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ABSTRACT Clinical gait analysis is a diagnostic tool often used for identifying and quantifying gait
alterations in cerebral palsy (CP) patients. To date, 3D clinical gait analysis protocols based onmotion capture
systems featuring multiple infrared cameras and retroreflective markers to be attached to the subject’s skin
are considered the gold standard. However, the need for fully dedicated personnel and space in addition to
the inconvenient requirement of multiple markers attached on the patient’s body limit their use in the clinical
practice. To shorten the time necessary to setup the patient and to limit his/her discomfort motion tracking
performed using markerless technologies may offer a promising alternative to marker-based motion capture.
This study aims at proposing and validating on 18 CP patients, an original markerless clinical gait analysis
protocol based on a single RGB-D camera. Accuracy and reliability of the spatial-temporal parameters and
sagittal lower limb joint kinematics were assessed based on a 3Dmarker-based clinical gait analysis protocol.
The smallest percent mean absolute errors were obtained for stride duration (2%), followed by the step and
stride length (2.2% and 2.5%, respectively) and by gait speed (3.1%). The average angular offset values
between the two protocols were 8◦ for the ankle, 6◦ for the knee and 7◦ for the hip joint. The smallest root
mean square error values were found for the knee joint kinematics (3.2◦), followed by the hip (3.5◦) and
the ankle (4.5◦). Both protocols showed a good-to-excellent reliability. Thus, this study demonstrated the
technical validity of a markerless single-camera protocol for clinical gait analysis in CP population. The
dataset containing markerless data from 10 CP patients along with the MATLAB codes have been made
available.

INDEX TERMS Markerless gait analysis, RGB-depth camera, cerebral palsy, spatial-temporal parameters,
sagittal lower-limb joint kinematics.

The associate editor coordinating the review of this manuscript and

approving it for publication was Andrea F. Abate .

I. INTRODUCTION
Clinical gait analysis is fundamental to understand and inter-
pret physio-pathological characteristics of human locomotion
and its importance as a clinical diagnostic tool is widely
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accepted. In particular, there is strong clinical evidence on its
effectiveness in supporting the identification of optimal sur-
gical procedures and the consequent rehabilitation pathways
in children with bilateral cerebral palsy (CP) [1].

To date, standard 3D clinical gait analysis protocols are
based on the use of infrared multi-camera system to recon-
struct the trajectories of markers attached to the skin of the
patient on specific locations [2], [3], [4] (MB). Unfortunately,
MB protocols routine use is limited by several issues such as
the need for highly qualified staff, its high price tag and skin
markers acceptance which are very critical when dealing with
younger patients.

To reduce the time associated to the subject preparation
and discomfort, motion tracking performed using markerless
technologies (MS) may offer a promising alternative to MB
motion capture. Recently, different MS multi-camera solu-
tions have been proposed for three-dimensional (3D) joint
kinematics analysis [5], [6], [7], [8], [9], [10], [11], [12].
However, multi-camera set-up requires time for installation
and for extrinsic cameras calibration and therefore it is not
the ideal solution for ambulatory settings with no dedicated
space.

Conversely, there are applicationswhere a two-dimensional
(2D) joint kinematic analysis is still clinically relevant (e.g.
for screening purposes, to identify gait patterns, for follow-up
over time and to evaluate treatment). For these purposes,
system portability, affordability, and user-friendliness are
essential requirements. Methods based on the use of a sin-
gle camera with minimum set-up time would therefore be
preferred. Lately, several manufacturers have been produc-
ing inexpensive tracking systems (200-400 =C/$) featuring
an RGB camera integrated with an infrared depth sensor
(RGB-depth). By combining the information of the RGB
image with depth data, these systems can be used to generate
depth color images (2D+) without requiring a multi-camera
set-up.

The single camera MS methods proposed in the literature
can be grouped into three categories: i) black-box methods
either based on software development kit (SDK) integrated
with proprietary hardware ([13], [14], [15]) or commer-
cial software (e.g. IPsoft iPi Biomech, MediaPipe Studio),
ii) open source methods based on deep learning approaches
([5], [16], [17], [18]), and iii) replicable non-machine learn-
ing methods ([19], [20], [21], [22], [23], [24], [25], [26]).
Generally, black-boxmethods are conceived especially for

animation or gaming purposes and are not compliant with
clinical standards and terminology [27]. The major limitation
of this category is related to its ‘black box’ functioning result-
ing in the inability of fine-tuning some model parameters
for pathological data at the expense of external validity and
performance [28]. In addition, body tracking SDKs are devel-
oped for specific hardware solutions and therefore difficult to
generalize.

The majority of the open-source methods based on deep
learning approaches are often trained on synthetic generic

movement data (e.g. AlphaPose, OpenPose) ([5], [16], [17],
[18]), not necessarily gait, and training relies on reference
data not based on clinical gait analysis standards [29] (e.g.
clear and anatomical/functional rules for joint centers defi-
nition [30]). Furthermore, original training data sets do not
include people with impaired gait and, therefore, methods
performance is not optimized and clinical validity is not
established.

Thirdly, replicable non machine learning methods have
the advantage that they do not require a specific training set
although they need to be optimized for the specific problem
and their performance is not expected to improve with the
dataset size. The most common factors limiting the clinical
applicability of most past studies included the use of color
filter and homogeneous background for subject segmentation
([19], [20]), single joint analysis ([20], [21], [22], [23]), lack
of technical validation against gold standards and on patho-
logical populations ([19], [23], [24], [25], [26]).

The aim of the present study is to propose and validate
on 18 CP patients, an original MS clinical gait analysis
protocol based on a single RGB-D camera. Accuracy and
reliability of the sagittal lower limb joint kinematics and
spatial-temporal parameters were assessed based on a 3DMB
clinical gait analysis protocol.

II. MATERIAL AND METHODS
A. SUBJECTS
Gait data were collected from 18 participants, 4 females and
14 males, age between 6.5 and 28 years old (mean 15 y.o.).
Most participants showed bilateral CP (11), some showed
unilateral CP (3), some suffered from dyskinetic CP (3), and
one from ataxic CP. In the Gross Motor Function Classifica-
tion System (GMFCS), six of them were classified at level I,
eleven at level II, and one at level III. The study was approved
by the regional ethical review board in Gothenburg, Sweden
(approval number 660-15).

B. EXPERIMENTAL PROTOCOL
Instrumentation - An RGB-depth camera (Kinect 2 for Xbox
One, Microsoft, RGB images: 1920 × 1080 pixels at 30 fps,
FOV = 84.1◦

× 53.8◦; Depth images: 512 × 424 pixels at
30 fps, FOV = 70.6◦

× 60◦) was positioned laterally at a
2.5-meter distance from the center of the walkway and a
5-meter distance from the background. The total Kinect cap-
ture volume was 7.08 m (length) × 5.77 m (height) × 5 m
(width). The image coordinate system (I ) of the video camera
was aligned to the sagittal plane (xI , yI ) identified by the
direction of progression and the vertical direction. To prevent
blurred images due to automatic exposure, two additional
cool-white LED lamps (3360 Lux/m) were used (Fig.1).

Subject preparation – Each subject was asked to wear
colored ankle socks (red for the right and blue for the left)
and underwear. External anatomical landmarks including
the lateral malleolus (LM), lateral epicondyles (LE), great
trochanter (GT), anterior superior iliac spine (ASIS) and
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FIGURE 1. Experimental setup.

posterior superior iliac spine (PSIS) were identified by palpa-
tion by an expert operator and marked with a black felt pen.

Data collection – Two static lateral views (right and left
side) of the subject while standing upright were captured
at the beginning of the experimental session. Participants
were then asked to walk at a comfortable self-selected
speed along a straight 10-meter walkway. Ten gait trials
per subject were recorded including five right and left
full gait cycles. The dataset containing MS data from 10
CP patients has been uploaded on IEEE DataPort (RGB-
Depth_CP_patients_POLITO_dataset | IEEE DataPort (ieee-
dataport.org)).

Validation – a 12-camera stereo-photogrammetric system
(Oqus 400 Qualisys medical AB, Gothenburg, Sweden) was
used to collect 3D reference data at 100 fps. The capture
volumewas of 14m× 3m× 8m and completely included the
Kinect volume. Thirty-eight retro-reflective spherical mark-
ers (14 mm diameter) were attached to the subjects according
to the modified Helen-Heyes protocol [2]. Calculations of 3D
reference joint angles were performed using the Visual 3D
software (C Motion Inc., USA).

C. IMAGE PRE-PROCESSING
Calibration refinement and camera lens correctionwas imple-
mented using theHeikkilä undistortion algorithm ([31], [32]).
A matching operation was carried out by using intrinsic and
extrinsic parameters obtained from the calibration refinement
of both RGB and Depth sensor to overlap RGB and Depth
images of the same size (Nrow = 1080, Ncol = 1536).

D. METHOD DESCRIPTION
The proposed method consisted of four main stages: gait
cycle identification, subject segmentation, subject-specific
models calibration and joint center trajectories estima-
tion (Fig.2). MATLAB codes have been made available
on Github (https://github.com/dilettabalta/ModelBased_
MarkerlessProtocol.git).

1) GAIT CYCLE IDENTIFICATION
From each gait trial, the most central gait cycle was selected
and analyzed based on the identification of initial foot
contacts. To this purpose, a specific algorithm was devel-
oped to account for different types of foot-ground contacts
commonly encountered in subjects with CP as shown in
Fig. 3 [33].
Specifically, for each video frame, a binary segmentation

mask IM foot expressed in the image coordinate system I ,
was obtained for each foot by applying a segmentation tech-
nique based on color filters [34]. An ellipse was fitted on
each IM foot (Fig.4a). Then, a foot coordinate system (f )
was defined with the axes coincident to the inertial ellipsoid
principal axes and the origin coinciding with the centroid.
The transformation matrix IT f from f to I was computed by
simple geometrical rules and applied to transform IM foot in
the f

(
fM foot

)
. From fM foot , the point Q

(
fQ =

[
Qxf ,Qyf

])
with the highest y-coordinate was identified, the foot points
included between Qyf and ( Qyf − ϵ) were isolated and the
least square fitting line was computed to approximate the sole
of the foot (Fig.4b). A similar procedure was implemented to
reconstruct the line approximating the posterior contour of
the foot starting from point R with the lowest x-coordinate
(Fig. 4b).
The mid-rear foot (MRF) position in f(

fMRF =
[
MRFxf ,MRFyf

])
was identified as the intersec-

tion between the sole and posterior lines of the foot, while
the forefoot (FF ) position in f

(
f FF =

[
FFxf ,F Fyf

])
was

identified as the point with the highest x-component (Fig.4).
The fMRF and f FF were then transformed in I based
on IT f .

The foot points MRF and FF were assumed to be in
contact with the ground when the vertical velocity along yI
and horizontal velocity along xI were below a given threshold
Th (Fig.5a). Then, the foot initial contact (IC) was identified
as the first instant of time characterized by zero-velocity
betweenMRF and FF .

VOLUME 11, 2023 144379
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FIGURE 2. Block-diagram of the proposed MS protocol.

FIGURE 3. Different types of foot contacts: a) fore-foot contact in equinus gait, b) Foot-flat contact in individuals who walk in a crouch gait with
excessive knee flexion, c) rear-foot contact in patients classified at a low level of the GMFCS.

The gait cycle was identified by two consecutive ICs of the
foreground foot, whereas the step was identified by the first
IC of the foreground and the subsequent IC of the background
foot.

Spatial-temporal parameters (stride and step length and
stride duration) were calculated based on the positions
of the relevant foot points (MKF/FF) at the IC instants
(Fig.5b). Finally, gait speed was computed by considering
pixel/meter conversion factor (see appendix A for a detailed
description).

2) SUBJECT SEGMENTATION
For each frame, a preliminary background subtraction was
performed between the RGB image I I , containing the subject,
and the image background IB to obtain the difference image

ID as follows:

ID (x, y, c) =

∣∣∣I I (x, y, c) −
IB (x, y, c)

∣∣∣
where ID(x, y, c), I I (x, y, c), and IB(x, y, c) are the generic
pixels expressed in i and c = [r, g, b] is the color channel
vector.

The resulting difference image ID was converted to
grayscale IDgray by computing the norm of color channel of
each pixel:
IDgray (x, y) =

√
ID (x, y, r)2 + ID (x, y, g) + ID (x, y, b)2

The subject was separated from the background by applying
a proper threshold on the grey levels of the image pixels. The
threshold level was set to the weighted mean of the grayscale
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FIGURE 4. Identification of the MRF and FF. a). An ellipse was fitted on each foot; the centroid and the principal axes (xf , yf ) were identified.
b). The intersection between the sole of the foot (light blue area) and the posterior area (light green area) of the foot was identified as the
mid-rear foot (MRF) while the extremity of the foot along the x- axis was identified as the forefoot (FF).

histogram [35]:

Th =

255∑
i=0

wi · gi

255∑
i=0

wi

where wi is the histogram count (occurrence) for the i-th
grayscale level (gi: 0,. . . ,255).
The segmentation mask IM sub was obtained from the

IDgray as follows:

IMsub(x, y) =

{
1,

∣∣IDgray(x, y) ≥ Th
0, |otherwise

}
Undesired residual small regions due to noise or

time-variant shadows were removed under the assumption
that the subject is associated to the largest connected area.

The feet segmentation was then refined implementing a
color filter technique exploiting the use of colored socks to
avoid inaccuracies due to the presence of shadows during foot
approach to the ground.

3) MULTI-SEGMENTAL MODEL DEFINITION
A 2D subject-specific kinematic lower limb model was
introduced to estimate lower limb joint angles. The model
consisted in four body segments (foot, shank, thigh and
pelvis) connected by revolute joints (ankle, knee and hip
joints) for a total of 6 degree of freedom (DoF). The foot

segment was assumed to be the parent segment and its motion
was characterized by two translational and one rotational
DoFs. The ankle joint (AJC) was centered with the lat-
eral malleolus (LM), the knee joint center (KJC) with the
lateral epicondyles (LE) and the hip joint (HJC) with the
great trochanter (GT).

4) ANATOMICAL CALIBRATION AND BODY SEGMENT
TEMPLATES DEFINITION
The body segments’ templates and the relevant coordinate
systems were calibrated on the static upright standing acqui-
sition (image ‘‘0’’) by manually selecting the anatomical
landmarks (LM, LE, GT, ASIS, PSIS) to obtain their posi-
tion vectors in I (ILM0, ILE0, IGT0, IASIS0, IPSIS0).
The identification of the point MRF and FF (IMRF0 and
IFF0) was obtained following the procedure presented in
par.I. To account for potential right/left asymmetries, the
subject-specific model was defined for both sides.

a: FOOT TEMPLATE
From IM foot , the mid-rear foot portion was extracted to
define a template ITMP foot where the value of its generic
pixel ITMPfoot (x, y) in the I was obtained as:

ITMPfoot (x, y)

=

{
1,

∣∣IMfoot (x, y) = 1 ∩MRFxi < x < MRFxi + 0.9lf
0, |otherwise

}
VOLUME 11, 2023 144381
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FIGURE 5. Computation of stride length and duration, step length and gait speed. A) Velocity of MRF and FF coordinates. The red line in bold
defines the first initial contact (IC #1) while the blue one represents the following initial contact (IC #2). The green areas represent the intervals
in which MRF and FF are assumed to be in contact with the ground (stationary condition). B) The stride length is the distance between two
consecutive initial contacts of the foreground foot (IC #1 and IC#2 in orange). Step length is the distance between initial contact of the
foreground foot (IC #1 in orange) and the initial contact (IC #1 in blue) of the contralateral one.

FIGURE 6. Body segment templates definition for the right side.

where IMfoot (x, y) is a generic pixel of IM foot expressed in
the I , lf is the distance between IMRF0 and IFF0 (Fig.6).

The foot coordinate system f0 was defined as described
in par. I. and the transformation matrix IT f 0 from f0 to
I determined and applied to transform ITMP foot in the f0
(f 0TMP foot ).

b: SHANK TEMPLATE
The central shank portion was extracted as the region
included in the anulus centered in ILM0 and defined by the
radius lshank25 and the radius lshank75 equal to the 25% and the
75% of the distance between ILM0 and ILE0, respectively
(Fig.6).

Then, the generic pixel ITMPshank (x, y) of ITMPshank in I
was obtained as:

ITMPshank (x, y)

=

{
1,

∣∣IMsub(x, y) = 1 ∩ lshank25 <
√
x2 + y2 < lshank75

0, |otherwise

}
An ellipse was fitted on ITMPshank . Then, a shank coordinate
system (s0) was defined with the axes coincident to the
inertial ellipsoid principal axes and the origin coinciding with
the centroid. The transformation matrix IT s0 from s0 to I
was computed by simple geometrical rules and applied to
transform ITMPshank in the s0 (s0TMPshank ).

144382 VOLUME 11, 2023



D. Balta et al.: Model-Based Markerless Protocol for Clinical Gait Analysis

FIGURE 7. Ankle joint center estimation. a) I Mfoot and its relevant I Tf b) I TMPfoot with I LM0. c) I TMPfoot and I Mfoot in the common I. d) The
origins of f and f0 were made to coincide and e) the f0 TMPfoot was matched with the f Mfoot and the relevant matrix f0 Tf determined.

c: THIGH TEMPLATE
The central thigh portion was extracted as the region included
in the anulus centered in ILE0 and defined by the radius
lthigh 25 and the radius lthigh 75 equal to the 25% and the 75%
of the distance between ILE0 and IGT0, respectively. (Fig.6).

Then, the generic pixel ITMPthigh(x, y) of ITMP thigh in I
was obtained as:
ITMPthigh(x, y)

=

{
1,

∣∣IMsub(x, y) = 1 ∩ lthigh25 <
√
x2 + y2 < lthigh75

0, |otherwise

}
Similarly to the ITMPshank , the thigh coordinate system t0
and the transformation matrix I

0T t0 .from t0 to I were defined
and applied to transform ITMP thigh in the t0 (t0TMP thigh).

d: PELVIS
The pelvis inclination, with respect to the xI , was determined
during the static upright standing acquisition based on the
positions of the IASIS0 and IPSIS0 (Fig.6).

5) JOINT CENTERS TRAJECTORIES ESTIMATION
For each frame of the gait cycle, the joint center positions
were identified following a bottom-up tracking approach
from the foot to the pelvis.

a: ANKLE JOINT CENTER (AJC) ESTIMATION
The foreground foot was extracted from the RGB image
based on color filters (IM foot ) and the posterior part of the
foot was isolated following the same procedure presented in
the par. IV. The foot coordinate system f and the relevant
transformation matrix IT f was defined as described in par. I
(Fig.7a).

After having expressed ITMP foot (Fig.7b) and IM foot in
the common I (Fig.7c), the origins of f and f0 were first

made to coincide (Fig.7d) and then, using an iterative closest
point (ICP) technique [36], the f0TMP foot was matched with
the fM foot and the relevant matrix f0T f (4 × 4), determined
(Fig.7e).

Finally, the IAJC position in I , coincident toILM , was
obtained for each frame based on the position of LM
in the template ILM0 by applying the three subsequent
transformations:

IAJC ≡
I LM =

I T ff T
f0
f0
T IILM0

b: KNEE JOINT CENTER (KJC) ESTIMATION
The separation between the foreground and background
shanks was carried out using two alternative strategies
depending on whether there was or was not overlap between
foreground and background shanks.

To discriminate between overlap/non overlap conditions,
a circle centered in ILM with radius equal to the distance
between ILM0 and ILE0 was drawn. If there was no overlap,
the segmentation mask IM sub were grouped in two separated
regions, and the foreground shank, being closer to the camera,
coincided with the largest area (Fig.8a).

Conversely, when there was overlap, a single connected
region was found, and auxiliary depth sensor data were used
to separate foreground and background shanks (Fig. 8b).
To this purpose, the histogram of depth values within the
region was computed and the Otsu method [37] was applied
for a binary classification (class 0: foreground shank, class 1:
background shank) based on the minimization of the variance
between classes.

The central portion of the foreground shank (IM shank )
was extracted as the region included in the anulus centered
in ILM0 and defined by the radius lshank25 and the radius
lshank75.

VOLUME 11, 2023 144383
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FIGURE 8. Separation between foreground and background shanks. A circle centered in
I LM with radius equal to the euclidean distance between I LM0 and I LE0 was drawn.
A) No-overlap between the two shanks. On the left, Two separated regions were found.
On the right, the foreground shank I Mshank . was identified B) Overlap between the two
shanks. On the left, a single connected region was found, the histogram of depth values
inside the region was computed and the Otsu method was implemented for separating
the two shanks. On the right, the foreground shank I Mshank was identified.

The shank coordinate system s was defined with the
axes coincident to the inertial ellipsoid principal axes of
the IM shank and the transformation matrix IT s. from s to
I computed. Similarly to the ankle joint center estimation,
the origin of s and s0 was made to coincide and then,
using an ICP technique [36], the s0TMPshank was matched
with the sM shank and the relevant matrix s0T s (4 × 4),
determined.

Finally, the IKJC position in I , made to coincide with ILE,
was obtained for each frame based on the position of LE in
the shank template ILE0 by applying the three subsequent
transformations:

IKJC ≡
ILE =

IT ssT s0
s0T I ILE0

c: HIP JOINT CENTER (HJC) ESTIMATION
To separate foreground thigh from the background thigh and
the hand during arm oscillation, two alternative procedures
were implemented depending on whether the foreground
hand was superimposed to the foreground thigh or not. Pre-
liminarily, a circle centered in ILE with radius equal to the
distance between ILE0 and IGT0 was drawn and the envelope

of the histogram of depth values of the pixels within this circle
was computed and the maxima were identified.

In case of foreground hand superimposition, three peaks,
corresponding to the foreground hand (class 0), foreground
thigh (class 1) and background thigh (class 2), were found on
the histogram envelope (Fig.9a). Then, the Otsu method [37]
was applied for a three-classes classification. Alternatively
(Fig.9b), a binary classification was implemented (class 0:
foreground thigh, class 1: background thigh).

The central portion of the foreground thigh (IM thigh) was
extracted as the region included in the anulus centered in ILE
and defined by the radius lthigh25 and the radius lthigh75.

The thigh coordinate system t was defined with the axes
coincident to the inertial ellipsoid principal axes of the
IM thigh and the transformation matrix IT t . from t to I com-
puted. The origin of t and t0 was made to coincide and then,
using an ICP technique [36], the t0TMP thigh was matched
with the tM thigh and the relevant matrix t0T t (4 × 4), deter-
mined.

Finally, the IHJC position in I , made to coincidewith IGT ,
was obtained for each frame based on the position of GT in
the shank template IGT0 by applying the three subsequent

144384 VOLUME 11, 2023
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FIGURE 9. Separation between foreground and background thighs. A circle centered in I LE with radius equal to the euclidean distance between
I LE0 and I GT 0 was drawn, the histogram of depth values inside the region was computed and the envelope was calculated. a) foreground hand
superimposed to the foreground thigh. The envelope was characterized by three peaks and the Otsu method was implemented for a three-classes
classification. b) No foreground hand inside the circular region. Only two peaks were present in the envelope and the Otsu method was
implemented for binary classification.

transformations:
IHJC ≡

IGT =
IT t tT t0

t0T I IGT0

6) SUBJECT-SPECIFIC MODELS CALIBRATION
It must be highlighted that within the recorded gait cycle,
size and shape of the lower limb body segments vary due to
soft tissue deformation [38], changes in the subject position
relative to the camera field of view, and potential out-of-plane
movements, thus limiting the effectiveness of the matching
procedure between the body segment templates and the seg-
mented body segment masks. To overcome these limitations,
a multiple calibration procedure [39] was implemented based
on three sets of body segment templates, the first defined
from the standing posture (Fig 10a), the second and the
third from frames selected during the loading and the swing
phases of the gait cycle, respectively (Fig.10b, and 10c). The
procedure for the identification of joint centers trajectories
as described in par.V, was then repeated using the additional
templates, thus obtaining three different trajectories for each
center.

7) JOINT KINEMATICS ESTIMATION
Joint kinematics was determined based on the segment incli-
nation as defined by the lines connecting the joint centers.
For the ankle, the plantar-dorsi flexion angle was determined
as the angle between IAJC-ITOE and the IAJC-IKJC vec-
tors, the knee joint flexion-extension angle was determined as
the angle between the IAJC-IKJC and IKJC -IHJC vectors.
The-hip joint flexion-extension angle was determined as the
angle between the IKJC - IHJC vector and the time-invariant
direction identified by the IASIS0-IPSIS0 vector (pelvic tilt)
during the standing posture. For each joint, three kinematic
curves were obtained based on the three sets of body segment
templates. These curves were then combined into a single
curve by a nonlinear sinusoid weight function [40] based on
the percentage of the gait cycle.

E. PERFORMANCE ASSESSMENT AND STATISTICAL
ANALYSIS
The accuracy of the gait events identification was evalu-
ated by computing the time difference in terms of the mean
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FIGURE 10. Set of body segment templates definition during static phase (a), loading phase (b) and swing phase (c).

FIGURE 11. Key gait features extracted from sagittal lower limb joint kinematics.

absolute error (MAE) and mean error (ME) between the gait
events found by visual inspection from the RGB images and
those estimated by the automatic MS method over trials and
subjects.

The spatial-temporal gait parameters estimated were
assessed in terms of MAE, MAE%, ME, ME% with respect
to the estimates provided by the 3D MB protocol over trials
and subjects.

Before comparison, both the MS andMB kinematic curves
were filtered using a fourth order Butterworth filter (cut off
frequency at 7 Hz) and were time-normalized to the gait cycle
(1-100%) [41].

For each subject, gait trial and joint, the performance of
the proposed MS method were assessed in terms of offset
and waveform similarity [42]. The offset was computed as
the absolute difference between the mean value of the MS
(MS) and MB kinematic curves (MB) within a gait cycle:

Offsets,t,j =
∣∣MBs,t,j −MSs,t,j

∣∣
For each joint, the latter values were then averaged across

trials and subjects:

Offsetj =
1
NS

NS∑
s=1

1
NT

NT∑
t=1

Offsets,t,j

where NT = 10 is the number of trials and NS = 18 is the
number of subjects.

For each subject, gait trial and joint, the waveform similar-
ity was evaluated as the root mean square error (RMSE) of
the MS joint kinematic curves with respect to the MB joint
kinematic curves, after removing their mean values [42]:

RMSEs,t,j=RMS
((
MBs,t,j−MBs,t,j

)
−

(
MSs,t,j −MSs,t,j

))
For each joint, the latter values were then averaged across

trials and subjects:

RMSEj =
1
NS

NS∑
s=1

1
NT

NT∑
t=1

RMSEs,t,j

where NT = 10 is the number of trials and NS = 18 is the
number of subjects.

In addition, a set of clinically relevant key gait features
were extracted according to [43] from theMB andMS sagittal
lower limb joint kinematics after offset removal (Fig.11):

K1: the knee flexion at the initial contact (0% of the gait
cycle);

K2: the kneemaximumflexion during the loading response
(0 - 40% of the gait cycle);
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K3: the knee maximum extension during the stance phase
(25- 75% of the gait cycle);

K5: the knee maximum flexion during the swing phase
(50 - 100% of the gait cycle);

A3: the ankle maximum dorsiflexion during the stance
phase (25 - 75% of the gait cycle);

A5: the ankle maximum dorsiflexion during the swing
phase (50- 100% of the gait cycle);

H3: the hip maximum extension during the stance phase
(25 - 75% of the gait cycle).

For each key gait feature, the MAE and the ME were
computed with respect to the MB estimates along with 95%
confidence intervals (95% CI) were computed. Normality of
the key gait features distributions was assessed by applying
Shapiro–Wilk test. After verifying normality, a two-sample
t-test with a significant level of 95% was implemented to
quantify differences between the MS and MB methods. A
p-value of ME and MAE less than 0.05 were considered
statistically significant.

For each gait feature and each method (MS and MB),
the reliability was evaluated with intraclass correlation based
on absolute agreement and 2 way random effects (ICC(2,k))
computed based on the formulas reported in [44] based on
the data collected over subjects (n = 18) for the different gait
cycles (k = 10).

ICC values less than 0.5 indicate poor reliability, values
between 0.5 and 0.75 indicate moderate reliability, val-
ues between 0.75 and 0.9 indicate good reliability, and values
greater than 0.90 indicate excellent reliability [44].

Spearman’s correlation coefficient (R) was used to cor-
relate the differences between MS and MB systems. The
estimated values, derived from R, can be interpreted as fol-
lows: values below 0.19 indicate a negligible relationship,
values between 0.2 and 0.29 suggest a weak relation-
ship, values between 0.3 and 0.39 indicate a moderate
relationship, values between 0.4 and 0.69 imply a strong rela-
tionship, and values greater than 0.70 signify a very strong
relationship. [45]

III. RESULTS
Results for gait events identification, spatial-temporal gait
parameters and lower limb joint kinematics, are reported in
Table 1. Regarding spatial-temporal parameters, the smallest
errors in terms of MAE % values were obtained for stride
duration (2%), followed by the step and stride length (2.2%
and 2.5%, respectively) and by gait speed (3.1%).

The RMSE values computed for lower-limb joint kinemat-
ics ranged between 3.2◦ and 4.5◦, smallest RMSE valueswere
found for the knee joint kinematics (3.2◦), followed by the hip
(3.5◦) and the ankle (4.5◦).
Results related to the extracted key gait features in terms

of ME, MAE and their 95% CI are summarized in Table 2.
Overall, MAE values were significantly different from zero
and ranged from 3.1◦ to 5.9◦.

Results for ICC(2,k) and R for both MS and MB protocols,
are reported in Table 3. Both MS and MB measurements

TABLE 1. Mean absolute error and mean error between the visual
inspection on the RGB images and the automatic identification of initial
contacts for both feet in seconds. Gait spatial parameters. Mean absolute
error (MAE), mean error(ME) of the gait speed, stride length, stride
duration and step length. Lower limb joint kinematics. The average
root-mean-square errors (RMSE) value between the joint kinematics
curves estimated by the MS method and the MB system are computed
over the gait cycle and averaged across trials and subjects.

TABLE 2. Mean error (ME) and mean absolute error (MAE) between MS
and MB protocol in the estimation of gait features. 95 % CI: 95% of
confidence interval.

TABLE 3. Comparison of estimates from the MS and MB protocol for
each gait feature. MS ICC(2,k): intraclass correlation for MS protocol,
MB ICC(2,k): intraclass correlation for MB protocol, R: Spearman’s
correlation coefficient.

revealed excellent reliability for K1, K2, K3, K5 and H3
(ICC = 0.90-0.94) while for A3 and A5 both protocols
showed a good reliability (ICC = 0.80-0.88). Correlation
between MB and MS kinematics ranged from very strong for
all knee and hip gait features (≥ 0.85) and strong (= 0.66) for
ankle kinematics features.

An ensemble view of the normalized joint kinematics
curves, averaged over trials and subjects, are reported in
Fig.12.

IV. DISCUSSIONS
The aim of the study was to present and evaluate accuracy
and reliability of a clinical markerless gait analysis protocol
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FIGURE 12. Sagittal lower limb joint kinematics (hip, knee and ankle) averaged over subjects and trials (average: dashed lines; SD:
shaded area; red = MB system; blue = MS system).

based on the use of a single RGB-depth camera for esti-
mating spatial-temporal parameters and sagittal lower limb
joint kinematics on patients with cerebral palsy. The protocol
was specifically devised to provide a quantitative tool which
could be easily implemented for screening and monitoring
disease-related motor progression in patients with CP.

The proposed protocol includes several fundamental
improvements with respect to previous research [20]. First,
an automatic thresholding segmentation algorithm was pro-
posed which does not require the use of any homogeneous
background, thus improving the system clinical applica-
bility and portability. Second, potential issues associated
with left-right confusion [46] and skeleton tracking in pres-
ence of foreground-background segments overlap [20] were
addressed by introducing a robust separation approach which
relies on the maximization of the variance between classes
based on depth data. Third, the analysis of the clinical con-
current validity of the method was not limited to the knee
kinematics as in [20], but also extended to the ankle and hip
kinematics and spatial-temporal parameters. The abovemen-
tioned improvements, besides increasing protocol robustness
to variations in the experimental conditions, also contributed
to an increase of about 35% of the accuracy of the knee joint
gait features [20].

It is worth noting that the method for the detection of the
gait events was specifically conceived for taking into account
the different types of foot contact normally observed in CP
patients (i.e. heel foot, flat foot and toe-ground contacts). The
proposed method relies on the orientation of the foot model
with respect to the ground and it represents a novelty with
respect to other studies based on the 3D coordinates of ankle
joint center only, thus neglecting the foot contact mechanism
([14], [19], [47], [48], [49], [50], [51]).

A. SPATIAL-TEMPORAL PARAMETERS
The proposed MS protocol showed a very good accuracy
compliant with clinical requirements ([52], [53]) with MAE
values equal to 1.2 cm for step length, 20 ms for stride dura-
tion, 2.5 cm for stride length and 0.02 m/s for the gait speed.
The latter errors found on CP patients were comparable to
those reported in previous single-camera studies but obtained
on healthy subjects ([14], [17], [19], [22], [50], [51]).

To the best of the authors knowledge, this is the first
study specifically validating the spatio-temporal parameters
in children with CP against a MB protocol. In the literature,
there are only a few single camera-based methods validated
on post stroke ([49], [54]) and parkinsonian patients [47],
and they showed lower performance. In particular,
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Ferraris et al. [54] and Cimolin et al. [47] have assessed
the errors associated to the spatio-temporal parameters esti-
mation using the Kinect v2 body tracking SDK on eleven
post-stroke and ten parkinsonian subjects, respectively. Both
studies found ME values equal to 0.02 m/s for gait speed
and 2 cm for step length, consistently larger than those found
with the proposed MS protocol (0.01 m/s for gait speed and
0.06 cm for step length). In a recent study, Lonini et al. [49]
evaluated the performance of DeepLabCut software for the
analysis of the gait of ten post-stroke patients using a single
RGB camera, reporting a high error variability for gait speed
(± 0.11 m/s in terms of ME).

B. LOWER-LIMB JOINT KINEMATICS
When comparing the 2D joint kinematics estimated by the
proposed MS method against the 3D joint kinematics pro-
vided by the reference MB protocol, it is convenient to
discriminate between the effects associated to the use of
different anatomical axes definitions and angular conventions
from the actual estimation errors [42]. While the adoption
of different anatomical axes definition mainly reflects on
an offset between curves, the errors in the reconstruction
of the joint center trajectories would affect the waveform
similarity and it can be quantified by the RMSE after offset
removal.

The average angular offset values were 8◦ for the ankle, 6◦

for the knee and 7◦ for the hip joint. The ankle offset can be
partially explained considering that the foot antero-posterior
axis in MS protocol is computed as the principal axis of the
best-fitting inertial ellipsoid whereas in theMB protocol from
the position of the markers attached to the second metatarsal
joint and the calcaneus. Similarly, the offset at the knee
joint can be ascribed to the different definition for the HJC
identifications implemented in the MS and MB protocol.
In fact, while in the MS protocol the HJC coincides with
the position of GT, in the MB protocol is determined as the
geometrical center of the acetabulum and it is determined
based on anthropometric regression equation [2]. The offset
at the hip joint is associated to the fact that in theMS protocol,
the pelvis inclination is assumed to be constant during the gait
cycle and coinciding to the pelvic tilt during the static upright
standing acquisition.

In terms of waveform similarity, the most accurate joint
angle was obtained for the knee joint (RMSE = 3.2◦), fol-
lowed by the hip joint (RMSE = 3.5◦) and the ankle joint
(RMSE = 4.5◦). It is important to highlight that, from a
clinical perspective, errors between 2◦ and 5◦ are likely to
be regarded as reasonable but may require consideration in
data interpretation [55]. The largest errors affecting the ankle
kinematics are mainly due to the auto-exposure of the camera
which can cause blurred images of the foot and distal part
of the shank during fastest movement such as the swing
phase.

In the last years, several single-camera MS methods were
proposed for gait analysis, however, in many cases, a direct

comparative evaluation with the proposed method was not
possible because: (i) the kinematic outputs were not validated
against a clinically-accepted gold standard ([56], [57], [58],
[59]) (ii) the method performance was only validated in terms
of accuracy in tracking joint centers ([46], [60]), (iii) the
objective was to classify motor activities or to detect gait
abnormalities ([54], [61], [62], [63], [64], [65]).

To the best of authors knowledge, the only MS study
involving CP children was presented by Nguyen et al. [46]
that evaluated the concurrent validity of the built-in body
tracking SDK (Kinect v2) against an MB gait protocol on
10CP children (GMFS I-II) based on a frontal view.However,
the reported errors were large for all the joints (RMSE =

11.2◦ for the hip, 10.3◦ for the knee, and 7.5◦ for the ankle).
In addition, there are a few MS studies that have been only

applied and evaluated on normal gait ([17], [19], [66]).
In Yeung et al. [66], the effect of five camera viewing

angles on the estimates of kinematics curves on healthy
subjects by using body tracking SDK of Kinect v2 was inves-
tigated. They found that Kinect v2 performed better at frontal
camera viewing angle showing a RMSE of 8◦ for the hip
flexion/extension angle, 11.4◦ for the sagittal knee, and 17.4◦

for the ankle plantar/dorsi flexion angle.
Yamamoto et al. have tested the performance of Open-

Pose [17] on healthy subjects reporting comparable results in
terms of reliability for knee and hip kinematics (ICC ranging
from 0.60 to 0.98) but very poor reliability for ankle kine-
matics represented by an ICC of 0.1 for the ankle maximum
dorsiflexion during the stance phase and the swing phase in
contrast to the ICC of 0.66 obtained from our MS protocol.

Castelli et al. [19] reported a RMSE of 4.8 ◦ for the hip,
3.6 ◦ for the knee, and 3◦ for the ankle on 10 healthy adults
which are comparable with the values obtained using our
method on CP children.

Interestingly, the proposed MS method provide a
level of accuracy similar to that obtained by popular
observation-based clinical gait assessment tools such as the
Salford Gait Tool based on the manual identification of the
anatomical landmarks on each recorded image [67].
In particular, Larsen et al. [67] have analyzed the accuracy

of the Salford Gait Tool against MB protocol on 10 adult
CP patients. They showed comparable errors in terms of ME
on some key gait features showing that the proposed method
obtained comparable performance of observation-based clin-
ical gait assessment with less efforts required from the
clinicians since our protocol includes manual intervention
exclusively for calibrating the three templates.

V. CONCLUSION
The proposed MS protocol was designed to satisfy as priority
its usability in clinical setting in terms of set-up and cost. For
this reason, it was decided to use a single consumer-grade
RGB-D camera. Clearly, this choice inevitably limited the
kinematic analysis to the joint movement in the sagittal plane
and hence to the description of the flexion-extension lower
limb joint angles.
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Furthermore, the movement of the subject was recon-
structed based on a 2D multi-segmental model defined from
a single 2D RGB image as the information provided by
the depth sensor were only used to extract the foreground
body segments. However, the projection of human 3D bodies
motion to a 2D space necessarily leads to errors and ambi-
guities which could be only partially compensated using the
multiple anatomical calibration proposed.

Another critical factor was represented by the quality of
the image recorded by the specific RGB-D camera. In fact,
due to automatic exposure time implemented by the Kinect
v2, the recorded images resulted blurred when capturing fast
moving body parts, and it negatively affected the results of the
template/mask matching. The latter problem could be easily
solved by selecting a camera which allows to control the
exposure parameters.

Finally, it should be acknowledged that the proposed pro-
tocol is not fully automatic as it is required a preliminary
identification of the external anatomical landmarks for the
subject-specificmodel definition. Nonetheless, it is important
to consider that gait analysis in CP patients is generally pre-
ceded by a clinical examination during which the clinicians
assess range of joint motion and spasticity and may easily
perform the identification of few anatomical landmarks.

In conclusion, the present study demonstrated the technical
validity of a MS single-camera protocol for clinical gait anal-
ysis in CP population. Results showed a good accuracy in the
joint kinematics estimation and good to excellent reliability
for the extraction of a complete set of clinically relevant key
gait features.

APPENDIX
In this appendix, the procedure followed to calculate
the conversion factor (m/pixel) for the computation of
spatial-temporal parameters was presented.

To convert the spatial parameters in meters, it is necessary
to determine the pixel-to-meter conversion ratio. It should be
noted that this conversion factor varies with the distance from
the camera since the higher the distance, the higher the con-
version factor is. To determine the conversion factor, a series
of preliminary acquisitions were performed by positioning an
object of known size at various distances from the camera. For
each distance, the conversion factor was calculated as:

Conversion factor(m/pixel) =
Size (m)

Size (pixel)
The conversion factor values were fitted though a linear

fitting technique to best approximate them. Consequently,
this procedure is able to obtain a linear model that associates
each distance to its corresponding conversion factor.

The spatial-temporal parameters in meter were calculated
applying the conversion factor to those values in pixel.
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