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Abstract: In recent years, thanks to the development of additive manufacturing techniques, pros-
thetic surgery has reached increasingly cutting-edge levels, revolutionizing the clinical course of
patients suffering from joint arthritis, rheumatoid arthritis, post-traumatic arthrosis, etc. This work
aims to evaluate the best materials for prosthetic surgery in hip implants from a tribological and
mechanical point of view by using a machine-learning algorithm coupling with multi-body modeling
and Finite Element Method (FEM) simulations. The innovative aspect is represented by the use of
machine learning for the creation of a humanoid model in a multibody software environment that
aimed to evaluate the load and rotation condition at the hip joint. After the boundary conditions have
been defined, a Finite Element (FE) model of the hip implant has been created. The material properties
and the information on the tribological behavior of the material couplings under investigation
have been obtained from literature studies. The wear process has been investigated through the
implementation of the Archard’s wear law in the FE model. The results of the FE simulation show
that the best wear behavior has been obtained by CoCr alloy/UHMWPE coupling with a volume
loss due to a wear of 0.004 µm3 at the end of the simulation of ten sitting cycles. After the best pairs
in terms of wear has been established, a topology optimization of the whole hip implant structure
has been performed. The results show that, after the optimization process, it was possible to reduce
implant mass making the implant 28.12% more lightweight with respect to the original one.

Keywords: finite element analysis; hip prosthesis optimization; human multi-body model; human
pose markerless detection; wear

1. Introduction

In recent years, thanks to the development of additive manufacturing techniques,
prosthetic surgery has reached increasingly cutting-edge levels, revolutionizing the clinical
course of patients suffering from joint arthritis, rheumatoid arthritis, post-traumatic arthro-
sis, congenital dysplasia, etc. In fact, the use of 3D printing has made it possible to obtain
prostheses optimized [1] for the needs of patients by using high-performance materials such
as stainless steel 316L [2] or Ti-6Al-4V [3,4]. However, due to the kinematics and dynamic
nature of implants, wear is primarily caused by regular gait activity such as walking, sitting,
or running, leading to the deterioration of the materials used in the joint [5,6]. The problems
of friction and wear in hip prostheses, as well as in other types of mechanical joints, have
been studied by many authors [7,8] to quantify the effects on the quality, reliability, and
durability of the prostheses. Shankar et al. [9] investigated the tribological behavior of
zirconia toughened alumina (ZTA) against titanium alloy (Ti-6Al-4V), using ball-on-disc tri-
bometer with four loading conditions (15, 20, 25 and 30 N) and five different bio-lubricants
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to evaluate the friction and wear. Their obtained results suggested that sesame oil could
improve tribological behavior as a bio-lubricant for ZTA-Ti-6Al-4V combination. Mattei
et al. [10] performed a preliminary experimental investigation on the evolution of the wear
map of hip replacements during wear testing for ceramic-on-UHMWPE hip prostheses.
The results revealed important characteristics of the damaging process not highlighted by
the standard gravimetric procedure, such as worn area location and shape as well as the
progress of local damages. As demonstrated by numerous studies, the use of traditional ma-
terials has been gradually replaced using more performing materials [11–13]. The attention
has been focused on the wear resistance, corrosion resistance, and biocompatibility, and the
traditional techniques of production have been joined by the Additive Manufacturing (AM)
technique. Through the AM, it was possible to obtain customized devices on the needs of
patients and therefore more effective. Moreover, in order to guarantee a longer life cycle of
the prostheses and an appropriate lubrication, the application of nanostructured coatings
and surface processing was studied [14–17], such as the surface laser texturing technique
already widely used in other industrial sectors [18,19]. Numerical techniques, such as
the Finite Element Method (FEM), have recently been adopted to support experimental
studies regarding the calculation of the useful life and the functionality optimization of
the prostheses [20]. These techniques support the already developed algorithms based on
the use of artificial intelligence and machine learning, which allow the determination of
fundamental parameters, such as the position of the center of mass [21–23], and the evalua-
tion of the exact load distribution on the prostheses. Fadela et al. [24] have analyzed the
optimal stress distribution in the total hip prostheses with the aim to develop a redesigned
prosthesis type in order to minimize stress concentration in the cement using 3D-finite
element analysis. Bhawe et al. [25] have analyzed how the combination of UHMWPE,
CoCrMo alloy, and Ti-6Al-4 V alloy affect the femoral head sizes from 24 mm to 48 mm
to know the best size using the Finite Element Method (FEM). This work aims to evaluate
the best materials for prosthetic surgery from a tribological and mechanical point of view
by using a machine-learning [26] algorithm coupled with a multi-body model of a human
body and Finite Element Method (FEM) simulations. The innovative aspect is represented
by the use of machine learning, which allows the identification of the marker motion of a
humanoid model developed in a multibody software environment. This approach could
be an alternative strategy for the simulation of the load and rotation condition on a hip
prosthesis concerning the conventional ones, such as hip simulators. The information on
the tribological behavior of the materials is obtained through a Pin on Disk FEM model,
which allows the optimization of the prosthesis, suggesting the best geometry and the
highest-performing materials. In particular, the attention has been focused on hip pros-
thetic implants and on the wear process between the femoral head and the acetabular cup.
A humanoid model has been developed in an MSC ADAMSTM environment aimed at
evaluating the load and rotation conditions on the hip joint during sitting cycles. A FEM of
a hip implant has been developed in Ansys workbench R2 2020TM environment in order to
establish which of the following pairs have a better behavior in terms of volume loss due
to wear:

1. CoCr Alloy/UHWMPE
2. Ti6Al4V/Ti6Al4V
3. Si3N4-TiN/Si3N4-TiN

The choice of investigating these couplings is related to the fact that they are biocom-
patible materials largely used in commercial hip implants [27]. Moreover, metal-metal
couplings such as CoCrMo and Ti6AlV are well investigated in literature from the stress dis-
tribution point of view [28]. In this sense, this work represents an evolution because it gives
additional information about the wear behavior, which completes the general overview for
this materials type. Concerning the ceramic-ceramic coupling (Si3N4-TiN), it was already
investigated by the authors [20], but in this work, it adopted a different prosthesis geom-
etry, and the load and rotation conditions were evaluated by a customizable humanoid
model and not from gait cycles coming from literature studies [29] like in the previous
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work. The wear process was investigated through the implementation of the Archard’s
law [20,30–32] in the FEM and whose characteristic coefficients have been obtained from
literature studies [6,20,33–35]. At the end of the simulations, it was observed that the best
wear behavior was demonstrated by the CoCr alloy/UHMWPE coupling, with its volume
loss due to wear being 0.004 µm3 at the end of the sitting cycles. The results have been
also compared with the literature studied [5,6,9,10,20,29] and show a good agreement with
them. After the best pairs in terms of wear were established, a topology optimization of the
whole hip implant structure was performed. The results show that, after the optimization
process, it was possible to reduce implant mass and minimize the compliance of the entire
system, making the implant lightweight and more comfortable for the patients.

2. Materials and Methods
2.1. Numerical Modeling

The development of human models increased with the necessity to understand the
biomechanics of movements and their consequences on human comfort [25–28]. These mod-
els are always used to simulate prosthetic design’s influence on the human system [29–34].
In recent years, particular importance has been given to modeling the jaw and its interac-
tions with prostheses. The CT scan has characterized the bony structure. In the literature,
various models allow the extrapolation of the mechanical characteristics, and the con-
straints and the loads on certain bodies subjected to specific actions [35–44]. Researchers
are increasingly focusing on creating models that simulate the whole body rather than
limiting themselves to small, specific sections [45]. Simulation techniques such as the multi-
body study the whole-body motion since the body is considered a set of links connected by
joints. Multibody [46] simulations find a great application in sports biomechanics [47]. On
this basis, the definition of the dynamic equation of human movement and the acquisition
of the dynamic parameters of human action are the critical steps in the theoretical analysis
of the biomechanics of movement. Another field of dynamic simulation is the analysis of
the interaction between the human exoskeletons [48]. Finally, motion capture is often used
to define the trajectories of body joints in multi-body simulations. With this technique, the
movement of an object is recorded through various video acquisition devices arranged in
space. From the recorded images, the coordinates (X, Y, Z) of a series of markers affixed to
the subject are found; this allows one to quantify the position, speed, acceleration of these
points and, consequently, the movement produced by the subject during a given action.
This enables one to fully understand the mechanical characteristics underlying the human
body’s activities and the rules for controlling motor skills. The workflow adopted in this
study is shown in Figure 1.
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Figure 1. Workflow adopted for the investigation of the wear process and the topology optimization
of the implant structure.

2.2. Parametric Human Model

As reported previously, this work aims to make a closing loop simulation, where the
output is the optimization of a hip prosthesis. The first step was the building of the human
model. ADAMS was used to build the multi-body model, as reported in [49,50]. Thirty-one
dimensions were used to create the mannequin (Table 1).

Table 1. Body Dimensions.

Reference Number Dimension Reference Number Dimension

0 Weight 16 Hip Breadth, Standing
1 Standing Height 17 Shoulder to Elbow Length
2 Shoulder Height 18 Forearm-Hand Length
3 Armpit Height 19 Biceps Circumference
4 Waist Height 20 Elbow Circumference
5 Seated Height 21 Forearm Circumference
6 Head Length 22 Waist Circumference
7 Head Breadth 23 Knee Height, Seated
8 Head to Chin Height 24 Thigh Circumference
9 Neck Circumference 25 Upper Leg Circumference

10 Shoulder Breadth 26 Knee Circumference
11 Chest Depth 27 Calf Circumference
12 Chest Breadth 28 Ankle Circumference
13 Waist Depth 29 Ankle Height, Outside
14 Waist Breadth 30 Foot Breadth
15 Buttock Depth 31 Foot Length
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The human model was divided into:

• Lower limbs: Left/Right Thigh, Left/Right Shank, Left/Right Foot.
• Upper limbs: Left/Right Upper arm, Left/Right Forearm, Left/Right Hand.
• Torso: Pelvis, Abdomen, Thorax.

Each part was connected to another by a spherical joint. Each human segment has 3
DOF. Two knee and elbow joint rotations were locked (Figure 2). Contact with the ground
and left and right feet were created.
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Figure 2. Dummy model.

The mannequin has the following characteristics:

• Weight: 85 kg
• Standing Height: 1755 mm
• Seated Height: 918 mm

Inertial quantities and mass distribution were calculated as reported in [51,52]. Fi-
nally, motion lows were applied to the knee and hip joints to reproduce the stand-to-sit
movement.

2.3. Motion Capture

Human pose estimation is the process of inferring human poses from a digital image.
Pose estimation requires highly accurate detection and identification of human joints. Pose
estimation algorithms follow a top-down or a bottom-up approach. As reported previously,
after building the dummy, the motion lows were included in the model. For this reason,
a markerless motion capture analysis was performed. OpenPose was used to evaluate
realtime body pose [53–56]. OpenPose is a bottom-up, real-time, multi-person human pose
detection library that detects the human body, foot, hand, and facial keypoints on single
images. It can detect 135 vital body points from a digital image. The innovative tense
is that no markers are needed. A single CNN is used for both key-point detection and
association. When key points are detected, a numerical score between 0 and 1 is assigned.
It is a measure of the overall confidence in the key points estimated. OpenPose has been
trained to produce three different pose models. The difference is represented by the number
of points identified:

• MPI can estimate a total of 15 key points.
• COCO can estimate a total of 18 points.
• BODY_25 can estimate a total of 25 points.

The most exhaustive pose model is the third. In addition to the key points estimated
by MPI and COCO models, it contains descriptors for the feet and pelvic center. There is
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also an experimental model of OpenPose that is named BODY_25B (Figure 3). As reported
in [57,58], this model has the highest accuracy parameters, is more accurate than the default
BODY_25, and reduces the number of false positives. The key point definition differs from
MPII for the evaluation of head and neck key points and removes the neck and middle
hip key points of the BODY_25 model. As shown in Figure 2, BODY_25B was used for
the analysis.
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Figure 3. Human pose detection with OpenPose.

2.4. Experimental Tests
2.4.1. Sit-to-Stand Movement

The sit-to-stand test (STS) involves movements done with great frequency in daily life.
This test quantifies the type of movement to get up from a chair [59] and the loads acting
on the locomotor system [60]. STS involves skills such as coordination, balance control, and
stability [61,62]. The number of repetitions completed provides quantitative information
with which to assess functional fitness levels [63], and the test was used in the rehabilitation
field. Recently, several studies have highlighted the importance of kinematic parameters to
provide qualitative information on how the movement is performed. This movement can
be schematized as acting on the plane; for this reason, it is helpful for the calibration of the
optimization algorithm.

2.4.2. Motion Acquisition and Multibody Analysis

The subject was positioned in front of the camera in a standing position. The angle
between hip/spine and knee/hip is 180 degrees in this situation. A video of its movement
was recorded. The subject performed the sit-to-stand exercise sequentially. The handling
of the points was extrapolated with the use of OpenPose. As in [64], the knee angle was
calculated using the vector dot product.
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θ = cos−1

 →
a ∗
→
b

|→a ||
→
b |

 (1)

Two vectors were constructed from the hip, knee, and ankle coordinates obtained from
the pose data. The first vector was formed with the hip and knee joint, while the knee and
ankle joint formed the second one. The same things were done to evaluate hip angle. The
following equation gives the knee angle (θ) for the frame in Figure 4.
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Figure 4. Angle measurements from video frame.

Two vectors were constructed from the hip, knee, and ankle coordinates obtained from
the pose data. The first vector was formed with the hip and knee joint, while the knee and
ankle joint formed the second one. After the extrapolation of the angles from the frames,
the laws of motion were created in ADAMS (Figure 5).

The movement of the humanoid was simulated; therefore, the loads acting on the hip
were extrapolated over time.
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2.5. Hip Prosthesis Finite Element Model (FEM)
2.5.1. Geometry, Mesh, and Boundary Condition Definition

The prosthesis implant adopted in this work for the Finite Element Analysis (FEA) is a
commercial hip implant. The main geometry parameters are shown in Figure 6.
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The FEM has been developed in Ansys workbench R2 2020TM environment. In order
to establish the optimal mesh size, a convergence analysis was performed first. This was
done because the optimal mesh size allows to obtain accurate results without exceeding
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too much with the simulation time. The convergence analysis has been carried out through
a static simulation on the hip implant, choosing the maximum load components during a
sitting cycle, evaluated from the human multibody model developed in MSC ADAMSTM.
The boundary condition adopted in the Finite Element Model consists of a fixed support
applied to the prosthesis stem. The load condition has been applied to the femoral head
and modeled as surface effect. Figure 7a shows the load and constrain conditions, while
Figure 7b shows the equivalent stress (Von Mises criterion) after the static simulation.
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Figure 7. Static simulation carried out on the hip prosthesis for the mesh convergence evaluation.
(a) Load and constrain condition: a fixed support has been applied to the prosthesis stem while
the static load has been applied on the femoral head (b) Equivalent stress distribution (Von Mises
criterion).

Starting from a coarser mesh, the convergence was obtained by increasing the number
of element and at the same time reducing the element size. The results of the convergence
analysis are shown in Figure 8 and Table 2, respectively.
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Figure 8. Mesh convergence analysis. It is possible to observe that with the increasing of number of
iteration and number of elements the equivalent stress settled around 635 MPa.

Table 2. Mesh convergence analysis results.

Number of
Iterations Element Size Number of Elements Equivalent Stress

1 10 mm 14,574 735 MPa
2 5 mm 26,745 669 MPa
3 2 mm 51,379 635 MPa
4 1 mm 97,475 631 MPa

The selected mesh size for the simulations is 2 mm with 51,379 elements and was
reached at the third iteration. In order to investigate the wear process between the acetab-
ular cup and the femoral head and simulate the sitting cycles, a transient analysis was
carried out. In addition to the mesh size already being defined, load, rotation and constrain
condition were considered into the model. A fixed support has been applied to the external
and internal surface of the acetabular cup. The load condition was applied to the femoral
head and modeled as surface effect. This means that the forces were applied to the selecting
surface area through the definition of several nodes controlled by the software itself. Of
course, the sum of the nodal forces is equal to the imposed transient force. This method is
useful when rotations and area changes are expected during the simulation, like in this case.
The mesh adopted in the simulation is shown in Figure 9a, while the boundary conditions
are shown in Figure 9b.



Lubricants 2022, 10, 160 11 of 20Lubricants 2022, 10, x FOR PEER REVIEW 11 of 20 

(a) 

(b)

Figure 9. Transient analysis carried out on the hip prosthesis in order to investigate the wear process 
between the acetabular cup and the femoral head. (a) Adopted mesh (b) Boundary condition. A
fixed support has been applied to the acetabular cup’s external and internal surfaces. The load and 
rotation condition has been applied to the femoral head according to the sitting cycles. As an exam-
ple, the Ti6Al4V/Ti6Al4V pairs are shown at 1.25 s simulation time. 

2.5.2. Archard’s Wear Law Implementation 
In order to thoroughly investigate the wear process between the acetabular cup and 

the femoral head, it is necessary to implement a wear model in the FEM. In this study, the 
Archard’s law, defined in Equation (2), was implemented in the transient simulation: 

Figure 9. Transient analysis carried out on the hip prosthesis in order to investigate the wear process
between the acetabular cup and the femoral head. (a) Adopted mesh (b) Boundary condition. A fixed
support has been applied to the acetabular cup’s external and internal surfaces. The load and rotation
condition has been applied to the femoral head according to the sitting cycles. As an example, the
Ti6Al4V/Ti6Al4V pairs are shown at 1.25 s simulation time.

The mesh element type used in the FEM is a Tetra 3D element which consist of a
high order 20-node SOLID186 element. The element is defined by 20 nodes having three
degrees of freedom per node, i.e., translation in the nodal x, y, and z directions. The
element also supports plasticity, large strain, and large deflection. The solid mesh has been
generated using “Automatic Method” workbench command. A frictional contact type
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has been implemented in the simulation, considering the acetabular cup as target surface,
modeled with TARGE170 element, and the femoral head as the contact surface, modeled
with CONTA174 element.

2.5.2. Archard’s Wear Law Implementation

In order to thoroughly investigate the wear process between the acetabular cup and
the femoral head, it is necessary to implement a wear model in the FEM. In this study, the
Archard’s law, defined in Equation (2), was implemented in the transient simulation:

w =
K
H

pmvn (2)

where w is the wear rate, K is the Archard’s wear coefficient, H is the material hardness,
p is the contact stress, and v is the sliding velocity. The Archard’s law described above
makes no assumption about surface topography since the surface roughness effects are
encompassed by the experimental wear coefficient K, which is usually calibrated through
Pin On Disk experimental tests. In addition, it also makes no assumption about variations
with time. Although it is widely used, the Archard’s law only provides an order of
magnitude estimates and is a true calculation of wear. Despite this, the Archard’s law
provides accurate information about the wear behavior of a material coupling, especially
when the law is calibrated based on experimental tests [20]. Three different pairs have been
compared in this work:

1. CoCr Alloy (femoral head)/UHWMPE (acetabular cup)
2. Ti6Al4V (femoral head)/Ti6Al4V (acetabular cup)
3. Si3N4-TiN (femoral head)/Si3N4-TiN (acetabular cup)

The materials pairs parameters [6,20,28,29,33–35,65] related to Equation (2) are shown
in Table 3.

Table 3. Materials pairs parameters for the implementation of the Archard’s wear model in the FEM
analysis [6,20,28,29,33–35]. In this work, it was also adopted a linear model.

Pairs Friction
Coefficient

Wear
Coefficient Hardness m, Pressure

Exponent

n, Sliding
Velocity

Exponent

Poisson
Ratio

CoCr alloy/UHMWPE 0.11 1.065× 10−6 1.22 GPa 1 1 0.3
Si3N4-TiN/Si3N4-TiN 0.14 2.03× 10−5 14.7 GPa 1 1 0.3
Ti-6Al-4V/Ti-6Al-4V 0.53 8× 10−5 1.09 GPa 1 1 0.3

The value of the friction coefficient, which is usually evaluated from experimental
tests using a tribometer with Pin On Disk configuration, changes during the tribological
test. This happens because the lubricant film adopted during the test, which simulate the
synovial fluid, gets thinner away, increasing the value of the friction coefficient. Therefore,
the final value assumed by the friction coefficient and adopted in the FEM, corresponds
to that obtained in dry condition, neglecting the influence of the synovial fluid. This
assumption is also in agreement with scientific studies [20,28].

2.5.3. Topology Optimization

After establishing the best materials pairs in terms of volume loss due to wear, a
topology optimization was performed through a static structural simulation, considering
the maximum load components applied to the femoral head. This was carried out in
order to reduce the prosthetic implant mass and at the same time minimize the implant
compliance. Considering the boundary condition in Figure 7a and, as consequence, the
stress distribution shown in Figure 7b, the attention has been focused on the implant stem,
since this region is not affected by particularly high stress. Figure 10 shows the decision
region used for the topology optimization.
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Figure 10. Topology optimization. The exclusion region is related to the femoral head and to the
entire region interested by high stress level, while the decision region is related to the implant stem.
The topology optimization objective is to minimize the implant compliance and at the same time
reducing the prosthesis mass. Moreover, it was also decided to save the 60% of the implant mass
at least.

3. Results

The combined action of Artificial Intelligence and machine learning, together with a
human model developed on a multibody environment, allowed for the evaluation of the
load and rotation conditions at the hip joint. In particular, ten sitting cycles were considered
for a simulation time of 10 s. Figure 11 shows the load and the rotation conditions at the
thigh joint, evaluated from the multibody model.
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The load and rotation conditions evaluated from the multibody model of a human
body represents the boundary condition for the study of the wear process between the
femoral head and the acetabular cup, which was evaluated through a FEM. In particular,
the attention was focused on the volume loss due to wear of the femoral head, of which the
behavior was modeled through Archard’s law. Figure 12 and Table 4, respectively, show
the comparison of the volume loss due to wear (related to the acetabular cup) for three
different materials used in the prosthetic biomedical field.
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materials pairs.

Table 4. Comparison of the volume loss due to wear (related to the acetabular cup) for three different
materials used in the prosthetic biomedical field.

Pairs Volume Loss Due to Wear

CoCr alloy/UHMWPE 0.004 µm3

Si3N4-TiN/Si3N4-TiN 0.04 µm3

Ti-6Al-4V/Ti-6Al-4V 2.5 µm3

According to the results exposed in Figure 12 and Table 4, respectively, the best
materials pair is CoCr alloy/UHMWPE because it presents the lowest value of volume
loss due to wear at the end of the sitting cycle. For this material pair, we also performed a
topology optimization in order to minimize the compliance and at the same time reduce
the prosthesis mass. Figure 13 shows the results of the topology optimization.
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Figure 13. Topology optimization result. It is possible to see that the interested region of the
optimization is the prosthesis stem and after six iterations, the optimizer is capable of removing
material in order to lightweight the prosthesis.

Figure 14 shows the comparison between the original prosthesis design and the
optimized one.

The comparison between the original prosthesis mass and the optimized one is shown
in Table 5.

Table 5. Comparison between the original prosthesis mass and the optimized prosthesis.

Original Mass Optimized Mass Mass Reduction

0.41 kg 0.32 kg −28.12%
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4. Discussion

The results shown in Figures 3 and 4, respectively, demonstrate that the implementa-
tion of an AI algorithm and the use of OpenPose software allows the identification of the
main marker of a real human subject, including the hip joint position. Therefore, the multi-
body model of a human body developed in MSC ADAMS TM has been validated based
on a real human subject. Moreover, the multibody model is fully parametric and hence
it is possible to select a specific quartile depending on weight and height of the human
subject. In particular, the selected quartile adopted for the simulation is a male subject with
a weight of 85 kg and a height of 1.75 m. Figure 10 shows that from the multibody model of
a human body, it was possible to evaluate the load and rotation conditions at the hip joint
during ten sitting cycles. Figure 11 shows the sitting cycles that occurred in 10 s simulation
times. The sitting cycles are composed of a dynamic part related to the joint movement
and a static part related to the contribution of the human body mass, when it remains
stationary. In addition, the joint rotation is a planar movement and, as consequence, has
only the component perpendicular to the x-axis, from 0 to 90 degrees. From the FEM of a
hip prosthesis developed in Ansys Workbench R2 2020TM, it was possible to compare three
different materials pairs used in biomedical fields in terms of wear between the acetabular
cup and the femoral head: CoCr Alloy/UHMWPE, Ti6Al4/Ti6Al4, Si3N4 -TiN/Si3N4 -TiN.
The wear process has been studied trough the implementation of the Archard’s wear law in
the FEM. The materials’ properties have been obtained by previous literature studies, and
the influence of the synovial fluid related to the coefficient of friction has been neglected.
The results shown in Figure 12 and Table 4, respectively, demonstrate that the better be-
havior in terms of volume loss due to wear (related to the femoral head) was achieved by
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CoCr alloy/UHMWPE pairs, with a value of 0.004 µm3 at the end of the sitting cycle. The
obtained results are also in agreement with literature studies [5,6,9,10,20,29]. Investigating
the trend of the volume loss due to wear shown in Figure 12, it is possible to assess that it
is inherent with the imposed sitting cycle. In fact, during the movement of the hip joint,
the volume loss due to wear increased, while it remained stationary during the stationary
phase of the sitting cycle. Moreover, the increasing wear followed a linear trend, which
was in agreement with the linear model (m and n equal to 1) adopted for the Archard’s
law, defined in Equation (2). After establishing the best materials pairs in terms of volume
loss due to wear, a topology optimization of the implant structure was performed. The
attention for the topology optimization was focused on the implant stem, since this part
is not directly involved in the action of the applied load, but it is fixed to the bone. Its
main contribution is related to the global implant stiffness. As shown in Figure 13, the
optimization algorithm is able to remove material in the decision region, with the aim of
minimizing the implant compliance (and hence maximizing the implant stiffness) and at
the same time reducing the prosthesis mass. At the end of the optimization process, the
new prosthesis design was 28.12% more lightweight than the original one, as shown in
Table 5.

5. Conclusions

The aim of this work was to perform a tribological characterization of three different
materials pairs used in biomedical field, with the combined action of Machine Learning,
multibody modeling, and Finite Element Analysis. The results show that the markerless
approach represents an easy way to evaluate human motion without a sophisticated
architecture. In particular, OpenPose is a machine learning algorithm that predicts joint
rotations well. A multibody model of a human body was developed in an MSC ADAMSTM

environment, and it was able to evaluate the load conditions at the hip joint during sitting
cycles, together with the rotation condition evaluated from OpenPose. The human body
model developed in multibody environment is fully parametric, and in this study, a male
subject with a weight of 85 kg and a height of 1.70 m was investigated. Through a FEM of a
hip prosthesis developed in Ansys Workbench R2 2020TM, it was possible to investigate the
wear process between the femoral head and the acetabular cup through the implementation
of the Archard’s wear law. The comparison between three materials types largely used in
the biomedical field showed that the best behavior in terms of volume loss due to wear was
achieved by CoCr alloy/UHMWPE pairs, with a final volume loss due to wear of 0.004 µm3

after ten sitting cycles. All the results have been compared with literature studies, showing
a good agreement with them. At the end, considering the best material coupling, a topology
optimization of the whole prosthesis structure was performed. The decision region was
focused on the implant stem since this region is not characterized by particularly high
stress. The results show that it was possible to reduce the implant mass by 28.12%. At the
end, it is possible to assert that the humanoid model developed in multibody environment
could represent a valid alternative for the estimation of the load and rotation conditions
acting on a hip implant, with respect to conventional ones, such as hip simulators. The
future development regards the implementation of more complex movement, such as gait
cycles, the calibration of the multibody model on a real clinical case, the calibration of the
Archard’s law with tribological experimental tests, avoiding the use of a linear wear model,
and the study of the influence of coatings applied to femoral head and acetabular cup that
aim to improve the wear behavior.
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