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ABSTRACT
Pump–probe spectroscopy is a gold standard technique to investigate ultrafast electronic dynamics of material systems. Pulsed laser sources
employed to pump and probe samples feature typically high peak power, which may give rise to coherent artifacts under a wide range of
experimental conditions. Among those, the Cross-Phase Modulation (XPM) artifact has gathered particular attention as it produces partic-
ularly high signal distortions, in some cases hiding a relevant portion of the dynamics of interest. Here, we present a novel approach for the
removal of XPM coherent artifacts in ultrafast pump–probe spectroscopy, based on deep learning. We developed XPMnet, a convolutional
neural network able to reconstruct electronic relaxation dynamics otherwise embedded in artifact distortions, thus enabling the retrieval
of fundamental information to characterize the material system under investigation. We validated XPMnet on Indium Tin Oxide (ITO), a
heavily doped semiconductor displaying a plasmon resonance in the near-infrared, which is a key material for the development of infrared
plasmonic devices. Pump–probe measurements of ITO show strong XPM artifacts that overwhelm the electronic cooling dynamics of interest
due to the low optical density of the material at near-infrared photon energies. XPMnet retrieved ITO electronic dynamics in excellent agree-
ment with expected outcomes in terms of material-specific time constants. This artificial intelligence method constitutes a powerful solution
for XPM artifact removal, providing high accuracy and short execution time. We believe that this model could be integrated in real time in
pump–probe setups to increase the amount of information one can derive from ultrafast spectroscopy measurements.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0057404

I. INTRODUCTION

Ultrafast pump–probe spectroscopy has proven to be a power-
ful technique to study out-of-equilibrium phenomena, being appli-
cable over a broad range of photon energies from THz to x rays.1
In pump–probe, a medium is first excited with a short pump pulse
and the photoinduced dynamics is probed by a time-delayed broad-
band probe pulse. The excitation pulses commonly employed are
shorter than or close to 100 fs, which leads to peak intensities higher
than 1 GW/cm2. Such a condition may promote the generation of
several Coherent Artifacts (CAs) of considerable intensity that can
completely or partially distort the first hundreds of femtoseconds of
relaxation dynamics, causing loss of information about early elec-
tronic processes under investigation. Different CAs can be recog-
nized in ultrafast pump–probe measurements: Two-Photon Absorp-
tion (TPA), Cross-Phase Modulation (XPM), Stimulated Raman

Scattering (SRS),2,3 and Pump Perturbed Free Induction Decay
(PPFID).4,5

Here, we focus on XPM since it induces stronger distortions
in relaxation dynamics compared to other artifacts and it is present
across the whole probe spectrum. XPM was first reported in 1986
by Alfano et al.:6 it originates from the redistribution of the spectral
components of the probe pulse induced by the Kerr effect, namely, a
change in the medium refractive index n caused by an intense pump
pulse with intensity Ipu(t), according to n(t) = n0 + n2 ⋅ Ipu(t).
Such a rapid refractive index change modulates the phase shift expe-
rienced by the probe pulse and causes time-dependent shifts of its
spectrum, which give rise to positive/negative differential transmis-
sion (ΔT/T) signals at specific probe wavelengths. XPM-related dis-
tortions are unavoidable when employing glass substrates and when
samples under investigation feature a low optical density in the range
of the pump pulse.
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There is an urgent need for the development of XPM removal
methods in order to retrieve the maximum amount of informa-
tion from pump–probe spectroscopy. Simply measuring the XPM
on the bare glass substrate and then subtracting it from pump–probe
signals at every wavelength cannot be a valid solution to get rid of
signal distortions. In fact, the XPM signal is affected by the pump
pulse absorption and by the redistribution of the probe spectral com-
ponents so that its shape would be different with or without the
sample.

Recent years saw a huge rise of Artificial Intelligence (AI) appli-
cations in technology and engineering. In photonics and optics,
AI-driven approaches have been mainly employed for automated
image processing,7–9 control of adaptive optics for aberration cor-
rection,10 wavefront shaping for computational imaging,11 and self-
optimization of nonlinear optical systems.12–14 The leading principle
of AI is the idea that machines can be programmed to independently
learn how to efficiently execute very complex tasks.

Among the branches of AI, Machine Learning (ML)15 relies on
the fact that experience and large amounts of data can be exploited
by machines to learn how to model and solve problems, acting as
black-box architectures without the need for any explicitly coded
instruction. Learning processes are generally grouped into super-
vised, unsupervised, and reinforcement learning.16 Supervised algo-
rithms train on a labeled dataset featuring pairs of inputs and ideal
outputs, aiming at finding a parametric transfer function from the
input to the ground truth in the context of a classification or regres-
sion problem.17 Unsupervised algorithms train on an untagged
dataset, with the purpose of automatically unveiling hidden patterns
and exploiting them to group data into meaningful clusters. On the
other hand, reinforcement learning takes place through the interac-
tion of the machine with the environment: according to the quality
of the actions an agent takes, it will gain a related positive or negative
reward, thus shaping its knowledge from experience to take fruitful
actions on its own.

Here, we introduce a novel AI-driven method to remove XPM
artifacts from ultrafast pump–probe dynamics. We propose XPM-
net, a Neural Network (NN) model able to operate directly on raw
pump–probe data and efficiently retrieve the embedded electronic
dynamics of physical interest in material systems. We designed
and developed XPMnet as a supervised ML model. We structured
the model architecture as a Convolutional Neural Network (CNN)
trained on a labeled dataset, which consisted of simulated pairs of
XPM-affected pump–probe instances and related electronic time
dynamics, the latter carrying the physically relevant information
about the specimen under investigation. CNNs fall into a peculiar
branch of ML, namely, Deep Learning (DL),18 since their structure
composed of sequential layers gives rise to a fairly deep model archi-
tecture. According to the universal approximation theorem proved
by Cybenko in 1989,19 NNs are able to represent any kind of transfer
function within an arbitrary tolerance. Among several generaliza-
tions of the theorem, Yarotsky demonstrated its validity also for the
specific case of CNNs,20 providing a solid mathematical proof of the
approximation capabilities of these models.

We demonstrated the capability of XPMnet to learn in a super-
vised fashion how to extract electronic relaxation dynamics hidden
by XPM artifacts with high accuracy and short execution time. We
validated the model on Indium Tin Oxide (ITO), a key material
for infrared plasmonics: the electronic relaxation dynamics retrieved

via XPMnet showed excellent agreement with expected outcomes in
terms of material-specific time constants of the cooling process.

II. METHODS
A. Pump–probe setup

The pump–probe experiments were performed using a regener-
atively amplified Ti:sapphire laser generating 100-fs pulses at 800 nm
with >1 mJ energy and 1 kHz repetition rate. The pump beam res-
onant with the plasmonic absorption of ITO was generated by an
Optical Parametric Amplifier (OPA) pumped by the second har-
monic of the Ti:sapphire laser with output tuned at 1500 nm and
a pulse duration of ∼90 fs. To generate the broadband probe pulse, a
small portion of the fundamental beam was focused into a 2 mm sap-
phire crystal, producing a white-light continuum that spanned from
420 to 730 nm. The pump–probe delay was varied by a computer-
controlled mechanical delay line, and the differential transmission
(ΔT/T) spectrum of the probe was measured by a synchronized
spectrometer detecting single-shot probe spectra.21

B. Sample preparation
ITO specimens were employed for the experimental valida-

tion of the DL architecture for pump–probe dynamics retrieval. The
samples were fabricated by means of spin-coating starting from a
commercial water dispersion of ITO nanocrystals (GetNano Mate-
rials, 99.99%, 20–30 nm, In2O3:SnO2, 90:10 wt. %). Fabrication of
the samples begins with the dilution of the water nanodispersion
from 30% to 10%, which is then placed into an ultrasonic bath for
30 min to favor mixing and separation of aggregates. Glass slides
are cut into small pieces and washed following a standard procedure
with different solvents (i.e., water, acetone, and isopropyl alcohol).
Before the deposition of the films, the substrates undergo an oxygen
plasma treatment to reduce the contact angle of the dispersion and
increase adhesion of the films. A small droplet of dispersion is placed
onto the substrate, which is put into rotation at high speed. This will
lead to the ejection of the solvent in excess, thinning of the layer of
material, and evaporation of the residual solvent. To achieve com-
plete evaporation of the solvent and obtain a more compact film,
the samples undergo thermal annealing. The annealing treatment
also allows us to increase the thickness of the layers with successive
depositions of the same dispersion, preventing washing away of the
already deposited film.

C. ITO ultrafast electronic dynamics
ITO is a plasmonic material with a plasmon resonance in the

near-infrared (NIR) that can be tuned varying the doping level.
Recently, hot electron extraction from ITO to different semiconduc-
tors has been demonstrated by Sakamoto et al.,22 thus justifying the
increasing attention in NIR plasmonic properties of this material.
Femtosecond pump–probe spectroscopy allows the study of carrier
dynamics in ITO, but ΔT/T signals are typically affected by XPM
artifacts distorting electronic dynamics due to the low optical density
of the material at NIR photon energies.

ITO features a single exponential relaxation dynamics, as dis-
cussed in detail by Hartland23 After the excitation of the plas-
mon resonance with an infrared (1500 nm) pulse, four main pro-
cesses take place. The first two, dephasing of the plasmon and
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electron–electron scattering, are much faster than the typical time
resolution (<100 fs). Electron–electron scattering generates a hot
Fermi–Dirac carrier distribution, which eventually cools through
electron–phonon scattering. This process is the one we are inter-
ested in measuring, and it is modeled with a mono-exponential
decay dynamics. ITO has a non-parabolic conduction band,24 which
means that photoexcited electrons have a different effective mass.
The change in the effective mass varies the plasma frequency so that
the plasmon excitation causes an ultrafast change of the refractive
index, as reported by different groups.25,26 The fourth step is the
phonon–phonon scattering to cool down the lattice.

As shown in Fig. 1(a), pump–probe measurements on a bare
1-mm-thick glass slide display XPM distortions over the entire
spectral range considered. Similarly, pump–probe measurements on
a 100 nm thick ITO film made with two layers of nanocrystals
deposited on the glass substrate show a clear XPM pattern covering a
relevant portion of the underlying electronic exponential relaxation
dynamics [Fig. 1(b)]. To better appreciate the artifact-related signal
distortion, we display in Fig. 1(c) a single-wavelength of the ΔT/T
maps: the whole dynamics, completed in less than 1 ps, is clearly
affected by the artifact in the first 250 fs. We attribute the observed
negative ΔT/T signal to an ultrafast increase in reflectivity due to the
refractive index increase induced by hot electrons. This signal lasts
as long as the electrons cool down by scattering with phonons.

D. Generation of the training dataset
One of the major issues in employing DL for the solution of

experimental physics problems is the impossibility to rely only on
measured data to train deep NNs due to the need of a very large
amount of instances to compose the training dataset. Because of
this reason, Data Augmentation (DA) became popular in DL mod-
els to enlarge the number of available instances.27 The term DA
refers to all the case-specific operations needed to generate an aug-
mented but still physically meaningful dataset. In the case of the
artifact-affected pump–probe dynamics here investigated, the train-
ing dataset includes noisy input instances featuring the XPM artifact
embedding the exponential electronic relaxation, along with related

ideal output instances presenting the sole physically relevant elec-
tronic dynamics. The generation of the input counterparts of the
dataset included the following steps: (i) the fit of experimentally
measured XPM artifacts on glass substrates and their DA based on
fit parameters; (ii) the simulation of pump–probe electronic tempo-
ral dynamics via the convolution between exponential decay dyna-
mics and the Instrumental Response Function (IRF) related to the
temporal duration of the pump pulse;28 and (iii) the sum of XPM
and pump–probe dynamics with the addition of white noise. The
sole electronic dynamics simulated were employed as ground truth
to pair with such inputs. The total amount of input–output pairs
generated was 105. The dataset was split as follows: 60% of the
input–output pairs were employed for the CNN training, 20% for
testing, and the remaining 20% were used to evaluate the model per-
formance metrics on unseen data [i.e., mean squared error (MSE)
and mean absolute percentage error (MAPE), R2]. All the instances
featured 200 temporal sampling points with a 5 fs sampling period
so as to have a time window of 1 ps for each instance.

1. Simulation of XPM artifacts
A complete theoretical treatment of the XPM artifact has been

proposed by Kovalenko et al.29 Starting from the third-order polar-
ization induced by the pump and probe electric fields, they described
the probe as a chirped pulse with which the pump pulse interacts at a
given time within a narrow-band spectral region. Assuming a Gaus-
sian temporal profile for both pump and probe pulses, they derived
a Gaussian model to fit the XPM. Different models were then pro-
posed to best represent the artifact shape, making use of the sum of
a Gaussian and its derivatives.2 Among them, we employ the model
developed by Baudisch,30 which achieves a good XPM fit by using
the sole first-order derivative of the Gaussian,

XPM(t, λ) = cos(B(λ)(t − t0(λ))2 +Φ(λ))

⋅ {A0(λ) exp[−4 ln 2(t − t0(λ))2

τ1(λ)2 ] − A1(λ)
8 ln 2
τ1(λ)2

⋅ (t − t0(λ)) exp[−4 ln 2(t − t0(λ))2

τ1(λ)2 ]}. (1)

FIG. 1. (a) XPM time evolution measured on a 1-mm-thick soda-lime glass slide. (b) Electronic dynamics of ITO on soda-lime glass superimposed with the XPM artifact.
The colorbar refers to ΔT/T. (c) Single-wavelength time evolution showing the presence of the XPM CA distorting the early ITO electronic relaxation dynamics compared to
the sole XPM signal on the glass substrate.
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The parameters space of Eq. (1) includes the amplitudes A0(λ)
and A1(λ), the full width half maximum (FWHM) duration of the
Gaussian τ1(λ) (fs), and B(λ) (rad/s2) and Φ(λ) (rad) to repro-
duce artifact fringes generated when the pump pulses are shorter
than 25 fs. Finally, t0(λ) (fs) is a wavelength-dependent delay due
to the chirp of the probe pulse that causes a temporal shift of the
overlap between pump and probe pulses. All the parameters exhibit
wavelength dependence but are not related to physical quantities:
they only provide a fitting function that does not always guaran-
tee a realistic simulation of XPM artifacts by any arbitrary para-
meter variation. Hence, in order to obtain a realistic dataset, DA was
performed starting from pump–probe measurements on standard
1-mm-thick soda-lime glass substrates. Different pump intensities
were employed to enlarge the amount of experimental measure-
ments at disposal. A total amount of 695 measured artifacts were fit
via Particle Swarm Optimization (PSO).31 DA was applied on sets of
fit parameters: it consisted of a ±5% random shift, along with the
variation of t0(λ) from 150 to 700 fs (corresponding to the typi-
cal time zero shifting range observed experimentally employing a
chirped probe pulse), thus allowing the simulation of 105 realistic
and experimentally derived XPM instances.

2. Simulation of electronic relaxation dynamics
As discussed above, the only two processes we can detect in

ITO with our time resolution are electron–phonon scattering and
phonon–phonon scattering. The electron–phonon scattering in ITO
is fast (<1 ps), and it can be modeled as a mono-exponential decay.
The phonon–phonon scattering process is much slower (>10 ps) so
that a constant offset is added to the exponential electron–phonon
relaxation to take it into account. Hence, ITO mono-exponential
electronic dynamics were modeled as follows:

y(t, λ) = [A2(λ) exp[−(t − t1(λ))
τ2(λ)

] + C] ⋅H(t1(λ))⊛ IRF. (2)

In Eq. (2), A2(λ) is the signal amplitude, τ2(λ) (fs) is the decay
time constant, C accounts for the remaining signal after relaxation,
H(t1(λ)) is the Heaviside function centered in t1(λ) (fs), and the
wavelength-dependent time zero between pump and probe pulses.
The exponential function is convolved (i.e., ⊛) with the IRF, given
by a Gaussian-shaped pulse with known FWHM. To generate the
simulated dataset, all the parameters were randomly varied within
typical experimental ranges, as reported in Table I.

Time zeros t0(λ) and t1(λ)were chosen to be temporally super-
imposed with a tolerance of ±5% to account for a temporal offset

TABLE I. Parameters values for y(t, λ). Ranges were chosen to accommodate a
variety of typical experimental conditions.

Parameter Range

A2(λ) −1.3 ⋅ 10−2 to − 1.7 ⋅ 10−3ΔT/T
τ2(λ) 150–300 fs

C 0 to −10−5ΔT/T
t1(λ) 150–700 fs
Noise 3 ⋅ 10−5–10−4ΔT/T
IRF 70–100 fs FWHM

between the XPM and the electronic relaxation dynamics. In fact,
XPM is generated in the glass substrate while the signal is gener-
ated in the sample under investigation: the distance between the two
explains this time difference. Training pairs were normalized in the
range [0,1], which increases the model accuracy and accelerates con-
vergence. A baseline shifting of a maximum of 30% was applied
in order to train the network to keep up with a modest baseline
variation in the normalized inputs.

E. CNN model architecture
The model architecture was designed and developed as a CNN

operating on single-wavelength pump–probe instances: convolu-
tional layers process the input as feature extractors, whereas fully
connected layers receive convolutional feature maps to compute
the final prediction (Fig. 2). The convolutional stage of the CNN
includes the following layers: 128 (32,1)-shaped kernels, 96 (24,1)-
shaped kernels, 64 (8,1)-shaped kernels, and eventually three lay-
ers of 8 (3,1)-shaped kernels each. The following fully connected
stage features a 64-neurons layer, two 36-neurons layers, and a final
200-neurons output layer. The output neurons store numerical val-
ues representing the retrieved electronic relaxation dynamics. In the
proposed model, the total amount of trainable parameters (θ) (i.e.,
weights and biases of kernels and neurons) was 1.3 ⋅ 106. The non-
linear activation function (σ) for all layers was chosen as a Rectified
Linear Unit (ReLU),

σ(z) = max(0, z), (3)

where z is the linear output of a single kernel in convolutional layers
or of a single neuron in fully connected layers. Through the train-
ing process, the CNN algorithm predicts electronic dynamics ypred
by applying the current parametric transfer function to the input,
and, thanks to the ideal output ytrue provided in the training dataset,
it computes the distance between prediction and the ground truth.
Such a distance is quantified by means of a loss function L(θ), which
was here chosen to be the MAPE,

L(θ) = ⟨100
∣ ytrue − ypred ∣

ytrue
⟩. (4)

The model cost function J(θ) is then obtained by averaging the
loss L(θ) of single training pairs over the Ntrain pairs of a mini-
batch [Eq. (5)].32 Mini-batches comprised 128 input–output pairs,
a batch size that accelerated and regularized convergence along with
batch-normalization at the CNN input,

J(θ) = 1
Ntrain

Ntrain

∑
n=0

Ln(θ). (5)

The goal of the algorithm is to find a set of parameters that min-
imizes J(θ), thus maximizing the model performance accuracy by
leading to a minimum average distance between ideal and predicted
outputs. According to the mini-batch gradient descent method, the
opposite direction of the gradient of J(θ) is used to update the cur-
rent parameters set θt , taking steps proportional to the learning
rate α,

θt+1 = θt − α∇J(θt). (6)
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FIG. 2. XPMnet model architecture. The noisy XPM-distorted pump–probe dynamics is fed into the network as a column vector; the output layer presents the retrieved
electronic relaxation dynamics. The feed-forward architecture consists in pyramid-shaped convolutional layers for feature extraction, followed by fully connected layers to
predict the output from convolutional feature maps.

The XPMnet learning rate was tuned according to the adaptive
moment estimation optimization technique (ADAM).33 In order to
avoid overfitting on training data and increase the CNN general-
ization capability, a 35% drop-out34 was applied ahead of the out-
put layer and L2 weight regularization of fully connected layers35

was introduced with 10−1 as the regularization factor. The model
was trained for 100 epochs. The entire algorithm was developed in
Python employing the TensorFlow36 platform and Keras37 library.
For further details about the algorithm implementation, the reader
can find the code available online.38

III. RESULTS
A. XPMnet performance

Upon training, the XPMnet featured excellent figures of merit:
a MSE of 5 ⋅ 10−5, a MAPE of 1%, and an R2 of 0.99 on unseen
data. The training process took 8 s per epoch, whereas the time
required for XPM artifact removal, averaged over 105 instances, was
3 ⋅ 10−2 s. A Tesla K80 graphics processing unit (GPU) was
employed.

The results of applying the XPMnet algorithm on simulated and
experimental instances of noisy XPM-affected pump–probe dyna-
mics are reported in Figs. 3(a)–3(c) for simulated and Figs. 3(d)–3(f)
for experimental instances. As expected, the XPM artifact highly dis-
torts and covers the relaxation dynamics in pump–probe measure-
ments. The CNN model is able to efficiently and accurately retrieve
the CA and subtract it in order to extract the relevant dynamics:
the difference between the simulated ideal output and the network
prediction is negligible (MSE ∼ 10−5), as it can be appreciated in

Figs. 3(a)–3(c). Thanks to the flexibility of the DA process to han-
dle several scenarios, the CNN performs efficiently regardless of
the wavelength of the probe beam. This is crucial when processing
sequential measurements with chirped laser pulses: t0(λ) and t1(λ)
must not affect the network performance. The model reconstructs
exponential relaxation dynamics from which decay time constants
τ can be easily derived by fitting, and it is able to provide a cor-
rect baseline for the output so that the prediction can be perfectly
superimposed over the input.

The results of applying XPMnet on experimental measure-
ments are shown in Figs. 3(d)–3(f). We employed different ITO
samples to test the model: a single-layer film of ITO nanocrystals
[Fig. 3(d)], a four-layer film of ITO nanocrystals [Fig. 3(e)], and
bulk sputtered ITO [Fig. 3(f)]. The cooling dynamics were recon-
structed via XPMnet by isolating them from artifact and noise-
affected experimental data. The overlap of predicted dynamics with
input instances is perfectly managed by the algorithm in terms of
baseline and t0(λ) and t1(λ) variations. When employing thicker
ITO samples, a higher absorption causes a decrease of the artifact
amplitude with respect to the electron dynamics. When varying the
ITO thickness from one layer ∼ 40 nm [Fig. 3(d)] to four layers
∼160 nm [Fig. 3(e)], the CNN predicts relaxation dynamics with
the same material-specific τ of 190 fs, despite the signals show dif-
ferent amplitudes along with different starting times. Interestingly,
the time constant retrieved by the XPMnet for bulk sputtered ITO
[∼200 nm, Fig. 3(f)] is slightly shorter (τ = 150 fs), in agreement
with the fact that the size and shape of ITO nanoparticles affect
the electronic cooling and modify the decay time.39 The values of τ
obtained by fitting the XPMnet predictions with mono-exponential
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FIG. 3. (a)–(c) Results of applying XPMnet on unseen simulated data. Simulations were performed in the parameter ranges reported in Table I. XPMnet approximates the
ground truth of simulated dynamics not employed in the training process with high accuracy, as it can be clearly seen from the superposition of green (ground truth) and
orange (prediction) curves. (d)–(f) Real experimental data of ITO samples on the soda-lime substrate at 500 nm (d) and 600 nm [(e) and (f)] probe wavelength. XPMnet
applied on real experimental data retrieves the embedded relaxation dynamics of electrons, unveiling characteristic time constants [(d) and (e) τ = 190 fs, (f) τ = 150 fs] in
agreement with the physics of the material system under investigation.

curves are thus in very good agreement with expected outcomes.
Figure 3(d) displays an XPM that is split due to group velocity mis-
match between pump and probe: when they travel with a significant
velocity difference due to the dispersion of the material, their rela-
tive position changes along the medium. Such a condition causes a
broadening of the interaction time interval of the pulses in the glass
substrate, thus inducing the splitting of the artifact. In our training
dataset, such an artifact was not present, but nonetheless our model
was able to manage this complex input shape and retrieve the correct
decay dynamics.

The AI-driven model here presented is able to deal with a vari-
ety of experimental conditions in terms of absorption coefficients,
artifact and pump–probe dynamics amplitude ratio, probe pulse
chirp causing t0(λ) and t1(λ) variations, as well as baseline shift-
ing due to a case-specific input normalization. In addition, it is able
to provide a quick and highly accurate prediction, thus increasing
in real time the amount of information available from pump–probe
measurements.

B. Convolutional layers: Un-boxing and interpretation
It can be argued that CNN models, despite being extremely

powerful for the solution of complex non-linear physical problems,

act in a black-box manner: the user’s knowledge about how exactly
CNNs process the input to achieve the final result is very limited. It
is well known from the literature that higher complexity features can
be extracted by deeper convolutional layers: progressively more elab-
orated patterns are pointed out as the input traverses sequentially
deeper kernels.40 Similarly, feature maps generated by deep convo-
lutional layers are very unintuitive and can hardly be interpreted. In
the present work, we investigated how kernels in convolutional lay-
ers process the input and unveil its most relevant patterns and their
location. For this purpose, once the model is trained, its architec-
ture is cut so that the feature maps of selected convolutional layers
are given as output. Such un-boxed feature maps are thus ranked
by their activation level, considering more active the ones featuring
higher absolute values.

Figure 4 displays the most active feature maps of the first and
second convolutional layers. The XPMnet feature extraction logic
in the first convolutional layer can be associated both with the arti-
fact and the relaxation dynamics. The maps highlight with spatial
correspondence the regions of the input featuring fairly positive
[Fig. 4(b)] or negative [Fig. 4(c)] values of the second derivative of
the signal time evolution. On the other hand, the map in Fig. 4(d)
shows active regions in correspondence with the spatial location
of the electronic dynamics, interestingly unveiling the rising and
decaying shapes in this early convolutional stage. In the second
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FIG. 4. Convolutional layers un-boxing. (a) and (e) XPMnet input and output signals considered for the extraction of feature maps. Kernel elements of the first (a) and second
(e) convolutional layers are indicated to ease their relation with delay times. Early convolutional layers {i.e., first layer [(b)–(d)] and second layer [(f)–(h)]} were investigated
in terms of feature extraction logic. (b) and (c) First layer maps pointing out regions of the ΔT/T signal with a fairly positive and negative second derivative, respectively. (d)
First layer map showing the rising and decay shapes of the electronic dynamics. (f) and (g) Second layer maps pointing out the region with lower ΔT/T signal. (h) Second
layer map pointing out the regions with higher ΔT/T signal.

convolutional layer, most active kernels act as intensity filters: fea-
ture maps point out with spatial correspondence the regions of the
input instance featuring relatively low [Figs. 4(f) and 4(g)] or high
[Fig. 4(h)] intensity values.

The interpretation of the filtering principles employed by ker-
nels upon training is not meant to be rigorous. Nevertheless, such an
approach can be used to gain some understanding of the ratio under-
lying the black-box architecture of DL models. It can be exploited
to explicitly visualize, test, and assess the model feature extraction
capability.

IV. CONCLUSION
We proposed a novel AI-driven method—XPMnet—for the

removal of XPM CAs in ultrafast pump–probe spectroscopy sig-
nals, providing a powerful tool to reveal electronic relaxation

dynamics otherwise highly distorted in a wide variety of com-
mon experimental conditions. Indeed, ordinary glass substrates
for ultrafast spectroscopy experiments, as well as samples with
low optical density in the spectral range of the pump, typically
show a relevant XPM-related distortion in the pump–probe dynam-
ics measured. XPMnet is able to process noisy artifact-affected
pump–probe data and retrieve embedded exponential electronic
dynamics of physical interest for the characterization of the material
system.

The DL model here presented performs with high accu-
racy (R2 = 0.99, MSE = 5 ⋅ 10−5) in a very short execution time
(3 ⋅ 10−2 s): it could be easily integrated into pump–probe spec-
troscopy setups to process data in real time for artifact removal.
The method can be adapted with ease to a variety of experimen-
tal conditions by tuning the time resolution of the data, the XPM
fit, and the electronic dynamics simulations. In particular, future
research could investigate the handling of non-exponential and/or
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multi-exponential electronic dynamics to generalize the applicabil-
ity of the model on a broad diversity of material systems. We believe
that XPMnet could serve to significantly boost the power of ultrafast
pump–probe spectroscopy by increasing the amount and quality of
information one can derive from the measured signals.
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