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Abstract: The mechanical behavior of block-in-matrix materials is heavily dependent on their block
content. This parameter is in most cases obtained through visual analyses of the ground through
digital imagery, which provides the areal block proportion (ABP) of the area analyzed. Nowadays,
computer vision models have the capability to extract knowledge from the information stored in
these images. In this research, we analyze and compare classical feature-detection algorithms with
state-of-the-art models for the automatic calculation of the ABP parameter in images from surface
and underground outcrops. The outcomes of this analysis result in the development of a framework
for ABP calculation based on the Segment Anything Model (SAM), which is capable of performing
this task at a human level when compared with the results of 32 experts in the field. Consequently,
this model can help reduce human bias in the estimation of mechanical properties of block-in-matrix
materials as well as contain underground technical problems due to mischaracterization of rock
block quantities and dimensions. The methodology used to obtain the ABP at different outcrops
is combined with estimates of the rock matrix properties and other characterization techniques to
mechanically characterize the block-in-matrix materials. The combination of all these techniques
has been applied to analyze, understand and try, for the first time, to model Roman gold-mining
strategies in an archaeological site in NW Spain. This mining method is explained through a 2D
finite-element method numerical model.

Keywords: block-in-matrix materials; computer vision; Segment Anything Model; areal block
proportion (ABP)

1. Introduction

A great number of geological formations are structurally complex and heterogeneous,
often requiring simplifications for their mechanical characterization. A paradigmatic
example of this complexity is exhibited by a specific group of materials composed of blocks,
which sometimes exhibit relevant variations in shape and size, embedded in a finer-grained,
mostly homogeneous matrix.
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In nature, these “block-in-matrix” geomaterials can be found in a wide range of
lithological units and scenarios, in the form of colluvium and alluvium deposits (Figure 1a)
and breccias and conglomerates (Figure 1b), but also as decomposed granitic rock masses
(DGs) (Figure 1c) and volcanic agglomerates, pyroclasts, olistostromes and melánges
(Figure 1d,e). To designate such materials, Medley [1] introduced the non-geological word
bimrock, an acronym standing for Raymond’s [2] block-in-matrix rock, to indicate “a mixture
of rocks, composed of geotechnically significant blocks within a bonded matrix of finer
texture”. Later, following Medley’s line, the acronym bimsoil (block-in-matrix soil) was
used to designate geological units with rock blocks embedded in a soil-like matrix [3–5].

Several authors have carried out laboratory and in situ tests, as well as numerical
analyses, and have demonstrated that bimunits (from block-in-matrix units [6]) are strongly
affected by the quantity, position, shape, orientation and dimension of blocks [7–12]. Specif-
ically, when the block content falls in the range of about 20% to 75%, the strength increases,
the deformability decreases and failure surfaces become more tortuous.

Due to the aforementioned reasons, a rigorous estimate of block content through the
volumetric block proportion (VBP) parameter is essential for the mechanical character-
ization and modeling of a block-in-matrix material. Moreover, when excavating these
complex geomaterials, the presence of unexpected rock blocks can induce, among several
other effects, damage to cutters, face instabilities and obstructions [13]. At a rock mass
scale, the extraction of representative samples is virtually impossible from a practical per-
spective. That is why some methodologies have been developed relying on fundamental
stereological principles [4,14,15], which state that, when sufficient data are available, VBP
estimates can be obtained through 2D (surface), 1D (linear) or even 0D (point) measurement
approaches [16–19].

These dimensions are associated with standard characterization techniques, like im-
agery, UAV-based photogrammetry [20,21] and geological mapping, drilling and scanlines,
and grid-based sampling, and consist in segmenting the dimensional space by counting and
measuring elements within it. This task can be particularly difficult for granular materials
with large grain-size variability, as stated by Wolcott and Church [22], in sediments with a
fluvial origin, such as those analyzed in this paper.

Computer vision techniques, especially focused on segmentation and image analysis
approaches, have long since emerged as complementary characterization tools in multi-
ple fields of geoengineering [23–26] and have proved to be particularly effective in the
characterization and sizing of granular geological samples.

Considering the foregoing, the main objective of this paper was to check the capa-
bilities of conventional edge- and corner-detection methods in determining areal block
proportions (ABPs) from photos of rock walls excavated in block-in-matrix materials, both
in surface and underground openings. Alternatively, a state-of-the-art segmentation al-
gorithm (the Segment Anything Model, SAM) [27] was explored and found to effectively
estimate ABPs from several photos showing different features related to the texture, the
lighting conditions and the contrast. The algorithm was implemented in a Python v. 3.10
programming language script. The tool was enhanced with the ability to generate his-
tograms representative of the relative block size distribution for the analyzed photo. The
results given by the method after the analysis of 10 selected images were contrasted with
several estimates visually carried out by a group of experts, a practice followed in other
geomechanics-related studies [28,29].

Given the potential performance and ease of the algorithm in determining ABP val-
ues from a large set of inputs, this work attempts also to provide assistance in future
improvements of 3D (VBP) estimates in block-in-matrix materials from images, a topic still
deserving further research.
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Figure 1. Examples of block-in-matrix materials: (a) detailed view of a typical geomaterial found in 
a slope in Las Médulas; (b) conglomerate boulder in Covarrubias, Spain; (c) decomposed granite (DG) 
outcrop in Galicia, Spain, where big boulders are mixed with soil material; (d) tectonic mélange ma-
terial in a core sample; and (e) a tunneling operation through a block-in-matrix structure with dug-
out blocks. Photo credits: (a) taken by the authors; (b) courtesy of Alejano et al. [30]; (c) courtesy of 
Alejano and Carranza-Torres [31]; and (d,e) adapted from Adam et al. [32]. 

2. Geological, Geomechanical and Computational Framework 
In this section, we briefly contextualize the archaeological site under study and pre-

sent the image database utilized in this research work and the camera used to capture the 
images. Additionally, the two approaches used to obtain the ABP of each picture, corner–

Figure 1. Examples of block-in-matrix materials: (a) detailed view of a typical geomaterial found
in a slope in Las Médulas; (b) conglomerate boulder in Covarrubias, Spain; (c) decomposed granite
(DG) outcrop in Galicia, Spain, where big boulders are mixed with soil material; (d) tectonic mélange
material in a core sample; and (e) a tunneling operation through a block-in-matrix structure with
dug-out blocks. Photo credits: (a) taken by the authors; (b) courtesy of Alejano et al. [30]; (c) courtesy
of Alejano and Carranza-Torres [31]; and (d,e) adapted from Adam et al. [32].

2. Geological, Geomechanical and Computational Framework

In this section, we briefly contextualize the archaeological site under study and present
the image database utilized in this research work and the camera used to capture the images.
Additionally, the two approaches used to obtain the ABP of each picture, corner–edge
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detection and image segmentation, are also introduced, together with the SAM algorithm
and its implementation.

2.1. The Archaeological Site under Study

Las Médulas (León, Spain) is thought to be one of the most important gold exploitations
of the Roman Empire (Figure 2), covering an area of 600 ha and producing 4–5 t of gold
from mined material [33], nearly 1 Mm3, which formed tailings that also cover an additional
600 ha of space. The mining technique used involved a complex hydraulic network that
required more than 700 km of canals, including local tunnels.
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Figure 2. (a) View of the old slopes at the upstream zone of the Las Médulas archaeological site and
(b) a 2 m width Roman mining drift at Las Médulas excavated around 2000 years ago (photos taken by
the authors).

2.2. Geological and Mining Features

Geologically, the area is formed of a sedimentary series associated with the for-
mation of alluvial fans resulting from fluvial deposits from the surrounding mountain
ranges [34] and deposited in an environment with an initially warm–humid seasonal cli-
mate, with increasing aridity over time. Among these deposits, three main conglomerate
formations—resting discordantly on a Paleozoic series [35], corresponding to middle facies
of alluvial fans formed in a depositional basin, probably from the Miocene epoch—can
be found.

These conglomerate formations (Figures 3 and 4) correspond, from bottom to top, first
to the Orellán Formation, made up of alluvial and colluvial deposits containing cobbles up
to 10 cm in diameter, embedded in a relatively soft matrix. The thickness of this formation
may vary from 20 m to practically no outcropping. The Santalla Formation appears on top
of Orellán and is also composed of conglomerates embedded in a quartz, muscovite and
clay matrix, reaching a maximum thickness of approximately 25 m.
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Figure 4. (a) Sketch of the bedding column at Las Médulas showing the approximate thickness of each
formation, the main forming geomaterials and the mean Au grade (mg/m3), based on Pérez-García
et al. [34]; (b) illustrative pictures of the formations under study, where distinctive features like the
presence of quartzite boulders in the Santalla Formation or high vertical slopes in the Las Médulas
Formation can be observed.

The maximum size of the blocks, predominantly made of quartzite, is about 1 m in
diameter (Figure 4). This formation contains the gold sought by the Romans in quantities of
up to 1 g/m3. The Las Médulas Formation lies on top of the previous ones, and its thickness
is about 100 m, consisting of alternating beds of boulders and gravel, fine sand, and silt.
This material appears to be more resistant, embedded with large blocks, showing a typical
deposition in alluvial fans in a high-energy environment. Nevertheless, some finer-grained
layers may have appeared as a result of possibly calmer geological events. The Au grade in
the Las Médulas Formation is much lower than in the underlying: 10–20 mg/m3.

The development presented in this paper arose as part of a combined engineering–
archaeological study to better understand the way in which the Romans mined the gold.
For these tasks, the thick cover of the Las Médulas Formation (considered by the Romans as
sterile material) had to be removed in order to reach the higher Au grade of the Santalla
Formation. In the 1st century AD, Pliny “the Elder” named the technique to remove this
material with the illustrative name of Ruina Montium: the “collapse of the mountains” [37].
It indeed was described as the caving of large amounts of material to remove the upper
levels and reach the lower ones with a higher gold grade. To investigate the methods em-
ployed by the Romans, a geomechanical characterization of these block-in-matrix materials
was conducted, relying on a reasonably accurate estimation of the VBP of the conglomer-
ates, something that was eventually performed for different outcrops of the site from ABP
estimates, according to the approach herein presented.

2.3. Methods for Bimunit Characterization

Both in the Las Médulas and Santalla Formations, large boulders can appear. Addition-
ally, the matrix is made up of fine materials (fine sand, sometimes silty) that, apparently, are
not very strong. All these aspects, in addition to the heritage protection status of the area,
prevent taking representative large samples of these materials so that they can be tested in
the laboratory or in situ. Therefore, characterizing the behavior at a real scale (such as how
rocks respond to excavations and slopes) is a challenging task. Nevertheless, there are not
many relevant studies that allow rigorous characterization of these materials. Three types
of approaches have been proposed to characterize the properties of these bimunits, which
are hereinafter described.
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The first type would imply experimental studies on samples [38], in case they could be
carved or created artificially, something that does not occur in the case under scrutiny. The
second type, used in some large engineering works, would imply carrying out large-scale
in situ direct shear tests [9,39], so it would be difficult to implement this in Las Médulas,
both in economic terms and because of the damage it would cause. A third, more general
type [4,5,8,40] would be the characterization of the matrix and the quantity and nature
of rock blocks and, through empirical or numerical approaches, the estimation of the
properties indirectly based on the VBP. Particularly suitable for a first characterization
approach is the method proposed by Sonmez et al. [40], updated by Kalender et al. [4],
suggesting an estimate of bimrock strength based on the rock matrix characterization, VBP,
the angle of repose of the boulders, and estimates of adhesion between the boulders and
the matrix.

2.4. Camera and Photo Database

Several pictures were taken at different representative locations of the site, using an
iPhone 11 smartphone model. These pictures have a size of 1536 × 2048 pixels and a
resolution of 72 dpi in JPEG format. Although the quality and resolution of a smartphone
camera are lower than those of a professional one, this type of integrated camera has
been successfully used by geopractitioners for multiple applications [41–43]. Moreover,
the obtained pictures are of sufficient resolution, allowing a detailed observation of each
scenario. For the present study, 10 photos of different rock slopes taken at several areas of
the site were selected.

2.5. Corner- and Edge-Detection and Watershed Algorithms

The initial approach considered for determining the area represented by the blocks
in each photograph involved the use of corner- and edge-detection algorithms, applied
to the selected images as described in Section 2.3. Complementarily, the capabilities of a
watershed algorithm were explored. The Python-based computer vision library OpenCV [44]
was used for these tasks.

The initially selected corner- and edge-detection algorithms were intended to rec-
ognize the boundaries of the blocks through the best-selected algorithm in order to be
able to subsequently estimate, from this information, their total area (ABP) within each
analyzed photo.

The first method tested was the classic and commonly used Sobel–Feldman opera-
tor, which is an edge-detection operator that uses convolutions with Sobel matrices to
highlight gradient changes in an image [45]. The other method applied was the Canny
edge detector, based on the computational approach developed by Canny [46]. This edge-
detection algorithm uses a multi-stage approach, including Gaussian smoothing, gradient
computation, non-maximum suppression and hysteretic thresholding, to achieve robust
and accurate edge detection in an image. This method improved previous approaches,
introducing the possibility of arbitrary edge detection, with good robustness to noise and,
hence, minimizing errors associated with false edges.

Even though focused on corner detection, other approaches were also tested, like
the classic Harris Corner Detector and the FAST (Features from Accelerated Segment Test)
method [47,48]. The first one (the Harris Corner Detector) is a corner-detection method
that evaluates the local variation in intensity in different directions using a covariance
matrix to identify points of interest or corners in an image. The second one (FAST) is an
image-keypoint-detection method that uses an accelerated segment test to quickly identify
corners and points of interest, being especially computationally efficient.

The Oriented FAST and Rotated BRIEF (ORB), a method for detecting and describing
keypoints in images that combines the efficiency of the FAST detector with the robustness
of the BRIEF descriptor, was alternatively considered. This method was proved to be
rotation-invariant and resistant to noise [49]. The ORB technique was used, in the current
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case, by applying the functions cv2.ORB create() and detectAndCompute() over previously
grayscaled images.

The last method used for this initial approach consists in image segmentation by
means of the watershed transform algorithm, included in the OpenCV library [44,50]. This
watershed algorithm is based on the safe extraction of the background and foreground
and then the use of markers to make the watershed run and detect the exact boundaries
by using the function cv2.watershed(). As in the already mentioned corner- and edge-
detection methods, the images require an initial grayscale transformation and subsequent
binarization to make this method as accurate as possible.

Overall, it has to be stressed that the performance of the aforementioned methods
depends on some features of the analyzed photos. Specifically, the ability of the edge-
and corner-detection methods is a function of appropriate thresholding, scale, noise and
inherent properties of the image, like contrast, color heterogeneity and lighting. Images
with low contrast or with a predominant color may not be suitable, as observed for the set
of images analyzed in this work.

2.6. The Segment Anything Method Algorithm (SAM) and Its Implementation

SAM is a state-of-the-art computer vision model developed by Meta AI [27] for object
segmentation in images. The model is based on a deep neural network architecture that
has been trained on a large dataset of labeled images. The training dataset includes over
11 million images from a variety of sources, such as the COCO, Pascal VOC and Cityscapes
datasets. In addition to the large number of images, SAM has also been trained on a large
number of segmentation masks. The training dataset includes over 1 billion segmentation
masks, which have been carefully annotated by human experts. These masks provide
the model with the ground-truth information needed to learn how to accurately segment
objects in images.

From the three Vision Transformer (ViT) model levels [51] available in SAM (SAM-ViT-
B (Base), SAM-ViT-L (Large) and SAM-ViT-H (Huge)), SAM- ViT-H was selected since it
represents the most complete option and was established as ground truth for comparative
purposes between the models, as presented by Zhang et al. [52].

For the implementation of the SAM algorithm, the size of the images was firstly
reduced from the original size (1536 × 2048 px) to 768 × 1024 px, in order to improve the
image processing time, reducing it to a third of the original one. It was checked that the
size reduction did not affect the obtained results.

Once the selected model had been defined (SAM-ViT-H), we generated the segmen-
tation masks for the selected image using the SamAutomaticMaskGenerator class from the
Segment Anything library for Python. This class generates a grid of point prompts over
the image and then filters low-quality and duplicate masks. The default settings for the
arguments in this class were chosen for SAM with a ViT-H model. In our case, the param-
eter used for calibrating each image was pps (“points per side”). This parameter defines
the number of points to be sampled along one side of the image, and the total number of
points is pps2.

After the segmented masks were obtained, representing the potential rock blocks de-
tected in the picture, a function called show_anns was defined as Algorithm A1 (Appendix A).
This function is a useful tool for visualizing the masks, as well as for calculating their
total area in squared pixels (px2). The function takes as input a dictionary anns containing
information about the masks, such as their segmentation masks, areas, bounding boxes and
point coordinates.

The ABP (%) is calculated by comparing the total area covered by all masked areas
(the sum of pixels within these areas) with the total squared pixel (px2) area of the image
(Equation (1)).

ABP(%) =
total_area

image_width× image_height
(1)
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To generate the visualization, the function first sorts the masks by their areas, from
smallest to largest. Then, it assigns a color to each one according to a defined rainbow
colormap scale from the Matplotlib library in the function map_to_rainbow, previously
defined. As mentioned above, in addition to the visualization, the function also calculates
the total area of the masks, which allows for the estimation of the percentage of blocks
(ABP) in relation to the total image area.

The performance of SAM was evaluated through three metrics, namely, precision, recall
and F1-score. These metrics (defined by Equations (2)–(4)) are based on the comparison
of the segmentations performed by SAM and those considered “ideal” (in the present
case, those corresponding to the masks manually created with the help of Label Studio
software [53] for the analyzed photos). The comparisons relate three parameters: “true
positives” (TPs), that is, positive examples (blocks) that were correctly classified as positive
by SAM; “false positives” (FPs), negative examples (not blocks) that were incorrectly
classified as positive by the model; and, lastly, “false negatives” (FNs), positive examples
that were incorrectly classified as negative by the model.

The metrics were determined with the help of Python’s scikit-learn library [54], specif-
ically, with the functions precision_score(), recall_score() and f 1_score(), from the images
previously transformed to grayscale and, finally, binarized.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− score =
2× Precision× Recall

Precision + Recall
(4)

3. Results

This section provides a concise overview of the main results obtained from the appli-
cation of edge- and corner-detection techniques as well as from the watershed algorithm.
The results obtained from these denoted conventional methods are presented along with the
outcomes recovered from the implementation of the SAM model in terms of the recognition
of rock blocks. The proficiency of SAM in generating histograms for the distribution of
relative block sizes is also addressed.

3.1. Results from Conventional Methods

Neither the results derived from the edge- and corner-detection methods nor those
obtained from the application of the watershed algorithm were valid in terms of edge or
corner recognition that would allow ABP calculations.

Figure 5 highlights the low performance yielded by some of the analyzed methods,
namely, the Harris corner detector (Figure 5a), the ORB method (Figure 5b), the Canny edge
detector (Figure 5c), the watershed algorithm (Figure 5d) and the FAST method (Figure 5e).

In the case of the Harris corner detector (Figure 5a), even though the algorithm could
identify several points (corners) on the contrasted areas between dark blocks and the
matrix, with this information it was not possible to estimate a value of the ABP. For the
ORB method (Figure 5b), only some points of the image were recognized by the algorithm,
and these were also insufficient for ABP calculations. Regarding the Canny edge-detector
operator, it was not able to recognize any rock block but only some contrasted areas due to
shadows, as shown in Figure 5c. A realistic ABP value could not be obtained through the
application of the watershed algorithm either, as can be seen in Figure 5e, since only some
shaded areas were recognized. Finally, the FAST method, although capable of segmenting
the geomaterial, did not allow the determination of a reliable value for the ABP (Figure 5e).
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3.2. Results from SAM

In this section, the set of original photos taken at the study area is presented in
Figures 6–8 together with the overlapped and isolated masks over a black background in
order to show the block recognition ability of SAM.

Figure 6 presents photos corresponding to different outcrops from the Orellán For-
mation. As shown, the algorithm is able to segment a good number of blocks observable
in the images, excluding vegetation and even the voids left by already released blocks
(Figure 6b,c). Nevertheless, the rock hammer used as a scale is always segmented by
the method, something that occurs also with other reference elements, like the panel
shown at the top of Figure 7a from the Las Médulas Formation and the measuring rods in
Figure 7c,d.
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Figure 6. Results from the segmentation analyses of images: (a) IMG 6648, (b) IMG 6662 and (c) IMG
6666 (from left to right: original image, image with masks overlapped and isolated masks).

In Figure 7b–d, some photos corresponding to materials from the Santalla Formation
are shown. These images present a higher contrast than the rest, due to the fact that they
were taken in an underground cellar with particularly low lighting and high moisture
conditions. This environment caused some darkening of several blocks. Despite these
challenging conditions, the algorithm successfully detected a significant number of blocks.
This is demonstrated by the masks, which are clearly displayed on the right-hand side of
Figure 7b–d.
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In the case of Figure 8, three photos from the Orellán and Las Médulas Formations
showing apparently different levels of rock block-to-matrix ratios were selected. Although
the rock hammer was also detected, the increasing number or presence of blocks is reflected
in the results given by the algorithm, both in terms of the masks assigned and, consequently,
through the estimated ABP values.
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Figure 8. Results from the segmentation analyses of images: (a) IMG_6720, (b) IMG_6750 and
(c) IMG_6762 (from left to right: original image, image with masks overlapped and isolated masks).

For each picture in Figures 6–8, a value of the ABP was calculated by means of
Equation (1) and is provided in Table 1. The algorithm also allowed the analysis of size
distributions of the set of detected rock blocks, whose size is expressed in squared pixels
(px2). Following this line, a histogram representative of each photo could be obtained after
the segmentation analyses (see an example in Figure 9 and the rest—Figures A1 and A2—in
the Appendix B).
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Table 1. Results given by the SAM algorithm in terms of ABP for each of the analyzed photos, referred
to the corresponding position in Figures 6–8.

Image Location ABP (%)

IMG_6648 Figure 6a 23.28
IMG_6662 Figure 6b 25.35
IMG_6666 Figure 6c 15.03
IMG_6673 Figure 7a 35.26
IMG_6701 Figure 7b 63.82
IMG_6710 Figure 7c 57.90
IMG_6716 Figure 7d 64.60
IMG_6720 Figure 8a 17.23
IMG_6750 Figure 8b 31.93
IMG_6762 Figure 8c 88.71
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detected in IMG_6648 (Figure 6a).

4. Discussion

In this study, we assessed the effectiveness of various edge- and corner-detection
methods and a watershed algorithm alongside an artificial intelligence-based image seg-
mentation tool, SAM, in estimating the areal block proportion (ABP) from photos taken in
diverse environments (surface and underground settings). Additionally, the study sought
to provide estimates of the relative size distribution of rock blocks at various outcrops. This
information is extremely useful for geopractitioners, both for choosing the most appropriate
tunneling excavation method [13,55] as well as for performing reliable numerical analyses.
In fact, quantitative data on the granulometric distribution can be used to more rigorously
set up the geometrical model of the engineering problem at hand [7,10].

It should be taken into account that, despite the relatively limited number of analyzed
photos, these are representative of different scenarios within the study area, encompassing
both surface and underground scenarios and various lighting and contrast conditions, as
well as diverse rock block contents, sizes, colors and distributions.

Conventional edge- and corner-detection methods have been found to be inappro-
priate for resolving the main objective of this work. These methods require a dedicated
and time-consuming pre-processing task for each image, which often leads to questionable
performance. Such an approach is particularly impractical in varied environments, such
as those found in our photographs, where extreme color homogeneity and poor lighting
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conditions are common. It is worth noting that the image capturing process was carried out
under slightly stringent conditions—the absence of a tripod, the use of a non-professional
camera and no specific lighting control—in an attempt to represent a survey conducted
by a practitioner with minimal experience, rather than in a professional manner, so as to
analyze the performance of SAM in such situations.

Also relevant is the fact that in almost all the images a rock hammer/measuring rod
appears, which was initially placed on the ground to gain a clear idea of the dimensions of
the elements when the initial approach was based on conventional segmentation methods.
These elements were also segmented by the SAM model, so that their areas were calculated.
In any case, they represent, at most, 5% of the total sum, a fact that could become particularly
relevant for those scenarios with low ABP values. Moreover, it is worth noticing that most
of the rock blocks that were not detected were small enough (i.e., they were smaller than
5%
√

A, where A represents the square root of the total image area) not to influence the rock
mass properties at the scales of engineering interest and can be considered, according to
Medley [15], not to be “geotechnically significant”.

From the metrics recovered after the application of Equations (2)–(4) (Table 2) and
at a first glance, it can be observed that the results corresponding to the recall parameter
are systematically larger than those corresponding to precision. This fact means that SAM
tended to erroneously identify elements in the photos as blocks (i.e., selection of the
rock hammer and measuring rod). In terms of the recall parameter, the majority of the
values retrieved from Equation (3) are higher than 0.80, except those representative of
IMG_6662, IMG_6666 and IMG_6720. In these cases, this result may be explained by the
color homogeneity presented by these images. From a general assessment, the F1-score
values are generally higher than 0.60, with the exception of the already mentioned images.

Table 2. Obtained values from the analyzed metrics for each image.

Image Precision Recall F1-Score

IMG_6648 0.46 0.89 0.61
IMG_6662 0.61 0.69 0.65
IMG_6666 0.50 0.64 0.56
IMG_6673 0.66 0.86 0.74
IMG_6701 0.58 0.96 0.72
IMG_6710 0.70 0.88 0.78
IMG_6716 0.59 0.94 0.73
IMG_6720 0.54 0.56 0.55
IMG_6750 0.59 0.86 0.70
IMG_6762 0.82 0.96 0.88

In an attempt to compare the performance of SAM regarding ABP estimation with
that carried out by visual inspection of images by experts, a survey was conducted with
32 people. They were required to indicate, based on visual assessment solely and from
the photographs presented in this study, the percentage of rock blocks (ABP) observed.
The survey results are presented as boxplots in Figure 10, together with the corresponding
average results and the ABP values given by the SAM algorithm.

Figure 10 evidences that all the answers provided are more or less normally distributed,
with a dispersion (i.e., interquartile range) that is rather significant in almost all cases and
generally greater than 20% VBP. A particular variability in the expert answers was obtained
for the photos showing more contrast, like IMG_6662, IMG_6666 and IMG_6750 (Figure 6b,c
and Figure 8b, respectively).

Most of the representative results (especially for seven out of ten) from each set of
responses (averages and medians) are similar to the outcomes determined by the algorithm,
indicating the ability of this tool to produce results comparable to those obtained through a
number of visual expert assessments.
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5. Application of the Approach to Understand the Mining Method at Las Médulas

The mining method used at Las Médulas, as described by “Pliny the Elder”, was named
Ruina Montium [37], and the mentioned author slightly cited the facts of excavating drifts,
cutting the supports and ultimately the collapse or caving of the mountain, so it is still
not clearly understood. Some initial interpretations suggested possible sudden flooding
of drifts and the generation of a “water hammer” effect (hydraulic shock) to produce the
collapse of the mountains [33], but recent studies indicate that the water pressures achieved
when using the available technology in Roman times would not be sufficient to produce
this effect [56].

The presence of vertical and sub-vertical cliffs and mining drifts parallel to them
suggested the possible use of those galleries in combination with controlled or propped
slope undercutting as a feasible approach, according to the Roman practices available at
the time, to generate the Ruina Montium phenomena [56]. This type of mechanism, able
to generate secondary toppling due to the natural undercutting of slopes (associated with
erosion) and ultimately producing sub-vertical cliffs, has also been observed in natural
slopes [57,58].

The ABP estimates obtained through the already described methodology were crucial
for the mechanical characterization of the block-in-matrix materials, a necessary step for
correctly implementing the mechanism of the mining method used by the Romans at Las
Médulas in a 2D FEM model.

5.1. Characterization of the Matrix

Due to the complex nature of these materials, it was impossible to obtain representative
samples of the bimunit (conglomerate) to test. However, in the Las Médulas Formation,
some blocks from bands of finer materials that make up the matrix were collected, as
they fell from cliffs due to erosive processes (Figure 11a). This allowed the preparation of
small specimens that were subjected to various laboratory tests, including X-ray diffraction,
particle-size distribution from sieve analyses, density, uniaxial compressive and tensile
strength tests, as well as point load tests.
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Figure 11. (a) Fallen blocks due to erosive processes of matrix-like material from which small samples
can be cut; (b) uniaxial compressive strength tests on small prismatic matrix samples; (c) direct tensile
strength test on a matrix sample; and (d) aerial view of boulder heaps, from which the maximum
angle of repose was estimated.

These tests indicated that the mineralogical composition of this matrix presents roughly
55% quartz, 35% muscovite, 7% kaolinite, and some iron and titanium oxides. In terms
of soil classification, the matrix corresponds to a silty sand 90% of which is composed
of particles in the range of 0.1 to 2 mm. The average in situ density was 1.82 g/cm2.
The uniaxial compressive (UCSmatrix) and tensile strength (DTSmatrix) of the matrix were
averaged at 1.5 MPa and 0.09 MPa, respectively (Figure 11b,c), from tests on prismatic
samples (the only possible geometry that could be obtained). The cohesion (cmatrix) was
determined as 0.4 MPa from Equation (5) [59], considering a representative friction angle of
the silty sand, ϕmatrix = 34◦ [60]. It is also relevant to mention that when subjected to crumb
tests, 3 cm edge cubic samples of the matrix material totally disintegrated in 10 min.

cmatrix =
UCSmatrix

2(1 + sin ϕmatrix/1− sin ϕmatrix)
0.5 (5)

Based on in situ observations of human-made heaps of boulders, locally named murias
and which resulted from removing and putting them apart to concentrate the gold in the
matrix, the maximum angle of repose (α) of these bulk blocks was observed to reach 48◦

(Figure 11d).

5.2. Characterization of the Bimrock Material

From observations of the area and by resorting to the aforementioned method, it was
possible to estimate representative values of the ABP (%) for the coarser conglomerates at
the Las Médulas Formation at various outcrops. These values are in the range of 60–65%,
similar to the estimates previously obtained by visual observations made by experts.

Kalender et al. [4] define “A” as a parameter representative of the bond or contact
strength between the clasts and the matrix. In the case of the studied materials at the Las
Médulas site, the adhesion can be considered moderate and the clasts were observed to be
sub-rounded but also with angular shapes sometimes. In this way, by following Kalender
et al.’s [4] methodology, an approximate value of parameter A = 110 was considered
(associated with the already estimated angle of repose for the blocks, α = 48◦).

The information required to characterize the mechanical behavior—cohesion (cbimrock)
and friction angle (ϕbimrock)—of the geomaterials from Las Médulas was obtained based on
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Equations (6)–(8) by following the approach proposed by Kalender et al. [4]. For these
calculations, the inputs estimated in Section 5.1 were used. Note that a conceptual, yet
sufficiently representative for the present case, simplification [61] was made, assuming that
ABP ≈ VBP (being VBP = 65%).

ϕbimrock = ϕmatrix

[
1 +

1000[(α/ϕmatrix)− 1]
1000 + 5((100−VBP)/15)

× VBP
VBP + 1

]
(6)

UCSbimrock =

(
A− A(VPB/100)

)
A− 1

UCSmatrix (7)

cbimrock =
UCSbimrock(1− sin ϕbimrock)

2cos ϕbimrock
(8)

Therefore, and according to Kalender et al. [4], the geomechanical parameters of the
materials found at Las Médulas could approximately be estimated as cbimrock = 240 kPa
and ϕbimrock = 47.2◦. The tensile strength of the matrix was estimated at 900 kPa through
uniaxial tensile strength tests, and this value can be assumed to be representative of that of
the rock mass.

The steepest slopes in the zone (Figure 2a), based on detailed laser-scanner surveying,
dip vertically (about 90◦) and are 40 m high. The highest one attains 80 m with an average
slope of 70◦. These slopes are currently stable, and the most prevalent natural instability
mechanism could be circular failure, given their geomechanical nature. Therefore, the
stability can be back-analyzed to compute the domains of cohesion–friction where these
observed slopes should stand [62]. Considering the aforementioned assumptions and
based on the circular failure charts proposed by Hoek and Bray [63], a graph with the
corresponding cohesion–friction stable domains could be plotted (Figure 12), allowing the
reader to appreciate how the estimated parameters are close to the limit of the instability
domain but in the stable area, which ensures that the estimated parameters are consistent
with field observations.
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subvertical cracks; (b) undercutting of the slope (probably with the help of water) with possible 
timbering; and (c) removal of the support and possible collapse of the slope. The red circles indicate 
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and arrows represent the induced shear-stress state, and the black arrows illustrate the movement 
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A simple 2D FEM numerical model of the process described is illustrated in Figure 
14, based on the software RS2 v. 11 [66], which shows the generated cracks and shear 

Figure 12. Estimate of cbimrock and ϕbimrock based on Kalender et al. [4] (red dots), overlapped to
the cohesion vs. friction stability domains [63] (area shaded in orange corresponds to a slope
height = 40 m and a slope angle = 90◦; area shaded in blue corresponds to a slope height = 80 m and
a slope angle = 70◦).

For these strength parameters and consistently with in-place observations, the gen-
eration of the slope collapse (Ruina Montium) will encompass, for a 30 m height slope,
first the excavation of drifts parallel to it at two levels (5 and 20 m above the slope toe)
and 10 m, on average, inwards. This would generate, as computed according to Kirsch’s
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equations [64,65] and as observed in place, vertical tension cracks growing from the drift
centers upwards and downwards. Then, the slope would be undercut with a cut 2 m
high and around 4 m long that should be timbered to ensure its stability. This having
been done, and based on experience and timber behavior, these props would be removed,
producing the collapse of the area. The hypothetical mechanism is illustrated in three steps
in Figure 13.
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Figure 13. Sketches showing a vertical cross section of the hypothetical technique used by the
Romans to put in practice the Ruina Montium technique at Las Médulas: (a) excavation of drifts
inducing subvertical cracks; (b) undercutting of the slope (probably with the help of water) with
possible timbering; and (c) removal of the support and possible collapse of the slope. The red circles
indicate the excavated drifts, the red dashed lines show the vertically induced cracks, the blue
dashed lines and arrows represent the induced shear-stress state, and the black arrows illustrate the
movement of the collapsed materials.

A simple 2D FEM numerical model of the process described is illustrated in Figure 14,
based on the software RS2 v. 11 [66], which shows the generated cracks and shear bands
in terms of plastic shear strain, illustrating the potential separation of the large piece of
conglomerate that would collapse after the indicated process.
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Figure 14. (a) Sketch of the tensile crack occurrence when excavating drifts parallel to cliffs at Las
Médulas; (b) photo showing these cracks in one of these drifts; (c) simple continuous FEM numerical
model of a slope depicting the occurrence of cracks based on maximum plastic shear strength,
marking the block separated from the slope that will tend to collapse.
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The discretized area in the model encompasses an initial rectangle 200 m long and 80 m
high. After excavation of a vertical 30 m high undercut slope, the presented results focus
the center of the model. Dirichlet-type boundary conditions are provided, constraining hor-
izontal displacements at both lateral sides and both vertical and horizontal displacements
at the bottom. The code is run to attain an initial equilibrium before mining, representing
an elastic stress state. Then, the vertical slope is excavated, the drifts are mined, the slope is
undercut in two supported stages and, finally, the support is removed (Figure 14c).

Some kind of control based on experience is supposed to have been used in order
to avoid hurt to the miners, even if the safety standards at the time were probably not
too stringent.

6. Conclusions

The geomechanical behavior of block-in-matrix materials is strictly dependent on their
volumetric block proportion (VBP). The quantity and size distribution of rock blocks can
be estimated via 2D measurements, using stereological techniques, when sufficient data are
available. ABP calculation is mostly performed manually by experts; therefore, it can be
subject to human bias and error.

In this research, we attempted to use, on the one hand, several computer vision
algorithms for the calculation of the ABP parameter. Conventional methods (the Sobel
operator, the Canny edge detector, FAST, ORB and the watershed algorithm) showed slack
performance due to the variety of the pictures analyzed and their dependence on numer-
ous hyperparameters. On the other hand, the Segment Anything Model (SAM) achieved
reliable detection of the different blocks in images from different sources, as analyzed from
the determination of three metrics (precision, recall and F1-score). These results allowed
the correct calculation of the corresponding ABP parameter in each case. This calcula-
tion was implemented as an ad hoc script, which is available in an open repository at
https://github.com/iperezrey/PebDec (accessed on the 25 January 2024).

Additionally, these results were validated through comparison with the criteria of
32 experts who carried out a traditional visual analysis to estimate the ABP of each image.
These advanced image analysis techniques have made it easier to obtain ABP estimates
used to estimate geomechanical parameters needed to model excavation approaches used
by the Romans 2000 years ago.

In conclusion, SAM emerged as the most fitting tool for ABP calculation, not only due
to its general accuracy, but also due to its potential to reduce human bias as well as decrease
the time spent by experts on repetitive tasks. The potential of the approach herein presented
is thought to be especially helpful for applications encompassing complex geotechnical
formations (such as bimunits) with photos of limited quality and diverse features.

In this particular study, the approach was applied for an estimate of conglomerate
strength behavior that was used to research the practice of a mining method used by the
Romans in the archaeo-mining site of Las Médulas in NW Spain. A mechanically sound
hypothesis for Ruina Montium was in turn proposed, which needs confirmation based on
the archaeological record.
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Appendix A

Algorithm A1. Pseudocode corresponding to the function show_anns

Require: anns—masks, dictionary containing the seven elements of the masks (“segmentation”,
“area”, “bbox”, “predicted_iou”, “point_cords”, “stability_score”, “crop_box”)
Ensure: total_area—the sum of all the areas corresponding to each of the masks detected in
the image
1: if len(anns) = 0 then ▷ (if anns is empty)
2: return
3: end if
4: sorted_anns: sort anns by “area” in anns
5: sorted_areas: extract “area” from sorted_anns
6: colors← map_to_rainbow map sorted_areas to rainbow color map from Matplotlib library
7: ax: get current axes
8: total_area = 0 ▷ starts total_area to 0, to do the sum later
9: for i, anns in enumerate(sorted_anns) do
10: mask_area← ann[′area′] and total_area + = mask_area ▷ (sum each mask area to the total area)
11: m← ann[′segmentation′]
12: img: create an image with the same shape as m
13: set color values for each mask on the image
14: ax.imshow: stack all the masks in img
15: return total area ▷ the sum of each mask area
16: end for
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