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Abstract Electro-mechanical systems are key ele-
ments in engineering. They are designed to convert
electrical signals and power into mechanical motion
and vice-versa. As the number of networked sys-
tems grows, the corresponding mathematical models
become more and more complex, and novel sophis-
ticated techniques for their analysis and design are
required. We present a novel methodology for the anal-
ysis and design of electro-mechanical systems subject
to random external inputs. The method is based on the
joint application of a model order reduction technique,
by which the original electro-mechanical variables are
projected onto a lower dimensional space, and of a
stochastic averaging technique, which allows the deter-
mination of the stationary probability distribution of the
systemmechanical energy. The probability distribution
can be exploited to assess the system performance and
for system optimization and design. As examples of

M. Bonnin (B) · K. Song · F. Bonani
Dipartimento di Elettronica e Telecomunicazioni, Politecnico di
Torino, Torino, Italy
e-mail: michele.bonnin@polito.it

K. Song
e-mail: kailing.song@polito.it

F. Bonani
e-mail: fabrizio.bonani@polito.it

K. Song
University School for Advanced Studies, IUSS, Pavia, Italy

F. L. Traversa
MemComputing Inc., San Diego, CA, USA
e-mail: ftraversa@memcpu.com

application, we apply the method to power factor cor-
rection for the optimization of a vibration energy har-
vester, and to analyse a system composed by two cou-
pled electro-mechanical resonators for sensing appli-
cations.

Keywords Electromechanical systems · Model
order reduction · Stochastic differential equations ·
Stochastic averaging · Energy harvesting · White
noise · Stochastic processes · Fokker–Planck equation ·
Nonlinear oscillators · Coupled oscillators

1 Introduction

Electro-mechanical systems play a crucial role in engi-
neering and are an integral part of a large variety of
modern everyday devices. Combining together electri-
cal and mechanical components, they are designed to
perform various tasks utilizing the principles of both
electromagnetism and mechanics, which makes them
fundamental in automating processes, improving effi-
ciency, and enhancing precision inmanufacturing [1,2]

Electro-mechanical systems consist of electrical
components, such as sensors, actuators,motors, switches,
and circuits, seamlessly integrated with mechanical
systems like gears, levers, and belts [3–5]. Using a fas-
cinating analogy, the electrical components provide the
brain andpower,while themechanical components rep-
resent the muscles and the sensory apparatus, enabling
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physical movement, force transmission and physical
interaction with the surrounding environment [6,7].

A key feature of electro-mechanical systems is their
versatility. They can be engineered to perform a wide
range of functions. Their ability to convert electrical
energy into mechanical motion allows them to respond
to inputs and perform actions with unmatched accu-
racy and speed. An example is the use of silicon micro-
technology to design cantilevers that can be exploited
as micro-mechanical resonators. These have emerged
as key elements in mass sensing applications, being
characterized by very high quality factor, that makes
their resonance frequency extremely sensitive to exter-
nal forces and mass changes due to substance addi-
tions [8,9]. On the other hand, in recent years, a new
category of electro-mechanical systems has been real-
ized, which explores the reverse mechanism. They are
designed to convert mechanical kinetic energy dis-
persed in the environment that would otherwise be
wasted, into usable electrical power, a solution that goes
by the name of (vibrational) energy harvesting [10–13].
Energy harvesting aims to design electro-mechanical
systemswith self-powering capability, or at least able to
recharge their internal battery prolonging its expected
life, by scavenging energy dispersed in the ambient
whenever available.

As technology progresses and with the rapid diffu-
sion of new technological paradigms, such as Artificial
Intelligence [14,15] and the Internet of Things [16,17],
electro-mechanical systems are becoming increasingly
intelligent, as well as increasingly interconnected. On
the one hand, with the combined use of sensors, micro-
controllers, and advanced algorithms, these systems
can adapt to changing conditions, monitor their own
performance, and optimize their operations in real-
time. From the designer standpoint, new challenges
arise especially in terms of system optimization and
energy efficiency.

As the number of interconnected systems grows,
the corresponding mathematical models involve larger
number of variables, equations and parameters, result-
ing in large-scale systems that can be difficult to han-
dle efficiently. In this view, model order reduction is a
powerful technique used in engineering and science to
simplify complex mathematical models while preserv-
ing their essential characteristic [18–20]. It permits the
analysis and simulation of systems that would other-
wise be computationally expensive or time-consuming
to handle.

The simplified version of the mathematical model
must retain the critical behavior and properties, while
significantly reducing the computational complex-
ity, allowing engineers and scientists to analyze and
understand the system’s behavior more effectively.
By projecting the system’s dynamics onto a lower-
dimensional subspace, the number of equations, vari-
ables and parameters can be reduced, paying attention
to retain the most important information while neglect-
ing the less significant one. As a result, order reduced
models significantly simplify design and optimization,
reducing computational costs, prototyping time, and
ultimately, fastening time-to-market.

In this contribution we propose a methodology for
the analysis and design of electro-mechanical systems
subject to randomexternal perturbations. Themethod is
based on a two step approach: (1) the first step consists
in amodel order reduction, such that the total number of
variables (mechanical + electrical) is reduced to two for
each mechanical degree of freedom, one representing
the mechanical energy and the other an angle variable.
The reduction is analogous to the well known action-
angle representation for conservative systems [21], and
is performed under the assumption that the mechanical
friction and the action of electrical subsystems on the
mechanical part are small perturbations of the mechan-
ical equations. The electrical variables for the general
equations are expressed as functions of the mechanical
energy and of the angle, exploiting a spectral domain
representation founded on Fourier (harmonic) series,
which forms also the basis for the well known har-
monic balance (HB) numerical solution technique [22];
(2) The second step is based on stochastic averaging
[23]. Exploiting the time scale separation between the
reduced variables, it is possible to eliminate the fast
variable (in our case, the angle) so that a scalar equa-
tion for the energy is obtained. The main result is that
the stationary energy probability density function can
be analytically calculated in a relatively simple way,
thus enabling the computation of all expected quantities
for the electro-mechanical system. As a consequence,
a significant simplification of the system modelling is
obtained, opening theway to the definition of optimiza-
tion and design procedures.

The paper is organized as follows: In Sect. 2 we
introduce the general form of the electro-mechanical
system to be modeled. The stochastic nature of the
model, and its impact on the equation normaliza-
tion procedure, are discussed in Sect. 3. Section4 is
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Fig. 1 Two-port network representation of an electro-
mechanical system closed on a generic user

devoted to the introduction of themodel order reduction
approach, whereas stochastic averaging is presented in
Sect. 5. The application of the methodology to a vibra-
tion energy harvester with power factor correction is
discussed in Sect. 6.1. In Sect. 6.2 the method is used
to analyse a system composed by two coupled can-
tilevers for application to mass sensing. Finally Sect. 7
is devoted to conclusions.

2 Micro-electro-mechanical system modeling

We consider an electro-mechanical system that can be
represented as the two-port network shown in Fig. 1.
Mechanical quantities (force and velocity) are applied
at the left port, while electrical quantities (current and
voltage) are at the right port. The right port is closedon a
two terminal electrical element, representing a generic
user which absorbs electrical power or receives infor-
mation from the electro-mechanical network. In many
practical applications, the user is a simple electrical
resistor.

The internal structure of the electro-mechanical sys-
tem can be very complicated, as it can be composed
of several subsystems. For example, it may include a
mechanical structure responsible for absorbing kinetic
energy from external sources, one or more transducers
that convert mechanical energy into electrical energy
(or vice-versa), and an electrical domain. Possibly, a
rectifier and/or a matching circuit may be interposed
in front of the user. Thus, a large set of state variables,
both mechanical and electrical, may be required for a
detailed description.

We assume that the mechanical part is a one degree
of freedom (DOF) system, described by the Lagrangian
function L̂(z, ż) = T̂ (ż) − Û (z) = mż2/2 − Û (z),
where T̂ (ż), Û (z) are the kinetic and the potential
energy, respectively, m is an inertial mass, and z, ż

are the generalized coordinate and velocity, respec-
tively. Such an assumption is quite reasonable for
micro-electro-mechanical systems where, given the
very small dimension involved, mass can be consid-
ered concentrated, and the displacement so small that
the motion can be assumed to occur along a straight
line. A generalization to systems with more than one
mechanical DOF will be discussed in the second part
of Sect. 4, and more specifically in Corollary 3.

For a mechanical systems with small internal fric-
tion, the dissipation can be approximated as a linear
force, the dissipation potential being D̂(ż) = ε̂ż2/2,
where ε̂ is the friction coefficient. The Lagrange equa-
tion ofmotion for themechanical system takes the form

mz̈ + ε̂ż + Û ′(z) = F(t) (1)

where Û ′(z) = ∂Û (z)/∂z, and F(t) is the resultant of
the forces applied to the mechanical domain. In partic-
ular, we consider the case where F(t) is the sum of two
contributions: an external force η(t) due to the action
of the environment, and a force b̂m(ze) due to the action
of the electrical domain

F(t) = ε̂b̂m(ze) + √
ε̂ η(t) (2)

where ze : R �→ R
n , denotes the collection of the

electrical variables describing the state of the electri-
cal domain (voltages across capacitors and currents
through inductors, including the reactive elements of
the transducer equivalent circuit [24–26]). For the sake
of simplicity andwithout toomuch loss of generality, in
(2) we have assumed that the electro-mechanical cou-
pling force is of the same order of magnitude of the
internal friction, while the external forcing has magni-
tude

√
ε̂.

The electrical domain is represented by an electri-
cal circuit, composed by the interconnection of linear
and nonlinear two-terminal and/or multi-terminal ele-
ments. External forces acting on the electrical domain,
such as the action of transducers convertingmechanical
forces into electrical inputs, are modelled as equivalent
voltage or current sources, either dependent or indepen-
dent. For the sake of simplicity, we shall assume that
this is the only force applied to the electrical domain.
The state equations are a system of differential equa-
tions, that can be derived from Kirchhoff laws and the
characteristic relationships of the electrical elements
[27], thereby obtaining:

że = âe(ze) + b̂e(z, ż) (3)
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where âe : Rn �→ R
n , is the vector field which defines

the internal state evolution, and b̂e : R
2 �→ R

n is
the vector field of the sources associated to the action
of the mechanical domain and the environment. We
shall implicitly assume that all vector fields are smooth
enough for all the following considerations.

Combining (1)–(3), and rewriting as a system of first
order differential equations yields

ż1 = z2 (4a)

ż2 =
(

− 1

m
Û ′(z1) − ε̂

m
z2 + ε̂

m
b̂m(ze)

)
+

√
ε̂

m
η(t)

(4b)

że = âe(ze) + b̂e(zm) (4c)

where zm = [z1, z2]T = [z, ż]T is the vector obtained
collecting the mechanical variables. Again, in (4b)
we have assumed that the electro-mechanical coupling
force is of the same order of magnitude as the internal
friction.

Finally we consider the external forcing. In a com-
plex environment, the external force is the result of
many distinct effects with very different nature, such
as impacts or shocks, periodic or more complicated
forces. If the sources are independent, the forces are
uncorrelated, thus resembling a random signal. More-
over, if their number is large enough, their distribu-
tion becomes Gaussian. Typically, the energy of envi-
ronmental forcings is spread over a wide frequency
spectrum, and consequently the external force can be
reasonably well modelled as a white Gaussian noise.
Clearly a true white noise cannot exist in the real world,
because the flat power spectrumwould imply an infinite
power. Nevertheless, white Gaussian noise is a widely
adopted model for random forces, and the associated
mathematical theory is well developed [28,29].

3 Stochastic differential equations and
dimensionless equations

Under the assumption that the external forcing is mod-
elled as a white Gaussian noise, system (4) becomes a
system of stochastic differential equations (SDEs).

Let (�,F ,P) be a probability space, where � is
the sample space, F = (Ft )t≥0 is a filtration, that is
the σ -algebra of all the events, and P is a probabil-
ity measure. A vector valued stochastic process Xt is a

function mapping Xt : � × T �→ R
d , i.e. a vector of

random variables taking values in the sample space �,
and parameterized by a real variable t ∈ T . Usually, the
parameter space T is the half-line [0,+∞[ [29,30].We
adopt the standard notation used in probability: capital
letters denote stochastic processes, while lower case
letters denote their possible values. A scalar Wiener
process Wt = W (t), is a stochastic process character-
ized by the expectation valueE[Wt ] = 0 (symbolE[Xt ]
denotes expectation of the stochastic process Xt ), by
the covariance cov(Wt , Ws) = E[Wt Ws] = min(t, s)
and by Wt ∼ N (0, t), where symbol ∼ means “dis-
tributed as”, andN (0, t) denotes centered normal dis-
tribution. TheWiener process, also known as Brownian
motion, represents the integral of a white noise Gaus-
sian process.

A d-dimensional system of SDEs driven by a h-
dimensional vector valued Wiener process Wt : � ×
T �→ R

h , takes the form

dZt = a(Zt )dt + B(Zt )dWt (5)

where Zt : � × T �→ R
d is a vector valued stochas-

tic process. The d-dimensional vector valued function
a : Rd �→ R

d , is called the drift vector, while matrix
B : Rd �→ R

d,h is called the diffusion matrix. They
are measurable functions satisfying a global Lipschitz
condition, to ensure the existence and uniqueness solu-
tion Theorem [29]. For a constant diffusion matrix, the
noise is called unmodulated (or additive), while in the
general case B(Zt ) noise is modulated (or multiplica-
tive).

The SDE system (4) can be rewritten in the form

dZt =
(
Â Zt + n̂(Zt )

)
dt + B̂ dWt (6)

where matrix Â ∈ R
d,d collects the linear terms, n̂ :

R
d �→ R

d represents the nonlinear parts, and d =
n + 2. Finally, B̂ ∈ R

d is a constant diffusion vector
and Wt is a scalar Wiener process.

For the additive noise scenario, the two main pos-
sible interpretations for SDEs, namely Itô and Stra-
tonovich, are equivalent, meaning that in both cases
the solution of (5) is the same, irrespective of which
interpretation is adopted [29]. However, the two inter-
pretations imply a different set of calculus rules, thus
requiring to specify the adopted approach: We shall
assume hereafter Itô’s interpretation.

In many cases it is convenient to consider a trans-
formed SDE system, for example rewritten in terms
of dimensionless variables. Introducing dimensionless
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variables, including a dimensionless time, the number
of parameters can be reduced, while a properly nor-
malized dimensionless time, permits to adjust the time
integration step used in numerical simulations, speed-
ing up the integration and reducing numerical issues.
Dimensionless equations are usually obtained by a lin-
ear change of variables, i.e. multiplying each variable,
including time, by a proper normalizing parameter.
The following theorem gives a systematic procedure
for obtaining the transformed, possibly dimensionless,
equations.

Theorem 1 Consider the SDE system (6). Let P ∈
R

d,d be a regular matrix, and let τ(t) = ωt , ω > 0,
be the dimensionless time. Let Xτ be the solution of the
SDE system

dXτ = (AXτ + n(Xτ )) dt + BdWτ (7)

with A = ω−1PÂP−1, n(x) = ω−1Pn̂(P−1x), B =
ω−1/2PB̂. Then Xτ ∼ PZτ .

Proof Let y = Pz. Application of Itô’s lemma [28,
29] to (6), yields the SDE system for the stochastic
processes Yt :

dYt =
(
PÂP−1Yt + Pn̂(P−1Yt )

)
dt + P B̂ dWt (8)

Consider the time change τ(t) = ω t . If Yt solves (8),
then Yτ solves the SDE system

dYτ = 1

ω

(
PÂP−1Yτ + Pn̂(P−1Yτ )

)
dτ + P B̂ dWt

(9)

The change of time theorem for Itô integrals [29, p.
156] implies that

Wτ(t) ∼ √
τ ′(t) Wt = √

ω Wt (10)

Substituting (10) into (9), it follows that Xτ and Yτ

have the same probability distribution, because they are
solutions of the same SDE system, but for two different
realizations of the Wiener process. 
�

The SDE system for the dimensionless variables is
obtained by straightforward application of Theorem 1,
where P is a diagonal matrix which entries are the nor-
malization parameters. The regularity of P guarantees
that the change of variables is invertible, which makes
possible to retrieve the original variables. The dimen-
sionless time is obtained introducing an appropriate
normalizing frequency ω. The solution of the dimen-
sionless SDE system converges in probability to the

solution of the original SDEsystem, however for practi-
cal applications the probability density function (PDF)
of the solution is the most relevant information, as it
allows to calculate the expectation of all quantities.
Therefore, knowledge of the PDF is more important
that finding the pathwise solution for a specific realiza-
tion of the noise process.

4 Model order reduction

According to Theorem 1, we shall consider the follow-
ing dimensionless SDE system equivalent to (4):

d X1 =X2 dt (11a)

d X2 = (−U ′(X1) − εX2 + ε bm(Xe)
)

dt + √
εBmdWt

(11b)

dXe = (ae(Xe) + be(X1, X2)) dt (11c)

The final goal of the derivation will be the evalu-
ation of the expectation E[F(X1, X2,Xe)] of some
relevant function F (observable) of the state vari-
ables (X1, X2,Xe). In general, finding an analytical
solution of the SDEs system (11) is unfeasible, as
it is nonlinear and of high order. Alternatively, one
may resort to a numerical integration of (11). Vari-
ous integration schemes are available for its numer-
ical solution [31], however determining expectations
E[F(X1, X2,Xe)] requires time consuming simula-
tions, making the approach unfeasible for the design
and optimization of systems where a large parameter
space must be explored.

An alternative solution, particularly well suited for
the evaluation of expected quantities, amounts to con-
sider the Fokker–Planck equation (FPE) associated to
the SDEs system (11). The FPE is a partial differential
equation describing the time evolution of the probabil-
ity density function of the stochastic process [28,32].
The FPE can be solved analytically only in few special
cases. Otherwise, sophisticated numerical methods are
required [32], whose implementation is rather cumber-
some.

Yet another approach consists of deriving a reduced
order model, that is, a SDEs system for a smaller set
of variables that approximates the full solution. This
procedure is based on observing that in the limit ε ↓ 0,
the equations for themechanical and the electrical parts
are uncoupled, and the system becomes solvable. We
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expect that the solution of the reduced and of the origi-
nal system are close enough, at least for small values of
ε. A general proof of the convergence of the two solu-
tions is impossible, aswell as to provide a good estimate
of the error made. However, there is a large empirical
evidence that the method gives accurate results for rea-
sonably small values of ε.

The first step in the derivation of a reduced order
model, is to define a coordinate change,

X = h(Y)

where X = [X1, X2,XT
e ]T ∈ R

n+2 is the vector of the
original coordinates (T denotes transpose), Y ∈ R

p,
with p < n + 2 is the vector of the new coordinates,
and h : Rp �→ R

n+2. The choice for Y and h is obvi-
ously not unique, and in general there is no a priori
assessment on which option is better. The final choice
is usually heuristic, being determined by amix of phys-
ical considerations and experience.

Inspired by some recent works [33,34], we take
advantage of the fact that in the limit ε ↓ 0 the
SDE system is solvable, thus allowing to rewrite the
SDE system (11) in terms of the mechanical energy
and of an angle variable. For ε = 0, system (11a)–
(11b) is Hamiltonian, with normalized mechanical
energy E(X1, X2) = X2

2/2 + U (X1). Together with
the energy we introduce an angle variable θ(X1, X2),
whose explicit form depends on the potential U (X1).
For ε ↓ 0 the Jacobian of the canonical transformation
(E, θ) → (X1, X2) is regular, therefore the change
of variables is invertible, and explicit expressions for
X1(E, θ) and X2(E, θ) can be derived. To complete
the reduction, we need an expression Xe(E, θ) for
the electrical variables as functions of the mechanical
energy and of the angle, to obtain the full transforma-
tion [X1, X2,XT

e ]T = h(E, θ).

Proposition 1 (HB representation of Xe(E, θ)) In the
limit ε ↓ 0, the electrical variables admit the represen-
tation

Xe(E, θ) = Xe0(E) +
+∞∑
m=0

(
Xec,m(E) cos(m θ)

+ Xes,m(E) sin(m θ)
)

(12)

where the bias term Xe0(E), and the amplitude of the
harmonics Xec,m(E) and Xes,m(E), are obtained from
the associated Harmonic Balance system (see (21) in
the proof).

Proof The canonical mapping (X1, X2) → (E, θ),
transforms locally (for ε = 0 and in the neighbor-
hood of an invariant set) relations (11a)–(11b) into the
equivalent ordinary differential equations (ODEs) sys-
tem [21]:

d E

dt
= 0 (13a)

dθ

dt
= �(E) (13b)

where�(E) is an energy dependent angular frequency.
For the sake of simplicity, we assume a non degeneracy
condition, e.g. we take for granted that the Jacobian
matrix of the Hamiltonian system

d X1

dt
= X2 (14a)

d X2

dt
= −U ′(X1) (14b)

does not have zero as a double eigenvalue. This condi-
tion is equivalent to assume that the only critical points
of the potential U (X1) are local maxima and minima.
Then, the only possible invariant sets of the Hamil-
tonian system are saddles, e.g. unstable equilibrium
points corresponding to local maxima of U (X1), cen-
tres, e.g neutrally stable equilibrium points associated
to local minima of U (X1), surrounded by continuous
families of periodic orbits, periodic orbits, and homo-
clinic or heteroclinic orbits (paths formed by the inter-
section of stable and unstable manifolds of saddles).
Thus, we can expand X1(E, θ) in Fourier series with
respect to the angle variable:

X1(E, θ) = X10(E) +
+∞∑
m=1

(
X1c,m(E) cos(m θ)

+ X1s,m(E) sin(m θ)

)
(15)

Using (11a) and (13), we find:

X2(E, θ) =
+∞∑
m=1

(
− m �(E)X1c,m(E) sin(m θ)

+ m�(E)X1s,m(E) cos(m θ)

)
(16)
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Because X1(E, θ) and X2(E, θ) are periodic,be(X1, X2)

is periodic as well, and thus it can be expanded in
Fourier series

be(X1(E, θ), X2(E, θ)) = be0(E)

+
+∞∑
m=1

(
bec,m(E) cos(m θ) + bes,m(E) sin(m θ)

)

(17)

where the Fourier coefficients are linked to themechan-
ical variables by

be0(E) = 1

2π

∫ 2π

0
be(X1(E, θ), X2(E, θ)) dθ (18a)

bec,m(E) = 1

π

∫ 2π

0
be(X1(E, θ), X2(E, θ)) cos(m θ) dθ

(18b)

bes,m(E) = 1

π

∫ 2π

0
be(X1(E, θ), X2(E, θ)) sin(m θ) dθ

(18c)

Wenotice that for ε ↓ 0 not only themechanical system
becomes conservative, but also it decouples from the
electrical part. Consequently, (11c) becomes a nonlin-
ear, non-homogeneous ODE system with source term
be(X1, X2), which is in turn a periodic function of θ .
As a consequence, also the solution Xe is a periodic
function of θ , and thus it can be expressed according
to the Fourier series (12). Therefore, also ae(Xe(E, θ))

can be expanded in Fourier series

ae(Xe(E, θ)) = ae0(E) +
+∞∑
m=1

(
aec,m(E) cos(m θ)

+ aes,m(E) sin(m θ)

)
(19)

with coefficients

ae0(E) = 1

2π

∫ 2π

0
ae(Xe(E, θ))dθ (20a)

aec,m(E) = 1

π

∫ 2π

0
ae(Xe(E, θ)) cos(m θ) dθ (20b)

aes,m(E) = 1

π

∫ 2π

0
ae(Xe(E, θ)) sin(m θ) dθ (20c)

Introducing (17), (19) and the derivative of (12) into
(11c), and using the orthogonality of the basis func-

tions, we obtain the HB (infinite, as m = 1, . . . ,+∞)
system whose terms are nonlinear functions of the
Fourier coefficients of Xe(E, θ)

ae0(E) + be0(E) = 0 (21a)

m�(E)Xec,m(E) + aes,m(E) + bes,m(E) = 0 (21b)

m�(E)Xes,m(E) − aec,m(E) − bec,m(E) = 0 (21c)

The solution of (21) defines the constant compo-
nent Xe0(E) and the harmonic amplitudes Xec,m(E)

and Xes,m(E) leading, to the representation (12) of
Xe(E, θ). 
�
Remark 1 Notice that the Fourier representation cap-
tures all the possible dynamic behaviors that we
assumed feasible for the electro-mechanical system.
Equilibriumpoints correspond to solutionswith X1c,m =
X1s,m = 0 for allm = 1, . . . ,+∞. Periodic orbits cor-
respond to solutions characterized by X1c,m(E) = 0
and/or X1s,m(E) = 0 for at least one m. Finally homo-
clinic and heteroclinic paths are obtained in the limit
�(E) ↓ 0. Thus, (15) and (16) represent all the invari-
ant sets of the Hamiltonian system.

Remark 2 Using proposition 1, the electrical variables
can be eliminated from the original equations, reduc-
ing the number of variables to the mechanical energy
and angle. With respect to “traditional” applications of
the harmonic balance method, which is mostly used as
a numerical tool to study periodic solutions of ordi-
nary differential equations, here the harmonic series
is used to write electrical variables as functions of
mechanical energy and angle, giving the ideal repre-
sentation for application of the stochastic averaging
method described in Sect. 5.

Corollary 1 (Linear electrical circuit) Consider a lin-
ear electrical circuit described by the ODE system

dXe

dt
= AeXe + b1X1 + b2X2 (22)

where Ae ∈ R
n,n and b1,b2 ∈ R

n are vectors of
electro-mechanical coupling constants. The electrical
variables admit the representation ( j = √−1)

Xe(E, θ) = Xe0(E) +
+∞∑
m=1

Re[X̂em(E) e jmθ ] (23)

with Xe0(E) = −A−1
e b1X10(E), and

X̂em(E) = ( jm�(E)In − Ae)
−1

123



M. Bonnin et al.

× (b1 + jm�(E)b2)X̂1m(E) (24)

where In is the n × n identity matrix, and X̂1m(E) is
the phasor representation of X1(E).

Proof Rewrite the representation (15) in the form

X1(E, θ) = X10(E) +
+∞∑
m=1

X1m(E) cos(m θ + φm)

(25)

with

X1m =
√

X2
1c,m + X2

1s,m (26a)

φm = − arctan
X1s,m

X1c,m
(26b)

Substituting (23) and (25) in (22), and considering con-
stant terms, relationship for Xe0(E) immediately fol-
lows.

Transforming (22) in the phasor domain and using
superposition, we obtain

jm�(E)X̂em(E) =AeX̂em(E)

+ (b1 + jm�(E)b2)X̂1m(E)

(27)

Solving for X̂em(E), the thesis follows. 
�
Corollary 2 The inverse matrix ( jm�(E)In −Ae)

−1

exists for every stable linear circuit.

Proof Let λi be the eigenvalues ofAe. For a stable cir-
cuit, Re[λi ] < 0, for all i = 1, . . . , n. Let vi be the cor-
responding eigenvectors. Then vi is also an eigenvector
for jm�(E)In , with eigenvalue jm�(E). The matrix
jm�(E)In −Ae has eigenvaluesμi = jm�(E)−λi ,
with positive real part for all i = 1, . . . , n. Therefore,
zero is not an eigenvalue and the matrix is invertible. 
�

Corollary1 canbegeneralized to electro-mechanical
systems with more than one mechanical DOF. For
the sake of simplicity, we limit the discussion to sys-
tems with two mechanical DOF. Extension to higher
numbers is straightforward, but the notation is more
involved.Consider a systemwith twomechanicalDOF:

d X1 =X2 dt (28a)

d X2 =( − U ′
1(X1) − εX2 + ε bm,1(Xe)

+ ε g1(X1, X2, X3, X4)
)
dt + √

εBm,1dWt

(28b)

d X3 =X4 dt (28c)

d X4 =( − U ′
2(X3) − εX4 + ε bm,2(Xe)

+ ε g2(X1, X2, X3, X4)
)
dt + √

εBm,2dWt

(28d)

where X1, X2, X3, X4 are the mechanical variables,
Xe is the vector of electrical variables, and functions
gi : R4 �→ R, i = 1, 2, represent couplings. Let E1 =
X2
2/2 + U1(X1) and E2 = X2

4/2 + U2(X3) be the
normalized energies associated to each DOF, and let
θ1, θ2, be the corresponding angle variables. Again in
the limit ε ↓ 0, due to periodicity with respect to the
angle, X1 and X3 admit the following representations:

X1(E1, θ1) = X10(E1) +
+∞∑
m=1

X1m(E1) cos(m θ1 + φm)

(29)

X3(E2, θ2) = X30(E2) +
+∞∑
m=1

X3m(E2) cos(m θ2 + ϕm)

(30)

Then the following proposition holds:

Corollary 3 (Mechanical 2-DOF system with linear
electrical circuit) Consider a linear electrical circuit
described by the ODE system

dXe

dt
= AeXe +

4∑
m=1

bm Xm (31)

where Ae ∈ R
n,n and bm,∈ R

n, m = 1, . . . 4, are
vectors of electro-mechanical coupling constants. Then
the electrical variables admit the representation

Xe(E1, θ1, E2, θ2) = Xe0(E1, E2)

+
+∞∑
m=1

(
Re[X̂em,1(E1) e jmθ1 ] + Re[X̂em,2(E2) e jmθ2 ])

(32)

whereXe0(E1, E2) = −A−1
e (b1X10(E1) + b3X30(E2)),

and
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X̂em,1(E1) = ( jm�1(E1)In − Ae)
−1

× (b1 + jm�1(E1)b2)X̂1m(E1) (33)

X̂em,2(E2) = ( jm�2(E2)In − Ae)
−1

× (b3 + jm�2(E2)b4)X̂3m(E2) (34)

and X̂1m(E1), X̂3m(E2) are the phasor representation
of X1m(E1), X3m(E2), respectively.

Proof The proof is completely analogous to the case
of Corollary 1, applying superposition and considering
the contributions of X1(E1) and X3(E2) separately. 
�
Remark 3 The previous result can be extended even
to the case of a nonlinear electrical circuit. In fact,
in this case a generalization of Proposition 1 can be
proved by exploiting a multi-variate Fourier represen-
tation or, more effectively, by generalizing the HB sys-
tem through the use of frequency remapping techniques
[22].

Remark 4 Notice that if the mechanical DOF satisfy
a resonant condition, i.e. m1 �1(E1) = m2 �2(E2),
for some m1, m2 ∈ N, then the non-homogeneous part
in (31) can be linearly combined, obtaining a problem
analogous to (22). Conversely, if the angular frequen-
cies are not resonant, the resultingmotion for the unper-
turbed mechanical systems is quasi periodic, i.e. the
trajectories wrap on a torus homeomorphic to S1 × S1,
being S the unit radius circle.

The final step in the formulation of the reduced order
model is the derivation of the SDEs system for the new
variables.

Theorem 2 (Energy-angleSDEsgiven E(X1, X2) and
θ(X1, X2)) Consider the dimensionless SDEs system
(11) and the canonical transformation (X1, X2) →
(E, θ), together with the HB representation of
Xe(E, θ). Then, the energy and the angle are Itô pro-
cesses solutions of the SDEs system:

d E = ε aE (E, θ) dt + √
ε BE (E, θ) dWt (35a)

dθ = (
�(E) + ε aθ (E, θ)

)
dt + √

ε Bθ (E, θ) dWt

(35b)

where

aE (E, θ) = B2
m

2
− X2

2(E, θ) + X2(E, θ) bm(Xe(E, θ))

(36a)

BE (E, θ) = X2(E, θ)Bm (36b)

�(E) = ∂θ

∂ X1
X2(E, θ) − ∂θ

∂ X2
U ′(X1(E, θ)) (36c)

aθ (E, θ) = ∂θ

∂ X2

(
bm(Xe(E, θ)) − X2(E, θ)

)

+ B2
m

2

∂2θ

∂ X2
2

(36d)

Bθ (E, θ) = ∂θ

∂ X2
Bm (36e)

Proof The energy and angle variables are Itô processes
as a direct consequence of the implicit function theo-
rem and of the fact that, for ε = 0, the coordinate trans-
formation (X1, X2) → (E, θ) is invertible. The SDEs
system for the energy and angle is obtained directly
applying Itô formula, using the definition of the nor-
malized energy and of θ(X1, X2). 
�

In practical applications, the explicit expressions for
X1(E, θ), X2(E, θ) often involve special functions.
Therefore, finding an explicit form for θ(X1, X2) may
be impossible, or at least impractical. The following
Corollary provides alternative expressions for the coef-
ficients of the angle equations thatmaybeuseful in such
cases.

Corollary 4 (SDE for the angle, given X1(E, θ)) The
following alternative expressions for the coefficients of
the angle equation (35b) hold:

�(E) =
(

∂ X1

∂θ

)−1

X2(E, θ) (37a)

aθ (E, θ) = −
(

∂ X1

∂θ

)−1 (
∂ X1

∂ E
aE (E, θ)

+ 1

2

∂2X1

∂ E2 B2
E (E, θ) + 1

2

∂2X1

∂θ2
B2

θ (E, θ)

+ ∂2X1

∂ E∂θ
BE (E, θ)Bθ (E, θ)

)
(37b)

Bθ (E, θ) = −
(

∂ X1

∂θ

)−1
∂ X1

∂ E
BE (E, θ) (37c)

Proof Application of Itô formula to X1 = X1(E, θ)

gives

d X1 = ∂ X1

∂ E
d E + ∂ X1

∂θ
dθ + 1

2

∂2X1

∂ E2 (d E)2

+ 1

2

∂2X1

∂θ2
(dθ)2 + ∂2X1

∂ E∂θ
d Edθ
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so that:

dθ =
(

∂ X1

∂θ

)−1 (
d X1 − ∂ X1

∂ E
d E − 1

2

∂2X1

∂ E2 (d E)2

− 1

2

∂2X1

∂θ2
(dθ)2 − ∂2X1

∂ E∂θ
d Edθ

)
(38)

From the energy equation (35a), using Itô lemma we
find (d E)2 = εB2

E (E, θ)dt . On the other hand, being
an Itô process, the angle must satisfy a SDE of the form

dθ = αθ (E, θ) dt + βθ (E, θ) dWt (39)

where αθ (E, θ) and βθ (E, θ) are unknown functions
to be determined. By Itô lemma, we have

(dθ)2 = β2
θ (E, θ) dt (40a)

d E dθ = √
εβθ (E, θ) BE (E, θ)dt (40b)

Substituting (35a) and (40) in (38), and equating the
coefficient of dWt , we find:

βθ (E, θ) = −√
ε

(
∂ X1

∂θ

)−1
∂ X1

∂ E
BE (E, θ) (41)

Similarly, equating the coefficients of dt we find:

αθ (E, θ) =
(

∂ X1

∂θ

)−1 [
X2 − ε

∂ X1

∂ E
aE (E, θ)

− ε

2

∂2X1

∂ E2 B2
E (E, θ) − 1

2

∂2X1

∂θ2
β2

θ (E, θ)

− √
ε

∂2X1

∂ E∂θ
BE (E, θ)βθ (E, θ)

]

Introducing these coefficients in (35b) and comparing
with the angle equation (39) the thesis follows. 
�

Remark 5 For ε = 0, the SDE system (35) reduces to
the energy-angle ODE system (13). Therefore, equa-
tions (36c) and (37a) can be used to determine the
energy dependent angular frequency for the Hamilto-
nian system in the energy angle coordinates.

Remark 6 The SDE (35a), permits to derive a power
balance equation for the mechanical domain of the sys-
tem. Taking stochastic expectations on both sides of the
equation, using the martingale property of Itô stochas-
tic integral and (36a), we have

E

[
d E

dt

]
= ε

(
B2

m

2
− E[X2

2(E, θ)]

+ E[X2(E, θ) bm(Xe(E, θ))]
)

(42)

Using the passive sign convention, the first term on the
right hand side, pin = εB2

m/2 represents the average
power injected into the system by the noise. The sec-
ond term, pdis = −ε E[X2

2(E, θ)] represents the aver-
age power dissipated by mechanical friction. Finally,
term ptr = ε E[X2(E, θ) bm(Xe(E, θ))], represents
the average power transferred from the mechanical
domain to the electrical domain (if ptr < 0) or in the
opposite direction (if ptr > 0).

5 Stochastic averaging

In this section we present a method for the analysis of
the reduced order SDE system, and we discuss how
it can be used to design and optimize the electrical
domain of an electro-mechanical system.

For ε � 1, the reduced order SDE system (35)
shows a time scale separation, with the energy being
a slow (or nearly constant) variable with respect to the
fast angle variable.

A classical theorem by Khasminskii [23] states that
the slow varying process E converges weakly, i.e. in
probability, to a one dimensional Markov process as
ε ↓ 0, in a time interval 0 ≤ t ≤ Tε with Tε = O(1/ε).
The Itô SDE system for the one dimensional Markov
process is obtained by averaging the original SDE sys-
tem (35)with respect to the fast variable, while the slow
quantity is kept constant [23,35]. Therefore we obtain:

d E � εaE (E)dt + √
ε B E (E)dWt (43)

where the averaged coefficients read

aE (E) = lim
T →+∞

1

T

∫ T

0
aE (E, θ(t)) dt (44a)

B E (E) =
√

lim
T →+∞

1

T

∫ T

0
B2

E (E, θ(t)) dt (44b)

and θ(t) is the solution of the fast equation, evaluated
keeping the slow variable constant. In particular, for
ε ↓ 0, the fast variable has the trivial solution θ =
�(E)t + θ0, where θ0 is the initial condition, and the
averaged coefficients become
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aE (E) = 1

2π

∫ 2π

0
aE (E, θ) dθ (45a)

B E (E) =
√

1

2π

∫ 2π

0
B2

E (E, θ) dθ (45b)

The reduced SDE for the energy (43) and that for
the angle (35b) can be exploited to derive an accurate
approximation for the probability density function. The
time scale separation between the the two processes,
suggests the following factorization for the stationary
probability density function (PDF)

pst (E, θ) = ρ̂(E, θ) ρ(E) (46)

Exploiting again the limit ε ↓ 0 (where the energy
is constant), the stationary Fokker–Planck equation
(FPE) reads

�(E)
∂pst (E, θ)

∂θ
= 0 (47)

that implies ρ̂(E, θ) = h(E), where h(E) is an arbi-
trary function of the energy. Imposing the normalizing
condition∫ 2π

0
ρ̂(E, θ)dθ = 1 (48)

yields ρ̂(E, θ) = (2π)−1.
The stationary FPE for the energy variable is thus

− ∂

∂ E
(aE (E)ρ(E)) + 1

2

∂2

∂ E2

(
B
2
E (E)ρ(E)

)
= 0

(49)

Imposing zero flux boundary conditions, and by sepa-
ration of variables, we find the following solution:

ρ(E) = N
B
2
E (E)

exp

(
2

∫
aE (E)

B
2
E (E)

dE

)
(50)

whereN is a normalizing constantwhosevalue is deter-
mined imposing

∫ +∞
0 ρ(E)dE = 1.

The stationary PDF (46) permits to calculate the
expectations of any observable, generally expressed as
F(X1(E, θ), X2(E, θ),Xe(E, θ)), computing the inte-
gral

E[F(X1(E, θ), X2(E, θ),Xe(E, θ))]

= 1

2π

∫ 2π

0

∫ +∞

0
F(X1(E, θ), X2(E, θ),Xe(E, θ))

× ρ(E) dθ d E (51)

Although in practical problems integral (51) can only
be solved numerically, its calculation is still much sim-
pler and much faster than the numerical integration of
the full original SDEs system (11), making possible to
optimize the design of the electrical domain exploring
a wide parameter space.

Concerning systems with more than one mechani-
cal DOF, stochastic averaging can be applied as well.
A normalized energy and an angle are associated to
each pair of mechanical variables Xi , Ẋi . Two differ-
ent cases can be distinguished:

1. The natural frequencies �i (Ei ) and � j (E j ) are
not resonant. In this case, all angle variables can
be eliminated through averaging, retaining only
one energy variable for each mechanical DOF.

2. At least two frequencies are resonant, i.e. the con-
dition mi�i (Ei ) = m j� j (E j ) holds for some
i = j , with mi , m j ∈ N. In this case, some
frequency components deriving from an algebraic
sum of the fundamentals �i ,� j may be rather
small, and as such they are slow variables that can-
not be eliminated through averaging. In this case
we must retain one energy for each mechanical
DOF plus such slow components (instead of only
the two original frequencies).

Details on this can be found in [36,37]. In both cases
we obtain a system of SDEs, thus making impossible
to find an analytical solution for the associated FPE. In
this case we need to resort to ad hoc technique to find
the expectations.

6 Applications

6.1 Piezoelectric energy harvester for ambient
vibrations

As a first example, we consider the analysis and design
of a piezoelectric energy harvester with Duffing type
nonlinearity, such as the one discussed in [24,25,38].
The mechanical structure of the harvester consists of a
cantilever beam, with an inertial tip mass to increase
the amplitude of the oscillations. The dynamics of the
mechanical part is described by (1), where F(t) is the
sum of the force exerted by the environment and of that
due to the piezoelectric transducer. The elastic potential
of the beam is assumed of the form U (z1) = k1z21/2+
k3z41/4, where k1 and k3 are positive parameters, that
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dz
dt

bm(V, I)

I(t)

V (t)
+

−
L R

IL(t)

Fig. 2 Two-port representation of the electromechanical trans-
ducer with electrical load

correspond to a nonlinear elastic force with a stiffening
effect.

The transducer is formed by a layer of piezoelectric
material covering the beam. The governing equations
for the transducer can be derived from the characteri-
zation of piezoelectric materials [4,39,40]. Assuming
the representation shown in Fig. 2, the model reads

bm(Ze) = −αV (52a)

C pz V̇ = α Ż + I (52b)

where Ze = [V, I ]T is the vector of the electrical vari-
ables (output voltage and current, respectively), α is
the electro-mechanical coupling constant (in N/V or
As/m), and C pz is the capacitance of the transducer.

The electrical circuit is composed by a linear resis-
tor, that models an electrical user which absorbs elec-
trical energy, with a shunted linear inductor connected
in parallel, see Fig. 2. The inductor is used for power
factor correction, i.e. to reduce the time lag between
the current through and the voltage across the load,
thus maximizing the average absorbed power by the
latter [24].UsingKirchhoff current lawand the voltage-
current characteristic of a linear inductor, we have
I + G V + IL = 0, and İL = V/L .

Finally, the external force is considered as the result
of a complex environment, and it is modelled as a white
Gaussian noise with intensity D.

Combining together the equations for the mechani-
cal structure, the piezoelectric transducer and the elec-
trical domain, and rewriting as a SDE system yields

d Z1 =Z2dt (53a)

d Z2 =
(

− 1

m
U ′(Z1) − ε̂

m
Z2 − α

m
V

)
dt + D

m
dWt

(53b)

dV = 1

C pz
(αZ2 − GV − IL) dt (53c)

d IL = 1

L
V dt (53d)

where, for the sake of simplicity, we have written the
circuit equation using the current through the inductor
IL(t) instead of the output current of the transducer
I (t).

The dimensionless SDE system is obtained intro-
ducing the diagonal matrix

P = diag[l−1
0 , T l−1

0 , C pzq−1
0 , T q−1

0 ]
where l0 and q0 are a normalizing length and charge,
respectively, and T = √

m/k1 is a normalization time.
Assuming l0 = 1 m and [q0] = [α] C, the dimension-
less equations take the form

dXt = (AXt + n(Xt )) dt + √
εB dWt (54)

where Xt = [X1, X2, X3, X4]T is the vector of the
dimensionless variables,

A =

⎡
⎢⎢⎣

0 1 0 0
−1 −ε −εβ 0
0 1 −δ −1
0 0 μ 0

⎤
⎥⎥⎦ (55)

n(Xt ) = [0,−κ X3
1, 0, 0]T , B = [0, σ, 0, 0]T and the

parameters are

ε = ε̂√
m k1

, β = q0α

C pz l0 ε̂

√
m

k1
, δ = G

C pz

√
m

k1
,

μ = m

C pz L k1
, σ = D

l0
√

ε̂ k1
, κ = k3

l0 k1
(56)

Notice that, in order to apply the method we propose,
both β and σ must be of order O(1).

For ε ↓ 0, the equations for the mechanical part
reduce to the Hamiltonian system

Ẋ1 = X2 (57a)

Ẋ2 = −aX1 − bX3
1 (57b)

with a = 1 and b = κ . The only invariant sets of
(57a) are the origin, which is a centre, and the surround-
ing continuous family of periodic orbits. The latter are
described by the solution

X1(E, θ) =
(

4E2

a2 + 4bE

)1/4

sd(θ, k) (58a)

X2(E, θ) = √
2E cd(θ, k) nd(θ, k) (58b)
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where E = X2
2(0)/2 + U (X1(0)) is the energy level

(determinedby the initial conditions), sd(θ, k), cd(θ, k)

and nd(θ, k) are the Jacobi elliptic functions and

k2(E) = 1

2

(
1 − a√

a2 + 4bE

)
(59)

is the elliptic modulus [39]. The angle is θ(t) = �(E)t
where the angular frequency takes the value

�(E) = (a2 + 4bE)1/4 (60)

Remark 7 The angular frequency is bounded away
from zero, which reflects the fact that neither homo-
clinic nor heteroclinic orbits exist in the system.

Alternatively, X1(E, θ) can be represented through
the Fourier (or Lambert) series

X1(E, θ) =
+∞∑
m=1

X1s,m(E) sin

(
2m − 1

2K(E)
π θ

)
(61)

where (hereinfater we shall omit explicit dependence
on the energy where not strictly necessary, for simplic-
ity of notation)

X1s,m(E, θ) =
(

4E2

a2 + 4bE

) 1
4 2π

k k′ K
(−1)m−1qm− 1

2

1 + q2m−1

(62)

K(E) is the complete elliptic integral of the first kind,
k′(E) = √

1 − k2(E) is the complementary modu-
lus, q(E) = exp

(−πK′/K)
is the nome, and finally

K′(E) = K(k2(E)). Similarly

X2(E, θ) =
+∞∑
m=1

X2c,m(E) cos

(
2m − 1

2K(E)
πθ

)
(63)

with

X2c,m(E) = √
2E

2π

k k′ K2

(−1)m−1(2m − 1)qm− 1
2

1 + q2m−1

(64)

Figure3 shows the angular frequency �(E), and
the amplitude of the first harmonics X1 s,1(E) and
X2c,1(E) as functions of the energy.

A straightforward application of Corollary 1 gives

X̂3m(E) = K3 X2c,m(E) (65)

X̂4m(E) = K4 X2c,m(E) (66)

Fig. 3 Angular frequency �(E), and the amplitude of the first
harmonic X1 s,1(E) and X2c,1(E) as functions of the dimension-
less energy. Normalized parameter values are listed in Table 2

where

K3 =
j
2m − 1

2K π�

μ −
(
2m − 1

2K
)2

π2�2 + j
2m − 1

2K π�δ

(67)

K4 = αμ

μ −
(
2m − 1

2K
)2

π2�2 + j
2m − 1

2K π�δ

(68)

and j = √−1.
Taking into account the relationships Bm = σ and

bm(Xe(E, θ)) = −β X3(E, θ), using (45) and the
orthogonality of the basis function we obtain

aE (E) = 1

2

(
σ −

+∞∑
m=1

(
X2
2c,m(E)

+β X2c,m(E)X3c,m(E)
))

(69a)

B E (E) = σ

(
1

2

∞∑
m=1

X2
2c,m(E)

) 1
2

(69b)

where X3c,m(E) = Re[X̂3m(E)].
These functions can be used to calculate the station-

ary PDF for the energy (50), which in turn allows to
calculate the expectations of observables, according to
(51).

Table 1 summarizes the values of the parameters
for the model of the nonlinear piezoelectric energy
harvester adopted in our analysis. The corresponding
values for the dimensionless parameters are summa-
rized in Table 2. Optimization of the energy harvester
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Table 1 Values of the parameters for the piezoelectric energy
harvester

Parameter Value

m 1 g

ε̂ 0.012 Ns/m

k1 5.4046 · 103 N/m
k3 5.4046 · 103 N/m3

Cpz 80 nF

L [0.5,20] H

RL 10 k�

α 0.0042 N/V (As/m)

D 1 mN

Table 2 Values of the parameters for the dimensionless SDE
system

Parameter Value

ε 0.0052

β 00408

δ 0.5377

μ [0.1,5]

σ 8.9213 · 10−6

κ 1

requires to determine the value of the shunted induc-
tance L , that maximizes the output voltage.

The average power absorbed by the load is Pav =
Gv2(rms), where G = R−1 is the load conductance and

v(rms) = √
E[V 2(t)] is the root mean square value of

the output voltage.
Using the results above, we have calculated the sta-

tionary PDF and the root mean square output volt-
age for values of the shunted inductance in the range
L ∈ [0.5, 20] H, as reported in Table 1. The result is
shown in Fig. 4. The output voltage shows a maximum
of v(rms),max = 2.16 V at Lopt = 2.33 H.

To verify the accuracy of our theoretical analysis,
we have compared theoretical predictions with numer-
ical results, performing Monte-Carlo simulations for
the dimensionless SDEs system (54).Results ofMonte-
Carlo simulations are shown by blue squares in Fig. 4.
For each value of the shunted inductance, we have per-
formed 30 numerical simulations for different realiza-
tion of the Wiener process. The SDEs system (54) has
been integrated numerically, using both Euler–Maru-

Fig. 4 Root mean square output voltage v(rms) versus the value
of the shunted inductor L . Red line are theoretical predictions.
Blue squares are results from Monte-Carlo simulations. Param-
eters values are summarized in Table 1

yama and stochastic Runge–Kutta method with strong
order of convergence equal to one. In each simulation
we have removed the initial transient, and thenwe aver-
aged to calculate the output voltage. The simulation
time length was set to �T = 104 (normalized time),
the time integration step was δt ≈ 75 · 10−6 (227 time
samples). The theoretical prediction shows an excellent
agreement with numerical simulations.

Figure 5 shows the comparison between the sta-
tionary marginal PDF for the dimensionless energy,
obtained using the proposed method based on model
order reduction and stochastic averaging, and the result
obtained throughMonte-Carlo simulations. The proba-
bility to find the system in the energy range between E
and E + dE has been evaluated as the number of sam-
ples in that interval, normalized to the total number
of samples. The excellent matching between the two
approaches validates the adopted stochastic averaging
procedure.

The method also permits to evaluate the efficacy of
the power factor correction setup. In most of the cases
the load is a simple resistor. As already mentioned, this
generally implies that a large amount of the energy is
reflected by the the load, i.e. a large amount of reac-
tive power is present, because of the time lag between
the voltage across and the current through the trans-
ducer. The shunted inductor in parallel with the resis-
tor reduces this time lag. Obviously, complete elimi-
nation of the time lag is possible only at a single fre-
quency, but choosing properly the inductance value, it
is possible to achieve a significant time lag reduction
over a relatively wide frequency band, thus maximiz-
ing the average power absorbed by the load and the
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Table 3 Comparison of
root mean square output
voltage, output average
power and power efficiency
for the energy harvester with
two different load setups

Load Output voltage (rms) Average power Power efficiency

Resistor 1.90 V 361.5μW 72.30 %

Resistor-inductor 2.16 V 467.92μW 93.31 %

Fig. 5 Stationary probability density function for the dimension-
less mechanical energy of the SDEs system (53). Blue vertical
bars are the result of Monte-Carlo simulations. Red line is the
theoretical prediction. Parameters values are those of Table 1.
Inductance value is L = 0.5 H

power efficiency. Table 3 shows a comparison of the
output voltage, average output power and power effi-
ciency between a simple resistive load and the power
factor corrected load.

Finally, some remarks on the computational advan-
tage of our methodology. Determining the reduction
in computational complexity and computation time is
rather hard, because they depend on how efficient the
implementation of the numerical integration scheme is,
and on the specific algorithm used for generating the
Wiener process. However we stress that a Monte-Carlo
approach requires lengthy simulations (that must be
repeated for each value of the parameters). On the con-
trary, with the proposed method most of the work can
be done analytically. Only equations (50) and (51) are
to be solved numerically, requiring few seconds only
for their computation.

6.2 Example 2: Coupled micro-electro-mechanical
resonators

As an example of application to systemswithmore than
one mechanical DOF, we consider two coupled micro-
electro-mechanical resonators. Micro-mechanical res-

onators, such as vibrating micro-cantilevers, emerged
as key elements in mass sensing applications, as they
are characterized by a very high quality factor, that
makes their resonance frequency extremely sensitive
to external forces and mass changes due to substance
deposition [8,9]. Micro-cantilevers can be fabricated
at the wafer scale exploiting etching techniques, which
allow to realize many cantilevers on a common sub-
strate, acting as a physical coupling mean. The use of
coupled micro-cantilevers forming arrays, permits to
exploit more resonant frequencies, allowing the detec-
tionof several different substanceswith the same sensor
system.

Weconsider a structuremadeof twomicro-cantilevers
coupled by an overhang at their bases. The array is
attached to a piezoelectric actuator analogous to that
described in the first example, that is connected to a
resistor modelling power absorption by the sensing cir-
cuit. The external environment acts through random
forces,modelled as awhiteGaussian noise, and applied
to each micro-cantilever.

We consider the following SDE system written for
the dimensionless variables:

d X1 = X2 dt (70a)

d X2 = ( − U ′
1(X1) − εX2 − εg1(X1, X2, X3, X4)

− εα1X5
)
dt + √

ε σ1 dWt (70b)

d X3 = X4 dt (70c)

d X4 = ( − U ′
2(X3) − εX4 − εg2(X1, X2, X3, X4)

− εα2X5
)
dt + √

ε σ2 dWt (70d)

d X5 = ( − δX5 + β1X2 + β2X4
)
dt (70e)

where X1, . . . , X4 are the scalar, dimensionlessmechan-
ical variables, and X5 is the dimensionless output volt-
age. The elastic restoring forces are assumed to be of
the form U ′

1(X1) = a1X1 + b1X3
1, and U ′

2(X3) =
a2X3+b2X3

3, where ai , bi , i = 1, 2 are positive param-
eters. The parameters αi , βi , σi , i = 1, 2 and δ are
assumed real and positive.

Concerning the coupling functions, taking into
account that ε is a small parameter, it is reasonable
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Fig. 6 Fourier transform (FFT) of one realization of the stochastic processes X2(t) (left), X4(t) (center), and X5(t) (right). Stochastic
processes are obtained through numerical integration of the SDEs system (70). Parameter values are listed in Table 4

to assume that higher order terms of the coupling can
be neglected. Retaining only the linear terms, the inter-
action is assumed of the form

g1(X1, X2, X3, X4) = −g2(X1, X2, X3, X4)

= μ(X1 − X3) + γ (X2 − X4) (71)

where μ and γ are real positive dimensionless param-
eters.

To verify the assumption that each mechanical DOF
is characterized by a different oscillation frequency �i

(i = 1, 2), we have performed Monte-Carlo numeri-
cal simulations integrating the SDE system (70). The
numerical simulation methodology is the same as in
Sect. 6.1. The parameter values used in the simulations
are summarized in Table 4. Figure6 shows the Fourier
transform (evaluated through the FFTalgorithm) of one
realization of the stochastic processes X2(t), X4(t),
and X5(t), obtained through numerical integration of
the SDE system for one realization of the Wiener pro-
cess. As expected, the mechanical variables X2(t) and
X4(t) show a single frequency peak at f1 = 1.2616 Hz
and f2 = 1.6603 Hz, respectively. This proves the cor-
rectness of the initial assumption, that each mechanical
variable can be expanded in a single frequency Fourier
series. By contrast, the electrical variable X5(t) shows
two peaks, one per frequency, that correspond to a mix-
ing of the individual oscillation frequencies of the two
coupled cantilevers at the electrical level. Notice that
because of the finite precision of digital computers, the
two frequencies are always resonant (i.e., their ratio is
rational). The parameter values have been chosen such
that the ratio is far from an integer value.

Table 4 Values of the parameters for the dimensionless coupled
micro-cantilevers model

Parameter Value

ε 0.1

α1, β1 1

α2, β2 2

γ 2

μ 1

δ 20

σ1, σ2 1

a1, b1 20π

a2, b2 20
√
3π

Introducing the dimensionless energy associated to
each mechanical DOF, and using Itô calculus, the
reduced SDE system can be easily derived

d E1 = ε
( − X2

2 − X2 g1(X1, X2, X3, X4) − β1 X2 X5

+ 1

2
σ 2
1

)
dt + √

εσ1X2 dWt (72a)

d E2 = ε
( − X2

4 − X4 g2(X1, X2, X3, X4) − β2 X4 X5

+ 1

2
σ 2
2

)
dt + √

εσ2X4 dWt (72b)

In (72), X1(E1, θ1) and X3(E2, θ2) are represented as
in (61)–(62). Similarly, X2(E1, θ1) and X4(E2, θ2) fol-
low (63)–(64). Notice also that θi = �i (Ei )t (i =
1, 2), where �i (Ei ) is given by (60) with the appropri-
ate values of ai , bi and Ei .

Assuming that the frequencies are not resonant, a
direct application of Corollary 3 implies that the nor-
malized voltage X5 admits the representation (32),with
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X50 = 0, and

X̂5m,1(E1) = C1,m(E1) X2c,m(E1) (73)

X̂5m,2(E2) = C2,m(E2) X4c,m(E2) (74)

where

Ci,m(Ei ) = βi

δ + j

(
2m − 1

2K (Ei )

)
π�i (Ei )

, i = 1, 2.

(75)

Substituting into (72) and averaging yields

d E1 = ε

2

(
σ 2
1 − (1 + γ )

+∞∑
m=1

X2
2c,m(E1)

+ α1

+∞∑
m=1

Re[C1,m(E1)] X2
2c,m(E1)

)
dt

+
√

ε

2
σ1

( +∞∑
m=1

X2
2c,m(E1)

) 1
2

dWt (76a)

d E2 = ε

2

(
σ 2
2 − (1 + γ )

+∞∑
m=1

X2
4c,m(E2)

+ α2

+∞∑
m=1

Re[C2,m(E2)] X2
4c,m(E2)

)
dt

+
√

ε

2
σ2

( +∞∑
m=1

X2
4c,m(E2)

) 1
2

dWt (76b)

System (76) shows that the SDEs governing E1 and
E2 aremutually independent. Themechanical coupling
(described by gi ) introduces an additional damping
proportional to γ , while the coupling to the electrical
domain gives a contribution proportional to the electro-
mechanical coupling constants, without impairing the
independence of the two SDEs. This somewhat sur-
prising result is a consequence of the weak coupling
assumption, and of the frequencies not being resonant.
It has been proved in [41, p. 169, corollary 5.9], that a
network of weakly coupled limit cycle oscillators orga-
nizes in “pools”, consisting of synchronized oscillators
that share a common frequency. Oscillators from dif-
ferent pools behave independently of each other, i.e.
the coupling becomes negligibly small, even if they
are physically connected.

Because the energy equations are single variable, the
marginal stationary PDFs can be found using the pro-

Fig. 7 Stationary marginal probability density function ρ1(E1).
Blue vertical bars are the result of Monte-Carlo simulations. Red
line is the theoretical prediction. Parameters values are summa-
rized in Table 1

cedure described in Sect. 5. The joint stationary distri-
bution for the energies reads

ρ(E1, θ1, E2, ρ2) = 1

(2π)2
ρ1(E1) ρ2(E2) (77)

where ρi (Ei ) denotes the marginal stationary PDF for
energy Ei , i = 1, 2. The expectation of an observable
F(E1, θ1, E2, θ2) function of the system variables is
then expressed through the quadruple integral

E[F(E1, θ1, E2, θ2)] = 1

(2π)2

∫ 2π

0

∫ 2π

0

∫ +∞

0

∫ +∞

0

F(E1, θ1, E2, θ2) ρ1(E1) ρ2(E2) d E2 d E1 dθ2 dθ1
(78)

Figure7 shows a comparison of the stationary mar-
ginal probability density function ρ1(E1), obtained
through Monte-Carlo simulations and from theoretical
prediction. Blue vertical bars are the result of Monte-
Carlo simulations, obtained through numerical inte-
gration of the SDE system (70), using the procedure
described in the previous section. Red line is the theo-
retical prediction.

7 Conclusions

In this contribution, we have presented a method for
the analysis and design of nonlinear electro-mechanical
systems subject to random external perturbations, with
particular reference to energy harvesting systems and
coupled micro-resonators for mass sensing applica-
tions.
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The proposed method is based on two steps: First
we perform a model order reduction to reduce the total
number of variables (mechanical + electrical) to two
variables only, representing the mechanical energy and
an angle variable. The electrical variables are expressed
as functions of the mechanical energy and the angle,
exploiting a spectral domain representation. Second,
we apply stochastic averaging to eliminate the fast
angle variable, so that a scalar equation for the energy
is obtained. Thus, it is possible to solve the associated
Fokker–Planck equation finding the stationary proba-
bility density function, and to calculate expected quan-
tities.

Applying the proposed method, a significant sim-
plification of the system model is obtained, opening
the way to the definition of optimization and design
procedures. As a first example, we have analysed a
nonlinear piezoelectric energy harvester, with power
factor correction. Power factor correction is obtained
through the connection of a shunted inductor in paral-
lel to the resistive load. The inductor reduces the time
lag between the current through and voltage across
the transducer, reducing the power reflected by the
load (reactive power) and increasing the average power
absorbed by the load and the power efficiency. Theo-
retical predictions are confirmed by Monte-Carlo sim-
ulations. As a second example, we have considered two
coupled micro-resonators for mass sensing applica-
tions. This example shows the extension of the method
to system with several mechanical degrees of freedom.
Assuming a weak coupling and a non resonance condi-
tion, we show that after order reduction and averaging,
the energy equations are mutually independent. The
corresponding Fokker-Planck equations are solved to
find the energy marginal probability density function.

The procedure reduces the computational complex-
ity of the electro-mechanical system description signif-
icantly, paving the way towards derivation of fast, yet
accuratemodels, enabling the optimized design of such
systems. In particular, traditional approaches based on
Monte-Carlomethods require lengthy, time consuming
simulations, that become unfeasible whenever a large
parameter space must be explored for design and opti-
mization. Conversely, in the proposed approach most
of the work can be done analytically, with only few
numerical calculations that can be performed in a rela-
tively short time.
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