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Abstract
In social networks, the influence maximization problem requires selecting an ini-

tial set of nodes to influence so that the spread of influence can reach its maximum

under certain diffusion models. Usually, the problem is formulated in a two-stage

un-budgeted fashion: The decision maker selects a given number of nodes to influ-

ence and observes the results. In the adaptive version of the problem, it is possible

to select the nodes at each time step of a given time interval. This allows the

decision-maker to exploit the observation of the propagation and to make better deci-

sions. This paper considers the adaptive budgeted influence maximization problem,

that is, the adaptive problem in which the decision maker has a finite budget to

influence the nodes, and each node requires a cost to be influenced. We present two

solution techniques: The first is an approximated value iteration leveraging mixed

integer linear problems while the second exploits new concepts from graph neu-

ral networks. Extensive numerical experiments demonstrate the effectiveness of the

proposed approaches.

KEYWORDS

adaptive budgeted influence maximization problem, approximate dynamic program-
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1 INTRODUCTION

Due to the diffusion of smartphones and tablets, social networks play an important role in our society. According to some

sources, around 60% of the world’s population has the possibility to use social networks. In Italy, about 58% of the population

uses social networks with an average daily usage time of 2 h [9]. Due to these statistics, it is clear that social networks represent

a fast and effective way to contact a large audience with a limited effort. This pervasive use of social networks has made them

a prime target for advertising. In particular, it has been estimated that 97% of small businesses use social networks to attract

new customers [46]. As a result, advertisements are now commonplace across various social networking services, for example,

Facebook, Instagram, YouTube, Pinterest, and Twitter.

In the vast area of online marketing, we are interested in viral marketing, that is, a business strategy that uses existing social

networks to promote content. The name comes from the similarities between how consumers spread information and how viruses

infect the population. In order to effectively plan such viral advertising campaigns, it is crucial to understand which individual

to target and to analyze both the social network and the influence process. In response to this need, social computing emerged as
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work is properly cited.
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2 FADDA ET AL.

a field of research studying the computational aspects of social networks [54]. In this wide area, the sub-field of social influence
studies the behavior of individuals and the spread of information in social networks. It involves interdisciplinary fields such as

mathematics, sociology, psychology, computer science, economics, and public safety.

In this sub-field, we address the influence maximization problem (IMP), whose aim is to maximize the spread of information

in a social network by carefully selecting a subset of users called seed nodes [69]. These users are convinced, often through

monetary incentives or coupon distribution, to disseminate the information to all their direct connections, such as followers or

friends. By doing so, the initial spread of information triggers a propagation process in which every individual forwards (the

previously received) information to other people. The field of application of IMP usually encompasses companies willing to

promote new products (or services) by using a limited amount of resources (in the form of discounts, free trials, free products,

etc.), but it has also applications in other areas such as mental cognition [39], and health [26].

The IMP is an NP-Hard problem [29] and it is difficult to solve even for relatively small networks [69]. Moreover, the

problem is usually faced in a single-stage framework in which the set of seed nodes is chosen, the propagation of the information

is observed and no recourse action is taken. This does not allow the seed nodes to be selected in an adaptive manner after

observing part of the diffusion process. In this paper, we relax this assumption by considering a decision maker that, given a

fixed economic budget, wants to maximize the expected number of nodes to influence in a given time period (the duration of

the marketing campaign). During each time step within the designated period, she determines the set of nodes to influence, pays

the associated cost, and observes the evolution of the diffusion process. We refer to this problem as adaptive budgeted influence
maximization problem (ABIMP), where we use the term adaptive to denote the dynamic structure of the problem (according

to [61] and [63]), while in some papers the same dynamic structure is called online adaptive [25]. Moreover, we use the term

budgeted meaning that we consider both monetary budget and influence costs according with the recent literature (see [11, 19,

22, 47]).

The ABIMP is a stochastic multi-stage problem aiming to maximize the expected number of nodes influenced. Traditionally,

dynamic programming or multistage stochastic optimization techniques are employed to address this kind of problem. If used

in an exact fashion, both methods require the computation of a complex integral, whose probability distribution is not easy to

define (being generated by the diffusion process of the information). In addition, the ABIMP contains the IMP as a special

case, thus proving to be an NP-Hard problem. Therefore, in order to face the ABIMP, we propose two heuristics: One based on

approximate value iteration (AVI) and leveraging Integer Linear Problem (ILP) and one using recent advances in Graph Neural

Networks (GNNs).

The first approach presents a useful way to deal with dynamic problems involving binary decision variables by leveraging

the property of polynomial functions of being easily linearizable.

The second approach employs GNNs to determine the set of nodes to be chosen at each time step. Although deep neural
networks have been widely used in the field of reinforcement learning (RL), leading to the development of deep reinforcement
learning techniques, GNNs have received less attention despite their capacity to directly handle graph-structured data [2]. By

leveraging their characteristics, it becomes feasible to enhance the learning process even in cases where the state space is large.

This makes GNNs particularly advantageous in real social network graphs, where efficient learning can significantly enhance

performance.

Both approaches are based on concepts from approximate dynamic programming or reinforcement learning, with a specific

focus on using model-free approaches (i.e., not assuming a prior knowledge of the diffusion process). This aspect proves to

be highly advantageous when deploying these techniques in real-world scenarios, where the diffusion process is not known.

Moreover, it is important to highlight that while the proposed heuristics are specifically designed for the ABIMP, the general

framework can be applied to other problems exhibiting similar characteristics.

In conclusion, we highlight that the contributions of the paper are:

• Formalize the mathematical model for the ABIMP. To the authors’ knowledge, this is a lack in the literature which

prevents an easy comparison of the different papers’ settings.

• Provide an open-source framework
1

for the ABIMP.

• Propose two heuristics for the ABIMP.

• Provide a rich set of experiments investigating the performance of the two heuristics.

The paper is organized as follows. In Section 2, we review the literature about the problem. In Sections 3 and 4, we present

the mathematical formulation of the problem and the proposed solution methods, respectively. Lastly, in Section 5, we show

the computational experiments, and in Section 6, we present the conclusion of the work and outline possible future lines

of research.

1
Available at https://github.com/evelina18/adaptive-budgeted-influence-maximization-problem.
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FADDA ET AL. 3

2 LITERATURE REVIEW

In the last decades, the study of the IMP has gained significant attention due to its promising applications in marketing and the

growing importance of social networks. Consequently, conducting a comprehensive literature review on this topic is impractical

due to the sheer volume of papers available (we refer to [69] for a general review of the topic). For this reason, we concentrate

on papers that address applications closely related to the problem at hand. Specifically, we focus on works that tackle adaptive

settings and/or consider budget constraints. We examine the solution methods and unique aspects of the problems addressed

in those papers. Additionally, we pay special attention to the diffusion process considered. Here, it is important to point out

that while the majority of the existing literature focuses on the Independent Cascade Model (ICM) [28] due to its theoretical

properties, our primary interest lies in model-free approaches.

The first study considering a two-stage formulation for the IMP is [68]. In their paper, the authors consider a sub-modular

second-stage function and obtain cuts applicable in a Benders’ fashion. Instead, the first study using ILP to face the IMP is

[20]. There, the authors consider an ICM, they model the IMP as a stochastic two-stage maximum covering location problem

with uncertain covering sets, and solve it by using a branch-and-cut algorithm based on Benders’ decomposition. The same

ILP model has been extended in [19] to incorporate budget constraints, resulting in the budgeted IMP (BIMP). In that paper,

the author shows that sample average approximation is more efficient than greedy strategies which select nodes based on their

features. The BIMP has also been tackled in [47] and in [22]. In the first paper, the authors propose a heuristic based on belief

propagation and they focus on ICM. Instead, in the second paper, the authors present two greedy algorithms that select the seed

nodes based on the size of the neighborhood, and on the ratio between the cost of the node and the size of the neighborhood,

respectively. Additionally, they propose a third approach that combines the outcomes of the two previous ones using simulated

annealing. The authors demonstrate that this latter method surpasses previous state-of-the-art heuristics. Finally, two important

papers dealing with the multi-period BIMP are [49, 50], which study the influence maximization problem minimizing the total

weight of the nodes activated in the first time period.

In more recent years, neural networks have been used to tackle both the IMP and the BIMP. This branch of the literature

is beyond the scope of the paper, but it is important to highlight that recently, in [31] the authors use GNN to tackle the IMP.

Despite being applied in another setting, this heuristic can be seen as the ancestor of the GNN-based heuristic that we will

present.

All the aforementioned papers consider static seeding selection, that is, the initial seed is determined and the outcome is

observed without any recourse action. This makes these approaches less effective in a dynamic setting, where the decision

maker can adapt the choice of the seed set to the realization of the diffusion process [63]. Despite the wide interest in two-stage

formulations, only a minor part of the literature focuses on the adaptive influence maximization problem (AIMP).

To our knowledge, the first paper presenting AIMP is [55]. There, the authors develop a concave approximation of the

objective function and use hill climbing to optimize it. Their contribution is mostly related to the theoretical bound in the case

of ICM. Instead, in [63] the authors propose an adaptive seeding strategy based on a greedy strategy which selects in each time

step the node that is able to maximize the increment in the objective function. By means of computational examples, they show

the effectiveness of the proposed method considering ICMs.

In more recent years, model-free RL techniques addressing the AIMP have gained traction. The key advantage of employing

these techniques is that they do not require any assumption on the diffusion process and they can adapt and learn optimal

strategies directly from data, making them highly flexible and effective. In this branch, in [65] the authors face the problem

via graph embedding: Each node of the graph is represented through a set of features and a RL model is formulated where

both the states and the actions are represented in a lower dimensional space. Another important contribution leveraging RL

is presented in [40], where the authors combine evolutionary algorithms with deep RL algorithms for solving the AIMP in

complex networks. The mix of these two techniques enables the proposed meta-heuristic to obtain a good trade-off between

effectiveness and efficiency. A similar technique has been used in the context of adaptive topic aware influence maximization

in [60], where the authors apply Double Deep Q-Networks with prioritization of experience replay, to train larger models.

It is worth noting that the literature about AIMP usually considers a given amount of nodes to be selected in each time step

of the time horizon. For example, in [16, 17, 40, 63–65] the authors present approaches where one node is selected per time

instant while in [24], and [21] the authors present methodologies where a constant quantity of node per time instant is selected.

Whether the first assumption may lead to problems with a time constraint [62], the second one is restrictive. For this reason, in

the proposed methods we remove this assumption letting the decision maker to select the number of nodes that she considers

more appropriate in each time step.

Despite AIMP being a special case of ABIMP, where the costs for influencing nodes are all equal to one and the budget

is equal to the seed size, the existing literature primarily focuses on this special setting, with only a limited number of papers

addressing the more general one. To our knowledge, the only papers considering budget constraints in the adaptive setting are:

[11], [66], and [70]. All of them employ the ICM only. The first paper explores a slightly different problem, where there are

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22206 by C

ochraneItalia, W
iley O

nline L
ibrary on [30/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 FADDA ET AL.

FIGURE 1 Agent–environment interaction in a MDP [58].

different diffusion processes (each one associated with a feature of the product), and each node is characterized by a purchasing

probability. The authors develop a greedy algorithm that selects the nodes leading to the greatest marginal contribution. They

consider networks with up to approximately 75.9k nodes and 508.8k arcs, enabling the examination of larger-scale scenarios

[11]. The second paper introduces an optimization algorithm that learns the parameters of the ICM over time. The authors

compare various techniques and prove that their proposed learning strategy surpasses baseline approaches, achieving rewards

that closely resemble those obtained by a greedy policy with perfect knowledge of the diffusion parameters. The experiments

are conducted on networks consisting of less than 300 nodes and 6000 arcs [66]. Lastly, in the third paper, the authors develop

a greedy heuristic selecting in each time step the nodes leading to the greatest immediate number of influenced nodes. The

study deals with graphs of 15.2k nodes and 58.9k arcs, providing valuable insights into the effectiveness of adaptive strategies

in practical scenarios [70].

In comparison to the aforementioned studies, the heuristics proposed in this paper can handle larger graphs and broaden the

method’s applicability as they do not rely on assumptions about the diffusion model.

3 PROBLEM STATEMENT

Let us consider a marketing campaign lasting for a finite set of time steps  = {0, … ,T}. We model the social network as a

directed graph G = (V,A), where V = {1, … ,V} is the set of nodes representing the individuals and A ⊂ V × V is the set of

arcs representing the relationship among them. Each node v ∈ V is characterized by:

• st
v ∈ {0, 1}: The state of the node, equal to 1 if it is activated (or influenced) at time t or equal to zero otherwise.

• cv ∈ R+
: The cost to pay for directly influencing node v.

•  out(v) = {u s.t. (v, u) ∈ A}: The set of nodes that can be directly influenced by node v.

•  in(v) = {u s.t. (u, v) ∈ A}: The set of nodes that may directly influence the state of node v.

The set in(v) influences the state of node v through

st+1
v = f (st

u, u ∈ in(v), 𝜉t
v), (1)

where the function f (⋅) describes the diffusion process, and 𝜉
t
v is a random parameter modeling the stochastic nature of the

process. We consider two types of models, namely the generalized threshold model and the complex threshold model. While

the first one has been proposed in [28], we define the second one in order to better address the peculiarities of online social

networks. We describe these models in Subsections 3.1 and 3.2, respectively.

In each time step t ∈  , the set of nodes can be divided into two disjoint sets: V = VA
t ∪VI

t , where: VA
t = {v ∈ V s.t. st

v = 1}
is the set of active nodes and VI

t = {v ∈ V s.t. st
v = 0} is the set of inactive nodes. We call the number of influenced nodes at

time t, It = |VA
t |, that is, the cardinality of the set VA

t .

It is important to notice that the state of each node at t+1 is only influenced by the state of the nodes at time t (see Equation 1),

thus the dynamic of the problem satisfies the Markov property and it can be described as a Markov Decision Process (MDP)

[58]. MDPs are meant to be a framing of the problem of learning from interaction to achieve a specific objective. In this context,

the decision maker is called agent, while the entity it interacts with is termed environment. The interaction between the agent

and the environment is continuous and dynamic. The agent chooses actions (in the ABIMP the set of nodes to select) and the

environment responds to these actions by presenting new situations (called states) and giving rewards (i.e., special numerical

values that the agent aims to maximize over time by making optimal choices of actions). A graphical representation of this

interaction is shown in Figure 1.

In the ABIMP, the agent has an initial budget, called B, that is used to influence nodes throughout the marketing campaign.

During each time step t ∈  , the residual budget bt defines the set of feasible actions

t =
{

xt
v ∈ {0, 1} ∀ v ∈ V, s.t.

∑

v∈V

cvxt
v ≤ bt

}

∀ t = 0, … ,T , (2)
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FADDA ET AL. 5

FIGURE 2 Flow of information.

where xt
v are the decision variables equal to 1 if the agent decides to select node v at time t, and 0 otherwise. We call xt ∈ {0, 1}V

the vector whose components are xt
v, ∀ v ∈ V. It is worth noticing that in Equation (2), we may select all the nodes and not just

the ones in VI
t since, in principle, it is possible to select several times a node in VA

t to trigger again the diffusion process.

The state of the system is composed of the state of each node and the available budget, that is,

St = (st
1
, … , st

V , bt). (3)

Given the state St and the action xt
v ∀ v ∈ V, the next state is

St+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

f (min[1, st
u + xt

u], u ∈ in(1), 𝜉t
1
)

…
f (min[1, st

u + xt
u], u ∈ in(V), 𝜉t

V )
bt −

∑
v∈V cvxt

v

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Finally, the reward that the agent receives is

Rt(St, xt) =

{
0 for t ≠ T ,
𝜆IT + (bT −

∑
v∈V cvxT

v ) for t = T ,
(5)

where 𝜆 is a coefficient that quantifies the economic value of each influenced node (it can be computed, e.g., by the expected

purchases given the current number of active nodes). Equation (5) imposes that the only reward is at t = T , and no reward is

given for t ≠ T . In such scenarios, the agent often encounters long sequences of actions and states with no immediate rewards,

making it challenging to learn an effective policy or strategy because no feedback is received. This characteristic is known as

reward sparseness [53]. To mitigate this issue, according to [37, 41, 60], we consider as reward the marginal contribution of

each time step. In formula:

Rt(St, xt) = 𝜆(It − It−1) −
∑

v∈V

cvxt
v ∀ t = 0, … ,T , (6)

where we set I−1 = I0 = 0 since we assume that no node is active without our intervention. It is important to notice that

Equations (5) and (6) are really close to each other. In fact, from Equation (5), we have that:

T∑

t=0

Rt(St, xt) = 𝜆IT +

(

bT −
∑

v∈V

cvxT
v

)

= 𝜆IT + B −
T∑

t=0

∑

v∈V

cvxt
v, (7)

where the last equality holds since bT = bT−1−
∑

v∈V cvxT−1
v = bT−2−

∑
v∈V cvxT−2

v −
∑

v∈V cvxT−1
v = · · · = B−

∑T−1

t=0

∑
v∈V cvxt

v.

Instead, summing over the time horizon the reward of Equation (6), we get:

T∑

t=0

Rt(St, xt) =
T∑

t=0

(

𝜆(It − It−1) −
∑

v∈V

cvxt
v

)

= 𝜆
T∑

t=0

(It − It−1) −
T∑

t=0

∑

v∈V

cvxt
v

= 𝜆IT −
T∑

t=0

∑

v∈V

cvxt
v. (8)

Equations (7) and (8) differ from a constant term, which does not affect the solutions of the underlying optimization problem.

Moreover, it is important to notice that Rt(St, xt) is deterministic since the effect of xt manifests in t + 1. In other words, when

we decide whose set of nodes to select, both It and It−1 are known (Figure 2 depicts the flow of information).

The goal of the decision-maker is to maximize the expected sum of the rewards expressed as:

E

[ T∑

t=0

𝛾

tRt(St, xt)

]

, (9)
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6 FADDA ET AL.

where 𝛾 is a discount factor that weighs present and future rewards, encouraging the agent to prioritize short-term gains over

long-term ones [7]. In this setting, it is possible to define a value function Vt(St) that quantifies the expected reward obtained

when applying an optimal sequence of action from time t on-wards, starting from state St. This function can be computed using

the Bellman equation:

Vt(St) = max
x∈t

{Rt(St, x) + 𝛾E[Vt+1(St+1)|St, x]} ∀ t = 0, … ,T − 1. (10)

In order to compute Equation (10), it is necessary to solve a difficult stochastic optimization problem. Nevertheless, it is possible

to reformulate the problem and switch optimization and expectation employing post-decision state variables. These variables

describe the state of the system after the decision has been taken but before the noise realization. In the ABIMP, they can be

expressed as

Sx
t+1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

min[1, st
1
+ xt

1
]

…
min[1, st

V + xt
V ]

bt −
∑

v∈V cvxt
v

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (11)

Using Equation (11), we define the value function around post-decision states as

Vx
t (Sx

t ) = E
[
Vt+1(St+1)|Sx

t
]
. (12)

Plugging Equations (12) in (10), and noting that E[⋅|St, x] = E[⋅|Sx
t ], we obtain:

Vt(St) = max
x∈t

{R(St, x) + 𝛾Vx
t (Sx

t )}. (13)

Taking the expectation at t − 1, we get the Bellman equation for the post-decision value function:

Vx
t−1

(
Sx

t−1

)
= E

[
Vt(St)|Sx

t−1

]
= E

[

max
x∈

{R(St, x) + 𝛾Vx
t (Sx

t )}
]

. (14)

Equation (14) allows swapping optimization and expectations with respect to Equation (10). Therefore, Equation (14) requires

the solution of several deterministic optimization problems instead of one solution of a stochastic one (as Equation 10).

Moreover, the expectation in Equation (14) can be tackled through statistical learning techniques.

It can be noticed that dynamic programming recursion in terms of Q-factors (see, e.g., [58]) is close to Equation (14), since

the state–action pairs may be regarded as post-decision states. Nevertheless, when they can be applied, post-decision states are

more convenient than Q-factors since they require a space of the same dimension as the initial state space.

3.1 General threshold model
The general threshold model introduced by [29] and [45], is one of the most commonly used diffusion models. It defines

Equation (1) as:

st+1
v =

{
1 if 𝜙(st

u, u ∈ in(v)) ≥ 𝜃v

0 otherwise

(15)

where 𝜃v ∈ [0, 1] is a threshold values and 𝜙 ∶ {st
u, u ∈  in(v)} → [0, 1] is called activation function. It is assumed to be

monotonic, reflecting that the more active nodes in in(v), the greater the likelihood of node v of being activated. By fixing

the activation function, we get different types of models. In particular, we consider the linear threshold model (LTM) and the

independent cascade model (ICM) [28].

In the LTM, each arc of the network is associated with a weight puv (such that
∑

u∈ in(v) puv ≤ 1), and each node v has a

threshold 𝜃v ∈ [0, 1]. In this setting, Equation (15) becomes

st+1
v =

{
1 if

∑
u∈ in(v) puvst

u ≥ 𝜃v

0 otherwise

. (16)

Therefore, in the LTM, a node v becomes active if a weighted sum of the active nodes in the neighborhood is greater than its

resistance 𝜃v. We consider the 𝜃v to be uniformly distributed in [0, 1], and that
∑

u∈ in(v) puv = 1 ∀v ∈ V.

In the ICM, each arc of the network is associated with the probability that node u influences node v if u is active, we call it

puv. In this setting, Equation (15) becomes

st+1
v =

{
1 if

∑
u∈ in(v) Xuvst

u ≥ 1,

0 otherwise

(17)
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FADDA ET AL. 7

where Xuv are Bernoulli random variables with probability puv. In this model, node v becomes active if it is influenced by at

least one active node in in(v), and each one of them has a probability puv of doing so. It is important to notice that, once that

node u becomes active, the realization of the Xuv is fixed. In other words, if node u becomes active at time t and Xuv = 0, then

node u will not have other opportunities to influence node v in the future. Hence, in this diffusion model, there is no point in

influencing twice the same node.

3.2 Complex threshold model
Based on the general threshold model, we define the Complex Threshold Model (CTM) by considering Equation (1) to be

st
v =

{
1 ∃ u ∈ in(v) ∩ VI

t s.t. Pt(u) ≥ R(v, 𝜉t),
0 otherwise

(18)

where Pt(u) represents the influence power of node u at time t, while R(v, 𝜉t) represents the random influence resistance of node

v. Therefore, a node becomes active if there exists at least one of the neighborhood nodes which has an influence greater than

its resistance. As in [67], we divide the nodes in influencer, super-active, active, or passive, and we call the set of node types

(it defines a partition on V).

We assume that the influence resistances are distributed according to a beta distribution (B(𝛼k, 𝛽k), where 𝛼k, 𝛽k depend on

the type of node), and summed to a noise 𝜉t ∼  [−0.05,+0.05].
In contrast with the ICM, each node tries to influence all its neighborhoods during each time step. This enables the model

to account for content re-share and allows the agent to select several times the same node. Nevertheless, the content that is

re-shared does not have the same influence power as the first one. This is modelled through the influence power

Pt+1(v) = P0(v)
t∏

𝜏=0

(1 − 𝜁ks𝜏v), ∀ k ∈  (19)

where 𝜁k a rate of decay that depends on the type of node, and

P0(v) = 1 − e−𝜆k|
out(v)|∕max

v
| out(v)|

, ∀ k ∈ , (20)

where 𝜆k, is distributed according to a uniform distribution whose lower and upper bound depend on the type of node k. It is

worth noting that in order to have a Markov representation for this model, we should also collect the values of Pt(v) as part of

the state. Nevertheless, we decided to stick with the state definition of Equation (3) in order to test the ability of the proposed

techniques to deal with difficult diffusion processes.

4 SOLUTION METHODS

In this section, we present the proposed solution methods for the ABIMP. In particular, in Subsection 4.1, we present a cus-

tomized version of the model described in [20] that will be used as a benchmark; in Subsection 4.2 we describe the heuristic

based on reinforcement learning and, in Subsection 4.3 we present the heuristic based on graph neural network.

4.1 Two-stage budgeted influence maximization problem
A two-stage mathematical programming formulation for the BIMP for an ICM has been proposed in [19]. Being a two-stage

stochastic optimization problem, we define the set of scenarios  . Each scenario s ∈  represents a possible realization of

the diffusion process (e.g., a possible realization of all the Bernoulli random variables described in Equation 17) and has a

realization probability 𝜋s. Given a scenario s, we call Gs = (V,As), the graph whose set of arcs As contains only those for which

the realization of Xuv is equal to 1 in scenario s. Following [19], we define the reachability set (also called random reverse
reachable set in [6, 59]) (s, v) as the set of nodes that influence node v in scenario s. In other words, (s, v) is the set of

all the nodes from which there is a directed path to v in Gs
. Therefore, node u influence node v in scenario s if u ∈ (s, v).

For each scenario and node, sets (s, v) can be easily determined by, for example, a reverse breadth-first search starting from

v in graph Gs
.

The decision variables of the model are:

• xv which assumes value 1 if the node v is selected in the seed set;

• ys
v which assumes value 1 if node v is influenced in scenario s.
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8 FADDA ET AL.

FIGURE 3 Subgraph showing that the superposition principle is not valid in a LTM model.

The mathematical model is:

max 𝜆

∑

s∈
𝜋s
∑

v∈V

ys
v −

∑

v∈V
cvxv (21)

s.t.

∑

v∈V
cvxv ≤ B (22)

ys
v ≤

∑

u∈(s,v)
xu ∀v ∈ V,∀s ∈  (23)

xv ∈ {0, 1} ∀v ∈ V (24)

ys
v ∈ {0, 1} ∀v ∈ V,∀s ∈  . (25)

The objective function (21) maximizes the expected profit coming from the influenced nodes minus the cost for influencing

(it is equivalent, up to the constant B to Equation 5). Constraint (22) limits the budget that can be used to select the initial seed

and Constraints (23) allow a node to be influenced only if a node in the reachability set has been activated. Finally, Constraints

(24) and (25) force all the decision variables to be binary.

As noticed in [20], the variables ys
v can be relaxed to be continuous, thus it is possible to solve the problem using Benders’

decomposition. Moreover, all the results obtained in [20], for the unbudgeted case, still hold since the only difference with

respect to their model is in Constraint (22) and it only affects the master problem while all the sub-problems remain the same.

For these reasons, in the computational experiments, we apply the solution method proposed in [20] to get the solution of Model

(21)–(25).

It is worth noting that this approach can be seen as an alternative to the Reverse Influence Sampling proposed in [6], where the

stochastic maximum coverage problem is solved with a mathematical model and not via a heuristic algorithm. Model (21)–(25)

can deal with all the diffusion processes satisfying a superposition principle since Constraints (23) are linear. This may not be

the case in several diffusion processes in which the effect of influencing two nodes can lead to a diffusion much greater than the

superposition of the two processes. To see this, consider the graph in Figure 3 and an LTM. Neither node u, nor node w are in

the reachable space of node v since puv = 0.4 < 𝜃v = 0.6, and pwv = 0.5 < 𝜃v = 0.6. Nevertheless, if both nodes are influenced,

it is possible to influence v (puv + pwv = 0.9 ≥ 𝜃v = 0.6).

Despite this lack, Model (21)–(25) represents an interesting benchmark, and it can be solved for small instances by using

exact solvers. In the following, we refer to the two-stage formulation approach as TS.

4.2 Approximate value iteration
In this section, we propose a new solution method based on the approximation of the post-decision value function, defined in

Equation (12). The general pseudo-code of the method is shown in Algorithm 1, (see, e.g., [7] p. 183, or [48] p. 128). The

algorithm starts from an initial approximation, called ̂Vx
t . Then, for a given number of times (called n_episodes), it runs an

episode lasting T time steps starting from the initial state S0. During time step t the action maximizing the sum of the actual

reward and the discounted future reward (estimated by ̂Vx
t ) is computed and Sx

t , R(St, x), vx
t = maxx∈t R(St, x) + 𝛾 ̂V

x
t [Sx

t ] are

used to update ̂Vx
t−1 (if t > 0). Calling x∗t the optimal solution the agent applies x∗t with probability 1 − 𝜀 or another random

action with probability 𝜀. Finally, the new state St+1 is reached.

Algorithm 1 is the general learning framework called approximate value iteration which is the core of several reinforce-

ment learning algorithms. To effectively apply it to the ABIMP we have to specify the form of the post-decision value function

approximation, and how to learn from the information gathered from the episodes. Problem (26) can be formalized by consid-

ering the definition of the feasible set in Equation (2), and the immediate reward in Equation (6). In detail, avoiding index t for

notation convenience, Problem (26) can be written as:
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FADDA ET AL. 9

Algorithm 1. Approximate value iteration

1: Initialize ̂Vx
t [⋅], ∀t = 0 ∶ T − 1, ̂Vx

T [⋅] = bT −
∑

v cvxv.

2: for i = 1, …, n_episodes do
3: S0 = (0,… , 0,B). ⊳ The last component is the initial budget.

4: Generate a random realization of the noises 𝜉
t
v, ∀ v ∈  , t = 0 ∶ T + 1.

5: for t = 0 ∶ T do
6: Solve:

vx
t = max

x∈t
R(St, x) + 𝛾 ̂Vx

t [Sx
t ]. (26)

7: Store Sx
t , R(St, x), vx

t
8: Let x∗t be the optimal solution of problem (26).

9: Use a 𝜀-greedy policy which applies x∗t or a random action.

10: Compute the next pre-decision state St+1 using Sx
t and 𝜉

t+1
v .

11: if t % N == 0 then
12: Use the data stored to update ̂Vx

t−1
.

13: end if
14: end for
15: end for

max

∑

v∈V

(

−cvxv + 𝛾 ̂V
x[sv + xv]

)

(27)

s.t.

∑

v∈V

cvxv ≤ b (28)

xv ∈ {0, 1} ∀ v ∈ V. (29)

The objective function (27) maximizes the sum of the immediate reward plus an estimation of the expected future reward.

Equation (27) follows from Equation (6) where, since the contribution 𝜆(It− It−1) is defined by xt−1 and St−1, it is a constant thus

it is removed. Constraint (28) limits the budget that can be used, and Constraints (29) impose that the xv must be binary variables.

Model (27)–(29) has a knapsack structure. Since large instances of the knapsack problem with linear objective functions can

be solved in a reasonable time by exact solvers, we may resort to a linear approximation of ̂Vx[⋅]t, that is,

̂Vx
t [z] =

∑

v∈V

𝜔

t
vzv, ∀ t = 1, … ,T − 1 (30)

where 𝜔
t
v is a parameter ∀t, v. This would require the estimation of V ⋅ T coefficients, which becomes impractical for large

instances. Thus, we define a set I of features that can be computed from the node characteristics (we call them f t,v
i ), and a set of

parameters ai equal for all the nodes and for every time step. In formula,

𝜔

t
v =

I∑

i=1

f t,v
i ai ∀v ∈ V, ∀ t = 1, … ,T − 1. (31)

Using Equation (31), we have to calibrate I parameters (the ai) instead of V ⋅ T parameters. Nevertheless, as pointed out in

Section 4.1, linear functions are not able to describe the joint effect of influencing more nodes at the same time. For example,

using linear function it is impossible to model when two nodes share a large fraction of their neighborhood. Therefore, we use

as ̂Vx
t [⋅] a set of polynomial functions (one for each t). Interestingly, polynomial functions can be linearized since variables xv

are binary [4]. In fact, we can write the objective function (27), considering index t, as

max

∑

v∈V

− cvxt
v +

∑

A∈2
|V|

wt
A
∏

v∈A
xt

v, (32)

where wt
A is the parameter that weighs the interactions obtained by influencing all the nodes in the subset A at time t. The product

∏
v∈A xt

v can be linearized, by introducing a variable zt
A, satisfying the following constraints:

∑

v∈A
xt

v ≤ |A| − 1 + zt
A if wt

A < 0

xt
v ≥ zt

A ∀ v ∈ A if wt
A > 0. (33)
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10 FADDA ET AL.

Clearly, Equation (33) is used for all the sets A with |A| ≥ 2, while for the sets containing just one element the product in (32)

is a single variable.

To estimate the parameters wt
A, we generalize the set I of features and the corresponding parameters ai to higher order by

defining the sets I(1), I(2), … , I(V) of features of degree 1, 2, … ,V and the corresponding parameters a(1)i , a
(2)
i , … , a(V)i (with

this choice we rename ai as a(1)i and I as I(1) to obtain a uniform notation). Thus, given a subset of nodes A the corresponding

coefficient wt
A in Equation (32) is defined as

wt
A =

I(|A|)∑

i=1

f t,A
i aI(|A|)

i ∀ t = 1, … ,T − 1, ∀A ∈ 2
V
. (34)

Notice that while the features f t,A
i depends by the set A and by the time step, the parameters aI(|A|)

i just depend by the feature

i ∈ I(|A|). Therefore, the final expression of the post-decision value function approximation is

̂Vx
t [z] =

∑

A∈2
V

wt
A
∏

v∈A
zv =

∑

A∈2
V

I(|A|)∑

i=1

f t,A
i aI(|A|)

i
∏

v∈A
zv, (35)

where the parameters to estimate are a(1)i , a
(2)
i , … , a(V)i . Considering all the sets A ∈ 2

V
makes Model (27)–(29) impos-

sible to solve even for small-size instances. For this reason, we need to define a reasonable way to fit the polynomial

estimation of ̂Vx
t [⋅]. To achieve this goal, we develop the iterative procedure described in Algorithm 2. First, we select a

maximum degree of the polynomial approximation ̂Vx
t [⋅] called M and we solve Model (27)–(29) with linear ̂Vx

t [⋅], that

is, the approximation in Equation (30). Then, we consider the set of all nodes for which xv = 1 and, for each possible

couple, we add a second-order approximation term. In other words, if xu = 1 and xv = 1, we add in the ̂Vx
t [⋅] a term

of the form wt
uvxuxv, where wt

uv =
∑I(2)

i=1
f t,uv
i a(2)i . By solving this quadratic problem it is possible that the optimal solu-

tion changes, for example, if the corresponding wt
uv is negative since node u and v influence sets of nodes having a big

intersection. In this case, we repeat the procedure by updating the second-order terms. Otherwise, if the optimal solution

remains the same, a higher-order approximation is considered. We repeat these steps until the maximum polynomial degree M
is reached.

Algorithm 2. Iterative solution (AVI)

1: Choose a maximum degree M.

2: Initialize ̂Vx
t [⋅] of degree 1.

3: x ← solution of Model (27)–(29).

4: k = 2

5: while k ≠ M do
6: collect xv = 1

7: ̂Vx
t [⋅]← update ̂Vx

t [⋅] by considering the k order terms defined by the xv = 1.

8: x′ ← solution of Model (27)–(29).

9: if x == x’ then
10: k ← k + 1.

11: else
12: x ← x′.
13: end if
14: end while

This procedure requires the solutions of several ILPs. Thus, it is of paramount importance to not re-compute the solution

from scratches. In fact, it is easy to notice that the differences between the models considered in two subsequent iterations of

Algorithm 2 are just terms in the objective function and constraints regarding the polynomial expansion of the value function.

Thus, the optimal solution computed in one iteration is feasible for the model considered in the next one and it usually provides

a good starting solution. Without this consideration, this algorithm cannot be applied due to the time required for the learning

process.
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FADDA ET AL. 11

Algorithm 2 is run to solve Problem (26). Then, the algorithm uses Sx
t , R(St, x), and vx

t are collected, and once every N steps

a min squared error problem is solved, where the error is computed as

⎡
⎢
⎢
⎢
⎣

R(St, x) + 𝛾vx
t

…
R(St−(N−1), x) + 𝛾vx

t−(N−1)

⎤
⎥
⎥
⎥
⎦

−
⎡
⎢
⎢
⎢
⎣

∑
v∶xt−1

v =1
f t−1,v
1

…
∑

v∶xt−1

v =1
f t−1,v
I(1)

∑
(u,v)∶xt−1

u =1,xt−1

v =1
f t−1,uv
1

…

… … … … …
∑

v∶xt−(N−2)
v =1

f t−(N−2),v
1

…
∑

v∶xt−(N−2)
v =1

f t−(N−2),v
I(1)

∑
(u,v)∶xt−(N−2)

u =1,xt−(N−2)
v =1

f t−(N−2),uv
1

…

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(1)
1

⋮

a(1)I(1)

a(2)
1

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (36)

Calling a∗(k)i , k = 1, … ,M the solution of this problem, the coefficients a(k)i are updated as follows:

a(k)i ← 𝛼a∗(k)i + (1 − 𝛼)a(k)i , ∀k = 1, … ,M,

where 𝛼 is a given learning rate.

In the following, we refer to the algorithm presented in this section as AVI (approximate value iteration).

4.3 Graph neural network
In this Subsection, we provide a detailed description of the graph neural network approach based on the Double Deep

Q-Networks (DDQN) algorithm proposed in [23]. The DDQN algorithm enhances Deep Q-learning by utilizing two separate

Q-value estimators instead of one [23]. Doing this, DDQN addresses the problem of overestimation bias that can occur in

traditional Q-Learning. The two networks considered are the online network, which is used to select actions, and the target net-
work, which provides a more accurate evaluation of the selected action’s Q-value [33, 57]. In our work, we propose three key

improvements to better adapt this framework to the problem at hand.

Firstly, since the ABIMP deals with graphs, we incorporate graph embedding techniques. This involves mapping the nodes,

edges, and their respective features into a lower-dimensional vector space, while preserving essential properties such as graph

structure and information [18]. By leveraging graph embedding, we significantly enhance the generalization capability of the

neural network, enabling it to adapt to varying graph topologies during testing without requiring retraining.

Secondly, instead of focusing on Q-factors, we use post-decision state variables. This approach allows us to use a much

more compact representation. In fact, instead of estimating the value for each possible state-action pair (S, x), we only need

to estimate the value for each possible state S. This reduction in dimensionality simplifies the learning process and improves

computational efficiency.

Thirdly, we adapt the technique to accommodate the available budget constraint. To achieve this, we employ action masking
(i.e., we represent the subset of feasible actions that the agent can choose from), which limits the budget to be spent at each

time step to the available budget bt. By incorporating action masking, we ensure that the agent operates within the specified

budgetary limits.

The general algorithm is reported in Algorithm 3.

In the first step, the two GNNs called O
(i.e., online network) and T

(i.e., target network) are initialized. Both networks

take as input a post-decision state and return an approximation of the post-decision value function. Then, during each time step

of each episode, one of the two GNNs is randomly selected, used to get an 𝜀-greedy action, and updated using the value function

estimation computed by the other one. During the training phase, the learning is performed every N time steps using a batching

strategy. More in detail, in each time step of the procedure, the actual state St, action xt, reward rt, next state St+1, budget bt and

time t are collected in a dataset called H. Then, when the learning procedure is run, a random sample of dimension n is selected

from H and it is used to update both networks. The process continues until all episodes and time steps are completed.

In the following, we refer to this algorithm as GNNQL (graph neural network Q-learning).

5 COMPUTATIONAL EXPERIMENTS

In this section, we test the performance of the proposed methodologies, namely AVI and GNNQL.

For both AVI and GNNQL, we consider the following parameters:

• 𝛾 = 0.9;
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12 FADDA ET AL.

Algorithm 3. GNNQL

1: H = ∅.

2: Initialize O
and T

.

3: for i = 1, …, n_episodes do
4: generate a random realization of the noises 𝜉

t
v, ∀ v ∈  , t = 0 ∶ T − 1.

5: S0 = (0,… , 0,B). ⊳ The last component is the initial budget.

6: for t = 0,… ,T − 1 do
7: Consider state St.

8:  = randomly select O
or T

.

9: Let x∗t be maxx(St + x).
10: Use a 𝜀-greedy policy which applies x∗t or a random action.

11: Compute the next pre-decision state St+1 and the reward rt.

12: Add (St, xt, rt, St+1) in H.

13: if  == O then
14: O ←− (1 − 𝛼)O + 𝛼(rt + 𝛾 maxa

T (St+1 + xt)).
15: else
16: T ←− (1 − 𝛼)T + 𝛼(rt + 𝛾 maxa

O(St+1 + xt)).
17: end if
18: if t % N == 0 then
19: B ←−randomly select n samples from H.

20: Update O
and T

with B.

21: H = ∅.

22: end if
23: end for
24: end for

• 𝛼 = 0.4;

• N = T∕4;

• 𝜀 is set to 0.5 and it decays according to
1

i
, where i is the number of episodes considered.

For AVI, we use the maximum degree of the post-decision value function approximation to 3 (i.e., M = 3). Moreover, we

consider the following features:

• First-order features:

1 the state and the cost of the node;

2 the number of neighborhood nodes (both | out(v)|, and | in(v)|);
3 the relative cost of the node cv∕| out(v)|
4 the number of second-level neighborhood, that is, given a node v,

∑
u∈ out(v) |

out(u)|;
5 the number of inactive nodes in the neighborhood out(v);
6 the number of active nodes in the second-level neighborhood;

7 the state of the node;

8 an estimation of the influence power computed as the average number of nodes influenced from that given node. This

value is initialized equal to the degree of the node, then it is updated each time that the node is selected. The optimistic

initialization helps the exploration of the most promising nodes.

• High-order features:

1 the size of the intersection of the neighborhood out(v) of the nodes considered;

2 the size of the union of the neighborhood out(v) of the nodes considered;

3 the total number of active nodes in the union of the neighborhood out(v);
4 the total number of inactive nodes in the intersection of the neighborhood out(v).

For GNNQL, we set:

• n = 10;
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FADDA ET AL. 13

• the GNN implementation as in [60]. Specifically, it has two dense layers of hidden nodes with the Rectified Linear Unit

(ReLU) activation function [32], and the output layer uses linear activation functions;

• the graph embedding using the Diff2vec algorithm [52];

• the Adam optimizer to update the network weights (as described in [30]);

• the mean square error as a quality measure of the model (as described in [38]).

The presented parameters are tuned by following a systematic approach to strike a balance between exploration and exploita-

tion, promote convergence, and ensure stable learning. For parameter tuning, we heavily relied on values reported in the literature

as a starting point and conducted extensive experiments to find an appropriate trade-off using grid search. While there is room

for further exploration and sensitivity analysis of the parameter values, we do not show results related to this topic for not

increasing the length of the paper.

In TS we set 𝜋s equal to 1∕|| (i.e., we use crude Monte Carlo sampling), and we apply Benders’ decomposition to achieve

lower computational times.

In order to better assess the performance of the proposed methods, we compare them against a set of benchmark techniques.

In particular, we generalized the billboard strategy (BS) and the handbill strategy (HS) proposed in [22] for the two-stage

budgeted IMP. The BS chooses the most influential nodes as seeds (i.e., the ones with the highest degrees) while HS selects

the cheapest nodes (i.e., the ones with minimum ratio between cost and degree). Mimicking [22], we also define a simple

decision rule that selects the best nodes according to a linear combination of AVI’s first-order features. The coefficients of the

combination are optimized by using particle swarm optimization. We call this solution method combination strategy (CS). We

apply these three techniques in the adaptive setting in a greedy way: Given the available budget bt, we select the best inactive

nodes such that we spend at most
bt

(T−t)
. If the resulting set of nodes to select is empty

(
i.e., the best nodes cost more than

bt
(T−t)

)
,

then we select the best node whose cost is less than bt.

Moreover, we also consider two deep RL heuristics using traditional deep neural networks, namely proximal policy
approximation (PPO) and advantage actor-critic (A2C) [58].

The project has been implemented using Python3.10 and the environment has been developed using the OpenAI Gym APIs

[8]. All the computational times are measured on a Intel(R) Core(TM) i7-5500U CPU@2.40GHz computer with 16GB of RAM

and running Ubuntu v22.04. Gurobi v10.0.0 solves all the models via its Python3 APIs. We implement PPO, and A2C using

the Python library Ray [44]. Moreover, if not otherwise stated:

• The performance of the techniques is averaged over 10 different network generations and 1000 out of sample scenarios.

• The execution times of the AVI and GNNQL models do not consider the training time for the two algorithms, these

quantities will be discussed in detail when needed.

This section is organized as follows: In Subsection 5.1, we present the mathematical settings of the experiments. In Subsec-

tion 5.2, we present the results of the proposed solution methods for small instances with simple dynamics. In Subsection 5.3,

we test the methods on large data instances with complex dynamics, and in Subsection 5.4, we show the results considering

realistic graphs.

One important topic that is not addressed in the following subsection is convergence analysis. We report it in Appendix A

since the focus of the current section is primarily to investigate the performances of the proposed techniques.

5.1 Experimental setting
The most important characteristic of the instances is the graph G. Even though data related to some real network are available,

we define a way to generate synthetic instances in order to be able to control their characteristics and to better test the proposed

techniques.

We start by distinguishing between daily active users (DAU) and monthly active users (MAU). The first is the number of

accounts that make access every day, while the second is computed on a monthly base. Since we are considering a marketing

campaign, a time horizon of a month is reasonable, therefore we focus on the MAU statistics.

Due to the acceptable amount of data, we use the Instagram social network as a guiding example. Instagram is a photo and

video-sharing social network owned by Meta Platform. Each user has the ability to share media content and it is associated with

the other accounts through two sets: The one of the followers ( out(v)) and the one of the following ( in(v)). Given a user, the

first set contains the users who can see his/her account. Instead, the set of accounts that the user can see constitutes the second

set. In other words, for each node in the network G which represents a user, we have arcs from the node to the set of followers
and we have arcs from the set of following to the node. Here the arcs represent the ability to see the contents. As of this writing,

Instagram has around one billion MAU globally and around 500 million DAU [3]. The largest addressable Instagram audience

size is in India, with 180 million users, followed by the United States (170 million) and Brazil (110 million). There are around
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14 FADDA ET AL.

TABLE 1 Graph dimension of the greatest instance solved by the different papers.

Paper Dataset name Vmax A Dataset name V Amax

[15] EachMovie dataset 73k 2.8M EachMovie dataset 73k 2.8M

[28] High-Energy Physics 11k 53k High-Energy Physics 11k 53k

[63] High-Energy Physics 15k 58k Wiki dataset 8.6k 26k

[60] Twitter dataset 40M 1.3B Twitter dataset 40M 1.3B

[20] ENRON 37k 370k ENRON 37k 370k

[27] Twitter #datascience 25k 405k Twitter #datascience 25k 405k

[65] Flickr 2.5M 33M Weibo 1.8M 308M

[40] Pretty-Good-Privacy 11k 25k Wiki dataset 7k 103k

Note: Vmax represents the maximum number of nodes and Amax the maximum number of arcs.

TABLE 2 Parameter value used in the experiments for the CTM.

Nodes [%] 𝜶k 𝜷k 𝝀k 𝜻k

Influencer 10 5 1 0.7 0.8

Super-active 20 4 2 0.5 0.6

Active 35 3 3 0.4 0.5

Passive 35 2 4 0.1 0.1

15 million Instagram users in Italy. Since marketing campaigns are typically designed to target specific user segments based

on various factors such as age, gender, occupation, income, interests, and location, attempting to include all users would be

pointless. For example, restricting our interest to the female users in the age rank of 35–44 years old, there are 7.7% of all the

users [56] (i.e., roughly 1 million). Moreover, considering all the MAUs as nodes is not reasonable since it can be really difficult

(if not pointless) to influence users who access the social network in an almost passive way. Thus, we focus on the users who

share more than 1 post per week. In particular, given the distribution of the number of posts, it seems that only 10% of accounts

have such characteristics [43]. For this reason, in the computational experiments, we consider networks having nodes in the

interval [10k; 100k].
Estimating the connection of each node is also challenging. We consider the Barabási-Albert random graph due to the

preferential attachment property, that is, the more connection a node has, the more likely it is to receive new ones [1]. The

Barabási-Albert graph is described by the number of nodes (V) and the number of arcs to attach from a new node to existing

nodes (m). We set m to 100 and 200, considering that the average number of connections for a user is 150 [43].

The number of nodes and arcs considered are in line with the greatest instances considered in other papers dealing with the

IMP. We report some of these instances in Table 1. In particular, for each paper, we report the name of the dataset with the

greatest number of nodes (second column) with the relative number of nodes and arcs (third and fourth column, respectively),

then we report the name of the dataset with the largest number of arcs (fifth column) together with the number of nodes and

arcs (the last two columns). As the reader can notice, the experiments with the greatest number of arcs and nodes are achieved

when working with social networks (Flickr and Twitter datasets). In this case, the instances reach up to 40 billion nodes and

308 million arcs, respectively.

As stated previously, the number of connections of each node affects the cost of influence. We assume that the cost cv depends

linearly on the number of connections that the node has. We calibrate it considering that one of the most paid influencers in

Italy requires around 100k€ to share a single piece of content. Thus, we consider that 100k€= maxv cv and that a user with no

connection has cv = 0.

Even more difficult to estimate than the previous quantities is the dynamic of the influence. In fact, this is a broad and open

area of research (see, e.g., [14]). Since the proposed techniques are agnostic with respect to the dynamic of influence chosen,

we test them against the models presented in Section 3, where the parameters for the CTM are reported in Table 2.

Finally, the initial budget B is a parameter that deeply affects the solution of the proposed techniques. In particular, with

a high budget, the performance of all the methods tends to be similar since they can all influence the best nodes [13]. In the

following, we use different quantities of budget defined as B = 𝜈maxv cv where 𝜈 is a tightness factor.

5.2 Small instances
In this section, we test the proposed techniques on small-scale graphs (up to 1000 nodes). For all experiments, we use a training

set of 100 episodes for all methods, V ranging from 100 to 1000 nodes, and the initial budget equal to 𝜈maxv cv, with 𝜈 equal

to 0.5, 1, or 2.
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FADDA ET AL. 15

TABLE 3 Comparison between optimality gap and computational time of TS, AVI, and GNNQL for instances with different V , m, and S, with T = 2 and

an ICM as diffusion process.

V m S
Comp time TS
[s] (std.dev [s])

Gap AVI
[%] (std.dev[%])

Comp time
AVI [s]
(std.dev [s])

Gap GNNQL
[%] (std.dev[%])

Comp time
GNNQL
[s] (std.dev [s])

100 10 5 1.18 (0.13) 0.08 (0.01) 0.01 (0.01) 0.11 (0.01) 0.01 (0.01)

100 10 10 1.01 (0.10) 0.21 (0.03) 0.01 (0.01) 0.14 (0.02) 0.01 (0.01)

100 10 100 2.86 (0.38) 2.32 (0.12) 0.01 (0.01) 2.74 (0.03) 0.01 (0.02)

100 20 5 0.97 (0.13) 0.11 (0.04) 0.01 (0.01) 0.11 (0.01) 0.01 (0.02)

100 20 10 1.02 (0.24) 0.23 (0.19) 0.01 (0.01) 0.28 (0.02) 0.01 (0.01)

100 20 100 2.96 (0.41) 1.25 (0.5) 0.01 (0.01) 2.64 (0.11) 0.01 (0.02)

500 50 5 1.37 (0.12) 0.1 (0.3) 0.05 (0.01) 0.11 (0.01) 0.05 (0.02)

500 50 10 1.97 (0.17) 0.13 (0.02) 0.04 (0.01) 0.17 (0.01) 0.04 (0.02)

500 50 100 131.67 (12.45) 2.18 (0.09) 0.05 (0.01) 1.86 (0.06) 0.06 (0.02)

500 100 5 1.35 (0.27) 0.08 (0.01) 0.04 (0.01) 0.09 (0.01) 0.04 (0.02)

500 100 10 1.59 (0.23) 0.14 (0.05) 0.05 (0.01) 0.24 (0.01) 0.06 (0.03)

500 100 100 132.95 (10.04) 1.92 (0.20) 0.05 (0.01) 2.00 (0.08) 0.06 (0.02)

1000 100 5 1.39 (0.22) 0.13 (0.03) 0.1 (0.01) 0.09 (0.03) 0.08 (0.03)

1000 100 10 2.80 (0.32) 0.19 (0.02) 0.11 (0.01) 0.16 (0.02) 0.10 (0.05)

1000 100 100 N.A. N.A. 0.1 (0.01) N.A. 0.09 (0.05)

1000 200 5 1.56 (0.22) 0.07 (0.01) 0.08 (0.01) 0.14 (0.05) 0.08 (0.03)

1000 200 10 2.91 (0.35) 0.13 (0.04) 0.07 (0.01) 0.19 (0.05) 0.08 (0.02)

1000 200 100 N.A. N.A. 0.1 (0.01) N.A. 0.08 (0.05)

Note: The standard deviations of the values are reported within brackets.

We consider three experiments.

First, we consider a problem with T = 2, such that the scenarios used by TS are the only possible ones. This makes the

solution of TS the optimal one, enabling us to measure the optimality gap of the AVI and GNNQL.

Second, we consider a setting in which T varies and we compare the solutions of TS (having as second stages all the possible

scenarios at time T) with the ones ofAVI andGNNQL. In this experimental setup,TS provides the optimal non-adaptive solution.

Thus, comparing the proposed techniques against TS gives a lower bound (since AVI and GNNQL are heuristics) of the value of

adaptability. The aim of this experiment is to understand if the effort in solving the adaptable problem (which usually is more

complex) is worth the gain in performance.

For both experiments, we consider an ICM since it is the only diffusion model presented that satisfies the superposition

principle, allowing for the usage of TS.

Third, we compare the proposed techniques against BS, HS, CS, PPO, and A2C. In this last experiment, we consider all the

diffusion models presented.

The results of the first experiment are represented in Table 3. Since TS is an exact method, we report the percentage gap

between its objective function and the expected reward of the other methods. We calculate using the formula

pTS − pHeu

pTS
, Heu ∈ {AVI,GNNQL}, (37)

where pTS is the optimal value of TS, and pHeu
is computed by averaging the results obtained by the solution of the considered

heuristic over all the possible scenarios.

The trend of the computational time for the TS is clear: It increases if the number of nodes or if the number of scenarios

increases. When the number of nodes is 1000 and the number of scenarios is 100, the exact solver runs out of memory, originating

the non-available (N.A.) in the last rows of Table 3.

Clearly, the computational times of AVI and GNNQL are not affected by the change in the number of scenarios since both

techniques do not consider them. Moreover, their computational times appear to be unaffected by the change of m but slightly

increase with the dimension of the instance since more time is required to compute features and to solve the optimization model.

It is interesting to notice that the average computational time of AVI is particularly small since, with the ICM, the approximation

of ̂Vx
stops without considering second-order features. This shows that the iterative procedure for fitting ̂Vx

can correctly deal

with easy diffusion models.

Finally, the optimality gap is minimal for both AVI and GNNQLwithout a clear trend. This can be due to the simple dynamic

of the problem that allows both methods to easily learn the best nodes to select. More in detail, it can be noticed that AVI has a

lower gap than GNNQL but it needs more time since it requires computing the optimal solution of Model (27)–(29) several times.
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16 FADDA ET AL.

FIGURE 4 Gap between TS and AVI on the left, and TS and GNNQL on the right for different values of budget B and time horizon T .

In the second experiment, we address the setting in which AVI and GNNQL achieve the greatest gap, that is, V = 500,

m = 50, S = 100. We report the gap computed as

pHeu − pTS
pHeu , Heu ∈ {AVI,GNNQL}, (38)

for different values of T in Figure 4. As the reader can notice, up to T = 10 (for the AVI) and up to T = 8 (for the GNNQL) the

gap is negative, meaning that TS achieves better results than adaptive methods. Therefore, in the considered setting with short

time horizons, it is not beneficial to tackle the adaptive problem. Instead, for greater time horizons, the gap starts to be positive,

and it increases up to a plateau. The value of the plateau increases as B increases. In fact, with more budget, more nodes can be

selected, and more value can be extracted by using the information coming from the diffusion process.

Delving deeper into the solution, it is interesting to notice that while TS consumes all the budget in the first time period,

both AVI and GNNQL invest a small part of it. This budget is mainly used to select nodes close to the ones with a high num-

ber of connections (trying to influence them indirectly). Only in the final part of the time period AVI and GNNQL directly

select the most expensive nodes (if needed). This strategy and the results that they achieve confirm that the adaptive approach

is better than the non-adaptive one for T sufficiently big (i.e., greater than 10 in the considered instances). Finally, we can

notice that qualitatively the graphs for AVI and the one for GNNQL are similar, with the only difference being that the

gaps of the GNNQL are smaller than the ones achieved by the AVI. This is related to the fact that AVI considers a differ-

ent post-decision value function approximation for each time step, while for GNNQL the time step is an input parameter of

the two GNNs. This provides AVI more degrees of freedom that enable it to better grasp the opportunities of the diffusion

process.

In the third experiment, we compare the proposed techniques against BS, HS, CS, PPO, and A2C. We consider T = 30,

which intuitively represents a month of a marketing campaign, and V = {100, 250, 500, 750, 1000}. For each value of V , we

generate 25 instances with m = V
10

, and 25 instances with m = V
5

. After obtaining the results for all the methods, we calculate

the percentage gap with respect to the best result achieved. Therefore, an average gap equal to zero indicates that the method

is always the best or it always achieves results equal to the best one. The results are presented in Figure 5. It is worth noting

that for small graphs (V = 100), all methods provide similar solutions; hence they have similar performance, with those based

on neural networks (GNNQL, PPO, and A2C) exhibiting higher variance. However, as the graph size increases to V = 500,

the solutions start to differ and so do the performances. Particularly, for instances with V ≥ 500, it becomes evident that the

top-performing methods are AVI and GNNQL, with AVI achieving slightly better results due to its lower variance. Both BS
and HS exhibit similar performance across most instances, except for the setting with V = 750, where BS shows significantly

poor results (its performances are, on average, 90% worst than the best method). Those poor performances of BS and HS can

be attributed to the simple choices that they make. Remarkably, CS, PPO, and A2C emerge as the second-best methods, with

PPO and A2C showcasing greater variance.

In terms of computational time, all methods require less than one second to compute a solution, but HS, BS, and CS stand out

as the fastest due to their simple strategy. Additionally, HS and BS hold the advantage of not requiring any training. However,

due to their poor performance, we do not consider them in the following subsections.
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FADDA ET AL. 17

FIGURE 5 Comparison of different methods on small instances.

FIGURE 6 Comparison of different methods on large instances.

5.3 Large instances
In this subsection, we investigate the performance of AVI and GNNQL on realistic-size instances. For all these experiments, we

consider a training set of 1000 episodes, V ranges from 10k to 100k nodes, and the diffusion processes considered are the ones

presented in Section 3. We set the initial budget B = 𝜈maxv cv, for 𝜈 equal to 0.8, or 1.2.

In the initial experiment, we compare the performance of AVI, GNNQL, CS, PPO, and A2C, with fixed values of T = 30

and a range of different values for V = {10,000, 25,000, 50,000, 75,000, 100,000}. For each specific value of V , we create

12 instances, resulting from three variations of both m (which can be either
V
10

or
V
5

) and 𝜈 (which can be either 0.8 or 1.2).

This totals 60 instances. As above, after obtaining the results for all the methods, we calculate the objective function gap with

respect to the best one. We show the results in Figure 6. As in Subsection 5.2, AVI and GNNQL achieve the best results in all the

settings (meaning that they often are the best methods among the ones considered), with AVI achieving slightly better results

than GNNQL for instances greater than 50,000 nodes. Instead, CS, PPO, and A2C achieve similar results providing solutions

from 90% to 150% worse than the best technique. Between them, CS shows the worst results having huge variances and never

achieving the best result for instances greater than 50,000 nodes. Due to these results, we further analyze the performance of

AVI and GNNQL by dividing them for the two values of 𝜈 in Tables 4 and 5, respectively.

Each table presents, for a given set of parameters V , m, and different diffusion models, the average and standard deviation of

the percentage of nodes influenced at the end of the episode, along with the average and standard deviation of the computational

time (in seconds) required to compute a single action.

It is worth noting that the computational time of AVI increases as V increases since the underlying optimization problem

becomes bigger. Additionally, the diffusion model strongly influences the computation time, with CTM requiring more time

than LTM, and LTM requiring slightly more than ICM. Also, the computational time of the GNNQL increases as V increases

since more time is needed to compute the features, but GNNQL seems to be unaffected by the type of diffusion process.
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18 FADDA ET AL.

TABLE 4 Percentage of nodes influenced for different graphs and diffusion process, 𝜈 = 0.8.

V m
Diffusion
model IT∕V [%] AVI Time AVI [s] IT∕V [%] GNNQL

Time
GNNQL [s]

10,000 100 LTM 48.41 (10.23) 0.38 (0.10) 52.61 (11.12) 0.19 (0.05)

10,000 200 LTM 66.13 (12.21) 0.39 (0.14) 68.79 (8.74) 0.21 (0.16)

10,000 100 ICM 63.09 (22.08) 0.36 (0.08) 63.23 (8.48) 0.15 (0.02)

10,000 200 ICM 67.39 (20.65) 0.35 (0.24) 82.46 (6.66) 0.17 (0.12)

10,000 100 CTM 51.58 (10.41) 0.68 (0.08) 43.48 (17.84) 0.17 (0.28)

10,000 200 CTM 78.84 (12.24) 0.62 (0.44) 68.00 (7.22) 0.10 (0.09)

50,000 100 LTM 72.58 (9.80) 0.86 (0.32) 57.69 (12.31) 0.16 (0.30)

50,000 200 LTM 69.32 (9.93) 1.15 (0.33) 75.40 (8.59) 0.31 (0.44)

50,000 100 ICM 83.23 (5.64) 0.91 (0.53) 62.86 (12.46) 0.24 (0.38)

50,000 200 ICM 79.25 (7.80) 0.97 (0.45) 87.04 (7.45) 0.15 (0.24)

50,000 100 CTM 51.11 (8.24) 1.79 (1.30) 55.22 (16.72) 0.46 (0.34)

50,000 200 CTM 65.51 (6.43) 1.76 (1.11) 73.81 (9.70) 0.52 (0.28)

100,000 100 LTM 79.13 (7.23) 1.60 (0.84) 60.24 (7.92) 0.43 (0.84)

100,000 200 LTM 72.37 (12.44) 1.55 (0.95) 82.62 (9.84) 0.34 (0.32)

100,000 100 ICM 66.99 (6.17) 1.23 (0.11) 66.57 (13.32) 0.31 (0.44)

100,000 200 ICM 98.43 (2.31) 1.22 (0.58) 82.71 (8.55) 0.35 (0.51)

100,000 100 CTM 62.36 (14.32) 2.45 (0.84) 58.60 (15.99) 0.51 (0.94)

100,000 200 CTM 80.26 (8.27) 2.51 (0.69) 77.81 (6.22) 0.60 (0.89)

Note: The standard deviations are reported within brackets.

TABLE 5 Percentage of nodes influenced for different graphs and diffusion process, 𝜈 = 1.2.

V m
Diffusion
model IT∕V [%] AVI Time AVI [s] IT∕V [%] GNNQL

Time
GNNQL [s]

10,000 100 LTM 76.74 (8.21) 0.56 (0.01) 70.33 (12.54) 0.11 (0.23)

10,000 200 LTM 86.67 (5.21) 0.42 (0.11) 84.15 (11.84) 0.10 (0.20)

10,000 100 ICM 92.51 (3.91) 0.31 (0.16) 80.11 (14.32) 0.15 (0.21)

10,000 200 ICM 82.56 (6.87) 0.26 (0.06) 81.12 (12.31) 0.15 (0.21)

10,000 100 CTM 81.49 (8.44) 0.84 (0.23) 63.59 (22.03) 0.20 (0.33)

10,000 200 CTM 77.75 (12.32) 0.77 (0.54) 80.95 (9.72) 0.14 (0.22)

50,000 100 LTM 61.81 (19.44) 0.94 (0.00) 75.85 (20.03) 0.19 (0.32)

50,000 200 LTM 98.42 (0.87) 0.80 (0.02) 86.42 (12.53) 0.15 (0.28)

50,000 100 ICM 79.28 (5.23) 0.89 (0.07) 76.87 (13.54) 0.17 (0.42)

50,000 200 ICM 86.92 (9.87) 0.69 (0.37) 89.39 (2.23) 0.13 (0.23)

50,000 100 CTM 72.32 (12.54) 2.06 (1.30) 65.43 (27.65) 0.37 (0.41)

50,000 200 CTM 69.42 (23.41) 1.98 (1.30) 88.78 (9.87) 0.58 (0.17)

100,000 100 LTM 76.91 (9.65) 1.35 (0.86) 81.59 (8.43) 0.33 (0.16)

100,000 200 LTM 74.27 (9.98) 1.33 (0.49) 88.04 (6.49) 0.34 (0.38)

100,000 100 ICM 90.58 (2.71) 1.05 (0.98) 89.81 (5.33) 0.36 (0.72)

100,000 200 ICM 85.59 (7.82) 1.08 (0.82) 68.46 (12.15) 0.28 (0.54)

100,000 100 CTM 67.58 (21.09) 2.30 (1.66) 77.16 (12.82) 0.56 (0.61)

100,000 200 CTM 98.68 (0.56) 2.76 (1.58) 86.73 (5.32) 0.60 (0.34)

Note: The standard deviations are reported within brackets.

Regarding the objective function, we can observe that the results with more budget (𝜈 = 1.2) are better than those achieved

with less budget (𝜈 = 0.8). Moreover, the results with m = 200 are better than the ones with m = 100 since the greater the

quantity of edges in the network, the easier it is to influence more nodes.

Delving deeper into the solutions, it is interesting to note that if m = 200, the solutions of both methods tend to consider

just the nodes with more connections; for this reason, with m = 200, the gap between the AVI and GNNQL is smaller than with

m = 100. Moreover, the main difference between the two methods can be seen when m = 100 and 𝜈 = 0.8. This is the most

challenging condition in which we test the proposed methods. In that setting, the performances of the AVI are far better than the

ones achieved by GNNQL. It is interesting to note that AVI achieves these results by value function approximations that rarely

are of the third order.

In summary, the proposed heuristics show good performances in the considered instances. Moreover, they prove to be robust

with respect to different diffusion processes. Care must be taken to ensure that these results can be replicated in practice due to

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22206 by C

ochraneItalia, W
iley O

nline L
ibrary on [30/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FADDA ET AL. 19

FIGURE 7 Comparison of different methods on real instances.

several characteristics that the environment does not address. Nevertheless, it seems clear that, given a realistic environment,

the proposed techniques provide a reasonable way to compute the set of nodes to be selected in a reasonable amount of time.

5.4 Realistic instances
In this subsection, we evaluate the performance of both AVI and GNNQL using realistic instances. For all these experiments,

we consider a training set of 800 episodes.

We consider six real datasets
2
:

• The Twitter circles graph dataset: Taken from the popular social network, this dataset includes lists of connected users,

it has 81,306 nodes and 1,768,149 arcs [42].

• The Epinions social network graph dataset: It was a who-trust-whom online social network that collected general

consumer reviews sampled from online e-commerce. It has 75,879 nodes and 508,837 arcs [51].

• The Slashdot network 1: It is a sample of a social news website obtained in November 2008. The data are related to

Slashdot Zoo an online feature that allows users to tag each other as friends or foes. It contains 77,360 nodes and 905,468

arcs [36].

• The Slashdot network 2: It is a snapshot of the Slashdot Zoo social network taken in February 2009. The dataset comprises

82,168 nodes and 948,464 arcs [36].

• The Wikipedia vote network: Based on the popular free encyclopedia elections to promote users to administrators. The

dataset represents the users participating in the elections of January 2008 and the relative votes. It consists of 7115 nodes

and 103,689 arcs [34].

• The Gnutella graph: It is a snapshot of the Gnutella peer-to-peer file-sharing network from August 2002. In this dataset,

nodes represent peers, and arcs represent file-sharing connections. It has 10,876 nodes and 39,994 arcs [35].

Using these networks, we consider the diffusion processes presented in Section 3. Similar to Subsection 5.3, we consider

the tightness factor 𝜈 equal to 0.8, or 1.2. The comparison between AVI, GNNQL, CS, PPO, and A2C in terms of IT∕V is shown

in Figure 7.

Also in these instances, bothAVI andGNNQL outperformCS,PPO, andA2C. Specifically,AVI achieves the best results with

the highest average IT∕V , and it manages to influence almost all the nodes in several scenarios. Both PPO and A2C demonstrate

similar performances and constitute the second-best methods. Instead, CS performs the worst among the algorithms, often

having the lowest average and exhibiting significant variance in several instances.

In general, all the methods exhibit improved performance in instances with a higher ratio of arcs to nodes, as this facilitates

diffusion and simplifies the problem. It is interesting to note that the results on realistic graphs are superior to those obtained

with the large instance presented in Subsection 5.3. This difference is likely due to the degree distribution, which makes the

realistic graph more favorable.

To better analyze the performance of AVI and GNNQL, we report the average IT∕V , the time to compute the action (in

seconds), and the training time (in hours) in Table 6. The standard deviation of these values is reported within brackets.

2
Downloaded from https://snap.stanford.edu/data/.
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TABLE 6 Percentage of nodes influenced by AVI and GNNQL on real instances.

AVI GNNQL

𝝂 Diffusion IT∕V[%]
Action
comp. [s] Training [h] IT∕V[%]

Action
comp. [s] Training [h]

0.8 LTM 88.55 (5.94) 0.94 (2.26) 7.27 (0.63) 78.80 (12.76) 0.22 (0.19) 1.68 (1.06)

1.2 LTM 95.08 (4.59) 0.81 (1.57) 6.16 (0.56) 92.21 (13.14) 0.27 (0.12) 2.08 (0.40)

0.8 ICM 94.14 (4.44) 0.71 (1.08) 5.44 (3.36) 84.67 (8.07) 0.24 (0.01) 1.90 (0.33)

1.2 ICM 97.87 (4.54) 0.77 (2.02) 6.00 (1.32) 88.02 (7.06) 0.24 (0.04) 1.81 (0.20)

0.8 CTM 74.57 (5.75) 1.49 (3.97) 11.55 (3.41) 71.25 (13.97) 0.53 (0.21) 4.05 (0.12)

1.2 CTM 83.89 (5.92) 1.64 (2.23) 12.75 (2.37) 76.28 (13.60) 0.57 (0.23) 4.34 (0.75)

Note: The standard deviations are reported within brackets.

As the reader can notice, the ratio IT∕V increases as 𝜈 increases, since the greater the budget, the easier is to influence more

nodes. Nevertheless, the increment in IT∕V is small for instances considering the ICM and relatively large for those considering

the CTM. This means that the marginal economic value of the budget is influenced by the type of diffusion process considered,

and the same holds for the strategic decision about the quantity of budget to allocate in the marketing campaign. Moreover, in

absolute terms, the greatest value of IT∕V is achieved for the instances considering the ICM, and the lowest ones in the instances

considering CTM. This effect is due to the difference in the complexity of the dynamics.

The time to compute the action (columns single step) is below 2 s for both methods. This means that both AVI and GNNQL
can be applied in the real field and that they can also be used for building decision support systems in which the decision-maker

may interact with the solver to perform what-if analysis.

Instead, the training times (reported columns training) are not negligible: While the maximum training time is 4 h for

GNNQL, AVI may require up to 12 h. It is interesting to notice that the diffusion model strongly influences both the time to

compute the action and the training time. This is an important analysis to perform since in the real field the diffusion model

is not known. Moreover, this analysis paves the way for future investigation on how the methods developed for the IMP work

when different diffusion models are considered.

6 CONCLUSIONS

The paper presents and compares a set of algorithms for the adaptive budgeted influence maximization problem. In particular,

we propose a customized approximated value iteration leveraging mixed integer programming and a customized approximate

policy iteration exploiting new advances in graph neural networks.

The techniques achieve results close to the optimal ones (computed with a stochastic two-stage model) in an ad-hoc setting.

Moreover, through a wide set of computational experiments, we prove that they achieve good results on realistic graphs, being

able to effectively adapt to different topologies and diffusion processes. Since we have used synthetic data, it would not be very

“scientific“ to conclude that the proposed methods work well also in a real environment. Nevertheless, they can be considered

at least from a computational point of view.

In conclusion, it is worth noting that despite the use case considering social networks in their web meaning, the proposed

algorithms can be applied to other different contexts (e.g., awareness spreading, [10]).

Future works will address techniques to combine information from the value function in two-stage problems in order to

reduce their inherent myopic behavior, consider continuous node states (to model more shades of belief), address more advanced

diffusion processes (incorporating changes in the number of nodes and arcs, addressing the role of groups [71], considering

negative influences [5, 12], etc.), and study the robustness of these methods when the training and testing are performed using

different diffusion models.
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APPENDIX A: CONVERGENCE

In this section, we show the convergence analysis of AVI, GNNQL, PPO, and A2C. Convergence can be addressed in several

ways (e.g., considering the change of the parameters of the value function estimation, the gradient variation in the optimization

of the GNN parameters, etc.). Due to the heterogeneity of the solution techniques considered, we check convergence by the ratio

ofe+𝜏 − ofe
ofe

, (A1)

where ofe is the estimation of the expected objective function computed over 100 scenario paths using an agent trained with

e episodes. Given 𝜏, Equation (A1) is the marginal relative gain of adding 𝜏 more episodes in the training set. We represent

the average values and the 90% confidence intervals (computed on a set of 10 representative instances) for different values of

e, for both the large and real instances in Figure A1. As expected, in both types of instances, the values decrease and tend to

zero, meaning that the utility of adding more episodes decreases and converges to zero. It can be noticed that GNNQL converges
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faster than AVI, which converges faster than both PPO and A2C. Nevertheless, all the methods seem to converge for a number

of episodes less than 1000 for the large instances and less than 600 for the real ones.

FIGURE A1 Convergence analysis for 𝜏 =50 episodes.
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