The extension of JY to an operator
on L2(β), still denoted by JY , is the infinitesimal generator, having P, the algebra of polynomials,
as a core, of an ergodic Markov semigroup Q = (Qt)t⩾0 on L2(β) whose unique invariant measure
is β.

It is then classical, see either Bakry et al. [7] or Da Prato [14], that given a Markov semigroup on
C([0, 1]) with invariant probability measure β one may extend it to a Markov semigroup on L2(β),
the weighted Hilbert space being defined as

L2(β) =
{
f : [0, 1] → R measurable with β[f2] < ∞

}
.

Such a semigroup is said to be ergodic if, for every f ∈ L2(β), limT→∞
1
T

∫ T
0 Qtfdt = β[f ] in the

L2(β)-norm.

Proposition 3.1. Let X = (Xt)t⩾0 where, for any t ⩾ 0, Xt = g(Yt) with g(x) = (VE − VI)x+ VI .
Then X is a Feller process on EV = [VI , VE ] which admits the measure (VE − VI)

−1β
(

x−VI
VE−VI

)
dx

as the unique stationary measure. Its infinitesimal generator is the closure of (JX ,P), where JX
is defined in (3.1) and P is a core. Moreover, we have, on P,

(3.10) JXGf = GJY f

where Gf(x) = f ◦ g(x) is a homeomorphism from [0, 1] onto [VI , VE ].

Proof. Since g is a homeomorphism from [0, 1] onto [VI , VE ] with inverse function h(x) = x−VI
VE−VI

and, from [11, Lemma 3.10 and its proof], Y is a Feller process on [0, 1], we deduce that X is also
7



a Feller process on EV . Next, using (2.4) and the notation (3.2), simple algebra yields, for any
f ∈ P,

G−1JXGf(y) = σ2(VE − VI)
2y(1− y)f ′′(y)

1

(VE − VI)2

−
((

1

τ
+ µe − µi

)
(VE − VI)y − µe(VE − VI) +

VI

τ

)
f ′(y)

1

(VE − VI)

+

∫ ∞

0

(
f
(
e−ry

)
− f (y)

) Π(dr)
y

= σ2y(1− y)f ′′(y)− (λy − µ) f ′(y) +

∫ ∞

0

(
f
(
e−ry

)
− f (y)

) Π(dr)
y

= JY f(y)

which completes the proof of the intertwining relation. Since P is core for JY , see [11, Theorem
2.1] we deduce, by the homeomorphism G, that P is also a core for JX . Next, by taking the inverse
of G, from the left and from the right, in the relation (3.10), one gets that G−1JXf = JY G

−1f .
Since from [11], we have that β is the unique stationary measure for Y , that is the unique measure
β such that βJY f = 0, f ∈ DY , we deduce that the measure on [VI , VE ], defined by βG = βG−1, is
the unique one such that βGJXGf = 0, which completes the proof. ■

Remark 3.1. We point out that the requirement that the support of the measure of the Lévy kernel is
the negative half-line (or, equivalently, the process has only negative jumps) comes from Proposition
3.1. Indeed, it ensures that the corresponding integro-differential operator satisfies the maximum
principle, and, hence it is the generator of a Markov semigroup. The interested reader can consult
[11] for a detailed discussion on this technical aspect.

3.2. Laplace transform of first passage times. Let us write

(3.11) Ta = inf{t > 0; Yt ⩾ a}

for the first passage time to the level 0 < a < 1 of the generalized Jacobi process Y . Note that,
from Proposition 3.1, one gets, when Y is issued from y ∈ (0, 1), the identity in distribution, with
the obvious notation, Ty→a(Y )

d
= Tg(y)→g(a)(X). To characterize the Laplace transform of Ta, we

introduce the mapping

(3.12) 2F1 (a, b, ϕ; y) =
∞∑
n=0

(a)n(b)n
n!

yn

Wϕ(n+ 1)

with (a)n = Γ(a+n)
Γ(a) , n ∈ N, a ∈ C. Note that when Π ≡ 0, we have, from (3.4), Wϕ(n + 1) =

(ϕ(0) + 1)n, and, thus, in this case

2F1 (a, b;ϕ; y) = 2F1 (a, b;ϕ(0) + 1; y)

which is the Gauss hypergeometric function, explaining the notation. There are several represen-
tations of this function which provides an analytical continuation to the entire complex plane cut
along [1,∞] with limx↑1 2F1 (a, b, 1; z) =

Γ(1−a−b)
Γ(1−a)Γ(1−b) ,ℜ(a + b) < 1, see [39, Chap. 9]. We are now

ready to state the following.

Theorem 3.1. Let ϕ ∈ BJ . Then, for any a, b ∈ C, the mapping z 7→ 2F1 (a, b;ϕ; z) defines an
analytic function on the unit disc. Moreover, for any 0 < y < a < 1 and q > 0, we have

(3.13) Ey

[
e−qTa

]
=

2F1 (κ(q), θ(q);ϕ; y)

2F1 (κ(q), θ(q);ϕ; a)
,

8



where κ(q) and θ(q) are solution to the system

(3.14) κ(q)θ(q) =
2q

σ2
and κ(q) + θ(q) + 1 =

2λ

σ2
.

3.3. Proof of Theorem 3.1. The proof is split into several intermediate results. We start with
the following result that shows that the dynamics of Y has discontinuities which are due to negative
jumps only.

Lemma 3.1. We have, for all y ∈ [0, 1], t ⩾ 0 and f̃ a positive borelian function on [0, 1]× [0, 1],

Ey

[∑
s⩽t

f̃(Ys−, Ys)I{Ys− ̸=Ys}

]
= Ey

[∫ t

0
ds

∫ 1

0
f̃(Ys−, r)I{r⩽Ys−}Π̃(Ys−, dr)

]
where Π̃(y, .) is the image measure of Π(.)

y by the mapping r 7→ − ln(r/y). Consequently, for all
y ∈ [0, 1], Py(Yt− ⩾ Yt for all t ⩾ 0) = 1, i.e. Y has only downward jumps.

Proof. First, by [11, Lemma 3.1], we know that Y is a Feller process, and hence, from [8], we have
that Y admits a Lévy kernel, say N , that we now characterize. To this end, one observes, from
(3.1), that for a smooth function f that vanishes in the neighborhood of y ∈ [0, 1], we have

(3.15) Jf(y) =

∫ ∞

0
f(e−sy)

Π(ds)

y
=

∫ 1

0
f(s)I{r⩽y}Π̃(y, dr)

where Π̃(y, .) is the measure defined in the claim. Hence, the Lévy kernel N(y, dr) = I{r⩽y}Π̃(y, dr),
see e.g. [43]. The first claim follows from the definition of the Lévy kernel whereas the second one
is deduced from the first one by choosing the function f̃(y, r) = I{y⩽r}. ■

We proceed with the following.

Lemma 3.2. Let us write Fq(y) = 2F1 (κ(q), θ(q); 1; y) , q > 0, then Fq is positive increasing on
(0, 1) and we have

JFq(y) = qFq(y), y ∈ [0, 1],

where, simplifying the notation, J = Jσ2

2

, that is Jf(y) = σ2

2 y(1 − y)f ′′(y) −
(
λy − σ2

2

)
f ′(y).

Consequently, for any t, q ⩾ 0 and y ∈ [0, 1),

(3.16) e−qtQtFq(y) = Fq(y)

that is, Fq is a q-invariant function for Q = (Qt)t⩾0 the semigroup associated to J.

Proof. The first part is classical, see Appendix A. Note that κ(q) + θ(q) = 1 − 2λ/σ2 < 1 which
ensures that limy↑1 2F1 (κ(q), θ(q), 1; y) exists. Next, using the fact that, in addition, the mapping
x 7→ Fq(y) is twice continuously differentiable on [0, 1], one can apply Itô’s formula to get

e−qtFq(Yt) = Fq(y) +

∫ t

0
JFq(Ys)− qFq(Ys)ds+

√
2σ

∫ t

0

√
Ys(1− Ys)F

′
q(Ys)dBs

= Fq(y) +
√
2σ

∫ t

0

√
Ys(1− Ys)F

′
q(Ys)dBs.

Since the last term has a squared integrable integrant, it defines a martingale. Then, taking the
expectation on both sides of the previous identity yields the second claim. ■

Let us now denote by ϱ = (ϱt)t⩾0 a subordinator that is a positive valued stochastic process
with stationary and independent increments, and recall that its law is uniquely determined by a
Bernstein function ϕ. More specifically, one has, for any t, u ⩾ 0,

(3.17) E[e−uϱt ] = e−ϕ(u)t.
9



Next, for each subordinator ϱ associated to ϕ ∈ BJ , we define the random variable

Iϕ =

∫ ∞

0
e−ϱtdt

which is the so-called exponential functional of the subordinator ϱ. We point out that this random
variable has been studied intensively over the last two decades see e.g. [48] and the references therein.

Lemma 3.3. Let ϕ ∈ BJ and write F
a,b
(y) = 2F1 (a, b; 1; y). Then, we have, for any y ∈ [0, 1],

(3.18) ΛϕFa,b
(y) = 2F1 (a, b;ϕ; y)

where Λϕ : C([0, 1]) 7→ C([0, 1]) is the Markov multiplicative operator associated to the random
variable Iϕ, that is

(3.19) Λϕf(y) = E [f(yIϕ)] .

Moreover, z 7→ 2F1 (a, b;ϕ; z) defines a function which is analytic on the unit disc.

Proof. First, we recall, from e.g. [11, Lemma 3.3], that Λϕ is a Markov bounded operator from
C([0, 1]) into itself, and, with pn(y) = yn, n ∈ N,

Λϕpn(y) =
n!

Wϕ(n+ 1)
pn(y).(3.20)

Then, an application of Tonelli Theorem and (3.20) yield, for any 0 ⩽ y ⩽ 1,

ΛϕFa,b(y) = E [Fa,b(yIϕ)] =
∞∑
n=0

(a)n(b)n
n!

Λϕpn(y)

n!
= 2F1 (a, b;ϕ; y) .

Moreover, as Wϕ(n+2) = ϕ(n+1)Wϕ(n+1) and limn→∞
ϕ(n+1)
n+1 = 1, we easily get that the power

series 2F1 (a, b;ϕ; .) defines an analytic function on the unit disc. ■

Lemma 3.4. Writing F
(ϕ)
q (y) = 2F1 (κ(q), θ(q);ϕ; y), we have, for any t, q ⩾ 0,

e−qtQtF
(ϕ)
q (y) = F (ϕ)

q (y)

that is F
(ϕ)
q is a q-invariant function for Q, which is positive and increasing on [0, 1].

Proof. First, let us denote by (Q̃t)t⩾0 the semigroup associated to the non-local Jacobi generator
given, for any σ2 > 0 and y ∈ (0, 1), by

J̃Y f(y) = y(1− y)f ′′(y)−
(

λ

σ2
y − µ

σ2

)
f ′(y) +

∫ ∞

0

(
f
(
e−ry

)
− f (y)

) Π(dr)
yσ2

.(3.21)

Then, observes that, for any c > 0,

JY f(y) = lim
t→0

Qtf(y)− f(y)

t
= c lim

t→0

Q̃ctf(y)− f(y)

ct
= cJ̃Y f(y)(3.22)

and note that the same relationship holds between (Qt)t⩾0 and (Q̃t)t⩾0 the semigroups of the
classical Jacobi processes with generator Jf(y) = σ2

2 y(1− y)f ′′(y)−
(
λy − σ2

2

)
f ′(y) and J̃f(y) =

y(1 − y)f ′′(y) −
(
2λσ−2y − 1

)
f ′(y) respectively. Now, we recall from [11, Proposition 3.3], taking

with the notation thereout ϵ = dϕ and r1 = 1, that the following intertwining relation

Q̃tΛϕ = ΛϕQ̃t(3.23)

holds on the weighted Hilbert space L2(βλ1), where λ1 = 2λσ−2 > 1, by the assumption (3.3), and,
βλ1(dy) = (λ1 − 1)(1− y)λ1−2dy, y ∈ (0, 1). Hence, for any t ⩾ 0, on L2(βλ1),

QtΛϕ = Q̃σ2/2tΛϕ = ΛϕQ̃σ2/2t = ΛϕQt.(3.24)
10



Thus, using successively that Fq ∈ L2(βλ1), (3.18), (3.24) and (3.16), one gets that

e−qtQtF
(ϕ)
q (y) = e−qtQ

ϕ
t ΛϕFq(y) = e−qtΛϕQtFq(y) = ΛϕFq(y) = F (ϕ)

q (y)

which proves the first claim. Next, since Λϕ is clearly a Markov operator, i.e. Λϕf ⩾ 0 for any f ⩾ 0

and Λϕp0(y) = 1, we get that 2F1 (a, b;ϕ; .) ⩾ 0 on [0, 1]. Finally, F (ϕ)
q being a power series with

non-negative coefficients, we deduce the monotonicity property. ■

End of the proof of Theorem 3.1. First, one invokes the previous lemma and Dynkin’s theorem to
the bounded stopping time T t

a = Ta ∧ t, to get, for any t, q > 0 and 0 < y < a < 1,

Ey

[
e−qT t

aF (ϕ)
q (YT t

a
)
]
= F (ϕ)

q (y).

Then, letting t → ∞, using the fact that F
(ϕ)
q is increasing on [0, 1] and by absence of positive

jumps, see Lemma (3.1), Py(XTa = a) = 1, combined with a dominated convergence argument yield

Ey

[
e−qTaI{Ta<∞}

]
=

F
(ϕ)
q (y)

F
(ϕ)
q (a)

.

Next, observe that, if λ = λ
σ2 − 1

2 ⩾ 0 (resp. < 0) then, by Taylor’s expansion, one gets that
limq→0 σ

2λ θ(q)
q = 1 (resp. limq→0 θ(q) = 2λ), and thus limq→0 κ(q) = 2λ (resp. = 0). It is not

difficult to check that in both cases, one has for all y ∈ [0, 1), limq→0 F
(ϕ)
q (y) = 1 and hence

Py (Ta < ∞) = 1, which completes the proof of Theorem 3.1.

3.4. Mean of the first passage times. We proceed by deriving the expression of the first mo-
ment of the first passage times of our family of Markov processes whose proof is split into several
intermediate results.

Theorem 3.2. Let ϕ ∈ BJ . Then, for any 0 < y < a < 1,

(3.25) Ey[Ta] =
2

σ2

∞∑
n=0

(2λ/σ2)n
n+ 1

an+1 − yn+1

Wϕ(n+ 2)
.

Remark 3.2. We note, from (3.25), that when Π = 0, we recover the expression of Ey[Ta] for the
classical Jacobi process given in (A.5). Indeed, in this case,

Wϕ(n+ 2) =
n+1∏
k=1

ϕ(k) =

(
2µ

σ2

)
n+1

=
2µ

σ2

(
2µ

σ2
+ 1

)
n

.

As a by-product of this Theorem, we state and prove the following comparison result between
the first moment of the first passage times of our class of Jacobi processes with jumps.

Corollary 3.1. Let ϕ, ϕ1 ∈ BJ be such that ϕ ⩽ ϕ1 on R+. Then, we have, for any 0 < y < a < 1,
with the obvious notation,

(3.26) Ey[T
ϕ1
a ] ⩽ Ey[T

ϕ
a ]

The conditions hold, for instance, when ϕ, ϕ1 ∈ BJ and Π ⩾ Π1 on R+, or when ϕ ∈ BJ and
ϕ1(u) = ϕ(u) + 2

σ2

∫∞
0 (1 − e−ur)Π1(r)dr, u ⩾ 0, where Π1 satisfies the same conditions than Π in

(3.1). Note that, with the notation of (3.5), in the former instance, we have µ = σ2

2 (ϕ(0)+1)+ℏ =
σ2

2 (ϕ1(0) + 1) + ℏ1 = µ1 whereas, in the latter case, µ1 = µ+ ℏ1.
11



Remark 3.3. It is interesting to note that, in the second example, i.e. when µ1 = µ+ ℏ1, although
the intensity of jumps is larger for the Jacobi process associated to ϕ1, the first moment of its
first passage times above the starting point is smaller, meaning that adding the mean of the jump
measure to the drift term compensates the presence of additional downwards jumps.

Proof. We first observe, that with ϕ, ϕ1 ∈ BJ such that ϕ ⩽ ϕ1 on R+, we have, for all n ⩾
0,Wϕ(n + 1) ⩽ Wϕ1(n + 1), the inequality between the first moments of the first passage times is
deduced easily from the identity (3.25) as the other parameters in the two expressions are identical.
Finally, on the one hand, since ℏ =

∫∞
0 Π(r)dr we get, from (3.4), that

(3.27) ϕ(u) = u+
2

σ2

(
µ− σ2

2
−
∫ ∞

0
e−urΠ(r)dr

)
which provides the first inequality between the Bernstein functions. On the other hand, writing
ℏ1 =

∫∞
0 Π1(r)dr, we get that

ϕ1(u) = u+
2

σ2

(
µ+ ℏ1 − (ℏ+ ℏ1)−

σ2

2
+

∫ ∞

0
(1− e−ur)(Π + Π1)(r)dr

)
∈ BJ

Then, plainly ϕ ⩽ ϕ1 on R+, and the last remarks follow readily. ■

We now turn to the proof of Theorem 3.2 which relies on taking the derivative of the Laplace
transform (3.13) which is given in the following lemma. This extends the result of [2] on the
derivative of the Gauss hypergeometric function 2F1.

Lemma 3.5. Let ϕ ∈ BJ . Then, for any |z| < 1,

∂

∂a
2F1(a, b, ϕ, z)|a=0

= b

∞∑
n=0

(b+ 1)n
n+ 1

zn+1

Wϕ(n+ 2)
(3.28)

∂

∂b
2F1(a, b, ϕ, z)|a=0

= 0.(3.29)

Proof. Using that ∂
∂a (a)n = (a)n[Ψ(a+ n)−Ψ(a)], where Ψ is the Digamma function, we get that

(3.30)
∂

∂a
2F1(a, b, ϕ, z) =

∞∑
n=0

(a)n(b)n
n!

(Ψ(a+ n)−Ψ(a))
zn

Wϕ(n+ 1)
.

From [1, Formulas 6.3.5 and 6.3.6], one has

(3.31) Ψ(a+ n)−Ψ(a) =

n−1∑
k=0

1

k + a
.

Moreover, observing that

(3.32)
1

k + a
=

1

a

(a)k
(a+ 1)k

one gets

∂

∂a
2F1(a, b, ϕ, z) =

1

a

∞∑
n=0

n∑
k=0

(a)n+1(a)k(b)n+1

(a+ 1)k(n+ 1)!

zn+1

Wϕ(n+ 2)

=
1

a

∞∑
n=0

∞∑
k=0

(a)n+k+1(a)k(b)n+k+1

(a+ 1)k(n+ k + 1)!

zn+k+1

Wϕ(n+ k + 2)

= bz
∞∑
n=0

∞∑
k=0

(a+ 1)n+k(a)k(b+ 1)n+k

(a+ 1)k(n+ k + 1)!

zn+k

Wϕ(n+ k + 2)
(3.33)
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where in the last equality we have used that (a)n+k+1 = a(a + 1)n+k. From (3.33) with a = 0,
noting that we have non-zero terms only for k = 0, the identity (3.28) follows. The expression of
∂
∂b 2F1(a, b, ϕ, z) can be obtained directly by interchanging a with b in (3.33), i.e

(3.34)
∂

∂b
2F1(a, b, ϕ, z) = az

∞∑
n=0

∞∑
k=0

(b+ 1)n+k(b)k(a+ 1)n+k

(b+ 1)k(n+ k + 1)!

zn+k

Wϕ(n+ k + 2)

that is always equal to zero for a = 0. ■

End of the proof of Theorem 3.2. For ϕ ∈ BJ , that is λ > µ > ℏ + σ2

2 , we have, writing Φy(q) :=

Ey[e
−qTaI{Ta<∞}],

Ey[Ta] = −∂Φy(q)

∂q

∣∣∣
q=0

= −Φy(0)
∂ lnΦy(q)

∂q

∣∣∣
q=0

= −∂ lnΦy(q)

∂q

∣∣∣
q=0

=
∂

∂q
(2F1 (κ(q), θ(q);ϕ; a)− 2F1 (κ(q), θ(q);ϕ; y)) |q=0.(3.35)

We have
∂

∂q
2F1 (κ(q), θ(q);ϕ; y) |q=0 =

∂

∂κ(q)
2F1 (κ(q), θ(q);ϕ; y) |q=0

∂κ(q)

∂q

∣∣∣
q=0

+
∂

∂θ(q)
2F1 (κ(q), θ(q);ϕ; y) |q=0

∂θ(q)

∂q

∣∣∣
q=0

.(3.36)

and, with λ̄ := λ
σ2 − 1

2 ⩾ 0, it is easy to check, from the system (3.14), that

(3.37)
∂κ(q)

∂q
|q=0 =

1

λ̄σ2
, κ(0) = 0, θ(0) = 2λ̄.

Moreover, one gets, by Lemma 3.5, that
∂

∂κ(q)
2F1 (κ(q), θ(q);ϕ; y) |q=0 =

∂

∂κ(q)
2F1 (κ(q), θ(q);ϕ; y) |κ(q)=0

= 2λ
∞∑
n=0

(1)n(2λ̄+ 1)n
(2)n

yn+1

Wϕ(n+ 2)
,(3.38)

and
∂

∂θ(q)
2F1 (κ(q), θ(q);ϕ; y) |κ(q)=0 = 0.(3.39)

Finally, combining (3.35) and (3.36)-(3.39), we obtain the expression of Ey[Ta], which completes the
proof of the Theorem.

4. Firing activity of the Jacobi process with jumps

Let X be the Jacobi process with jumps with state space EV = [VI , VE ] defined in (2.4). As
mentioned above, according to the model, the spikes are generated when the process X crosses a
voltage threshold VI < S < VE for the first time, that is at time TS = TS(X). After the spike, the
process is reset instantaneously to the starting position VI < x < VE , ready to start its evolution
over again. This renewal condition guarantees that the inter-spike intervals, i.e the time between
two consecutive spikes, are independent and all identically distributed as the first inter-spike interval
TS . Proposition 3.1 guarantees that we can consider equivalently the Jacobi process with jumps Y
with state space [0, 1] starting at y = h(x) = (x − VI)/(VE − VI) in the presence of the threshold
a = h(S) = (S − VI)/(VE − VI) and other parameters defined in (3.2). This enables us to use
the mathematical results obtained in Section 3. For these reasons the quantity of interest in the
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mathematical analysis of the neuronal activity is the first passage time Ta = Ta(Y ). The probability
of firing (i.e. the probability that the process Y crosses the boundary a within a finite time) is given
by (3.13) for q = 0. Under hypothesis (3.3), the crossing of a occurs almost surely in finite time.

Furthermore, it is interesting, for the analysis of the firing activity, to study the first moment
of Ta. In fact, it is assumed that neurons express information about their input mainly by means
of the average frequency of spikes described by the neuronal firing rate. It can be mathematically
defined in several different ways [35], here we choose the classical definition of the instantaneous
firing rate as the reciprocal of the mean first passage time.

We distinguish between three possible regimes to characterize the neuronal activity. If the as-
ymptotic mean membrane potential is larger than the firing threshold a, then the process is in the
so-called suprathreshold regime. In the classical case, in this regime, the spikes are regular and the
dynamics is driven mainly by the drift part. If the asymptotic mean membrane potential is smaller
than a, then the process is said to be in the subthreshold regime, and the noise plays a prominent
role for the crossing of the threshold. Finally, if the asymptotic mean is equal to a, the process is
said to be in the threshold regime. The classical Jacobi process is in the suprathreshold regime for

µ > aλ

whereas the analogous condition for the Jacobi with jumps, using (3.8), is

(4.1) µ > aλ+

∫ ∞

0
e−rΠ(r)dr.

We observe that in (4.1) the asymptotic mean µ/λ of the classical Jacobi has to exceed the threshold
plus a term given by the downward jumps.

The dependence of Ey[Ta] on a and y is the same as the classical Jacobi (and all other classical
single neuron models). Ey[Ta] decreases with the difference a− y as it can be easily seen from the
expression (3.25).

However, the dependence of Ey[Ta] on the inputs parameters νe, νi, ℏ is non-trivial since the
contribution of µ is hidden in the function Wϕ that merges the contribution of the drift and the
diffusion component. To investigate it, we consider the following examples in which we choose a
special form of the measure Π.

4.1. Example. We consider a parametric family of non-local Jacobi operators for which Π(r) =∫∞
r Π(du) = e−αr, r > 0, is of exponential type, that is Π(dr) = αe−αrdr. In particular, let α ⩾ 1

and consider the integro-differential operator Jα given, from (3.1), by

Jαf(y) =
σ2

2
y(1− y)f ′′(y)− (λy − µ) f ′(y)−

∫ 1

0
(f(r)− f(y))

rα

yα+1
dr,(4.2)

Then Jα is a non-local Jacobi operator with ℏ =
∫∞
1 Π(r)dr = 1/α and

(4.3) ϕ(u) = u+
2

σ2

(
µ− 1

u+ α

)
− 1.

Assumption (3.3) is satisfied whenever

σ2

2
< µ− 1

α
,(4.4)

suggesting that the noise amplitude has to be smaller than in the classical case. The more is the
contribution of the downward jumps (smaller values of α) the higher is the risk that a large value
of σ can lead the process across the lower boundary, a condition that we want to avoid. Under
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assumption (4.4), the first moment of Ta for the Jacobi process with jumps with generator (4.2) is
(see Appendix B)

Ey[Ta] =
2(α+ 1)

σ2(k+ + 1)(k− + 1)

(
4F3(1, 1, α+ 2,

2λ

σ2
; 2, k+ + 2, k− + 2; a)a

−4F3(1, 1, α+ 2,
2λ

σ2
; 2, k+ + 2, k− + 2; y)y

)
(4.5)

where

(4.6) k± =
1

2

(
α+ 2µ/σ2 − 1±

√
(α+ 2µ/σ2 − 1)2 − 4(2αµ/σ2 − α− 2/σ2)

)
.

We want to investigate the sensitivity of the mean FPT to a change in the input parameters µ,
λ, σ2 and ℏ. The precise analysis requires the derivative of generalized hypergeometric functions
with respect to the relevant parameters. To avoid lengthy calculation, we only show by plots
the qualitative behavior using numerical evaluations in correspondence of physiologically realistic
parameters chosen as in [37]. In this case the firing regime is suprathreshold if

(4.7) µ > aλ+
1

1 + α
,

we observe that the asymptotic mean µ/λ of the classical Jacobi is decreased by a term given by the
downward jumps. The result is that the asymptotic mean of the Jacobi process with jumps increases
with α. The reason lies in the shape of the distribution Π, see Fig.2-left. For small values of α
there is a higher probability that r takes large values with corresponding large jumps. Conversely
for large values of α the probability mass is concentrated around zero favoring small jumps. The
consequence is shown in Fig.2-right: the mean FPT decreases as α increases. In Fig.2-right we
also use a discretization scheme for simulating sample paths developed recently in [20]. At each
time-step of the algorithm, a value for r is sampled from the distribution Π(dr) and according to
the survival probability of T described in Section 2, a jump may occur. Then the trajectory moves
according to the diffusion, from state e−rYt if there was a jump, otherwise from state Yt. Between the
jump epochs the dynamics of the constructed process are purely diffusive and are simulated using
the Milstein’s discretization method. The curve is obtained simulating 2 · 104 sample paths of the
Jacobi process with jumps for each of the 100 values of α considered. For each simulation the FPT
is recorded and for every value of α a value of the mean FPT is obtained. The simulation results
are of course subject to numerical errors, mainly due to the choice of the time-discretization step
(here 5 · 10−4) and the relative low number of FPTs considered. On the one hand, this confirms the
importance of an analytic result, and, on the other hand, supports the validity of formula (3.25). In
fact, it is known that discretization schemes overestimate the mean FPT since undetected threshold
crossings may occur inside each discretization interval (see for instance [24]). We stress, anyway,
that one must be careful in the evaluation of Eq.(3.25) or Eq.(4.5) since the involved functions
become soon very large or very small as n increases. To be sure of our evaluations, we applied
different numerical approaches obtaining the same results as a guarantee of the correctness of our
computations. In Fig.2-right, one also observes that the mean first passage time, as a function of
α, is nonincreasing, which is an illustration of the comparison result provided in (3.26). Indeed, one
uses the fact that, for any 0 < α ⩽ α1, the function e−α1r = Π1(r) ⩽ Π(r) = e−αr, r > 0.

Let us now investigate how sensitive is Ey[Ta] to a change in the incoming input rates. As
expected we find that the mean FPT decreases for stronger excitatory inputs and increases with
the inhibitory inputs. This dependence is clearly visible in the color change in the heatmap in Fig.3
where the excitatory and inhibitory inputs are tuned simultaneously. The blue lines are the contour
plots, i.e., the couples (νe, νi) that produce the same mean FPT. The values of νe are chosen to
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jumps from (3.25) with Π(dr) = αe−αrdr, as func-
tion of α. The series is truncated after 150 terms,
but it has been checked numerically that the quick
convergence of the series guarantees a correct evalu-
ation of the whole sum. The other parameters are
VI = −10mV, VE = 100mV, S = 10 mV, x = 0 mV,
τ = 15 ms, a = 0.18 mV, y = 0.09 mV, e = 0.5, i = −1,
νi = 1 ms−1, νe = 2.8 ms−1, σ2 = 0.5 ms−1. In grey,
Ey[Ta] obtained from simulations of 2 · 104 FPTs for
each of the 100 values of α with time step dt = 5·10−4.

Figure 2

meet condition (4.4) or equivalently

νe >
1

e

(
VI

τ(VE − VI)
+

σ2

2
+

1

α

)
.(4.8)

The heatmaps are obtained from (3.25) with Π(dr) = αe−αrdr and α = 3 (Fig.3 - left) and from
(A.5) (Fig.3 - right). Alternatively one can evaluate (4.5) with the package hypergeo [29] for the
software environment R.

We observe three main differences between the mean FPT of the two processes:

• in the non-local case, due to the presence of the term 1/α in (4.8), we need a larger excitatory
input rate to guarantee a finite FPT,

• for the same choices of parameters, the waiting time before the first spike in the classical
case is shorter than in the non-local case,

• the shape of the contour plots changes.

Regarding the third item, in the classical case, if we increase the inhibitory input rate νi, then we
have to increase linearly the excitatory input rate νe to get the same mean FPT. In the non-local
case the jump part comes into play breaking this tight coupling.

Fig.4 plots the mean FPT of the Jacobi process with jumps with infinitesimal generator (4.2) as
a function of σ2. As in the classical Jacobi model, Ey[Ta] decreases as σ2 increases. This result is
generally explained noting that an increase of variability facilitates the boundary crossing.

Since a closed form formula for the variance of Ta is not available, it is natural to look at the
asymptotic variance of the process Y to study the role of σ2. From (3.7) and (3.8) we calculate the
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Figure 3. Mean FPT, Ey[Ta], for the non-local (left) and classical (right) Jacobi
processes as a function of the excitatory and inhibitory input rates νe and νi. The
heatmaps are obtained from (3.25) with Π(dr) = αe−αrdr, α = 3 (left) and from
(A.5) (right). The other parameters are chosen as in Fig.2.
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cess with jumps with infinitesimal generator (4.2)
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(b) We consider the effect of α in the case λ ∼ µ.
All curves are plotted as function of σ2 to meet
assumption (4.4), and this is the reason why some
lines stop before others.

Figure 4

asymptotic variance of Y , Var(Y∞), as

Var(Y∞) = β[p2]− β[p1]
2

=

(
µ− 1

1+α

)(
σ4 + σ2

(
µ− 1

2+α

))
− µ2 − 1

(1+α)2
+ 2µλ2

1+α − µ2σ2

λ − σ2

λ(1+α)2
+ 2λµσ2

1+α

λ2 + λσ2

and one can get that the derivative with respect to σ2 is positive. Then Var(Y∞) increases with σ2

and the variability usually favors the crossing of the threshold, explaining the result of Fig.4.
As a final remark, we look at the blue solid curve in Fig.4 (A). All the curves are obtained keeping

fixed νe = 2.1 ms−1 and changing νi (0.1; 1.5; 1.9 ms−1) to get different ratios λ/µ, as it is usually
done in the classical case. The blue solid curve is obtained in the case of a very weak inhibition
νi = 0.1 ms−1, that is the reason why the mean FPT is smaller and the behavior is different from
the other two cases. We observe in Fig.4 (B) that the presence of the jump part compensates the
absence of the inhibitory inputs, increasing the waiting time before the neuronal spike.
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In Fig.5, we compare the firing rate, that is here the reciprocal of Ey[Ta], for the classical and the
non-local Jacobi processes for the same choices of the common parameters. In the classical case a
strong excitation rate νe produces an intense activity of the neuron that grows linearly with νe. In
the non-local case the value of the firing rate is almost halved and shows a sub-linear growth with
respect to νe.

In Fig.5 the vertical lines indicate the threshold regimes for the two dynamics, separating the
subthreshold on the left from the suprathreshold on the right. We have used three colors to highlight
the intervals of sub and suprathreshold for the two processes. We observe that the difference
between the two firing rates is smaller in the subthreshold regime, whereas the gap increases in
the suprathreshold regime where the dynamics of the classical Jacobi is mainly driven by the drift
component, especially being νi much smaller than νe. Moreover, numerical evidences suggest that
the firing rate for the Jacobi process with jumps saturates, differently from the classical one (at
least for this range of parameters). A similar kind of saturation is observed in the classical case,
but only in the presence of a non-zero refractory period, see for instance Fig.2 of [41].
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Figure 5. Firing rate 1/Ey[Ta] for classical and non-local Jacobi processes as func-
tion of the excitatory input rate νe. Curves are obtained from (3.25) and (A.5) for
y = 0.09 mV, a = (S − VI)/(VE − VI) = 0.75 mV, α = 3, νi = 0.2 ms−1, τ = 5 ms,
e = 0.2, i = −0.2, µe = eνe, µi = iνi, σ2 = 0.1 ms−1. The firing rate is reduced by
the downward jumps. The vertical lines indicate the threshold regimes for the two
dynamics, separating the subthreshold and the suprathreshold regimes. The blue re-
gion corresponds to subthreshold regime for both processes, the red one corresponds
to subthreshold for the non-local and suprathreshold for the classical Jacobi process
and finally the yellow area represents suprathreshold regime for both processes.

Then, in the case of a strong excitatory input, the presence of the jump part can contribute to
reduce the firing rate. We stress that we choose incoming input parameters that are up to 10 times
stronger than those of an healthy neuron, see for instance physiological parameter values chosen in
[37], to illustrate instances in which anomalous behaviors arise. We speculate, that one can refine
this model to describe a pharmacological treatment of neurons whose activity is too intense, like in
epileptic seizures or eventually to model the effect of drug consumption.

4.1.1. Example: A special case. Let us consider the previous example in the special case of an input
dependent distribution Π, in particular let, with δ = µ− 1, Π(r) = e−δr, r > 0, and, σ2 = 1.
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Let δ > 1 and consider the integro-differential operator Jδ given by (4.2) for α = δ. One gets
that in this case ℏ = 1/δ and

(4.9) ϕ(u) = u+ 2

(
µ− 1

u+ µ− 1

)
− 1 =

(u+ µ)(u+ µ− 2)

u+ µ− 1
.

Since µ = δ + 1 > 2, ϕ(0) = µ(µ−2)
µ−1 > 0, the required assumption (3.5) is satisfied.

In this case, the distribution Π being dependent on the incoming excitatory inputs, we have that
the contribution of the jump part reduces as νe increases. This means that if the excitatory input
is strong then the neuron fires with a weak contrast of the jump part, whereas if the input is weak
and the potential is far from the threshold then the jump component tends to make the neuron
silent. This behavior avoids unnecessary spikes and enhances the information transmission. This
case may describe the situation in which inhibitory neurons inside the network, that are regulatory
for the neuron activity, are not able to oppose to an increment in the excitatory inputs that may
lead to an excessive spiking activity of the neuron under study.

On the contrary, if one wants to extend the model to address a pharmacological treatment of
neurons whose activity is too intense we suggest to choose some jump distribution that depends
on the inverse of µ or in general a heavy-tailed distribution that favors the large jumps reducing
consistently the firing activity.

As a future work we plan to investigate the effects of other distributions of the jumps, with special
attention to heavy-tailed distributions that favors large jumps. Moreover it would be interesting
to add also upward jumps to the model and investigate the case of a signal dependent noise as in
[26],[38] and [41], to study the possible role of the inhibitory jumps in improving the information
transmission through a coherence resonance between the input and the output.

5. Conclusions

The contribution of this paper is twofold. On the one hand, it allows to advance in the LIF
modeling in the mathematical neuroscience context. On the other hand, it also contains an original
methodology, based on intertwining relationship, to study the classical first passage time problem
of a Markov process with possible jumps.

Starting from the idea of endowing the classical LIF model with features that are more in keeping
with the phenomenological reality we introduce a diffusion process with jumps for the description of
the activity of a single neuron. Among the strengths of the presented model we have that on one hand
the good properties of the classical Jacobi process are preserved: the state space is limited and the
frequency and the amplitude of the jumps are state-dependent. On the other hand it also accounts
for inputs that prevent the diffusion limit due to their amplitudes and/or to their frequencies. In
this way one can assign different weights of the incoming inputs depending on whether they arrive
more or less close to the trigger zone, as a first attempt to consider the neuron not only as a point.
Moreover, these downward jumps are able to reduce the firing rate and introduce saturation even
in the absence of a refractory period. This constitutes a novelty compared to other LIF models
for which the firing rate increases linearly (and unbounded). The feature that the model accounts
possibly large downward jumps suggests its use for describing the contribution of a strong internal
inhibitory input or the effect of an external factor, like a pharmacological treatment or the intake
of drugs and alcohol that interfere with the standard activity of the neuron. The tuning of this
quantity can also help the investigation of the role of inhibition in the information transmission.
Moreover, the fact that the jumps are more frequent close to the inhibitory reversal potential could
describe the phenomenon of neuronal accommodation (see for instance [3]). In this framework after
a spike, if a current which rises sufficiently slowly is applied, it will never evoke an action potential
until the inactive phase is over. Finally, the high degree of freedom in the choice of the jump
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distribution and the relatively easy numerical implementation permit the description of multiple
different situations.

As far as the mathematical novelty is concerned, we note that for the study of the firing rate,
we had to develop the study of the first-passage times of the proposed Markovian Jacobi process
with jumps through a constant boundary. We are able to inherit some results from the classical
Jacobi process to the process with jumps, thanks to a general strategy, original in the context
of FPT problems, that relies on intertwining relations between the semigroups of the classical
Jacobi process and its generalization. Therefore, this paper provides an additional application
of such a concept in the theory of Markov processes by transferring q-invariant functions from a
reference semigroup to semigroups that are in its intertwining orbit. This new approach enables
us to characterize the Laplace transform of the FPT, expressed in terms of a generalization of
the Gauss hypergeometric function that we introduce. As by-product, we obtain a closed-form
expression for its expectation. This result appears of particular interest since an exact simulation
method for the paths of the process considered is not yet available. We also mention that, relying
on the recent works [12, 40], where a comprehensive fluctuation theory for skip-free Markov chains
is established, one could exploit the intertwining relation to identify the Laplace transform of the
first exit time from an interval. More generally, intertwining relations enable to relate the set of
q-invariant functions (martingales), and, more generally, the convex cone of q-excessive functions
(supermartingales) between semigroups. In potential theory, q-excessive functions are well-known
to characterize the Laplace transform of the first passage time of a set for the processes. For this
standpoint, the intertwining approach seems to be a natural and promising way to deal with the
first exit time problem for a Markov process with two sided-jumps. These will be the subject of
future investigations.

Finally, we stress that, despite our application in the context of mathematical neuroscience, the
results on the Jacobi process with jumps and its first passage time through a constant boundary
are novel and of a general nature. In particular, we mention the use of the Jacobi process in the
context of population genetics and mathematical finance, where it often goes under the name of
Wright-Fisher diffusion.

Appendix A. First passage times of the classical Jacobi process

Let Y = (Yt)t⩾0 be the Jacobi process with infinitesimal generator given, for a smooth function
f on [0, 1], by

(A.1) Jµf(y) =
σ2

2
y(1− y)f ′′(y)− (λy − µ) f ′(y)

with µ > σ2/2 to ensure that 0 is an entrance boundary [22]. We recall that, from (3.4), Wϕ(n+1) =

(ϕ(0) + 1)n =
(
2µ
σ2

)
n
, and, thus, in this case

2F1 (a, b;ϕ; y) = 2F1 (a, b;ϕ(0) + 1; y)

the latter being the Gauss hypergeometric function. In what follows, we recall the expression of the
Laplace transform and the first moment of its first passage time, which can be found in [37], see
also [18].

Proposition A.1. Let 0 < y < a < 1, the Laplace transform of the first passage time

(A.2) Ta = inf{t > 0; Yt ⩾ a}
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of the Jacobi process (A.1) is given by

(A.3) Ey[e
−qTaI{Ta<∞}] =

2F1

(
κ(q), θ(q); 2µ

σ2 ; y
)

2F1

(
κ(q), θ(q), 2µ

σ2 ; a
)

where k(q) and θ(q) are solution of the system

(A.4) κ(q) + θ(q) + 1 =
2λ

σ2
, κ(q)θ(q) =

2q

σ2

More specifically,

κ(q) =
2q

θ(q)σ2
,

and

θ(q) =
2λ− σ2 ±

√
(σ2 − 2λ)2 − 8qσ2

2σ2
= λ̄±

√∣∣∣∣λ2 − 2q

σ2

∣∣∣∣ (I{q⩽σ2λ
2

2
}
+ iI

{q>σ2λ
2

2
}

)
.

where λ = λ
σ2 − 1

2 ⩾ 0, as, by condition (3.3), λ > µ > σ2/2. Finally, the first moment of Ta is

Ey[Ta] =
1

µ

∞∑
n=0

(
2λ
σ2

)
n(

2µ
σ2 + 1

)
n

an+1 − yn+1

n+ 1
(A.5)

=
1

µ

(
3F2

(
1, 1,

2λ

σ2
; 2,

2µ

σ2
; a

)
a− 3F2

(
1, 1,

2λ

σ2
; 2,

2µ

σ2
; y

)
y

)
.(A.6)

Appendix B. Mean of the first passage time of the Jacobi process with
exponential jumps type

Proposition B.1. Under the condition σ2

2 < µ− 1
α , the first moment of Ta for the Jacobi process

with jumps with generator (4.2) is, for any 0 < y < a,

Ey[Ta] =
2(α+ 1)

σ2(k+ + 1)(k− + 1)

(
4F3(1, 1, α+ 2,

2λ

σ2
; 2, k+ + 2, k− + 2; a)a

−4F3(1, 1, α+ 2,
2λ

σ2
; 2, k+ + 2, k− + 2; y)y

)
(B.1)

where

(B.2) k± =
1

2

(
α+ 2µ/σ2 − 1±

√
(α+ 2µ/σ2 − 1)2 − 4(2αµ/σ2 − α− 2/σ2)

)
.

Proof. For ℏ = 1/α, α ⩾ 1, the Bernstein function ϕ defined in (4.3) can be written as

(B.3) ϕ(u) =
(u+ k+)(u+ k−)

(u+ α)

with k+ and k− are defined in (B.2). This implies that, for any n ⩾ 0,

(B.4) Wϕ(n+ 2) =
(k+ + 1)n+1(k− + 1)n+1

(α+ 1)n+1
.

Using that (k± + 1)n+1 = (k± + 1)(k± + 2)n and (3.25), one gets that

(B.5) Ey[Ta] =
2(α+ 1)

σ2(k+ + 1)(k− + 1)

∞∑
n=0

(1)n(1)n(
2λ
σ2 )n(α+ 2)n

(2)n(k+ + 2)n(k− + 2)n

an+1 − yn+1

n!
.

Finally, the definition of the generalized hypergeometric function proves (B.1). ■
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