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Abstract

We analyse the security of some variants of the CFS code-based dig-
ital signature scheme. We show how the adoption of some code-based
hash-functions to improve the efficiency of CFS leads to the ability of an
attacker to produce a forgery compatible with the rightful user’s public
key.
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1 Introduction

With the discovery and the increasingly closer advent of quantum computers, the most
adopted signature schemes (e.g. DSA [18], ECDSA [15], EdDSA [7], Schnorr [26]) are
often considered not secure anymore because they are well known to be broken by
Shor’s algorithm [27]. In spite of this, new cryptosystems based on the Integer Fac-
torisation Problem and the Discrete Logarithm Problem are still developed [1,20,22],
as well as variants of existing cryptosystems for specific use cases [4]. Nevertheless,
several applications need to be resistant even against quantum attacks, and possible
countermeasures are obtained by the exploitation of schemes whose security relies on
NP-hard problems, or, more in general, on problems whose solutions are thought to
be difficult in both the classic and quantum frameworks of computation. Among these
alternatives, some of the most prominent are represented by lattice-based cryptogra-
phy, multivariate polynomial cryptography, hash-based cryptography and interactive
identification schemes. These branches of post-quantum cryptography are all present
among the finalists of the NIST Post-Quantum Standardization process1 (the inter-
ested reader can see the overview [9]). Notably, code-based digital signature algorithms

1NIST Post-Quantum Standardization process webpage: https://csrc.nist.gov/

Projects/post-quantum-cryptography/post-quantum-cryptography-standardization, Ac-
cessed: 2021-12-01
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are not in this list. It is worth mentioning that Classic McEliece [10] is a code-based
Key-Encapsulation Mechanism among the finalists of the competition regarding post-
quantum key-agreement protocols, and about forty years of cryptanalysis have shown
its resiliency and security (Classic McEliece is based on the works of McEliece [21]
and Niederreiter [23]). Instead, the initial code-based digital signature schemes did
not pass the first round of selection. Although since the earliest and historical proposal
CFS [11] (which will be discussed later on) plenty of ideas and projects have followed,
the issue of finding a viable candidate is still an open and tough problem. The key
points here are two: of course security, but also efficiency. The main drawback of CFS
is the signing time, in fact the message is hashed with a counter until the digest is a
decodable syndrome.

Further signature schemes have been provided with KKS [16] and its variants [3,14].
This scheme converts the message in a decodable syndrome, using a different strategy
with respect to CFS, but, taking into account the attack highlighted in [8], all the
variants have to be considered at best one-time signature schemes; additionally, strong
caution has to be taken in the choice of parameters, as shown by [24] which broke all
the parameters proposed in [3, 16,17].

On the other hand, most CFS-like schemes persist to be unbroken, despite their
slow speed in the signing process due to the attempt-based design. Some schemes
try to reduce the signing time using the idea behind KKS: instead of searching for a
decodable syndrome through the hash of the message, a map that aims to the space of
decodable syndromes is used. An example is the mCFSc signature [25], that hashes the
message into a decodable syndrome using a code-based hash function. Unfortunately,
in this work we prove that this approach does not work, leaving room to an attacker
to forge a valid signature without knowing the secret key.

This work is organized as follows: in the first section we present the notation and
some basic notions from Coding Theory, then we introduce the two signature schemes
CFS and mCFS. The second section presents the variant mCFSc and the concerning
code-based hash function. We show an attack on this construction. The third and
final section generalizes the strategy adopted in the mCFSc signature and shows that
such approach leads to an attack.

1.1 Notation

With F2 we denote the field with 2 elements and with (F2)
n the vector space of

dimension n over F2. An [n, k] binary code C is a vector subspace of (F2)
n of dimension

k. The elements of C are called codewords. Every [n, k] binary code can be represented
as the kernel of a (n − k) × n matrix H called parity-check matrix. The syndrome of
a vector v ∈ (F2)

n is given by s = Hv⊤ and the Hamming weight of a vector is the
number of its non-zero coordinates. With ∥ we denote the concatenation of strings or
vectors.

1.2 Digital signatures and CFS

A digital signature is a public-key cryptosystem consisting in three algorithms: KGen
is the key generation algorithm that takes in input a security parameter λ and outputs
the pair of secret and public keys (sk, pk), a signature algorithm Sign that on input sk
and a message m outputs a signature σ of m, and a verifier algorithm Verify in which,
given a public key pk, a message m and a signature σ, it verifies if the signature of the
message is valid and is generated by the corresponding secret key sk.

2



A digital signature algorithm must satisfy some security proprieties: authentication,
non repudiation, integrity, non reusability and unforgeability. See [19] for a more
detailed study on digital signatures.

The CFS algorithm [11] consists in producing a signature exploiting the Niederre-
iter public-key cryptosystem [23]. This scenario entails a substantial difference with
respect to RSA, for instance: since trapdoor functions allow digital signatures taking
advantage of the unique capability of public key owner to invert those functions, it
is clear that only the messages whose hashes fall within the ciphertext space can be
signed in this way. In our framework, we would like to deal with a linear code for
which there exists an efficient decoding algorithm and for which the set of decodable
syndromes (namely the ciphertext space) is as big as possible. In formal terms, given
a (n−k)×n parity-check matrix H of such a code, this translates into having a mean-
ingful portion of vectors s ∈ Fn−k

2 for which there exists a corresponding error pattern
e ∈ Fn

2 of Hamming weight less than the correcting capability of the code t, such that
the syndrome of e is s. Since the fact that the union of the spheres centered in code-
words and of radius t covers the whole space Fn

2 only happens in the case of perfect
codes (which are banally unusable because of the overmuch leak of information they
would disclose) the smartest play to make remains to repeatedly hash the message until
one obtains a decodable syndrome. Binary Goppa codes [5] represent the best choice
as underlying code for both their efficient decoding method (Patterson algorithm) and
their steady resistance against all known attacks. This procedure is nothing more than
a “hash-and-sign” routine, which inevitably requires several tries. Concretely, given
suitable hash function h, one produces a sequence d0, . . . , dι of elements in Fn−k

2 such
that

d0 = h(m ∥ 0), d1 = h(m ∥ 1), . . . , di = h(m ∥ i), . . . dι = h(m ∥ ι)

where ι is the smallest integer such that dι is a decodable syndrome. The signature
is then composed by the corresponding error pattern eι (that only the signer can
compute) and by the counter ι. The first straightforward question that arises is about
how many attempts are needed in order to obtain a useful syndrome. The answer
can be easily found by comparing the total number of syndromes to the number of
(efficiently) correctable syndromes:

# decodable syndromes

# total syndromes
=

∑t
i=0

(
n
i

)
2n−k

≃
(
n
t

)
2n−k

≃
nt

t!

nt
=

1

t!

which represent the probability of a syndrome to be decodable (here the relations
among the parameters of a generic binary Goppa code have been used, i.e. k = n−mt
and n = 2m).
This scheme bases its security on two assumptions: the hardness of both the Syndrome
Decoding Problem [6] and the Goppa Code Distinguisher Problem [11].
Now we present the signature scheme of CFS.

• KGenCFS(1
λ): select n, k, t according to the security parameter λ then pick

a random [n, k] binary Goppa code C with correcting capacity t and parity-
check matrix H and let DH be an (efficient) syndrome decoding algorithm for
C. Pick a random (n − k) × (n − k) invertible matrix S and a random n × n
permutation matrix P and set Hpub = SHP . Chose a hash function h. Output
pk = (h, t,Hpub) as public key and sk = (S,H, P,DH) as secret key.
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• SignCFS(m, sk): given the message m, compute di = h(m ∥ i), starting from
i = 0 and increase it until dι is a decodable syndrome. Set e = DH(S−1dι) and
output the signature σ = (ι, eP ).

• VerifyCFS(m,σ, pk): let σ = (ι, u), verify that u has Hamming weight less or
equal than t, then compute a = h(m||ι) and b = Hpubu

⊤. The signature σ is
valid if and only if a = b.

We can see that the signature is correct, in fact

a = h(m ∥ ι) = dι = SH · e⊤ = SHPP−1 · e⊤ = Hpub · u⊤ = b

where S−1dι = H · e⊤ comes from the fact that e has syndrome S−1dι.
In [12] authors propose a modified version of the CFS signature called mCFS. Here

the counter i used in Sign is replaced by a random nonce.

2 The mCFSc signature

In this section we describe and analyze the signature in [25], and in Proposition 2 we
explicit an attack.

2.1 Code Based Hash Function

This signature is build on the protocol mCFS [11, 12] using a particular code based
hash function. This hash function is based on the work of [2] and it follows the Merkel-
Damgard design [13]. Let r be the length of the digest and let s be an integer. The
hash function is the iterative application of a compression function f : (F2)

s → (F2)
r,

in fact, given a string m proceed as following:

1. consider m padded such that its length is a multiple of s and split m in |m|/s
blocks of length s;

2. in the first round, combine the first block of m with a fixed initial vector (IV)
obtaining the state L1 of length s and compute f(L1);

3. in the i-th round combine f(Li−1) with the i-th block of m obtaining the i-th
state Li and apply f to it;

4. the output of the hash function is given by f(L|m|/s).

The hash function used in mCFSc uses the scheme above and the following compression
function f . Let r be the length of the digest. Given a r × n parity-check matrix H
of a [n, n − r] binary code C, let w be an integer dividing n and set l = n/w and
s = w log(l). Now we describe the compression function f : (F2)

s → (F2)
r based on

H:

1. let H1, . . . , Hw be r × w matrices such that H = (H1, . . . , Hw);

2. given x ∈ (F2)
s, split it in w blocks of length log(l): x = (x1, . . . , xn). We can

see each xi as an integer between 0 and l − 1;

3. set f(x) as the sum of the (xi +1)-th column of the matrix Hi, for i = 1, . . . , w.
In formulas, if (Hi)j is the j-th column of Hi, we have

f(x) =
w∑

i=1

(Hi)xi+1.

4



Observe that f strongly depends on the choice of the parity-check matrix H.
For the signature mCFSc, in [25], H is chosen as the parity-check matrix of a

[n, n− r] binary Goppa code, and the parameter w is less than the correcting capacity
t of the code. This yields to the hash function hH : {0, 1}∗ → (F2)

r based on H.
Observe that the computation of hH implies the knowledge of H.

Proposition 1. For every state Li of the hash function hH , f(Li) is a syndrome of
a vector of Hamming weight w.

Proof. By construction, the state x = Li is splitted in w integers x1, . . . , xw between
0 and l− 1. Let ci be the vector of length n having support (x1 + 1)+ 0 · l, (x2 + 1)+
1 · l, . . . , (xw + 1) + (w− 1)l, it has Hamming weight w and f(Li) is exactly Hc⊤i , the
syndrome of ci.

We can summarize the compression function as follows: let n and w be positive
integers such that w divides n and set s = w log(n/w). Consider the bijection

split : (F2)
s → ((F2)

log(n/w))w

(u1, . . . , us) 7→ (z1, . . . , zw)

that splits a binary vector of length s into w vectors of length log(n/w). Now we can
see every vector in (F2)

log(n/w) as an integer between 0 and n/w − 1. Define

δt : (F2)
s → (F2)

n

(u1, . . . , us) 7→ (v1, . . . , vn)
(1)

where (v1, . . . , vn) is the vector of Hamming weight w whose support is given by
(split(x)1 +1)+ 0 · n

w
, (split(x)2 +1)+ 1 · n

w
, . . . , (split(x)w +1)+ (w− 1) n

w
. Then the

compression function f can be written as f(x) = H · δt(x).

2.2 The signature scheme

Since in [25] it is not specified if the hash function is based on the secret matrixH or the
public matrix Hpub, we first observe that since the hash function is part of the public
key, this discloses the secret matrix H and an attack can be performed confronting
columns of H and Hpub, finding the permutation in quadratic time. Hence, assuming
that the hash is based on the public matrix, the signature is given by the following
algorithms. Let λ be the security parameter.

• KGenmCFSc(1
λ): select n, k, t according to λ then pick a random [n, k] binary

Goppa code C with correcting capacity t and parity-check matrix H and let
DH be an (efficient) syndrome decoding algorithm for C. Pick a random n× n
permutation matrix P and set Hpub = HP . Choose an integer w less than t and
such that w divides n and construct the hash function hHpub : {0, 1}∗ → (F2)

n−k

based on Hpub. Output pk = (hHpub , t,Hpub) as public key and sk = (H,P,DH)
as secret key.

• SignmCFSc
(m, sk): given the message m, pick a random R in {1, . . . , 2n−k} and

compute d = hHpub(hHpub(m) ∥ R) and set e = DH(d). Output the signature
σ = (R, eP ).

• VerifymCFSc
(m,σ, pk): let σ = (R, u). Verify that u has Hamming weight less

or equal than t, then compute a = hHpub(hHpub(m)||R) and b = Hpubu
⊤. The

signature σ is valid if and only if a = b.
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The signature scheme is correct using the same argument for CFS.

Proposition 2. Let (sk, pk) be the output of KGenmCFSc(1
λ). An attacker knowing

the public key pk can forge a signature compatible to the private key sk for any message
m.

Proof. Given a public key pk = (hHpub , t,Hpub) and a message m, the attacker picks

a random R in {1, . . . , 2n−k} and computes d = hHpub(hHpub(m) ∥ R) but it stops
before the last round of the outer hash function hHpub , obtaining the round state
L̄ = L|m|/s ∈ (F2)

s instead of the digest d = f(L|m|/s). He set u = δt(L̄) and
outputs as a signature for m the tuple σ = (R, u). Anyone can verify that this is a
valid signature of m compatible with the secret key sk = (H,P,DH), in fact we can
compute a = hHpub(hHpub(m)||R) and b = Hpubu

⊤ and observing that a is equal to
b since multiplying u = δt(L̄) by Hpub is the last step of the hash function hHpub .
Therefore σ is a valid signature.

3 A generalisation of mCFSc

We now slightly generalise mCFSc by considering a modification of hH , proving that
this new entire family of hash functions is vulnerable to the same attack we described
for hH and therefore is not suitable for secure applications.
Let Bn,t be the set of vectors in (F2)

n of Hamming weight less or equal than t. Let
γt : (F2)

s → (F2)
n be such that Im(γt) ⊆ Bn,t, i.e. γt is a function mapping bitstrings

of length s into bitstring of length n with a Hamming weight bounded by t:

w(γt(v)) ≤ t ∀v ∈ (F2)
s

We denote with h̄H : {0, 1}∗ → (F2)
n−k the function mapping messages into syndromes

associated to the parity-check matrix H defined by the formula

m 7→ h̄H(m) = H · γt(h(m)) , (2)

where h(·) is any efficient function {0, 1}∗ → (F2)
s. For simplicity of notation, we will

call h a hash function, even though we do not require here that h satisfy any security
property (even though it would be a good practice to choose a cryptographically-secure
hash).

With this definition we can consider the following version of CFS, that we call
C̃FS:

• KGenC̃FS(1
λ): randomly choose a code C to be used in the CFS algorithm (i.e. C

is a code for which there exists an efficient decoder up to t errors and whose ran-
domly picked equivalent codes are indistinguishable from random) with parity-
check matrix H and efficient syndrome decoding algorithm DH . Then randomly
choose an invertible (n− k)× (n− k) matrix S and a permutation n×n matrix
P , and define Hpub = SHP . Choose an efficient map γt and a hash h. Output
sk = (S,H, P,DH) as the secret key and pk = (h, γt, t,Hpub) as the public key.

• SignC̃FS(m, sk): given the message m, compute d = h̄Hpub(m) according to

(2). Decode S−1d with the decoder for H and thus obtaining an error vector
e = DH(S−1d) of Hamming weight at most t and then compute ē = eP . Output
the signature σ = ē.
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• VerifyC̃FS(m,σ, pk): verify that σ = ē has Hamming weight less or equal than t,
then compute a = h̄Hpub(m) and b̄ = Hpubē. The signature is valid if a = b.

The correctness of the above signature scheme is straightforward and follows directly
from the correctness of CFS.

We remark that mCFSc is (basically) obtained by adopting the algorithm above
where:

- C is a binary irreducible Goppa code;

- S = In−k is the identity matrix of order n− k;

- γt is the map δt defined in (1);

- h is the code-based hash function hHpub stopped before the last application of

δt and multiplication by Hpub, which we denote momentarily hstopped
Hpub

;

Indeed, with these choices we have h̄Hpub(m) = Hpub · δt(h(stopped)
Hpub

(m)) = hHpub(m).

We also remark that in mCFSc there are other marginal differences with respect to
our generalisation, which however do not impact on the main points of the scheme
that we sketched above (e.g. computing hHpub(hHpub(m)||R) instead of hHpub(m)).

Theorem 3. Let (sk, pk) be the output of KGenC̃FS(1
λ). An attacker knowing the

public key pk can forge a signature compatible to the private key sk for any message
m.

Proof. An attacker A knowing the public parameters (h, γt, t,Hpub) is able to forge
any signature. Instead of performing the steps of the signature algorithm, A performs
the following:

1. Given any message m, compute x = γt(h(m));

2. output x as the signature of m.

Indeed, x is a valid error vector in (F2)
n of Hamming weight at most t (by definition

of γt) whose syndrome with respect to the parity-check matrix Hpub is s = h̄Hpub(m).
Therefore, any verifier obtains

Hpubx
⊤ = Hpubx

⊤ = Hpub · γt(h(m)) = h̄Hpub(m)

and the signature results valid.

We remark how an attacker does not need to know the private key, and the number
of operations performed by A to successfully obtain a forgery are less than the number
of operations performed by a honest user to obtain a valid signature. The key-point of
the vulnerability of the scheme is that, to obtain a decodable syndrome, we force the
application of a function γt to the output of the hash function before computing the
syndrome. Even though this step allows us to obtain a decodable syndrome without
having to rely to the (expensive) re-iteration of the signature steps of the original
CFS protocol, during the signature algorithm we are forced to explicitly determine a
decodable error compatible with the output syndrome.
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4 Conclusions

One of the practical issues of the CFS signature scheme is the computational effort
required to obtain a decodable syndrome from the hash of the message. In [25] the
authors attempt to overcome this problem using a Merkel-Damgard-style code-based
hash function from the space of binary strings into the set of decodable syndromes,
significantly reducing the cost of signing. This approach has proven unsuccessful, since
the protocol allows to an attacker who does not know the private key to produce a
valid signature.

We showed that a generalization of this approach remains insecure: a hash function
that sends arbitrarily long binary strings into the set of decodable syndromes can be
constructed and yet there exists an attack on this new variation of the CFS signature.
Therefore, other solutions should be found, in order to preserve the original security
of the scheme but also to reduce the computational effort used in the signing process.
The design of a suitable code-based signature should keep in mind both the provable
security of CFS-like signatures and the efficiency of the KKS scheme.
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