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Abstract: Nuclear fusion reactors are composed of several complex components whose behavior
may be not certain a priori. This uncertainty may have a significant impact on the evolution of fault
transients in the machine, causing unexpected damage to its components. For this reason, a suitable
method for the uncertainty propagation during those transients is required. The Monte Carlo method
would be the reference option, but it is, in most of the cases, not applicable due to the large number of
required, repeated simulations. In this context, the Polynomial Chaos Expansion has been considered
as a valuable alternative. It allows us to create a surrogate model of the original one in terms of
orthogonal polynomials. Then, the uncertainty quantification is performed repeatedly, relying on
this much simpler and faster model. Using the fast current discharge in the Divertor Tokamak Test
Toroidal Field (DTT TF) coils as a reference scenario, the following method has been applied: the
uncertainty on the parameters of the Fast Discharge Unit (FDU) varistor disks is propagated to
the simulated electrical and electromagnetic relevant effects. Eventually, two worst-case scenarios
are analyzed from a thermal–hydraulic point of view with the 4C code, simulating a fast current
discharge as a consequence of a coil quench. It has been demonstrated that the uncertainty on
the inputs (varistor parameters) strongly propagates, leading to a wide range of possible scenarios
in the case of accidental transients. This result underlines the necessity of taking into account
and propagating all possible uncertainties in the design of a fusion reactor according to the Best
Estimate Plus Uncertainty approach. The uncertainty propagation from input data to electrical,
electromagnetic, and thermal hydraulic results, using surrogate models, is the first of its kind in the
field of the modeling of superconducting magnets for nuclear fusion applications.

Keywords: uncertainty propagation; polynomial chaos expansion; nuclear fusion reactors; supercon-
ducting magnets; numerical modeling

1. Introduction

Nuclear facilities, like fission reactors and, in the future, fusion reactors, are extremely
complex systems both from a physical and a technological point of view. For example,
in fusion reactors, many components are the first of their kind. The widespread use of
fusion reactors in the future will be possible if these technologies reach maturity in terms
of industrial production. At the same time, the construction of the first fusion reactors
will help to achieve this maturity. However, currently, the behavior of these components
is characterized by intrinsic uncertainties. When simulating a transient, the uncertainties
propagate from the single components to the overall system behavior, possibly leading to
serious damages to the reactor. For this reason, it is relevant, from the design phase, to
estimate the impact of the uncertainty of the data used as inputs to the model on the final
results of the simulations. This will us allow to set proper thresholds on the uncertainties
requested from the suppliers of the different components to avoid damage to the reactor.
The reference option for the non-intrusive (i.e., not requiring modifications of the model)
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uncertainty propagation (UP) analysis is the Monte Carlo (MC) method. This approach
is based on the definition and the random sampling of a set of uncertain inputs. Then,
deterministic calculations with these inputs are performed and the final results can be
aggregated to obtain statistical information about the output.

However, in view of the computational time required to perform each single simulation
with complex high-fidelity codes, the use of this method is often not feasible due to the very
large number of simulations required to reach statistical convergence. To face this problem,
several different methods have been proposed in the literature. An option is to reduce
the number of simulations for the uncertainty quantification approximating the input
distribution rather than the model, like in the Unscented Transform (UT) technique [1,2].
Another possibility is to build a surrogate model and use it instead of the real model to
perform the uncertainty quantification, as in Gaussian process modeling [3] and Polynomial
Chaos Expansion (PCE) [4,5]. The main advantage of this alternative is that the surrogate
model is orders of magnitude faster than the corresponding real model.

The PCE has been employed in this work, using the python (version 3.10) module
chaospy (version 4.3.12) [6] to analyze the uncertainty propagation during a Fast-current
Discharge (FD) in the Divertor Tokamak Test (DTT) facility Torioidal Field (TF) magnet
system. In Figure 1, the geometry of a single DTT TF coil is reported.

Figure 1. DTT TF coil geometry: view of the coil structure (left) and cross sections where dimensions
and pancake numbering are highlighted (right).

The uncertainty is given by the parameters of the characteristic of the Fast Discharge
Unit (FDU) varistor, influencing the evolution of the coil current during FD. This causes both
electrical (e.g., modification of coil peak voltage, variation of deposited energy in the FDU,
etc.) and electromagnetic (EM) drawbacks; indeed, varying the evolution of the coil currents
means varying the magnetic field time derivative, which translates to a modification of the
eddy currents induced within the TF coil casing and, as a consequence, a modification to
the Joule power deposited. In this work, the uncertainties of the above-mentioned results
have been assessed using PCE. The electrical results have been obtained via an object-
oriented model developed using the Modelica language in the open source environment
OpenModelica [7]. The uncertainty obtained with PCE has been benchmarked against the
MC method since the computational time required was still reasonable. On the other hand,
the EM results have been computed with 3D-FOX [8]. In this case, the benchmark of the
PCE outcomes with those of the MC was impossible due to the excessive computational
time required by the EM simulations. For this reason, a benchmark of the results obtained
with PCE against the UT method is proposed.
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Eventually, from the statistical distribution of the EM results, two worst-case scenarios
have been identified and used as input to the thermal–hydraulic (TH) model, developed
with the 4C code [9]. A fast discharge triggered by a quench initiated at the minimum
temperature margin location in the coil has been analyzed. These analyses allowed us to
demonstrate that the uncertainty on the input data (varistor parameters) will lead to a wide
range of possible accidental transients which must be carefully considered not to overlook
some potentially dangerous scenario with respect to machine integrity.

It is important to point out that the methodology presented here to analyze the DTT
TF FD is actually general and, in principle, applicable to any kind of fault transient in super-
conducting magnets involving any aspect of physics of interest. Moreover, the employment
of PCE strongly reduces the computational time required by the UP analysis if compared
to the MC method, making this type of analysis much faster and applicable to a larger
number of different scenarios.

2. Methodology

The analysis of the TF FD transient described in this work can be divided into three
consecutive sub-blocks related to the three aspects of physics considered in the analysis:

• Electrical (EL) simulation of the magnet power supply system;
• Electromagnetic (EM) modeling of the TF coil casing to evaluate the Joule power

generated by eddy currents induced in it during the transient;
• Thermal–hydraulic (TH) analysis of the magnet to assess the effect of the Joule power

deposition in the casing and AC losses in the superconducting (SC) cables on the coil
performance.

The logical connections between the three aspect of physics analyzed in the sub-blocks,
as well as their main outcomes, are schematically represented in Figure 2.

Figure 2. Logical connections between the three aspect of physics (and sub-blocks) and related results.

2.1. Electrical Model

The power supply circuit of the DTT TF coils and its FDUs have been simulated by
means of an object-oriented model developed in OpenModelica [10]. The structure of the
electrical circuit is taken from [11]; the eighteen TF coils are split into three groups of six
coils each, connected in series, and the three groups are, in turn, connected in series among
them and with the three FDUs, alternating between one FDU and one group of coils. Each
TF coil is modeled considering the self inductance and mutual inductances of the other
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TF coils based on the inductance matrix of the DTT TF system [12], solving the following
equation:

∆Vi =
N

∑
j=1

Li,j ·
dIj

dt
i ∈ [1, N], (1)

where L is the inductance matrix and N is the number of TF coils in the tokamak (18 in
DTT). The inductance matrix L is square and has the coils self inductances on the main
diagonal and the mutual inductances out of the main diagonal.

The FDU is modeled as the parallel of the dumper and an ideal switch, normally
closed; when the fast discharge is triggered, the switch is opened, forcing the current to flow
through the dumper. Meanwhile, the power supply, modeled as an ideal current generator
(forcing the nominal current of 42.5 kA in DTT [13]) taken from the Modelica Standard
Library [7], is disconnected from the circuit so that the current in the loop decreases.
The FDU dumper is composed of a collection of varistor disks [12], modeled here as an
equivalent single disk whose characteristic is described by the following equation:

∆V = K · Iβ. (2)

The two parameters describing the varistor behavior (K and β) are affected by epis-
temic uncertainty (i.e., there is a lack of knowledge of their values due to fabrication
processes). Indeed, according to the varistor producer, they can be assumed as uniformly
distributed in the following ranges [12]:

K ∈ [8.134, 13.05], (3)

β ∈ [0.562, 0.595], (4)

and have been considered here as statistically independent.
K and β directly impact the transport current evolution. The latter influences the eddy

currents and Joule power generated by the quench and thus the quench propagation and
hotspot temperature. As a result, the very large uncertainty on these input parameters has
a non-negligible impact on the transient evolution. When trying to numerically predict
the behavior of the TF coil system during an FD, the uncertainty of these parameters is
then propagated through the analysis of all the model sub-blocks, requiring an uncertainty
propagation analysis.

2.2. Electromagnetic Model

The EM model for the evaluation of the eddy currents induced in the coil casing
during the FD is developed within the 3D-FOX, a finite element electromagnetic code
developed at Politecnico di Torino [8]. The model solves Faraday’s and Ampère’s laws
using the A-formulation. The eddy currents’ distribution is then used to evaluate the power
distribution in the TF coil casing by means of Ohm’s law. The Joule power deposition is
suitably averaged before providing it as input to the TH model, as explained in [8].

The simulation setup is the same as presented in [8], adding cyclic periodic boundary
conditions to the model of a single TF coil to exploit the periodicity of the tokamak to
simulate the effect of the simultaneous discharge of all the TF coils.

2.3. Thermal–Hydraulic Model

The model of the DTT TF coils developed within the 4C code [9], presented in [14] and
used for the simulation of several transients, is adopted for the TH analysis. The TH simula-
tion setup is taken from [15], while the logical connection between the EM module (3D-FOX)
and the TH one (4C code) is reported in detail in [8]. The 4C code has been validated both
interpretatively ([16–19]) and predictively ([20,21]) several times in recent years.
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2.4. Uncertainty Propagation Analysis

One of the aims of the uncertainty propagation is to evaluate the impact of the un-
certainties of the inputs on the outputs of a generic model and to asses how they affect
the performance of the system represented by the computational model. Usually, UP is a
demanding activity, requiring a large number of expensive simulations. At the same time,
UP is mandatory since uncertainties can have a dramatic impact on the performance of
nuclear systems. In fact, one of the most recent methodologies for the licensing of nuclear
systems is the so-called Best Estimate Plus Uncertainty method [22,23], where the output is
provided together with its uncertainty. This approach has been progressively replacing the
more traditional conservative approach.

To reduce the computational burden of the UP, several methods have been proposed
in the literature. In this work, the Polynomial Chaos Expansion has been used, together
with the Unscented Transform for verification purposes, benchmarking the two methods.
Only in the case of the EL model has the Monte Carlo approach also been used as a
further reference benchmark thanks to the sufficiently short computational time of the
detailed model.

2.4.1. Polynomial Chaos Expansion

The Polynomial Chaos Expansion approximates a stochastic model M(X), where the
stochastic nature comes from the uncertainty of the inputs (X), through a series of orthogo-
nal polynomials. The random vector X is represented by a joint probability distribution
which, in the case of independent variables (as in this work), is simply the product of the
single marginal probability density functions associated with each input. It is possible
to express the model M in terms of an expansion of orthogonal polynomials Ψ selected
according to the joint distribution of the input:

M(X) =
∞

∑
c=0

acΨc(X) ≈
C

∑
c=0

acΨc(X), (5)

where ac denotes the coefficients of the multivariate orthogonal polynomials. The infinite
sum in Equation (5) must be truncated at the first C terms due to practical reasons. The total
number of terms C in the polynomial expansion depends on the polynomial order p and
on the dimension of the input d and, according to the total degree truncation scheme, it is
as follows:

C =
(p + d)!

p!d!
. (6)

There are several techniques for the evaluation of the polynomial coefficients, which
are the unknowns of the PCE method. Some of these techniques are intrusive, requir-
ing the modification of the model equations (e.g., the stochastic Galerkin method [24]);
others are non-intrusive, where the computational model is treated as a black box (e.g.,
pseudo-spectral projection, point collocation [25], and stochastic testing [26]). In this work,
the pseudo-spectral projection method implemented in chaospy has been used.

In the pseudo-spectral projection method, the coefficient of Equation (5) is computed
through a quadrature integration scheme as follows:

ac =
∫ +∞

−∞
dXM(X)Ψc(X)w(X) ≈

I

∑
i=1

M(Xi)Ψc(Xi)w(Xi), (7)

where X = X1, X2, . . . , XI is the vector of quadrature nodes generated according to the
chosen quadrature rule, w(Xi) denotes the corresponding weights, and M(Xi) denotes
the exact model evaluations at node Xi. Thus, knowing the values of M(Xi) for all the
nodes and the appropriate expansion of orthogonal polynomials, it is possible to compute
the coefficients ac and a surrogate model of M(X) according to Equation (5). Hermite
and Legendre polynomials are typically used as orthogonal polynomials for Gaussian and
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uniform distributions, respectively; see [5] for a more detailed description about the relation
between the type of distribution and the most appropriate orthogonal polynomial set. Once
the Is exact model simulations have been performed, the polynomial metamodel can be
used to evaluate the first moments of the output distributions (i.e., mean and variance),
as well as the complete distributions and other quantities like Sobol’s sensitivity indices,
which allow us to rank the input parameters based on how much they affect the uncertainty
of the output.

In principle, the surrogate model is able to reproduce the results of the exact model
inside the range of validity of the input distributions, with the advantage of being much
faster and simpler. It is this peculiar characteristic which justifies the use of the metamodel
for uncertainty quantification purposes.

2.4.2. Unscented Transform

The intuition upon which the Unscented Transform technique is based is that it is
simpler to approximate the distribution of the inputs rather than approximate the model
used to generate the output distribution. The approximation of the input distribution is
obtained by generating a set of sigma points that represent the probability distribution of
the input and which are used to feed the exact model. According to the literature [1], 2d + 1
sigma points are sufficient to obtain a good representation of the input and of the mean
and variance of the output, where d represents the dimension of the input perturbed data.
The UT generally requires fewer simulations than the PCE, but it gives a limited amount
of information (namely, the first two moments of the output distribution), assuming a
Gaussian distribution for the output. However, in some cases, it could be sufficient to
know the mean and the variance of an output distribution, making the UT an interesting
technique for preliminary evaluations.

Among the several algorithms presented in the literature, here, the so-called Gen-
eralized Unscented Transformation [27] has been employed since it allows us to deal
with constrained sigma points like those generated from the uniform distributions in
Equations (3) and (4) for the DTT FDU input parameters at hand, avoiding having non-
physical sigma points outside of the prescribed distributions.

In this work, the UT has been employed to check that at least the first two moments
calculated with the PCE are correct to add an additional benchmark in the EM model in
which the comparison to the MC was not viable due to the excessive computational time of
the detailed model.

3. Results

In this section, the results of the three modules are summarized, including the statistical
analysis of the uncertainty propagation, from the inputs to the outputs of both the EL and
EM models. The generation and simulation of a TH worst-case scenario, selected according
to the uncertainty quantification analysis, is also presented.

3.1. Results of the Electrical Model

The EL model is sufficiently fast to allow for the analysis of its uncertainty propagation
on the results via a Monte Carlo approach. For this reason, an MC analysis has been devel-
oped, exploiting the interoperability of Python and Modelica assured by OMPython [7]
and DyMat packages. The MC method simply consists of sampling a large number N
of random points from the input distribution and performing a simulation for each of
these points, giving a result ξi. In the MC algorithm, the average results ξN are computed
as follows:

ξN =
N

∑
i=1

ξi
N

. (8)
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Together with the average value, both the standard deviation (STD) and the relative
standard deviation (RSD) are computed, according to the following equations:

STD(ξN) =

√√√√ 1
N

N

∑
i=1

(ξi − ξN)2, (9)

RSD(ξN) =
STD(ξN)

ξN ·
√

N
. (10)

The RSD is used as an indicator to stop the sampling of random points once the
required tolerance is reached. In this case, the required tollerance for the RSD was 0.1%
and was reached after ≈28,500 simulations. The Equation (10) underlines one of the main
drawbacks of MC, namely, its slow convergence (as 1/

√
N), requiring a large number

of simulations.
The statistical distributions of the following four relevant results have been obtained

from the MC run and are reported in Figure 3:

• τ → time required for the current to decrease from nominal value to 0.1 A;
• I2 · t =

∫ t
0 I2(t′)dt′, considering its asymptotic value, which is proportional to the

energy extracted from the TF coils during the FD;
• ∆VFDU → peak voltage on the FDU during the discharge;
• ∆VTF → peak voltage on the TF coil during the discharge.

(a) (b)

(c) (d)

Figure 3. Statistical distribution of (a) τ, (b) I2 · t, (c) ∆VFDU , and (d) ∆VTF obtained with the
MC method.

The resulting mean values of the monitored variables and their standard deviations
are reported in Table 1.

The same model has been analyzed using the PCE to reduce the required number of
simulations to obtain the same statistical information. Quadrature and polynomial orders
from 1 to 3 have been tested, and the results have been compared to those of the MC
method, obtaining extremely good agreement for all the monitored variables using order 3,
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as is shown in Figure 4. Indeed, the 2-norm of the relative difference between the MC and
PCE order 3 distribution results in a maximum discrepancy of 0.05% between the two.

This allows for the performance of only sixteen simulations of the detailed model as a
training set compared to the ≈30,000 simulations of the detailed EL model (≈1 s of CPU
time each) required to reach the desired statistical tolerance using the MC approach. In fact,
in the case of the pseudo-spectral projection method, the number of simulations required is
given by (p + 1)d, where p is the polynomial degree at which the truncation occurs (3 in this
case), and d is the dimension of the input space (2 in the case at hand). This choice results
in a polynomial with 10 ac coefficients, according to Equation (6). Here, the quadrature
nodes and the weights have been obtained using the Gaussian quadrature rule. To better
highlight the accuracy of the PCE results, the comparison between the mean values and
their standard deviation obtained with MC and PCE is reported in Table 1. Using the PCE,
it has also been possible to evaluate the current and I2 · t evolution. Knowing the statistical
distribution of each point in the evolution, it has been possible to evaluate an average
evolution and a 1–99% confidence interval for both variables, as reported in Figure 5.

(a) (b)

(c) (d)

Figure 4. Statistical distribution of (a) τ, (b) I2 · t, (c) ∆VFDU , and (d) ∆VTF obtained with the PCE
method. Comparisons between performances of different PCE quadrature orders are shown for
each distribution.
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(a) (b)

Figure 5. Average evolution of (a) current and (b) I2 · t with respective 1–99% confidence range
evaluated with PCE.

Eventually, the UT method was applied as well. In the framework of the EL model,
its application is not particularly relevant since the reduction of the required number of
simulations is limited (five simulations instead of sixteen) and the amount of statistical
information is limited to the average and the standard deviation, without providing ef-
fective information on the distribution. However, this method has been introduced as a
useful benchmark for the EM model, in which the MC method cannot be applied due to
the excessive computational cost.

The five UT sigma points have been generated according to the Generalized Unscented
Transformation algorithm and the results are summarized in Table 1, showing very good
agreement between the three methods. Indeed, the maximum relative difference on the
computed mean values is ≈0.06 % (smaller than the tolerance imposed to check the conver-
gence of the MC run), while the maximum relative difference on the computed standard
deviation is ≈0.6 %.

Table 1. Comparison between the mean value and standard deviation of the monitored variables
using the MC, PCE, and UT methods.

Variable V ± 2 · σ V ± 2 · σ V ± 2 · σ
MC PCE UT

τ [s] 14.77 ± 4.70 14.76 ± 4.69 14.77 ± 4.69
∆VFDU [V] 5065.85 ± 1708.03 5067.26 ± 1708.40 5067.27 ± 1698.46
∆VTF [V] 843.98 ± 284.56 844.21 ± 284.62 844.22 ± 282.97

I2 · t [GA2 · s] 4.67 ± 1.58 4.67 ± 1.57 4.67 ± 1.57

The results show a non-negligible standard deviation, justifying the necessity to further
propagate the uncertainties through the EM model. In particular, as the relative standard
deviation for the outputs of the EL model, computed as σ/V, is generally larger than that
for the input distributions in Equations (3) and (4), the electrical model seems to amplify
the uncertainties.

3.2. Results of the Electromagnetic Model

The MC method was not applicable to the uncertainty propagation analysis in the EM
model due to the increase in the computational time (≈1 day/simulation) of the detailed
model. For this reason, the PCE of quadrature order 3 has been used to build a surrogate
model of the detailed one based on its results, since it proved to be sufficiently accurate to
replace the detailed EL model too. The 3D-FOX calculates the evolution of the power P(t)
deposited in the TF coil casing. The monitoring variables have been extracted from this
evolution, considering the following:

• The peak of the deposited power Ppeak;
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• The overall deposited energy E =
∫ tend

0 P(t)dt.

The statistical distributions of the peak of the deposited power and of the energy de-
posited are reported in Figure 6; they highlight how the uncertainty in the inputs translates
into huge uncertainty in terms of the peak power and deposited energy. Neglecting this
uncertainty propagation may lead to disregarding the worst0case scenarios connected to
this transient, concerning, e.g., its TH effects.

The average value and the standard deviation of the peak of the deposited power and
of the deposited energy computed with the PCE have been benchmarked against those
evaluated with the UT. The comparison of the results is shown in Table 2.

(a) (b)

Figure 6. Statistical distribution of (a) peak of the power deposition and of (b) deposited energy,
obtained using PCE with quadrature order 3.

Table 2. Comparison between the mean value and standard deviation of the peak power and the
deposited energy evaluated with PCE and UT.

Variable V ± 2 · σ V ± 2 · σ
PCE UT

Pmax [MW] 1.01 ± 0.62 1.00 ± 0.61
E [MJ] 4.42 ± 1.40 4.42 ± 1.40

The benchmark shows an excellent agreement between the PCE and the UT. This does
not guarantee the accuracy of the statistical distribution obtained with PCE, but it suggests
that the metamodel developed properly reproduces the main statistical data, namely,the
mean and the variance.

As already undertaken for the evolution of the current and of I2 · t in the EL model
analysis, here, the average power evolution and its 1–99% confidence range have been
calculated using the PCE and are shown in Figure 7.

The width of the 1–99% confidence range highlights the importance of considering
the uncertainty on the input data to evaluate the worst-case scenario to be retained for the
analysis of this transient. Moreover, the impact of the uncertainty is much larger in the
first part of the transient (peak region). This is expected since the first part of the transient
is driven by the large value of the time derivative of the current at the beginning of the
FD, which is strongly affected by the K and β parameters of the varistors. On the contrary,
the last part of the transient is less affected by the uncertainty of the inputs as the time
derivative of the current is reduced, consequently reducing the power deposited.
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Figure 7. Average evolution of the power deposited within the TF coil casing with its 1–99%
confidence range evaluated with PCE.

A further benchmark of the metamodel based on PCE is performed by applying it
to the inputs represented by the sigma points generated for the UT computations and
comparing the results to those obtained in those points with the detailed EM model (3D-
FOX). To ensure a fair benchmark, the UT sigma points used do not belong to the PCE
model training set.

The comparison is shown in Table 3, including the relative difference εV on variable V,
obtained as follows:

εV =
VPCE − V3D−FOX

V3D−FOX
. (11)

The larger relative discrepancy is smaller than 0.5%, which is considered a satisfactory
accuracy. This benchmark does not guarantee the level of accuracy for the entire parameter
space (K, β) but demonstrates that the model is able to reproduce, properly, the detailed
model results in the entire parameter space, covered by the UT sigma points. In fact,
by definition, the sigma points are constructed by the UT algorithm to cover the input
space in the best possible way, i.e., with the smallest number of points.

Table 3. Comparison between the peak power obtained using the 3D-FOX and the PCE metamodel
using the UT sigma points (σ) as input parameters.

Pmax,3D−FOX
[MW]

Pmax,PCE
[MW]

Relative
Difference—

εPpeak

E3D−FOX
[MJ] EPCE [MJ]

Relative
Difference—

εE

σ1 0.975 0.977 +0.28% 4.40 4.40 −0.03%
σ2 0.628 0.625 −0.45% 3.51 3.51 −0.11%
σ3 0.726 0.728 +0.31% 3.82 3.82 +0.01%
σ4 1.39 1.39 +0.28% 5.28 5.28 +0.02%
σ5 1.30 1.30 +0.05% 5.08 5.07 −0.06%

3.3. Identification of the Worst-Case Scenarios

The relevant worst-case scenarios (WCSs) to be used as input to the TH model must
now be identified. In the WCS selection, both EL and EM aspects must be considered.
Indeed, a fast current discharge is fundamental to protect, promptly, the magnet from the
quench, but at the same time, it deposits a lot of energy in the coil casing, contributing to
the coil temperature increase. For this reason, it is relevant to evaluate the (K, β) couples
which cause the slowest discharge (WCS1) and which lead to the highest energy deposition
in the coil casing (WCS2), and to perform their TH analysis. These two extreme scenarios in
the ballpark of possible values of K and β provide a preliminary indication of the evolution
of possible transients to be refined with the future introduction of statistics in the TH model.



Appl. Sci. 2024, 14, 1068 12 of 16

The two scenarios are clearly distinct, as the slower the discharge, the smaller the energy
deposited in the casing (driven by the time derivative of the current). Thus, they will be
generated by points standing at the opposite boundaries of the (K, β) plane. This statement
is confirmed by Figure 8, in which the τ and deposited energy values have been mapped,
using the PCE model, on the (K, β) plane. The specific values of K and β generating the
two WCSs are (K = 8.134, β = 0.562) for WCS1 and (K = 13.05, β = 0.595) for WCS2.

(a) (b)

Figure 8. Map of (a) τ and (b) energy deposited in the coil casing in the K, β plane.

Using these values of K and β, the inputs to the TH model have been computed.
The first required input is the evolution of the coil current, evaluated with the EL

model, and it is reported in Figure 9a. As expected, the two evolutions are very different,
and this will strongly influence the quench evolution.

The second required input is the power deposited in the casing, including both its
evolution and distribution (to account for its non-uniformity). The PCE metamodel has
been trained on a set of 3D-FOX simulations, considering the evolution of the overall power
deposition, to reduce the computational cost. Therefore, a dedicated run of the 3D-FOX has
been performed for each of the two selected WCSs to prepare the detailed input to the 4C
code, namely, the spatial discretization of the power deposition in the casing [8]. The total
power deposited in one TF coil casing in the two WCSs is reported in Figure 9b, confirming
that the fastest discharge is actually responsible for the larger energy deposition.

(a) (b)

Figure 9. Evolution of (a) current and (b) total power deposited in the coil casing during the
two WCSs.

3.4. Results of the Thermal–Hydraulic Model

The inputs have been adopted to simulate an FD triggered by the magnet quench.
In the simulation, the quench has been obtained via a local heat deposition at the location
where the minimum temperature margin is computed in nominal operation, i.e., in the



Appl. Sci. 2024, 14, 1068 13 of 16

first turn of the two central pancakes at the inboard equator. In this work, 50 kW/m of
external power (e.g., a very concentrated beam of particles coming from the plasma) have
been deposited in 10 cm of SC cable around the minimum margin location of pancake 6 for
0.1 s. The power deposition erodes the temperature margin, leading the magnet to quench
initiation and propagation. The FD is triggered by the quench detection system when the
voltage computed across the coil overcomes the 100 mV threshold, waiting, then, for a
validation time of 1.5 s [28] to reduce the spurious detections.

The evolution of the voltage computed with the 4C code in the two WCSs is reported
in Figure 10. The WCS2, characterized by a faster discharge, leads to a faster response to
quench protection, reducing the quench propagation (and therefore the voltage buildup)
in the Winding Pack (WP). Due to the inter-pancake thermal coupling, the neighboring
pancakes (namely, 5 and 7) are also heated up, possibly quenching. However, the voltage
raise in pancakes 5 and 7 is almost negligible in WCS2 due to the faster reduction of the
current; on the contrary, in WCS1, the delayed current decrease also causes a quench
initiation and propagation in those pancakes. Quench initiation in pancake 7 is slightly
delayed with respect to pancake 5 due to the smaller magnetic field there, with it being
further away from the coil center.

Figure 10. Voltage evolution computed in pancakes 5, 6, and 7 in both WCS1 and WCS2. The current
evolution for WCS1 (solid) and WCS2 (dashed) is also plotted, to be read on the right axis.

The two scenarios also differ in terms of the hot-spot (HS) temperature, that may lead
to permanent damages to the coil. Indeed, as shown in Figure 11, where the HS temperature
reached during the transient is plotted for each pancake, the hot spot temperature is larger,
in the central pancakes, in the WCS1, featuring a larger Joule power deposition. The
opposite trend is observed in side pancakes (e.g., pancake 1) in which the quench is not
initiated and the heating is due to thermal contact with the casing, where the eddy current
power is deposited. Given that the power deposition in the casing is larger in WCS2
(see Figure 9b), the power transferred from the casing to the WP is also larger; thus, the
conductor temperature increases more. From the bar plot in Figure 11, it is also possible
to appreciate the effect of the inter-pancake heat diffusion, visible in the progressive
temperature decrease moving far away from the quenched (central) pancakes.

The importance of reducing the current in the fastest possible way is clear when
comparing the hot spot temperature in the two scenarios. Indeed, the HS temperature
is much larger in WCS1 due to the faster current decrease in WCS2. On the contrary,
the temperature increase in the side pancakes, given by the eddy current power deposition
in the casing, is similar in the two cases, despite the consistent difference in the casing
power deposition between them, as can be seen from Figure 9b. Actually, the timescale
of the heat transfer from the casing to the WP is quite slow if compared to the current
discharge duration, also in the slower WCS1.
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Figure 11. Maximum hot spot temperature reached in each pancake during the transient for both
WCS1 and WCS2.

These results show that the uncertainty in the characteristic parameters of the varistors
leads, eventually, to a wide range of quench evolutions. Increasing as much as possible
the precision on the varistor parameters during their manufacturing is fundamental to at-
taining reliable predictions and therefore a safe reactor operation. Moreover, the preferable
direction in the refinement of the varistor characteristics is that leading to faster current
discharges; this, despite the larger power deposition in the coil casing due to eddy currents,
ensures a faster response to the quench and thus limits its propagation, reducing the HS
temperature and therefore the risk of damage to the coil.

4. Conclusions and Perspective

In this paper, the Polynomial Chaos Expansion has been adopted to assess the uncer-
tainty propagation in a transient relevant for the safe operation of a nuclear fusion plant.
The uncertainty in the characteristic parameters of the varistors of the fast discharge units
of the DTT TF coils has been propagated to the computed results during a fast discharge
transient. The uncertainty has an impact on the actual current evolution during the dis-
charge, which influences both the eddy currents induced in the coil casing and the TH
behavior of the coil during quench propagation.

The current evolution during the discharge has been computed as a function of
the varistor parameters, with an object-oriented electrical model developed using the
Modelica language. The uncertainty propagation from the varistor parameters to the
effective current evolution has been assessed using a surrogate model based on the PCE,
which has been successfully benchmarked against the Monte Carlo approach. The obtained
statistical distribution of the current evolution has been used as input in the electromagnetic
model developed using the 3D-FOX tool to compute, again with a PCE surrogate model,
the statistical distribution of the power (and energy) deposition in the coil casing due to
eddy currents.

Finally, both these results (current and power evolution) have been used to identify
the two possible worst-case scenarios to be simulated with the thermal–hydraulic model,
developed with the 4C code. The two cases are the slowest current dump and the highest
power deposition in the casing.

The comparison of the results of the thermal–hydraulic model shows that the consid-
ered uncertainty on the varistor parameters leads to a wide range of different results. As
concerns the quench protection, the reduction of the current discharge time, reducing the
hot spot temperature, is preferable to the reduction of the power deposited in the casing
due to eddy currents.
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The effect of the latter is, however, important, especially with respect to hydraulic cir-
cuit pressurization and He venting. From this perspective, more detailed models, including
the hydraulic circuits, will be used to assess this effect.

The application of the statistical methods to the TH model will, in future, allow us to
identify other worst-case scenarios between the two extreme examples analyzed in this
work. Moreover, a reverse analysis will be performed with the aim of suggesting the
maximum limits of uncertainty which are acceptable on the varistor parameters.

The presented analysis is one example of the possible applications of the newly devel-
oped methodology for the uncertainty propagation in fault transients in superconducting
magnets. Indeed, the presented approach is totally general and can be applied to any case
and input data of interest and, with suitable parameter tuning, to any kind of numeri-
cal model.
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Abbreviations

DTT Divertor Tokamak Test
EL Electrical
EM Electro Magnetic
FD Fast Discharge
FDU Fast Discharge Unit
HS Hot Spot
MC Monte Carlo
PCE Polynomial Chaos Expansion
RSD Relative Standard Deviation
SC Superconductor/Superconductive
STD Standard Deviation
TF Toroidal Field
TH Thermal - Hydraulic
UP Uncertainty Propagation
UT Unscented Transform
WCS Worst-Case Scenario
WP Winding Pack
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