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Abstract: The most recent generations of graphics processing units (GPUs) boost the execution of
convolutional operations required by machine learning applications by resorting to specialized and
efficient in-chip accelerators (Tensor Core Units or TCUs) that operate on matrix multiplication
tiles. Unfortunately, modern cutting-edge semiconductor technologies are increasingly prone to
hardware defects, and the trend to highly stress TCUs during the execution of safety-critical and high-
performance computing (HPC) applications increases the likelihood of TCUs producing different
kinds of failures. In fact, the intrinsic resiliency to hardware faults of arithmetic units plays a
crucial role in safety-critical applications using GPUs (e.g., in automotive, space, and autonomous
robotics). Recently, new arithmetic formats have been proposed, particularly those suited to neural
network execution. However, the reliability characterization of TCUs supporting different arithmetic
formats was still lacking. In this work, we quantitatively assessed the impact of hardware faults
in TCU structures while employing two distinct formats (floating-point and posit) and using two
different configurations (16 and 32 bits) to represent real numbers. For the experimental evaluation,
we resorted to an architectural description of a TCU core (PyOpenTCU) and performed 120 fault
simulation campaigns, injecting around 200,000 faults per campaign and requiring around 32 days of
computation. Our results demonstrate that the posit format of TCUs is less affected by faults than the
floating-point one (by up to three orders of magnitude for 16 bits and up to twenty orders for 32 bits).
We also identified the most sensible fault locations (i.e., those that produce the largest errors), thus
paving the way to adopting smart hardening solutions.

Keywords: floating-point numbers; graphics processing units (GPUs); permanent faults; posit
numbers; real number arithmetic; Tensor Core Units (TCUs)

1. Introduction

Currently, hardware accelerators are essential units that allow the achievement of
the high computational power demanded for a broad number of modern systems, rang-
ing from mobile to high-performance computing (HPC) applications [1,2]. Most modern
applications (e.g., those using machine learning algorithms) rely on linear algebra opera-
tions, particularly general matrix multiplication (GEMM or M × M). In fact, algorithms for
M × M are intrinsically parallel and can be optimized by resorting to specialized hardware
topologies, such as systolic arrays (SAs) [3], dot product units (DPUs) [4], and in-memory
computing [1].

These topologies are typically incorporated as main engines in application-specific
devices like Tensor Processing Units (TPUs) in the artificial intelligence (AI) domain. At
the same time, graphic processing units (GPUs) evolved as powerful, popular, and flexible
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accelerators in the market, and current generations incorporate dedicated and special-
ized in-chip hardware accelerators for M × M operations (matrix cores processing units
and Tensor Core Units or TCUs) to speed up performance by providing mixed-precision
computations [5].

The computational flexibility of TCUs makes them very suitable for all applications
based on AI, such as scientific computing, cryptography [6], image and video process-
ing [5,7], virtual reality [8], the Internet of Things (IoT) and the Internet of Multimedia
Things (IoMT) [9], wireless communication [10], multidimensional processing data [11–18] ,
and complex environment data processing [19]. In fact, several works have proposed meth-
ods to increase the accuracy and performance of parallel algorithms using tensor-based
models [11]. Out of all these application domains, in this paper, we specifically focus on the
reliability aspects of safety-critical applications (e.g., autonomous driving, robotics, space,
and healthcare systems), which are nowadays pervaded with GPU-based devices. In all
these systems, TCUs play a fundamental role in conducting advanced and autonomous
tasks [20]. Moreover, the reliability of safety-critical systems represents a paramount aspect
that has to be accomplished by satisfying strict safety standards (e.g., ISO26262 [21] in the
automotive domain [22]). Hence, the TCUs inside GPUs must fulfill those reliability criteria
as well.

Unfortunately, the astonishing performance of in-chip TCUs within GPUs can be
overshadowed by the reliability concerns associated with the vulnerabilities of modern
semiconductor technologies that make them prone to faults [23,24]. Permanent faults
model possible defects that can happen due to different situations, such as (i) test-escaped
manufacturing flaws, (ii) infant mortality phenomena, and (iii) abrupt damage to the
device during in-field operations caused by process variation, premature aging, harsh
environments, or high operating temperatures [23]. Furthermore, during the in-field
operation of a GPU, permanent faults in TCUs can be eventually activated, and their effects
propagate silently to the outputs, leading to catastrophic consequences that endanger the
reliability and overall safety of a running application. In this regard, evaluating the impact
of permanent faults in TCUs is imperative to identify critical hardware vulnerabilities and
devise suitable hardening strategies.

So far, most of the efforts to evaluate the reliability of GEMM accelerators have
concentrated on assessing the effect of transient faults on different SA topologies [25–27].
The authors of [28] analyzed the impact of soft errors on machine learning accelerators
(e.g., NVDLA). Their results show that most of the fault effects might produce small
variations during the training/inference stages of CNNs (i.e., up to 90.3% of all effects
do not significantly affect the expected result). However, their evaluations were limited
to soft error effects on CNN workloads. In [29], the authors evaluated the influence of
radiation effects in TCUs and mixed-precision formats of GPUs on the overall reliability of
M × M operations. The reported experiments indicate that workloads using TCUs have
higher failure rates than workloads that avoid them. Other works have studied the impact
of permanent faults in SAs in the context of DNN workloads. Still, these works did not
consider the architectural features of TCUs or their internal structures [30–34].

Regarding number format characterization, several works in the literature have con-
sidered different emerging number representations (e.g., posit), which face the limitations of
mature number formats, like floating-point, especially in new applications, such as those in
the machine learning domain. However, most of these efforts are focused on the evaluation
and comparison of the code format benefits, as well as the area and power costs of their
implementations [35–40]. Some works have carried out experiments (in software) to address
the implicit resiliency associated with the encoding representation of real numbers [41–43].
The experimental results suggest that posit is more error-resilient than FP. However, the
impact of permanent hardware faults in the underlying hardware structures has not been
analyzed and remains mostly unexplored.

In a previous work [44], we preliminarily analyzed the resiliency of TCUs affected by
hardware defects in their internal structures (i.e., DPUs) and their impact on the execution
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of GEMM workloads under two different number formats, floating-point (FP) and posit.
Our preliminary results suggested that posit might be less sensitive to faults than standard
representations (e.g., FP) by up to one order of magnitude. However, due to a TCU’s
intrinsic accumulative nature, the fault vulnerability and sensitivity of in-chip memory
elements, format configurations (e.g., bit widths), and their impact on results were not
fully explored in [44]. In the current work, we extend the reliability assessment of TCU
accelerators in GPUs by considering the impact of faults affecting different structures inside
the TCU cores (not only in the DPUs’ logic but also in the near registers’ storage elements),
as well as their impacts on different bit-size configurations (16- and 32-bit) for two real
number formats (i.e., FP and posit).

Our analysis was based on an open-source architectural hardware model of TCUs
(PyOpenTCU [45]) that we developed, which supports several format configurations (e.g.,
16- and 32-bit data). Moreover, the model includes an embedded fault injector tool to enable
reliability evaluations.

In our experiments, we evaluated the complete execution cycle of TCUs when perma-
nent faults affected the internal structures of TCUs (e.g., DPUs and near-registers). The
evaluation required a total of 120 fault simulation campaigns, injecting around 200,000 faults
per campaign. Overall, the complete fault simulation campaigns needed around 32 days.
The experimental results indicate that hardware faults in TCUs accumulate their effects
during the TCU’s operative cycle, and in most cases, each fault corrupts 2 bits in the output
results for both real number formats.

The major contributions of this work are as follows:

• We report the results of an extensive reliability assessment of permanent faults affecting
the structures of an accelerator (TCUs) for AI workloads (e.g., GEMM) by considering
two number format width configurations (i.e., 16- and 32-bit data) and two real number
formats (i.e., FP and posit).

• We introduce PyOpenTCU [45], an open-source architectural model of TCUs in GPUs
that integrates a custom reliability evaluation framework, which allows the evaluation
of hardware defects located in the internal hardware structures of TCUs (i.e., DPUs
and near-registers).

• We show that TCUs are highly sensitive to permanent hardware defects. However, we
demonstrate that only around 5% to 10% of all analyzed and observed errors affect
significantly the final result.

• We prove that the posit number format is less error-sensitive to permanent faults in
comparison to the floating-point one by up to three orders of magnitude for 16 bits and
up to twenty orders of magnitude in the 32-bit case.

Although we focused our analyses on and considered the architecture of TCUs in
NVIDIA’s GPUs, the proposed methodology can also be adapted and applied to the
reliability assessment of similar machine learning accelerators inside GPUs, such as those
in AMD or Intel GPU architectures (e.g., matrix cores).

The rest of this paper is organized as follows. Section 2 describes the related back-
ground regarding GPUs, TCUs, and floating-point data representations. Section 3 describes
the evaluation methodology and introduces the study’s framework. Section 4 presents the
experimental results for every number format configuration. Finally, Section 5 concludes
the paper.

2. Background
2.1. Organization of Graphics Processing Units (GPUs)

Modern GPUs are massive, general-purpose hardware accelerators able to provide
high operative throughput by resorting to an array of homogeneous clusters of parallel
cores (a.k.a. streaming multiprocessors or SMs). In modern GPU architectures, SMs are
the primary execution unit, and they comprise up to four sub-cores to handle and boost
the simultaneous execution of several threads (e.g., 32 threads or one warp) by resorting
to a set of scalar processing cores and in-chip accelerators, such as integer units (INT),
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floating-point units (FPU), special function units (SFUs), and TCUs. This variety of resources,
in combination with register file banks, memories, and clever scheduling policies, allows
the processing of large amounts of data with minimal latency effects. Typically, one SM
comprises 32 to 64 INTs and FPUs, 4 SFUs, and 2 TCUs. In particular, the vector nature
of TCUs involves the special and clever management of the running threads and memory
resources in an SM, which is also extended to the GPU’s ISA capabilities to operate it. The
following subsection details and highlights the main operative features of TCUs as in-chip
accelerators of GPUs.

2.2. TCUs’ Organization and Operation in GPUs

Modern GPUs include in-chip accelerators to increase the performance during the
execution of machine learning algorithms. In detailed terms, the most recent GPU archi-
tectures include accelerators for linear algebra focused on machine learning applications
called matrix core processing units or TCUs [4,46]. Each TCU comprises one 4 × 4 array of
dot-product units (DPUs), which are able to compute 16 multiply-and-add (MaA) operations
per cycle on matrix segments (e.g., 4 × 4-size A, B, and C inputs) and perform M × M
operations. The organization of the register file and the scheduling in GPUs with TCUs
are adapted to provide a large number of operands to the TCUs and avoid latency effects.
Thus, operands are organized as consecutive sets of registers during the execution of TCUs
to exploit spatial locality. Moreover, GPUs include additional special registers (also known
as buffers, immediate registers, register file caches, or near-registers) [47] as crucial elements to
take advantage of temporal locality and improve the management of the matrix segments
in the TCU’s operation.

Since TCUs were designed to exploit the implicit parallelism inside GPU platforms,
matrix tiling schemes and hardware scheduling policies have been implemented [48]. In
particular, thread grouping schemes (a set of four consecutive threads per warp, or thread
groups) cleverly and efficiently provide the data and support the management of a TCU’s
operation. In this scheme, some data operands (e.g., segments of Matrix C) are shared
among the thread groups to efficiently provide operands to the TCU. In the GPU, these
thread groups are executed in pairs, which represent an octet. In general, the octets and
their associated data (matrix segments) are processed on TCUs, as is shown in Figure 1,
where the octets are represented with the colors (yellow, green, red, and violet). Thanks to
the octet data organization, these help hide the latency produced during the loading and
storing process [4] by sharing the matrix segments among the thread groups per octet for
their independent execution. In detail, each buffer is able to store the matrix segments
(e.g., 4 × 4-size A, B, and C inputs) and the partial result of each M × M. Thus, the TCU
operation and its accumulative process exploit the near-register architecture to reduce the
time latency involved by reading and storing mechanisms between the SM registers and
the TCU memory elements.

TCUs are flexible, and they support multi-precision and multi-size configurations.
NVIDIA has introduced assembly instructions (e.g., HMMA) to process large matrix dimen-
sions (e.g., 16 × 16) in TCUs as a sequence of operations. Each HMMA instruction has four
operands, and each one uses a pair of registers. In this context, a sequence of instructions
(i.e., HMMA) is used (see Figure 2) to allow the operation of 4 × 4 array segments. Then,
consecutive instructions produce partial, accumulated, and final results. The partial and
accumulated results are stored in the near-register file (buffers) for subsequent reuse with
other input segments. Finally, the results are stored in the SM’s register file.
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Figure 1. A general scheme of two TCUs inside an SM core. Each TCU is composed of a scheduler,
16 DPU cores, and its internal buffers (in this illustration, the matrix segments A, B and C and their
octets are represented by the colors yellow, green, red, and violet. In detail, each field in the buffers
stores four elements). Adapted from [4,46].
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Figure 2. A general scheme of the M × M of the input segments (A, B and C matrix segments) and the
instructions used by the Thread Group 0 to calculate two output segments in the 16 × 16 mode. The
HMMA instructions are grouped in sets to process 4 × 4 input segments and handle the intermediate
results. The resultant segment D is obtained after the sequence of four sets. The register banks (or
buffers) serve as temporal accumulators for partial results (adapted from [4]).
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2.3. Number Formats for Real Numbers
2.3.1. Floating-Point (FP) Format

This format encodes a real number into a binary representation code defined by the
IEE-754 standard [49]. This standard establishes a codification using k bits (e.g., a 1-bit sign,
w-bit exponent, and t-bit fraction). Mathematically, a real value can be described in the FP
format using Equation (1), where bias is a constant offset used to normalize the exponent.

value = (−1)sign ∗ 2exp−bias ∗ (1 +
f n−1

∑
i=1

b f n−1−i ∗ 2−i) (1)

2.3.2. Posit Format

This number format provides higher accuracy and a dynamic range, emerging as
an alternative and drop-in replacement for the IEEE-754 format. The posit representation
encodes any real number into a binary representation using N bits distributed in four fields
(i.e., a 1-bit sign, r-bit regime, e-bit exponent, and f -bit fraction). This binary encoding
mathematically describes any real number according to Equation (2).

value = (−1)sign ∗ useedk ∗ 2exp ∗ (1 +
f n−1

∑
i=1

b f n−1−i ∗ 2−i) (2)

where useedk is a scale factor useed = 22es
, and es is the exponent size. The parameter k is

determined by the run length of 0 or 1 bits in the string of regime bits. The useedk value is
used to compute the minpos and maxpos values. Those values determine the posit dynamic
range, maintaining it in perfect balance at about 1.0, and every power of 2 has an exact
reciprocal. Additionally, the posit format does not include redundancy representations or
overflow/underflow cases during operations [50].

Some studies [51–54] have confirmed that, for some applications, like convolutional
neural networks or CNNs, the posit format outperforms the FP one in terms of accuracy.
Posit achieves superior accuracy in the range near 1.0, where most computations occur,
making it very attractive for deep learning applications.

3. Evaluation of Real Number Representations in TCUs

This section introduces a method to evaluate and characterize the resiliency of TCUs
and their crucial features, such as their number format, inside GPUs. Since our target was
the assessment of the reliability features of TCUs and the possible effects of permanent
faults (i.e., stuck-at-faults), we focused our evaluation on the architecture of TCU cores and
the main propagation effects on individual scalar values. For this reason, our approach
comprised three steps: a (i) functional characterization of TCUs, (ii) an evaluation of the
impact of permanent faults in TCUs for two real number formats (i.e., FP and posit) under
different format sizes, and (iii) an error impact assessment. Although the proposed method
is described as referring to the NVIDIA TCUs, it can be exploited for the reliability analysis
and evaluation of diverse machine learning accelerators, including AI architectures from
AMD or Intel. Clearly, when changing the target architecture, the first step (functional
characterization) must be adapted to match the key features of the micro-architecture under
evaluation. The following subsections provide a detailed description of each step.

3.1. Functional Characterization of TCUs

In this step, we exploit the advantages of the functional/architectural simulation
approach to evaluating AI workloads (e.g., GEMM) and their execution with TCUs. The
evaluation of the effects of permanent faults affecting hardware accelerators is crucial for
safety-critical applications, and this kind of analysis requires considerable computational
power, considering the complexity of the structures to be studied and the long execution
time of the application. Thus, the most feasible option to reduce the simulation time is to
resort to architectural models.
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We developed PyOpenTCU (https://github.com/TheColombianTeam/pyOpenTCU.
git (accessed on 28 January 2024)), an open-source architectural simulator that implements
the structural logic and the data organization of TCUs operating inside a GPU (including
DPUs, memory elements, and controllers). This model provides the flexibility required to
study the impact of hardware faults while still demanding feasible evaluation times, and it
represents an effective solution to analyze the faults that may be affecting the different unit
structures. The PyOpenTCU model is based on the architecture and descriptions from [4,46].
Furthermore, PyOpenTCU arises as a suitable tool for supporting the architectural design
exploration of fault-tolerant structures in TCUs (e.g., hardware, software, or a clever
combination of both). In addition, thanks to its programming flexibility, PyOpenTCU can
be used to support the development of accurate error models and further evaluation in
safety-critical application scenarios (e.g., autonomous robotics or automotive workloads
through the accurate assessment of CNNs deployed on faulty TCUs).

Since TCUs are mainly composed of DPU cores and buffers (or near-registers), the
TCUs in PyOpenTCU and their internal structures are described to perform the operations
of each thread group independently. In detail, PyOpenTCU implements modern GPU
architectures (e.g., NVIDIA Volta), which are composed of two TCUs per SM. Moreover,
PyOpenTCU exploits the advantages of a high-level programming language (Python) to
allow the exploration of different number formats, format sizes, and internal organization
features, such as the dimension of the spatial arrays of DPUs. Thus, the architectural
model supports the design exploration of different TCU solutions (e.g., changing the
number format configuration). In detail, PyOpenTCU supports two number formats for
real values (FP and posit formats) with two different configurations (16 and 32 bits). Those
configurations are supported by PyOpenTCU and implemented using the SoftFloat and
SoftPosit (https://pypi.org/project/sfpy/ (accessed on 28 January 2024)) libraries.

Unfortunately, a permanent fault arising in one of the TCUs might corrupt some or
all threads executed on the faulty TCU (since the accumulative nature of the TCUs can
propagate the corruption effects), which can be critical for some operations. In particular,
the hardware reuse in the TCU is of high interest to understand how the error propagates
or gets masked during the execution of M × Ms. Similarly, since the near-register structures
are used to store operands (e.g., the A and B matrix segments), shared operands (e.g.,
the C matrix segments), accumulated/intermediate results, and final M × M results, the
comprehension of how hardware faults placed in the memory elements and their error
impact affect the workload execution is crucial for a TCU’s resiliency. Due to this, and
based on the general architecture scheme of TCUs shown in Figure 1, we identified two
critical structures for the resiliency evaluation of TCUs: (i) DPU cores and (ii) buffers or
near-registers.

In detailed terms, there are three locations (inputs (INs), outputs (OUTs), and product
results (PRs)) inside the DPU where faults can be injected. When a fault occurs at the
IN level, this fault corresponds to a faulty interconnection in the data path in charge of
loading the data to be processed from the registers. Faults in the PR level mimic a fault
defect in the internal units of the multipliers and their error propagation. Finally, if a
fault affects any component of the tree adders, it can be modeled at the OUT level. On
the other hand, we observed that the buffers have two important locations for evaluating
the TCU resiliency: the input and output ports. In the case of a fault affecting the input
ports, it represents a defect in the interconnection path between the register files and the
near-register inside the TCU. If a fault affects the buffer output port, it mimics an internal
defect inside memory cells.

3.2. Fault Evaluation and Error Propagation

In our evaluation, we developed a fault injection (FI) framework built on top of Py-
OpenTCU to analyze the impact of permanent (stuck-at) faults on TCUs and propagate their
effects at the final output result (the matrix affected). In fact, the computational complexity
of this kind of framework is related to the total number of hardware defects for evaluation.

https://github.com/TheColombianTeam/pyOpenTCU.git
https://github.com/TheColombianTeam/pyOpenTCU.git
https://pypi.org/project/sfpy/
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In this regard, its complexity is represented as O(n), where n represents the total number
of faults under study. This framework is divided into four main steps: performing the
ideal (golden or fault-free) application, fault list generation, injecting the faults (based on
the pin-level fault injection strategy [55]), and classifying the results (i.e., comparing each
result obtained for the faulty model with the fault-free result).

The first step (performing the ideal application) computes the fault-free M × M
employing the TCUs. Then, the input and output matrices are stored to be processed in the
next steps. Subsequently, the fault list generator step produces the list of target faults used
in the fault simulation (FSim) campaigns. Each target fault is composed of a fault descriptor
with five configuration parameters (fault target—FT, thread group ID—TGID, position—
Pos, Mask, and stuck-at—ST). The TGID and Pos parameters identify the structure inside
the TCU to be affected by the fault (e.g., the buffer or DPU). The FT parameter is associated
with the target TCU structure to inject a fault (e.g., in the case of buffers, it represents the
input or output port identifier, while in DPUs’ case, it represents the internal structure).
The other parameters identify the target bit affected by the fault (Pos and Mask) and the
type of stuck-at fault (ST) to apply (0 or 1).

During the fault injection step, the framework reads one fault descriptor and places a
fault inside a TCU. The framework mimics the fault effect via saboteurs [56]. In detailed
terms, this step introduces defects in the mentioned locations (i.e., buffers ports and the
input, output, and partial results of DPUs). It allows for the study of the error propagation
to evaluate the fault impacts on the M × M level. Afterward, PyOpenTCU executes the
M × M. The output result is collected for later analysis. Then, a new fault descriptor
is selected, and the fault injection procedure restarts. As our evaluation is focused on
the assessment of typical AI applications (e.g., GEMM) deployed on TCUs, and the TCUs
produce results and operate in an accumulative scheme, our classification step is performed
only after the end of the accumulative process (i.e., corresponding to the final computed
matrix). Thus, the framework determines and stores the differences between the faulty
results and the reference outputs.

As our evaluation intends to determine the effect of permanent faults and their impact
when TCUs are running typical AI workloads (i.e., GEMM), one of the most important con-
cerns is related to the input tile (input matrices) processed by the TCUs. High-precision ap-
plications, like CNN domains, require computations with small magnitudes (e.g., CNNs are
used to operate weights and intermediate feature maps in the neighborhoods of ±1.0 [57]).
Moreover, some studies [58] have demonstrated that computations composed mainly of
zeros are crucial to guarantee the proper operation of CNN applications. Since this opera-
tion does not work properly, the CNN starts to experience bias that affects its performance.
For this reason, we performed our assessment of TCUs using the typical data tiles in CNN
domains, which have a distribution in the range of ±1.0. In detailed terms, we employed
three types of tiles: random (R) tiles with a random distribution of values, zero (Z) tiles with
numbers close to zero, and triangular (T) tiles with a triangular distribution of values. This
selection is also in concordance with other works in the field that have argued that fault
propagation in the GPU’s data path is data-independent if the input data (tiles) are not
biased (i.e., composed of an excessive amount of 0 s or all 1 s) [59].

It must be noted that PyOpenTCU implements an architectural description of TCUs
inside GPUs. Thus, our fault characterization is based on functional, structural, and
pin-level fault approaches. This evaluation might include some limitations, such as less
accuracy for some structures (e.g., internal adders or multipliers) in comparison to low-
level (RT- or gate-level) micro-architectural models. However, several works [60,61] have
demonstrated that strategies based on this kind of approach (pin-level fault injections and
architectural/functional simulations) offer an appropriate balance between accuracy and
computation effort. Moreover, in our work, we employed an exhaustive and extensive
evaluation with the purpose of reducing possible inaccuracies. Similarly, our evaluation
mainly focused on the analysis of permanent (stuck-at) faults on TCUs. However, we
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instrumented the PyOpenTCU tool to support further analyses of other fault types, such as
temporal faults (e.g., single-event upsets), which were out of the scope of the current work.

3.3. Error Impact Assessment

Thereafter, our error impact evaluation was based on the discrepancies between the
fault-free and the corrupted M × M results. Since this analysis depended on the TCU’s
configuration (i.e., number), first, we classified the impact of each fault on each TCU result
value according to the following categories:

• Masked: The fault does not produce any effect;
• Silent data corruption (SDC): The fault affects the results by corrupting one or more

output values;
• Detected unrecoverable error (DUE): The fault prevents the correct execution of the

application (i.e., the results show one or more values of inf or NaN).

Afterward, our assessment performed a quantitative evaluation, which enabled us to
compare each value and determine the magnitude of impacts produced by each permanent
fault. Since our evaluation was intended to estimate the effect of hardware faults at the
application level in AI workloads (i.e., GEMM), our approach resorted to the relative error
(also known as the relative uncertainty approximation error) as an evaluation metric, which is
the ratio between the value produced by a unit affected by a fault and its corresponding
fault-free value. This metric allows us to determine the impact of a hardware fault at the
application level (i.e., the final output tile matrix) since it can compare values of different
magnitudes. Moreover, this metric provides a reliable evaluation, especially in terms of
outlier cases, since all the employed values are normalized during their computation.

4. Experimental Results

We used the typical configuration of an SM with two TCUs. Thus, in PyOpenTCU, all
warps (and their internal thread groups) could address both TCUs. For the evaluation, we use
the configuration of 16 × 16 input matrices (i.e., a complete M × M requires a sequence of
8 HMMA instructions) with two highly used bit-sizes in ML workloads for both arithmetic
formats (e.g., 16 and 32 bits). Our FSim campaigns were composed of 120 simulations
(60 simulations per considered number format, with 10 simulation campaigns per input tile
type and bit-width). Each exhaustive simulation campaign included a total of 196,608 faults,
which corresponded to the total number of possible stuck-at faults in the DPUs per TCU
(i.e., 16 DPUs, each one composed of 9 INs, 4 PRs, and 1 OUT), operating in both bit sizes
(16 and 32) and the total of thread groups (8), and the possible faults affecting the buffers
with byte-size of each one (3 kb). This evaluation demanded a computational complexity
of 32.1 days. All experiments were performed on an Hewlett-Packard Z2 G5 workstation
with an Intel Core i9-10800 CPU with 20 cores and 32 GB of RAM, which is available at
Department of Control and Computer Engineering (DAUIN) from the Politecnico di Torino.

Our evaluation was divided into two main stages: (i) the understanding and classi-
fication of error effects from hardware faults arising on the structures of the TCUs and
(ii) a quantitative evaluation of the errors caused by the fault effects on the results. The
subsequent subsections provide a detailed overview of these stages.

4.1. Fault Effect Assessment

At this stage, we studied the error effects of a fault and its relation with each number
format. In particular, we compared each element of a fault-free matrix with the obtained
matrix after the simulation (affected matrix). Figure 3 depicts the distribution of fault effects
for the DPUs and buffers in the TCUs. In detailed terms, we classified the impact of faults
arising at different injection places (In, RP, and Out) for both formats (posit and FP) under
two bit-sizes configurations, 16 bits (the top) and 32 bits (the bottom). Our results indicate
that the TCUs are highly sensitive to permanent faults. In fact, the results show that both
number formats (FP and posit) exhibit a similar trend, and they also reveal that the bit
width has a strong relationship with error propagation. Interestingly, our evaluation shows
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that number formats with less bit width are more prone to propagating the effect of a
permanent fault.
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Figure 3. Distribution of fault effects alongside their impacts on the output result for all analyzed
benchmarks for the TCU and buffer configurations of 16 bits (the top) and the TCU and buffer
configurations of 32 bits (the bottom).

The observed behavior seemed to be associated with the length of the mantissa (FP) or
fraction (posit) fields in the cores and the accumulative process during the execution of the
TCUs. We observed that hardware faults affecting the corrupted TCUs mainly produced
small errors observable on the mantissa and fraction fields. However, a deep analysis
seemed to indicate that the accumulation process in the TCUs contributed to masking a
considerable portion of the effects, especially in large bit-with formats (i.e., 32 bits), so the
error propagation on those fields was mostly masked during the M × M operation.

In detailed terms, the M × Ms with 16-bit size operands suffered 97% of the faults
causing SDCs and only 1% of the faults producing DUEs (e.g., not-a-number or NaN cases).
Meanwhile, if M × M was performed on 32 bits, the SDCs corresponded to 92% of the
faults injected, around 8% of the faults were classified as masked, and fewer than 1% were
labeled as DUEs.

The results also show that, if the TCU is configured to perform M × M of 16-bit size,
and faults arise in the DPUs’ outputs (OUT), these faults mainly cause SDCs (up to 99%).
Meanwhile, if a fault arises on the IN or PR places of the DPUs, the fault propagation
probability and its associated impact decrease up to 96%. However, DUE cases might
increase. In addition, faults affecting the buffer input port were prone to corrupting and
propagating effects on the output matrix in up to 95% of the evaluated cases, whereas faults
arising in memory cells of the near-register/buffer structures increased the fault corruption
of the results by up to 97%. On the other hand, if the M × M were computed with a 32-bit
size, and a defect affected the DPU’s output (OUT), there would be up to a 98% probability
of changing the expected value. However, the probability of error propagation decreases by
up to 80% when a fault is placed on the IN. Therefore, defects affecting the near-registers
(buffers) might change the final result by around 88% and 92% when the fault is placed in
the input and output ports, respectively.

However, the results demonstrate that, when TCUs are configured to operate in a
16-bit configuration, the percentage of SDCs affecting the DPU’s structures increases by up
to 1.5% with respect to the percentage of faults affecting the buffers. In contrast, the buffer
ports are up to 1% more sensitive than the DPUs’ structures when M × M operations are
performed on 32 bits.
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Remarkably, the DUE probability is related to the type of processed input tile. The
results show that no faults crash the application when the TCUs compute values close to
zero, regardless of the number format configuration. In in-depth terms, we found that
the DUEs mainly appeared when the fault affected the most significant bits. This means
that the exponent (FP) and the regime (posit) are more prone to crashing the application.
On the other hand, the masked cases were produced when the faults affected the less
significant bits.

4.2. Quantitative Error Evaluation

Let us move on to the quantitative evaluation. Our approach estimated the impact of
hardware faults when a fine-grain AI workload (e.g., GEMM) was considered by comparing
the differences between the fault-free matrix and the observed one. For this reason, we
employed the relative error, which allowed us to quantify the magnitude of error from the
structural defects on the TCUs.

As expected, the experimental results proved that the fault impact was related to the
most significant bits affected in the final result; see Figure 4. A detailed view shows that
both bit widths (16 and 32 bits) exhibited a similar trend, regardless of the number format
and the faulty TCU structure (i.e., DPU’s internal structures and buffer ports). Thus, the
exponent and the regime were more sensitive to permanent faults. Based on our results,
the worst fault effect for 32-bit operations reached up to 1038 and 1018 in FP and posit,
respectively. Meanwhile, M × M performed in 16 bits presented the highest error, up to 108

in FP and 105 for posit.

Figure 4. Relative error per affected bit. The top shows the impact of permanent faults when TCUs
were operating on 16 bits, while the bottom shows the error magnitude if the bit width was 32 bits,
for both number formats (FP on the left and posit on the right).

Nevertheless, for both bit widths, the changes affecting the exponent (in FP) and the
regime (in posit) had a probability of less than 10%. Despite this, the fraction (FP) and the
fraction and exponent (posit) were more likely to change one or more bits, and the error
generated by these changes was less than 1.0. Indeed, we found that 90% and 95% of error
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impacts were below 1.0 for the 16- and 32-bit widths, respectively (see Figure 5). In the
CNN domains, errors of this size might be controlled or neglected [28,58,62].

Figure 5. Relative error and cumulative distribution for both number formats (posit format is
presented in blue, meanwhile FP on is shown in red). We reported the impact distribution when the
output buffer ports were affected by faults and the TCUs were operating on 16 bits (top) and 32 bits
(bottom). The black line represents an error magnitude of 1.0.

In detailed terms, the cumulative distribution of the errors shows that the fault im-
pact was directly linked to the number format. A closer look confirmed that small error
magnitudes were mainly produced by faults in the mantissa (FP) and the fraction (posit)
fields. Meanwhile, large impacts were commonly obtained when the most significant bits
(exponent in FP and regime in posit) were affected by a fault. Surprisingly, FP had an error
distribution mainly concentrated around 101, 102, 104, 1011, 1018, and 1038. On the other
hand, we found that in posit, the error impact was widely distributed between 100 and
1018, mainly due to impacts on the regime bit-fields.

Let us conclude. Our analysis highlights the relation between the real number formats
and the distribution and magnitude of errors within TCUs that are affected by permanent
faults. Interestingly, the experimental results prove that posit formats in TCUs produce
failures with a lower order of magnitude compared to FP ones. Also, the results demonstrate
the sensitivity to faults of exponent (FP) and regime (posit) fields. Our evaluation can be
fruitfully exploited to support the design of reliable hardware accelerators for machine
learning domains, taking into consideration design parameters as the number format
and the bit width. Although the current work focused on the fault characterization of
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hardware defects and their effect on the fine-grain operation of TCUs, our findings might be
extended to support the reliability assessment of larger workloads using TCUs inside GPUs,
such as dense machine learning in automotive and robotics applications. In this context,
hybrid frameworks, which exploit the advantages of instruction-accurate simulators, like
PyOpenTCU, and the fast and efficient functional execution of applications, such as CNNs,
can provide a new opportunity to evaluate such computationally demanding and data-
intensive applications.

5. Conclusions

This work has analyzed TCUs’ resiliency inside GPUs. We developed a flexible
architectural model named PyOpenTCU that allows the analysis and evaluation of the
architectural impacts of permanent faults affecting TCUs. Resorting to this model, we
performed an accurate reliability analysis with different TCU versions, based on extensive
fault injection campaigns.

The experimental results show that the exponent (in the FP format) and the regime
(in the posit format) fields are the most sensitive to faults, regardless of the bit width.
The results also indicate that the FP format is more sensitive to permanent faults than the
posit format (by up to three orders of magnitude for 16-bit operations and up to twenty
orders of magnitude in the 32-bit case) for the analyzed operative ranges. Moreover, our
experimental results suggest that 90% to 95% of the analyzed faults in the TCU structures
produced errors with magnitudes lower than 1.0.

Furthermore, the results show that corrupting the most significant bit produces the
largest error effect. In particular, our experiments also show that the most frequent effect
on the outputs comprises the corruption of 2 bits in the output value when a permanent
fault is present inside a TCU.

Additionally, our results indicate that the bit width is strongly associated with error
propagation. Indeed, faults affecting TCUs configured for 32-bit width operations of
M × Ms are less prone to propagate errors by up to 5% compared to 16-bit configurations
of the TCU.

In future works, we plan to extend our assessment to evaluate the largest matrix sizes,
such as those involved in feature maps or activation layers in CNNs. Moreover, we plan to
use the findings from this work to devise effective hardening techniques.
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58. Češka, M.; Matyáš, J.; Mrazek, V.; Vojnar, T. Designing Approximate Arithmetic Circuits with Combined Error Constraints. arXiv
2022, arXiv:2206.13077.

59. Previlon, F.G.; Kalra, C.; Kaeli, D.R.; Rech, P. A Comprehensive Evaluation of the Effects of Input Data on the Resilience of
GPU Applications. In Proceedings of the 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), Noordwijk, The Netherlands, 2–4 October 2019.

60. Zhang, Z.; Wang, Z.; Gu, X.; Chakrabarty, K. Physical-Defect Modeling and Optimization for Fault-Insertion Test. IEEE Trans.
Very Large Scale Integr. VLSI Syst. 2012, 20, 723–736. [CrossRef]

61. Su, F.; Liu, C.; Stratigopoulos, H.G. Testability and Dependability of AI Hardware: Survey, Trends, Challenges, and Perspectives.
IEEE Des. Test 2023, 40, 8–58. [CrossRef]

62. Jiang, H.; Santiago, F.J.H.; Mo, H.; Liu, L.; Han, J. Approximate Arithmetic Circuits: A Survey, Characterization, and Recent
Applications. Proc. IEEE 2020, 108, 2108–2135. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISCAS45731.2020.9180771
http://dx.doi.org/10.1109/TVLSI.2011.2114681
http://dx.doi.org/10.1109/MDAT.2023.3241116
http://dx.doi.org/10.1109/JPROC.2020.3006451

	Introduction
	Background
	Organization of Graphics Processing Units (GPUs)
	TCUs' Organization and Operation in GPUs
	Number Formats for Real Numbers
	Floating-Point (FP) Format
	Posit Format


	Evaluation of Real Number Representations in TCUs
	Functional Characterization of TCUs
	Fault Evaluation and Error Propagation
	Error Impact Assessment

	Experimental Results
	Fault Effect Assessment
	Quantitative Error Evaluation

	Conclusions
	References

