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ABSTRACT Arterial pulse waves contain a wealth of parameters indicative of cardiovascular disease. As
such, monitoring them continuously and unobtrusively can provide health professionals with a steady stream
of cardiovascular health indices, allowing for the development of efficient, individualized treatments and
early cardiovascular disease diagnosis solutions. Blood pulsations in superficial arteries cause skin surface
deformations, typically undetectable to the human eye; therefore, Microelectromechanical systems (MEMS)
can be used to measure these deformations and thus create unobtrusive pulse wave monitoring devices.
Miniaturized ultrathin and flexible Aluminium Nitride (AlN) piezoelectric MEMS are highly sensitive
to minute mechanical deformations, making them suitable for detecting the skin deformations caused
by cardiac events and consequently providing multiple biomarkers useful for monitoring cardiovascular
health and assessing cardiovascular disease risk. Conventional wearable continuous pulse wave monitoring
solutions are typically large and based on technologies limiting their versatility. Therefore, we propose the
adoption of 29.5 µm-thick biocompatible, skin-conforming devices on piezoelectric AlN to create versatile,
multipurpose arterial pulse wave monitoring devices. In our initial trials, the devices are placed over arteries
along the wrist (radial artery), neck (carotid artery), and suprasternal notch (on the chest wall and close to
the ascending aorta). We also leverage the mechano-acoustic properties of the device to detect heart muscle
vibrations corresponding to heart sounds S1 and S2 from the suprasternal notch measurement site. Finally,
we characterize the piezoelectric device outputs observed with the cardiac cycle events using synchronized
electrocardiogram (ECG) reference signals and provide information on heart rate, breathing rate, and heart
sounds. The extracted parameters strongly agree with reference values as illustrated by minimum Pearson
correlation coefficients (r) of 0.81 for pulse rate and 0.95 for breathing rate

INDEX TERMS AlN thin films, Biocompatible, Cardiovascular disease, Heart rate, Heart sounds, MEMS,
Piezoelectric, Phonocardiogram (PCG), Pulse waves, Skin sensors.
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I. INTRODUCTION

C
ARDIOVASCULAR diseases (CVDs) are a group of
heart and blood vessel disorders causing approximately

17 million annual global deaths [1]±[3]. According to
the World Health Organization (WHO), out of all deaths
recorded in 2019, CVDs were responsible for 38% of pre-
mature deaths and 32% of all fatalities [3]. Additionally,
80% of CVD-related deaths recorded annually are caused by
heart attacks and strokes typically brought on by unhealthy
lifestyles and sedentary behavior [3]. Therefore, research
conducted towards reducing the global effects of CVDs
revealed that continuously monitoring heart function and
physical activity can be used to identify high-risk individ-
uals and contribute to developing efficient CVD prevention
measures and treatment plans [1], [4], [5]. Some methods
typically used by medical practitioners to diagnose and
assess the progression of CVDs include coronary computed
tomography (CT) angiography, auscultation, echocardiog-
raphy, electrocardiography, phonocardiography, and several
other blood chemistry assessment methods [6]±[9]. These
methods provide signals or images that can be used to assess
and detect abnormalities in the structure or function of the
heart and blood vessels to determine the presence of a CVD
[10]±[13]. However, the equipment required is either costly,
only accessible in specialized facilities, or operable only
by well-trained personnel, thus limiting CVD assessment
to infrequent hospital visits. Additionally, individuals who
perceive themselves healthy are less likely to undergo the
more specialized tests as they are expensive and may be
considered unnecessary.

Low-cost, highly accessible, and easy-to-use devices that
produce information identical to or compatible with these
traditional techniques can, therefore, help keep people in-
formed on their health status. These devices can also provide
long-term patient data to help medical professionals make
more informed decisions, facilitating more accurate CVD-
related assessments [14]. As a result, developing low-cost,
non-invasive technologies capable of providing parameters
useful for monitoring pulse waves for CVD screening, pre-
vention, and treatment has been the focus of several research
studies [7], [15]. Portable and remote pulse wave monitoring
devices for CVD screening and assessment, such as wearable
electrocardiogram (ECG) devices, portable handheld ultra-
sound dopplers, and wearable devices based on photoplethys-
mography (PPG) have been developed to enable non-invasive
remote cardiac assessment. However, many of these commer-
cially available devices are still cumbersome, sometimes hard
to use, and interfere with daily life activities, spurring the
need for more unobtrusive, flexible, and smaller alternatives
based on flexible electronics and MEMS [14], [16], [17]. As
a result, monitoring heart function using MEMS devices that
leverage the piezoelectric, capacitive, or piezoresistive effect
is rapidly gaining popularity [14], [18], [19]. However, com-
pared to piezoresistive or capacitive devices, piezoelectric
transducers do not require any external power to function,

making them more suitable for developing minimal bulk
solutions [14]. Piezoelectric sensors also attract considerable
attention since they enable the development of stable, precise,
and flexible devices [20]. Additionally, AlN is one of the
most popular piezoelectric materials thanks to its CMOS
compatibility, thermal, mechanical, and chemical stability,
good acoustic properties, and non-toxic nature [21]±[25].
This work, therefore, contributes to the research towards
unobtrusive MEMS for continuous CVD screening and as-
sessment by demonstrating bio-compatible AlN thin-film
piezoelectric skin sensors for the extraction of heart rhythm,
heart sounds, and respiration information from pulse waves
detected from various on-body measurement sites.

Our main contributions are summarized as follows:
• We validate the potential of using AlN thin films to

create continuous cardiovascular monitoring devices by
extracting multiple essential physiological parameters
critical for CVD diagnosis, risk definition, and patient
monitoring from detected pulse waves.

• We analyze pulse wave signals obtained from several
superficial arteries and provide a qualitative analysis of
the piezoelectric pulse waves that provide physiological
signals, including heart rate (HR), breathing rate (BR),
and heart sounds.

• We comprehensively characterize the information em-
bedded within the signals collected from each measure-
ment site and validate the extracted physiological pa-
rameters using simultaneously collected ECG reference
signals.

The paper is organized as follows: Section II reviews
related works describing the application of AlN piezoelectric
devices to obtain signals that allow the estimation of physi-
ological parameters critical for CVD diagnosis and manage-
ment. The experimental materials and methods are presented
in Section III. Section IV discusses the results, and finally,
conclusions, future perspectives, and recommendations are
provided in Section V.

II. RELATED WORKS

As previously mentioned, AlN-based piezoelectric sensors
are in great demand for many reasons, such as CMOS
compatibility, non-toxicity, and good acoustic properties. As
a result, some researchers have investigated the design and
development of MEMS structures based on AlN for several
healthcare applications [26]. For example, [27] presented
an AlN piezoelectric sensor to measure pulse waves and
employ the proposed sensor to monitor pulse waves from
three different body positions: carotid, wrist, and clavicle.
In addition, pulse waves from the carotid artery and ECG
signals are recorded simultaneously to demonstrate their cor-
relation. The paper provides pulse wave recordings; however,
the correlation between the recorded pulse wave signals and
physiological parameters is not provided. Natta et al. [28]
described a soft and flexible piezoelectric smart patch based
on AlN thin film used to monitor vascular grafts. The sensor
was wrapped around a graft and tested in-vitro to measure
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real-time variations of hemodynamic parameters. The au-
thors obtained high sensitivity for real-time vascular graft
monitoring. However, the same performance could not be
achieved in-vivo due to electromagnetic interference (EMI)
and the capacitive coupling occurring when the sensor is
in contact with the skin. These effects introduce substantial
noise, causing a significant decrease in signal-to-noise ratio.

On the other hand, Qu et al. in [29] take advantage of the
excellent acoustic properties of AlN and employ an AlN thin-
film MEMS acoustic sensor, whose structure is described
in [30], to monitor physiological sounds. The authors use a
6-by-7 sensor array to increase the receiving sensitivity and
connect 42 circular elements in parallel using Al metal lines.
However, the sensor array is covered by Ecoflex 30 silicone
polymer since it is fragile and unable to contact human skin
directly [29]. Moreover, an air cavity is added to the silicone
cover to increase sensitivity and reduce the noise compared
to the values obtained using all-silicone packaging before the
introduction of the airgap. The proposed sensor was tested for
phonocardiogram (PCG) recording by placing it on the chest
and validated using ECG signals recorded simultaneously.

In addition to PCG recording, the paper investigates the
detection of speech, swallowing, humming, and coughing
events by placing the same sensor on the neck. Although
the findings are promising, the presented results belong to
a single subject under different circumstances. A more de-
tailed and reliable characterization of the device would be
achieved by observing multiple subjects of different genders.
Furthermore, when placed in direct contact with the skin, the
fabricated device is plagued by a low signal-to-noise ratio,
forcing the need for a substantially thick silicone polymer
package to avoid direct contact with human skin, increasing
the overall sensor thickness. The results with all-silicone
packaging show a noisy response, which makes air-silicone
packaging compulsory for proper measurements.

Dalin et al. presented the physics-based mathematical
modeling of an AlN arterial-pulse sensor in [31]. The paper
provided numerical simulation results to deliver optimal de-
sign parameters for enhanced sensitivity and fatigue stress
lifespan. Furthermore, the authors compare radial, carotid,
brachial, femoral, and tibial arterial-pulse waveforms of a 25-
year-old healthy person with the FEM simulated output volt-
age of the proposed sensor by inputting the corresponding
arterial pulse pressure. Although the paper provides insight
into design optimization and performance modeling, it only
presents the analytical and simulated results. To understand
the functionality and full potential of AlN sensors, experi-
mental results and their validation are essential.

To solve the EMI problem envisioned in [28], Natta et
al. proposed an electromagnetic shielding solution reducing
the noise induced by capacitive coupling by adding two
additional layers to the sensor’s heterostructure [32], [33].
Marasco et al. [34] employed the AlN skin sensor introduced
by [32], [33] to monitor heart rate by placing the device on
the ankle, i.e., above the posterior tibial artery. The work
in [34] presents a wearable device communicating in the sub-

6GHz 5G ISM band for Internet of Healthcare Things (IoHT)
applications. Using the defined communication protocol, the
simultaneous monitoring of the pulse waves from the six
volunteers comprising females and males between 25 and
29 was achieved. The work described in [34] superficially
demonstrates using AlN thin films to monitor heart rate. The
paper mainly focuses on the communication protocol and
does not characterize the measured signals nor reveal the
sensor’s full multipurpose capabilities as will be described
in this work.

A tabulated summary of the related works discussed is
provided in Table 1.While most of the works discussed em-
ploy AlN piezoelectric sensors for pulse wave measurement
applications from various arteries, only one investigated the
acoustic properties of AlN to monitor physiological sounds.
In contrast, this work uses the AlN piezoelectric sensor
presented in [33] to monitor multiple physiological signals,
including heart rhythm, heart sounds, and respiration events.
Unlike the sensor in [29], our sensor can be placed directly
on the skin thanks to the shielding, allowing us to detect
both mechanical deformations and physiological sounds. In
addition, we propose a compact, flexible, and biocompatible
capsule to protect the ultra-thin sensor structure from dam-
age.

III. METHODOLOGY

This section presents the experimental tools and procedures
followed during the realization of this work. The first sub-
section briefly describes the sensing device used, while the
second section describes the hardware setup and data acqui-
sition protocol.

A. SENSING DEVICE

We readopted the AlN-based sensing device described in [33]
to monitor multiple physiological signals that can be used
to provide CVD risk indices. The sensor is entirely biocom-
patible and suitable for prolonged use without causing harm
to the user. The complete structure of the device is illus-
trated in Fig. 1, and details of the fabrication process can be
found in [28], [32], [33]. The sensor comprises a 1µm AlN
piezoelectric layer sandwiched between Molybdenum (Mo)
top and bottom electrodes. The Mo bottom electrode helps
achieve high-quality AlN thin films thanks to the low lattice
mismatch and the thermal expansion coefficient very close
to AlN [35]. The 1µm AlN piezoelectric layer thickness
provides a good compromise between sensor flexibility and
piezoelectric properties [28]. In addition, an AlN interlayer
is used to improve the crystal orientation of the AlN piezo-
electric layer [36], [37]. Also, as mentioned in section II, the
sensor has a shielding structure on top to eliminate EMI and
capacitive coupling effects [32]. The piezoelectric layer pro-
duces an electrical charge in response to mechanical defor-
mations due to blood pulsations or vibrations caused by organ
function translated onto the surface of the skin. According to
the sensor sensitivity analysis presented in [28], the sensor
provides approximately 2 mV in response to a pressure of 5
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TABLE 1. Related Works Comparison Table

Parameters Ref. [27] Ref. [28] Ref. [29] Ref. [31] Ref. [34] This Work

Sensor Structure Pt/Al-AlN-Al Mo-AlN-Mo Mo-AlN-Mo Al-AlN-Al* Mo-AlN-Mo Mo-AlN-Mo
Dimensions - 9.6 mm x 17 mm 2.1 mm x 2.5 mm** 1.5 mm x 1 mm 7.5 mm x 15 mm 7.5 mm x 15 mm
AlN Thickness 1µm*** 1µm 1µm 0.5µm 1µm 1µm
EMI Shielding No No No No Yes Yes
Application Pulse Wave

Measurement
Vascular Graft
Monitoring

Physiological Sound
Monitoring

Pulse Wave
Measurement

Pulse Wave
Measurement

Multiple Body
Signal Monitoring

Experiment Type In-Vivo In-Lab In-Vivo Simulation In-Vivo In-Vivo

* The authors reported that the bottom electrode is composed of a metal layer with a highly-doped silicon layer.
** The reported dimensions are estimated based on a previous publication by the same authors describing a ten-by-ten 3.5 mm x 3.5 mm sensor array.

*** The paper mentions the AlN piezoelectric layer dimension as 1000µm, which is inconsistent with the total device dimensions reported elsewhere in the
same article. Therefore, the unit of µm is assumed to be a typo, and the actual dimension is 1µm.

kPa. The typical radial blood pressure, according to [31], the
typical radial blood pressure is around 5.3 kPa, making the
sensor suitable for monitoring radial pulse waves.

The device is skin-conformable due to its ultrathin
lightweight profile and flexibility, i.e., it adheres well and
conforms to the skin’s contours, allowing it to follow skin
deformations without causing discomfort. This property al-
lows the sensor to be placed on several body positions, con-
tributing to its versatility. The sensor fabrication procedure
allows the shape of the sensor to be easily altered based
on the application requirements and body positions. A 3D-
printed compact, biocompatible, and flexible capsule was
added to the structure described in [33] and illustrated in
Fig. 1 to protect the sensor during handling and increase its
durability without affecting its conformability. The elastic
50A [38] resin suitable for medical applications manufac-
tured by Formlabs is used to construct the protective capsule.
The resin is designed and manufactured using a quality man-
agement system certified under ISO 13485 and EU Medical
Device Regulation (MDR) standards. The resin is also reg-
istered with the USA Food and Drug Administration (FDA)
and CE-marked according to the EU MDR, making it safe for
medical applications.

B. EXPERIMENTAL SETUP AND DATA ACQUISITION

We defined an experimental protocol to standardize the
data acquisition on the two thirty-year-old healthy volunteer
subjects, one male and one female, selected for this study.
Information about the experimental setup, protocol, and how
their data is processed and stored is given to each volunteer
before data collection. After receiving consent, their physio-
logical state, i.e., momentary blood pressure and heart rate, is
assessed using a commercial and clinically approved blood
pressure monitoring device, OMRON M3 Comfort (HEM-
7154-E) [39]. Following this assessment, ECG electrodes
are placed according to a 3-electrode ECG system as illus-
trated in Fig. 2. The Olimex Shield-EKG-EMG open-source
hardware board [40] is used to obtain the ECG recordings
that serve as reference signals to check the composition,
validity, and interpretation accuracy of the signals obtained
from the piezoelectric devices. After the correct placement of
the ECG electrodes, one or more AlN thin-film piezoelectric

FIGURE 1. Skin sensor overview (a). Biocompatible and flexible capsule with

flaps for better skin adhesion (b). AlN piezoelectric sensor multilayer stack

skin sensors are placed directly above the desired superficial
arteries on the skin surface. The encapsulated sensors are
attached to the skin with the help of a commercially available
silicone prosthetic adhesive, Derma-Tac [41]. This skin-safe
pressure-sensitive adhesive improves the temporary adhesion
between the skin surface and the sensor’s active area and,
therefore, its skin conformability.

The following measurement sites illustrated in Fig. 2 are
considered during the initial trials:

• Suprasternal Notch (SSN) for extraction of heart
rhythm, heart sounds, and respiration information.

• Collum, i.e., neck, for pulse wave (cardiac rhythm)
recordings from the carotid artery.

• Carpus, i.e., wrist, for pulse wave (cardiac rhythm)
recordings from the radial artery.

These body positions were particularly selected because
they can be located easily, even by non-medically-trained
individuals. Additionally, blood pulsations are easily felt
over the radial and carotid positions without the need for
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FIGURE 2. Experimental setup; 3-electrode ECG positions RA = Right Arm,

LL = Left Arm, LL = Left Leg; Selected pulse wave measurement sites: Collum

(Carotid), Carpus (Radial), and Suprasternal Notch

applanation (i.e., the flattening of the artery by applying
pressure), as demonstrated by the historical selection of
these positions to check one’s pulse manually. The SSN is
a particular position where we can monitor multiple health
parameters. This strategic location permits recording chest
movements translated through the SSN, allowing respiration
rate extraction. Moreover, the SSN is close to the base of
the heart and ascending aorta; therefore, it is also possible to
detect blood pulsation and record heart sound components by
leveraging the mechano-acoustic properties of the AlN skin
sensor [42]. This could help healthcare providers by reducing
the time spent on auscultation.

Fig. 2 demonstrates the main instruments used in our
experimental setup. The Kistler 5165A [43] 4-channel lab
amplifier enables the simultaneous data acquisition of the
ECG and piezoelectric signals. The analog output of the ECG
device and the AlN sensors are directly connected to the
Kistler amplifier. The amplifier has three modes of ampli-
fication (charge, voltage, and Integrated Electronics Piezo-
Electric (IEPE)), three different filtering options (high-pass,
low-pass, and notch filters), and an automatic data acquisition
feature. The device is also equipped with a user-control
interface that can be used to set the amplification mode,
gain, and filters. Similarly, data acquisition settings, such as
duration and sampling frequency, can be adjusted from the
same interface. Therefore, we take advantage of the voltage
amplification, charge amplification, filtering, and data acqui-
sition features of the Kistler to acquire ECG and piezoelectric
signals simultaneously. AlN piezoelectric sensor charge out-
put is converted into voltage by using the charge amplifier
mode of the Kistler. The gain of the amplifier is set to 10
mV/pC. We also use the second-order high-pass and low-pass
filters to filter out very high and low-frequency noise on the
output signal. The lab amplifier outputs are also connected to

the Tektronix MDO4104-3 oscilloscope [44] to allow signal
visualization during acquisition.

Piezoelectric sensor placement combinations were chosen
based on the experimental setup configuration, sensor cable
lengths, and user comfort. These combinations were used to
collect data from the two volunteers over several iterations in
one month. Multiple signals were collected during each ac-
quisition session, and only recordings of duration greater than
10s were considered for further analysis. The carotid - SSN

and radial - carotid combinations were observed to be the
most suitable placement combinations based on the above-
mentioned criteria, with the ECG present as a reference in
both instances.

IV. RESULTS AND DISCUSSION

All the acquired data were analyzed using scripts written in
MATLAB software. Time and frequency domain correlations
among the reference ECG and piezoelectric signals were
used to characterize and interpret the observed piezoelectric
signals. The ECG signal provides the timing and frequency
information for the piezoelectric signal feature characteri-
zation and eventual validation of parameters extracted from
them. Scalograms of each piezoelectric signal were visually
inspected and analyzed to determine the frequency compo-
sition of the piezoelectric signals and verify the possible
physiological parameters that can be extracted from each
pulse wave. The following subsections discuss the results
obtained from our initial trials and outline the signal fea-
ture characterization procedures followed. As mentioned in
section III, two sensor placement combinations were used
during data collection; however, for conciseness, only the
carotid signal from the radial-carotid signal is considered in
this section.

A. SIGNAL MORPHOLOGY AND COMPOSITION

Fig. 3 illustrates the typical shapes and time domain char-
acteristics of the pulse wave signals obtained from the se-
lected sensor positions on each volunteer. The dominant
time-frequency characteristics remain constant among the
signals from all the selected positions due to the nature
of the events that translate into the skin deformations and
prompt the piezoelectric response. From this pattern, we can
deduce that the main systolic event can be gathered from
any selected position. The deformation due to the systolic
upstroke, i.e., the largest pressure change during a heart cycle
as depicted in Fig. 10, translates to the most prominent visible
peaks within the recorded pulse waves. The definition of
the other events, such as the ventricular diastole, are also
translated into deformations of lower amplitudes; however,
several factors, including sensor position, determine their
definition and clarity. More detailed information about the
components of each signal can be extracted by performing
a frequency domain analysis of each signal. Fig. 4 shows
the frequency components of the signals from each selected
position, revealing the subtle variations observed between
signals obtained from the two volunteers. As the scalograms
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FIGURE 3. Carotid, SSN, and Radial pulse wave signal time domain

characteristics. NB: Amplitudes are unitless and normalized between 0 and 1

demonstrate, several periodic patterns are embedded within
the measured pulse waves. The dominant frequency in all the
observed signals is around 1 Hz, illustrating the possibility
of extracting heart rate information, typically between 1
and 1.67 Hz in healthy adults, from all signals [45]. The
carotid and SSN signals also reveal frequencies below 0.5 Hz,
corresponding to the breathing rate (BR), which in resting
healthy adults can lie between 0.2 and 0.3 Hz [46]. Com-
paring the ECG signal time-frequency scalograms in Fig. 5
to the piezoelectric scalograms in Fig. 4, periodic frequency
components between 5 Hz and 50 Hz are distinguishable in
both cases. For instance, in the ECG scalogram, the dominant
frequency within this range corresponds to the QRS complex,
depicting ventricular depolarization. This observation shows
that the piezoelectric pulse waves can be used to delineate
various stages of the heart cycle, which are helpful for ex-
tracting more complex CVD indices. The definition of similar
components in the pulse waves varies with the measurement
site; therefore, the heart cycle delineation can be performed
with varying degrees of accuracy. As a result, the choice of
measurement site can affect the required signal processing
and event delineation accuracy.

B. PULSE RATE

All the selected sensor positions provide pulse rate informa-
tion. Therefore, if the desired application only requires heart
rate information, the sensor position can be chosen based
on user comfort and preference. The most prominent signal
peaks corresponding to the largest deformation detected were
used to determine the heart rate from each pulse wave signal.
The Python-based neurophysiological signal processing tool-
box Neurokit2 (NK) [47] heart rate estimation functions were
integrated with MATLAB and applied to the signal peaks.
The same algorithm was also used to estimate the heart rate
from the reference ECG signal after R peak detection. Sev-

FIGURE 4. Pulse wave signal Time Frequency Scalograms from male and

female volunteers. Scalograms obtained from 20s-long signal snippets. (a)

radial (top female, bottom male), (b) carotid (top female, bottom male), (c)

Suprasternal Notch (top female, bottom male). NB: Amplitudes are unitless

and normalized between 0 and 1

FIGURE 5. ECG signal scalograms obtained from 20s-long snippets.

(a)scalogram corresponding to the ECG signal from the female volunteer

(b)scalogram corresponding to the ECG signals from the male volunteer. Both

ECG signals were simultaneously recorded with the SSN signal illustrated in

Fig. 4(c) NB: Amplitudes are unitless and normalized between 0 and 1
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FIGURE 6. Pulse Wave signal HR estimation differences in beats per minute

(bpm) for each 10-second sample compared to corresponding ECG reference

signal

enty 10s-long signal segments were selected from the signals
collected from the two volunteers at each measurement site,
and the HR was estimated for each sample. Fig. 6 illustrates
the bpm difference between the ECG HR estimation and the
values obtained from the different pulse wave signals. A few
outliers corresponding to low-quality pulse wave signals like
the one illustrated in Fig. 7 are observed in Fig. 6. In this
case, outliers are values greater than two standard deviations
from the regression line. The sample corresponding to one of
the outliers is illustrated in Fig. 7. Two extra peaks (labeled 1
and 2) can be observed in the pulse wave signal. Therefore,
employing signal quality assessment and more rigorous peak
detection algorithms based on advanced signal morphology,
pattern detection, or artificial intelligence methods can in-
crease the pulse wave signal HR estimation accuracy. This
conclusion is corroborated by Fig. 8 illustrating improved es-
timation accuracy after removing outliers. The resulting max-
imum deviation observed after removing outliers is below the
widely accepted 5 bpm maximum error [48]. Additionally,
strong linear correlations exist between the piezoelectric HR
estimation results and corresponding reference ECG estima-
tions. The r values of 0.81 for the SSN and 0,99 for both
the radial and carotid estimations validate this claim. We can
conclude that the radial and carotid positions provide more
accurate pulse rate information when compared to the SSN-
derived pulse rate.

C. BREATHING RATE

In addition to the heart rate signal, a periodic pattern around
0.3 Hz is observed in the time-frequency scalogram plots
shown in Fig. 4, corresponding to the breathing rate, which
typically falls between 0.2 and 0.33 Hz [46], i.e., between
12 and 20 breaths per minute. Therefore, pulse wave signals
from the carotid and SSN positions can be used to obtain
respiration signals accurately. During data acquisition, each

FIGURE 7. Heart rate estimation outlier pulse wave example. BPM estimation

error attributed to the extra peaks labeled 1 & 2. NB: Amplitudes are unitless

and normalized between 0 and 1

FIGURE 8. Effect of low-quality signal samples on HR estimation. Top:

deviation from ECG reference when low-quality signals are included; Bottom:

deviation from ECG reference when low-quality signals are excluded

volunteer was asked to breathe normally while their chest
movements were manually observed to capture the number of
breaths taken. Two 100s long recordings were obtained from
each volunteer to perform preliminary conclusions. The pulse
wave signals are filtered using a 0.15-0.35 Hz band pass filter
to confirm the number of breaths determined by the manual
observations. Fig. 9 shows excerpts of the carotid and SSN
pulse waves used to verify respiration signal extraction. The
number of breaths manually observed during data acquisition
agrees, with a maximum deviation of one breath, with the
values extracted from the recorded signals as detailed in
Table 2. Therefore, the respiration signal can be extracted
by applying the appropriate low-frequency bandpass filters
to eliminate other signal components from the carotid and
SSN pulse waves. Consequently, using existing algorithms,
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FIGURE 9. 20s excerpts of raw signals and bandpass filtered signals (a).

Female Subject carotid (b). Female Subject SSN (c). Male Subject carotid (d).

Male Subject SSN. NB: Amplitudes are unitless and normalized between 0

and 1

TABLE 2. Number of breaths: manual observation Vs. extracted from

100s-long SSN and carotid pulse waves

Female Subject Male subject
Sample number Manual SSN Carotid Manual SSN Carotid
1 32 31 31 28 27 27
2 31 30 31 30 30 30

the respiration signal can be used to estimate the breathing
rate. The four 100-second signals, two samples from each
volunteer, were given as inputs to the NK toolbox respira-
tion rate estimation algorithm, resulting in values between
≈16.34 and 19 breaths per minute. The estimated values fall
within the range expected for healthy adults.

D. HEART SOUNDS

Heart sounds produced by heart valve movements and
blood flow through the vessels are useful for diagnosing
CVDs [49]±[51]. The normal audible heart sounds typically
follow a periodic pattern of 2 pulses, the first and second
heart sounds, (S1) and (S2) Fig. 10, with frequencies between
20 and 150 Hz [7], [50]. Since the AlN films can detect
the physical vibrations produced by the mechanical events
of the heart muscles of the sounds [42], we hypothesize
that the signal obtained from the SSN measurement site,
situated closest to the heart, contains the S1 and S2 heart
sound components. The sensor deforms in response to the
mechanical vibrations translated from the heart onto the chest
wall, allowing us to obtain a signal containing information
corresponding to the valve closures, i.e., S1 and S2. The time-
frequency scalograms in 4 (c) show barely visible, low-power
magnitude, short-burst periodic signal components above 10
Hz, partially corroborating our hypothesis. Therefore, after
removing the lower-frequency components, S1 and S2 can
be clearly distinguished, as shown in the time-frequency
scalograms in Fig. 11. Fig. 11 also illustrates the relation-

FIGURE 10. Wiggers diagram of the left side of the heart showing phases of

the electrocardiogram (ECG), phonocardiogram (PCG), and pressure changes

that occur during a heart cycle. Image adapted from [52]

FIGURE 11. (a). Female SSN-extracted PCG signal and corresponding ECG

(b). Female PCG time-frequency scalogram (c). Male SSN-extracted PCG

signal and corresponding ECG (d). Male PCG time-frequency scalogram NB:

Amplitudes are unitless and normalized between 0 and 1

ship between the S1 and S2 component locations and ECG
signal events, a result in agreement with the PCG and ECG
relationship demonstrated in the wiggers diagram in Fig. 10.

V. CONCLUSION AND FUTURE PERSPECTIVES

We have successfully demonstrated the feasibility of using
AlN thin films to develop a bio-compatible device that can
be used to monitor multiple physiological signals that can
facilitate the evaluation of several CVD risk indices. We
characterized the morphology of the signals measured from
the radial, carotid, and SSN positions and verified the ex-
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tracted physiological parameters using reference ECG sig-
nals, widely used in clinical practice, and manually observed
physiological phenomenon demonstrating the viability of our
device. Our observations show that measurement sites can
be selected according to the required information. The signal
collected from the SSN provides all the parameters charac-
terized in this paper, i.e., BR, HR, and heart sounds; how-
ever, based on the executed MATLAB scripts, heart sound
extraction required more signal processing steps, translating
to higher computational and temporal costs. The observed
error between the pulse rate extracted from the piezoelec-
tric pulse waves obtained from all observed positions and
the ECG reference is within acceptable margins. The SSN
provides less accurate pulse rate information. Therefore, we
can conclude that obtaining multiple signals from the SSN
requires a trade-off in the pulse rate accuracy.

In addition to its bio- and CMOS-compatibility, the AlN
piezoelectric skin sensors demonstrate encouraging perfor-
mance in providing signals embedding multiple physiolog-
ical parameters, which can provide crucial cardiodynamic
parameters. Further experiments are required to provide a
rigorous performance evaluation of our sensor on a larger and
more diverse sample size; therefore, our next steps include
verifying the test results in a clinical environment. Based on
the feedback from the clinical trials, we intend to improve
the capsule design to optimize comfort and enhance the
versatility of our device. Moreover, integrating the device
with comfortable fabrics and a small footprint PCB is one
of our envisioned future steps towards developing a wireless
smart textile product that can continuously extract the desired
CVD-related parameters.

The fabricated devices exhibit mechano-acoustic behavior,
hence the heart sound detection, and are currently being
analyzed for other applications, including speech recognition
applications. The sensor is also being tested for respiratory
sound recording to perform auscultation and decrease the
workload of healthcare providers. The same sensor has also
been tested before for detecting swallowing disorders and
sleep monitoring from eye movements. One of the key
challenges we aim to address is the use of a minimum
number of sensors with small-footprint electronics to detect
the maximum number of vital parameters simultaneously.
Therefore, this device demonstrates a versatile and multi-
purpose healthcare asset to augment healthcare professionals
by providing multiple high-quality physiological parameters.
Additionally, the data collected using our experiments are
also currently being organized to create datasets for relevant
applications for the benefit of the scientific community. The
use of AI algorithms to develop complete smart environments
for remote diagnosis and therapeutics is also envisioned.
Therefore, our work exhibits a multidisciplinary contribution
to various Internet of Medical Things (IoMT) enabling
sectors.
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