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Introducing eigenspaces: semiotic analysis and didactic engineering 
Margherita Piroi1  

1University of Turin, Italy; margherita.piroi@unito.it 

This paper reports part of the author’s PhD research, that focuses on eigentheory teaching and 
learning processes. We describe how the results of a pilot study, based on multimodal semiotic 
analysis, together with a broader epistemological, didactical and ecological analysis of the 
mathematical knowledge at stake and the learning context have informed the conception and a priori 
analysis of activities and methodologies designed within the didactic engineering methodology. These 
activities have been designed by the author and the teacher of a linear algebra course, with a high 
number of class attendees, offered in a mechanical engineering degree program in a public 
University in Italy. We report the multimodal analysis of a fragment of students’ activity during the 
course implementation, to validate the hypotheses guiding their design. 

Keywords: Eigentheory, didactic engineering, university mathematics education, semiotic bundle. 

Introduction 
In the last decades, a growing body of literature has been investigating the obstacles encountered by 
students when learning linear algebra (Stewart et al., 2019). Among the topics generally covered in a 
linear algebra course, that of eigentheory has been studied in a number of researches, given its wide 
applicability in STEM disciplines and the particular difficulties students usually encounter in studying 
this topic. Thomas & Stewart (2011) investigated eigenvalues and eigenvectors concept development, 
and provided interesting results regarding the way students understand the equation Ax = λx. They 
showed how students seem to struggle in coordinating the two different processes encapsulated in the 
two sides of the equation: on the left side there is a matrix multiplied by a vector, while on the right 
side a multiplication of a scalar by the same vector. Another problem highlighted by the same authors 
is that the dominant way eigenvectors and eigenvalues are taught is through their algebraic definition 
and providing an algorithm to compute them. Consequently, the focus is turned too soon to the 
manipulation of algebraic representations, and in this way “the strong visual, or embodied 
metaphorical, image of eigenvectors can be obscured by the strength of the formal and symbolic 
thrust” (p. 186). As detailed in a broad overview provided by Wawro et al. (2019) on the educational 
research that has focused on eigentheory, other researchers have confirmed Thomas and Stewart’s 
results and detected different reasons that add complexity to the understanding of the topic. Among 
these, there is the difficulty in coordinating solutions to 𝐴𝑥 = 𝜆𝑥, solutions to the homogeneous 
systems of equations resulting from (𝐴 − 𝜆𝐼)𝑥 = 0, and the null space of the matrix 𝐴 −  𝜆𝐼. In 
general, research on this topic agrees on the fact that integrating a geometrical interpretation of 
eigenvectors would enhance the understanding of eigentheory. Different researchers, summarized in 
(Wawro et al., 2019), have shown that the use of dynamic geometric software can help in this 
direction. Nevertheless, this seems to be rarely done and the algebraic approach continues prevailing. 

One of the notions of eigentheory whose understanding has been rarely investigated (Wawro et al., 
2019), is that of eigenspace, that is the set of all the eigenvectors associated to an eigenvalue of a 
linear transformation, together with the null vector. The fact that all the linear combinations of 
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independent eigenvectors related to the same eigenvalue are eigenvectors of the same eigenvalue too, 
is not trivial at all for students (Salgado & Trigueros, 2015; Wawro et al., 2019). For this reason, there 
is a high risk that when the definition of eigenspace is given, students assume it, without really 
grasping the power of the fact that all the eigenvectors associated to an eigenvalue form indeed a 
vector subspace. 

The author’s PhD research project faces these issues, trying to investigate teaching and learning 
processes of eigentheory, in a linear algebra course offered in the first year of a degree in engineering. 
A pilot study was first realized, followed by the implementation of a teaching-learning sequence 
designed according to the didactic engineering methodology (Artigue, 2015).  

Didactic Engineering: main features 
Didactic engineering (DE) has been acknowledged as a research methodology since the early 1980s 
(Artigue, 2015). As such, it is structured into different phases: preliminary analyses, conception and 
a priori analysis, realization, observation and data collection, a posteriori analysis and validation. 
Preliminary analyses lay the foundation for the whole design and take into consideration different 
aspects that together contribute to the choices shaping the activity conception. The principal 
dimensions studied at this preliminary stage are the epistemological, the institutional, and the 
didactical ones. The aim of the institutional analysis is to identify the specificities of the Institution 
in which the DE takes place, highlighting the conditions and constraint to its implementation, while 
that of the didactical analysis is to investigate what information previous research has provided about 
the teaching and learning of the concept at stake. This last dimension is substantially cognitive, and 
in order to study it, different theoretical frameworks can be integrated into the methodology of DE.  

The preliminary analysis guides the phase of conception and a priori analysis, where research 
hypotheses are made explicit and employed in the design of the activities to implement. Choices made 
in the conception phase can be made at the macro-level of the design, involving the global project, or 
at a micro-level, concerning the design of specific activities or situations. The a priori analysis 
clarifies how the choices made in the conception relate to the preliminary analysis, taking into account 
its different dimensions.  

In the realization phase, the activity or activities are implemented, under the researchers’ 
observations. The type of data collected strongly depends on the theoretical framework 
accompanying the DE. It is to be expected that the project will not follow exactly the path imagined 
during the conception phase, so the researcher should carry out an in-vivo analysis during the course 
of the activities, in order to determine if some teaching variables or choices need to be changed during 
the course of the project and to make the necessary changes as soon as possible.  

A key aspect of this design research methodology is that its validation is internal and realized through 
a comparison between the a priori and a posteriori analyses. This comparison allows to put to the test 
the research hypotheses. Again, based on the theory behind the DE, the specific research questions 
posed and the type of data collected, a posteriori analysis can be conducted using different 
methodological tools. For example, in the here presented DE, a semiotic lens, namely, the semiotic 
bundle theory, was used both to enrich the preliminary analysis and conception phase and to realize 
the a posteriori analysis. 
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The semiotic bundle 
Contributing to a broad strand of research in mathematics education concerned with the semiotic 
aspects of mathematical practice, Arzarello introduced the notion of semiotic bundle (SB): 

“a system of signs […] that is produced by one or more interacting subjects and that evolves in 
time. Typically, a semiotic bundle is made of the signs that are produced by a student or by a group 
of students while solving a problem and/or discussing a mathematical question”. (Arzarello et al., 
2009, p. 100) 

Not only can the collection of signs that are present in the bundle evolve, but also the relationships 
existing between them can vary as the subject or the interacting subjects produce them. These 
relationships are analyzed through two types of lenses within this framework: synchronic analysis 
allows to study the relationships among signs produced simultaneously, while diachronic analysis 
studies the relationships among semiotic sets activated by the subject (or subjects) in successive 
moments, thus their evolution. This last kind of analysis has been used also by other theories, but the 
element of novelty brought by the theory of the semiotic bundle is the chance to use it to observe 
phenomena considering all the signs which may possibly be produced with different actions that have 
an intentional character, such as uttering, speaking, writing, drawing, gesticulating, handling an 
artefact, etc. This means, for example, that the dynamical relationship between gestures and speech 
can be analyzed, and such an analysis can give important information about the subject’s ideas and 
thinking. In this case, gestures and language are a semiotic bundle, made of two deeply intertwined 
semiotic sets, of which only the second represents also a semiotic system.  

Context, preliminary analyses and research question  
The DE presented in this report has been designed for a Linear Algebra and Geometry course offered 
at the first year of the mechanical engineering degree program at a public Italian University, and 
taught by Teacher “A”. Topics of this course span from basic vector spaces theory (approximately: 
vector spaces, matrix algebra, linear systems, eigentheory) to Euclidean spaces. A pilot study had 
been conducted in the Fall term of 2021 with students of the same course taught by Teacher A, and 
of other two linear algebra courses for different engineering degree courses, taught by different 
teachers. In the pilot the teachers were not involved. In the week following the classes on eigentheory, 
taught by the teachers without any researcher’s intervention, some students voluntarily attended an 
extra two-hours tutoring class lead by this paper’s author. During the optional activity, students had 
to work in groups of three or four and re-elaborate the notions of eigentheory encountered in the 
recently attended lecture, guided by guidelines provided by the researcher. These comprised very 
open questions such as “How would you explain the concept of eigenvector to someone who has 
never heard of that before?”. Students were allowed to answer in the way they preferred, orally, in 
written form, with diagrams, etc., and were free to use whatever tools were available to them and 
encouraged to use other resources that they had encountered, in addition to the book or notes taken 
during the lessons.  For the analysis, all the written protocols of the students, and audio and video 
recordings of eight of the small groups, were collected. This type of data allowed a multimodal 
analysis, according to the construct of the semiotic bundle (Arzarello, 2009). After the 
implementation and analysis of the results of the pilot study, teacher A was involved in the redesign 

Proceedings of CERME13

2501



 

 

of the module of her course regarding eigentheory for the following year. The DE here described 
regards this redesign of the course and its implementation in the Fall term of 2022. The results of the 
pilot study, together with the observation of the whole module on eigentheory as taught by teacher A 
before our intervention (all classes were video recorded by teacher A), contributed to the preliminary 
analysis for the DE.  

Before our intervention, the module on eigentheory of the course followed the sequence traditionally 
used in Italian linear algebra courses: the definition of eigenvectors and eigenvalues, as those vectors 
𝑣 and scalars 𝜆 for which 𝐴𝑣 = 𝜆𝑣 stands, was given; some mainly algebraic examples were shown 
by the teacher (this is the case for teacher A, who also used to present a few geometrical examples, 
but it rarely happens in other courses); the procedure for computing eigenvalues and eigenvectors of 
a given matrix was shown and algebraically justified; the definition of eigenspace was presented; the 
theorems regarding diagonalization were introduced. Our analysis of the most commonly used Italian 
books and of notes of some other linear algebra courses taught in the same University where we 
conducted our research, ensures us that this teaching sequence is dominant in Italian universities. 
Descriptions of curricula and courses found in the literature seem to confirm that the same path is 
dominant in other countries too. The raison d’être of eigentheory is only hinted at the beginning of 
the course, when the teacher explains that eigenvalues and related notions are useful for diagonalizing 
matrices, but this rationale is soon lost by the students, also because in the following introduction of 
definitions and theorems, it is no longer taken into consideration. Furthermore, this is only the 
mathematical raison d’être of the knowledge at hand, whereas the reason why it is taught in an 
engineering course is not addressed at all. This problem affects the entire linear algebra course and is 
shared by mathematical courses for engineering and other STEM degree programs in Italian 
universities. In such a course structure, all the difficulties highlighted in the existing literature are 
likely to arise. In addition, the geometric interpretation, which, as confirmed by the literature, would 
help overcome these difficulties, although presented by the teacher with some examples, is 
completely absent in students’ practices, which consist solely of algebraic computations to find 
eigenvalues, eigenvectors and eigenspaces.  

Analysis of part of the pilot study 

The analysis with the SB lens of students’ activities in the pilot study allowed us to expand the 
epistemological and didactical analysis. Due to space constraints, we will present here only some 
results concerning students’ conceptualization of eigenspaces. In the small-group out-of-lecture 
activity, most of the groups struggled in understanding what an eigenspace is, by trying to interpret 
its definition. Almost all the students, after reading the main eigentheory related definitions, began to 
review their class notes, including examples of transformations and related “eigen-objects” provided 
by the teacher. They struggled to understand why those indicated by the teacher were the 
transformation’s eigenvalues, vectors and spaces, likely because they had not a clear idea of what 
these were. Nevertheless, a very interesting aspect emerged from two of the groups whose activity 
we have recorded. Students in these groups, before even reading on their notes the definition of 
subspace, began to wonder how many eigenvalues could exist for the same direction. The need to 
answer this question arose from the desire of better grasping what eigenvalues and eigenvectors are. 
In one particular group we observed how the attempt to tackle this issue, brought to an autonomous 
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conceptualization of what eigenspaces are. When these students later encountered the definition in 
their lecture notes, they could make sense of it, due to their prior spontaneous inquiry. It is particularly 
interesting the way the evolution of the semiotic resources used by students played an important role 
in this process of discovery. The student who initiated the inquiry in the group starts considering the 
type of representation he is more confident with, namely the geometric one, that he represents in an 
embodied way, using gestures (in Fig. 1a and 1b the student shows to his peers that an eigenvector is 
a vector whose image gets “stretched” but remains in the same direction). Then, to align with the 
discourse of his fellow group members, he gradually shifts to using written diagrams (Fig. 1c) and 
then to symbolic formulas to ultimately arrive to an almost correct abstract formulation of the fact 
that any multiple of an eigenvector is also an eigenvector related to the same eigenvalue. This excerpt 
of students’ activity is described and analyzed in greater detail in Piroi (2023). Students in this 
example, however, do not investigate the case where there are independent eigenvectors related to 
the same eigenvalue, most likely limited by the choice of a two-dimensional geometric example, and 
this limits their deep understanding of what an eigenspace is. The crucial point of this example, 
however, is that students naturally inquire about how many different eigenvalues might correspond 
to a given direction and, subsequently, what all the eigenvectors related to a given eigenvalue are. 
This exploration leads them to understand, with the stated limitation regarding dimension, that all 
eigenvectors related to a same eigenvalue form a vector subspace. This confirms the few results 
present in the literature about students’ difficulties in understanding eigenspaces, but further suggests 
that letting students actively explore examples of geometrical transformations, they are likely to 
mobilize more visual and dynamic semiotic resources, such as gestures, and thus to visualize the 
eigenspaces formed by all the eigenvectors related to an eigenvalue. This might help them make sense 
of the definition of eigenspace, when they encounter it. 

 
Figure 1 (a,b,c): Evolution of the signs produced by the group of students 

Thus, the pilot study not only allowed us to perform a fine-grained analysis of students’ difficulties 
in understanding eigenvalues and eigenvectors. It also revealed that the proposed activity actually 
helped students make sense of these concepts. It is when the students start collectively reinterpreting 
the examples given by the teacher, mobilizing different semiotic resources, such as written and oral 
language, drawings and gestures, that they begin to create and share an effective conception of 
eigenvectors, etc. The work in small groups allowed the students to mobilize different semiotic 
resources for the sake of communication, but those resources became fundamental tools for 
comprehension itself. This aspect is evident in the presented extract. As a matter of fact, educational 
research has widely demonstrated that collective active learning is beneficial to students’ learning 
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also in Engineering courses (Prince, 2004). Nevertheless, the considered learning context has a 
number of constraints that highly hinder the implementation of collective activities. Firstly, the course 
was attended by more than 200 students and the physical disposition of the desks in the classrooms, 
lined up in long rows, does not allow working easily in small groups, making it also very difficult for 
the teacher to walk around the desks to observe the students’ interactions. Moreover, the thick 
curriculum and on the other side the little time allocated to the course, urge the teacher to follow the 
standard teaching sequence. 

Taking into account the epistemological, didactical and ecological dimensions of the mathematical 
knowledge to be taught and of the specific learning context, we formulate the following research 
question: What kind of mathematical-didactic proposal, compatible with the learning context 
described with constraints such as the very high number of students attending the classes, can be 
implemented to foster the understanding of eigentheory? To answer this question, we will describe 
some choices made in the redesign of the course and will analyze part of the data collected during the 
implementation using the SB lens. The results will answer the research question and validate the 
research hypotheses generated during the conception and a priori analysis phase.  

Design, implementation and analysis 

Considering the various aspects that emerged in the preliminary analysis, we redesigned the 
eigentheory module, devoting a significant portion of the lecture to students' collective exploration 
of eigentheory concepts. We designed a series of tasks to be progressively proposed to students, that 
could support their understanding of eigenvectors, etc., avoiding the difficulties highlighted by the 
literature and emerged in our pilot study. We addressed the institutional constraints that hindered the 
implementation of collective activities by introducing a technological tool, namely the online notice 
board 'Padlet'. Through this platform, the teacher could assign problems to be solved on the spot by 
pairs or small groups of students during the lectures. Then, at the end of the time allocated for solving 
the problem, the groups could anonymously post a picture of their solution on the shared padlet. The 
teacher would project the padlet so that everyone could see the answers posted by others. She would 
also be able to check, as solutions were posted, if there were any particularly interesting solutions to 
present to the class later, as a bridge between the groups activity and what she would explain 
immediately afterwards. For the a posteriori analysis, we not only had all the pictures posted by the 
students in the padlet at our disposal, but we also audio and video recorded three randomly chosen 
small groups during all the activities about eigentheory conducted in the classes. This type of data 
was necessary to analyze students’ activity according to the multimodal paradigm (Radford et al., 
2017) at the core of the SB framework. 

As for eigenspaces, we did not present the definition; instead, we let students explore geometrical 
examples where the question of “how many eigenvectors related to the same eigenvalue can exist” is 
likely to arise. In the second part of the first class on eigentheory we proposed a series of known bi 
and tri-dimensional geometrical transformations (rotations, reflections, projections) and asked the 
groups of students to find their eigenvectors and eigenvalues. We chose the examples so that 
eigenspaces of dimension one (lines) and two (planes) would appear. The hypothesis behind the 
choice of this task was that students are expected to notice that all vectors on a line or on a plane - 
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depending on the example- are eigenvectors with respect to the same eigenvalue, and thus to visualize 
the set of eigenvectors related to a same eigenvalue as a vector subspace. In the following activity, 
students had to answer the question, expressed in more general and formal terms: "If I have two 
eigenvectors that are independent of each other but related to the same eigenvalue, are all their linear 
combinations also eigenvectors?". By answering to this question, students were expected to transpose 
in algebraic form the geometrical ideas encountered in the previous task and to discover the 
generalizability of the statement for all vector spaces. We will present here a fragment of a couple of 
students’ activities related to the task “consider the reflection with respect to a plane passing through 
the origin, and find, if any, its eigenvectors and eigenvalues”.  

At the beginning, they start drawing the transformation on their notebooks. They reason a bit on the 
drawing but struggle to visualize the three-dimensional transformation and thus which are the vectors 
that keep the same direction when transformed. Then, they start representing the situation with their 
hands, gesturing in the air (Fig. 2a). Doing so, they immediately realize that all the vectors staying 
on the student on the right’s hand (representing the plane of reflection), remain fixed by the 
transformation, that is they stay on the same direction and keep the same magnitude, meaning that 
they are all eigenvectors related to the eigenvalue 1. They easily visualize that this property is shared 
by all the vectors staying on the plane. Later they start looking for other different eigenvectors. They 
state that all the vectors lying in the plane perpendicular to the reflection plane (represented in Fig. 
2b by the student’s left hand) are eigenvectors related to -1. They do not seem very sure about it, and 
explore various similar configurations by moving their hands. At one point, one of the students (Fig. 
2 c and d) begins representing the vectors with his right index finger and, by moving it in different 
directions, realizes that all and only the vectors lying on the line passing through the origin and 
perpendicular to the reflection plane (represented by his left hand) are eigenvectors related to -1.      

 
        Figure 2 (a,b,c,d): key gestures performed by the students while solving the task 

At the end of this excerpt, when the two students have to summarize what they have found, they 
realize that in the two explored cases (the previous task required them to find the “eigen-objects” of 
the reflection in the plane with respect of a line), the set of eigenvectors related to an eigenvalue 
always formed a line or a plane. For space reasons, we cannot continue the analysis, but in the 
following group activity they are able to generalize this finding, proving algebraically that the linear 
combinations of eigenvectors with the same eigenvalue are always eigenvectors of the same value. 

Conclusions 
The analysis of the video recordings allowed us to observe how students’ mobilization of multimodal, 
dynamical, resources, such as their gestures, enabled them to visualize that the set of eigenvectors 
related to the same eigenvalue form a vector subspace. In the following activity, which unfortunately 
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we do not have the space to analyze here, they were able to switch to a different semiotic register, the 
algebraic one, to generalize this statement and form a correct conceptualization of eigenspace. The 
choice of letting students explore geometrical transformations where they could visualize eigenspaces 
of dimension one or three helped overcome the difficulties highlighted by Wawro and colleagues 
(2019) and observed also in our pilot study. The SB lens was used to analyze all the excerpts of 
activity from the three video-recorded groups, in order to validate the hypotheses guiding the redesign 
of the course and of the tasks assigned to the students as small groups activities in the classes on 
eigentheory. Moreover, additional data were collected, including questionnaires, in order to validate 
(or not) other research hypotheses regarding the students’ attitudes toward the new didactical 
organization of the course module. The analysis of these aspects will be reported elsewhere.  
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