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A comparative analysis of link 
removal strategies in real complex 
weighted networks
M. Bellingeri1,3*, D. Bevacqua2, F. Scotognella3,4, R. Alfieri1 & D. cassi1

In this report we offer the widest comparison of links removal (attack) strategies efficacy in impairing 
the robustness of six real-world complex weighted networks. We test eleven different link removal 
strategies by computing their impact on network robustness by means of using three different 
measures, i.e. the largest connected cluster (LCC), the efficiency (Eff) and the total flow (TF). We find 
that, in most of cases, the removal strategy based on the binary betweenness centrality of the links is 
the most efficient to disrupt the LCC. the link removal strategies based on binary-topological network 
features are less efficient in decreasing the weighted measures of the network robustness (e.g. Eff and 
TF). Removing highest weight links first is the best strategy to decrease the efficiency (Eff) in most of the 
networks. Last, we found that the removal of a very small fraction of links connecting higher strength 
nodes or of highest weight does not affect the LCC but it determines a rapid collapse of the network 
efficiency Eff and the total flow TF. this last outcome raises the importance of both to adopt weighted 
measures of network robustness and to focus the analyses on network response to few link removals.

Understanding how the removal of nodes or links affects the functioning of a network is a major topic in sci-
ence1–6. It permits to rank nodes (or links) according to the consequence of their removal on the system. Also, 
it provides information for increasing the robustness (resilience) of networked systems7,8. In fact, once the most 
important nodes-links are found, one can increase the network robustness by protecting these key components, 
for example by directing resources to preserve important internet routers or implementing policies to secure most 
important bridges (or roads) in transportation networks. For these reasons, many studies analysed the effect of 
removal (attack) strategies on real-world complex networks in different fields of science1,2,9–17.

Yet, recent classic outcomes indicated that many real-world complex networks showed ‘robust yet fragile’ 
nature, i.e. they are robust to the random removal of nodes but very fragile to the attack of the most connected 
node components1,13,18,19. Following these outcomes, a plethora of attack strategies have been proposed to deter-
mine the sequence of nodes removal that maximise the damage in the networks5,6,12,20–22. Most of these analyses 
consist in measuring the decrease in some indicators of the network integrity (functioning) following empirical 
removal of nodes-links4–6,12,15,20–22.

the link removal strategies. The main idea of link removal (also called link attack, link pruning or edge 
attack) strategies can be traced back to the Granovetter “The Strength of Weak Ties”23 paper, that arguably con-
tains the most influential sociological theory of networks. In this classic analysis the social interpersonal relation-
ships were categorized in strong, weak or absent. A strong tie (link) is that one linking someone within a close 
circle of family and friends. Strong ties are essential for real communities but they typically tie together groups 
with a great deal of similarity. Thus, there are more tenuous connections to carry new information and perspec-
tives to their groups. Granovetter central argument is that contacts maintained through weak ties are more likely 
to be bridges to socially distant network people communities, which provide access to novel information and 
resources fundamental for system functioning23. The classic weak-strong ties classification adopted for social 
networks has been translated outside of the social networks theory3. In most real world networks, a gradation of 
interactions exists, usually quantified by the link (ties) weight, which reflects important functioning features such 
as e.g. capacity in transportation routes and communication networks, the number of synapses between neurons, 

1Dipartimento di Fisica, Università di Parma, via G.P. Usberti, 7/a, 43124, Parma, Italy. 2PSH, UR 1115, INRA, 84000, 
Avignon, France. 3Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy. 
4Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, 
Milan, Italy. *email: michele.bellingeri@unipr.it

open

https://doi.org/10.1038/s41598-020-60298-7
mailto:michele.bellingeri@unipr.it


2Scientific RepoRtS |         (2020) 10:3911  | https://doi.org/10.1038/s41598-020-60298-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

the strength of a prey-predator relationship in ecological networks, or memories reinforced in brain networks. 
Further, in many of these real-world systems the difference in the weight of the link can span several orders of 
magnitude, with many links of small weight (weak link) and a small fraction of links of very high magnitude 
(strong links)3.

Following the Granovetter main idea, in recent year link removal analyses conducted over economic complex 
systems showed that weak connections support the overall connectivity of the network significantly more than 
the strong links24. Similar counterintuitive vulnerability of the network connectivity to weak links removal was 
found in social networks of human interactions from mobile phone call record25,26 and it was then reproduced in 
models of complex weighted networks27,28. These analyses outlined the importance of weak links in sustaining the 
functioning of real-world networks29.

With the aim to clarify the role of weak and strong links, Pajevic and Plenz3 classified real-world networks in 
two main categories i.e. integrative and dispersive networks. Integrative networks showed the local link weight 
organization in which strong links preferentially occur between nodes with overlapping neighborhoods (e.g. 
strong links occur between nodes belonging to the same community); on the contrary dispersive networks pre-
sented strong links preferentially joining nodes with non-overlapping neighbors (e.g. strong links occur between 
different communities). The different embedding of the strong links affects network vulnerability, e.g. the clus-
tering coefficient of the integrative networks is highly vulnerable to the removal of strong links and robust to 
weak removal, on the contrary the clustering of dispersive networks rapidly decreases with weak links removal3. 
Recently, Bellingeri et al.30 analyzed the response of real-world weighted complex networks to link removals 
showing how higher level of link weights heterogeneity may enhance the vulnerability of these real-world sys-
tems. Further, they found a sharp decrease of the network efficiency (Eff) under the removal of links with higher 
weight, revising the role of strong links and raising the importance to perform methodologies considering the 
heterogeneity in link weights in the real-world networks30.

In this paper we test the vulnerability of six real-world complex weighted networks with a total of eleven dif-
ferent link removal strategies. The link removal strategies are planned to consider both binary-topological and 
weighted network properties. For example, the betweenness centrality link removal is based on topological prop-
erties of the network, by removing links according to the higher number of shortest routes in the network passing 
along the links. Differently, the strong link removal deleting links according to their associated value (weight) is a 
weighted based strategy. To test the network robustness under link removal we adopted three widely used meas-
ures of the network functioning, the largest connected cluster (LCC), the network efficiency (Eff) and the total 
flow (TF). We chose these measures to describe both the topological (binary) and weighted structure of the net-
work and we can see each measure like a different and not exhaustive interpretation of the network functioning. 
The largest connected component (LCC), representing the maximum number of nodes connected among them, 
is the simplest and widely applied indicator of the network functioning, adopted to evaluate the connectedness 
of Internet routers1, the vulnerability of power grids10 or as a measure of the epidemic spreading in finding the 
best vaccination strategies12,31,32. The network efficiency (Eff) is a widely used measure of the network functioning 
that can be viewed as a quantification of information spreading across the whole network where information 
is concurrently exchanged2,30,33–35. Differently from the LCC, the network efficiency is an indicator considering 
the weighted structure of the network. The total flow (TF) is the sum of link weights and it represents the simple 
measure to quantify the networks functioning considering their weighted structure30. In Fig. 1 we delineate the 
rationale behind each functioning measure by depicting simple example networks subjected to the same link 
removal and the associated functioning measure values.

Methods
the link removal strategies. 

•	 Rand: links are randomly removed. This represents the possibility of links failure (error) in the network3,28,30.
•	 Strong: links are removed in decreasing order of weight, i.e. links with higher weight are removed first3,28,30 

and it represents an attack directed to strong links.
•	 Weak: links are deleted in increasing order of weight, i.e. links with lower weight are removed first3,28,30.
•	 BC: links are removed according to their betweenness centrality (BC), i.e. links with higher betweenness cen-

trality are deleted first. The betweenness centrality is based on the shortest paths (also called geodesic path) 
between a couple of nodes. The shortest path between two nodes is the minimum number of links to travel 
from a node to the other36. The betweenness centrality of a link accounts the number of shortest paths from 
any couple of nodes passing along that link36. This version of betweenness centrality is based on the binary 
shortest path notion, accounting the number of links necessary to travel among nodes only, without any con-
sideration of the weight attached to the links; for this reasons is also called binary betweenness centrality34.

•	 BCw: links are removed according to their weighted betweenness centrality (BCw), i.e. links with higher 
BCw are deleted first. The weighted betweenness centrality is computed using the weighted shortest paths 
that consider the number of links necessary to travel between nodes, but also consider the weight attached to 
the links. In this procedure, we first compute the inverse of the link weights, then we compute the weighted 
shortest paths as the minimum sum of the link weights necessary to travel among nodes34,35. The weighted 
betweenness centrality of a link accounts the number of weighted shortest paths from any couple of nodes 
(also called weighted geodesic) passing along that links36. The higher is the BCw of a link, the higher is the 
number of weighted shortest paths passing along the link.

•	 DP: links are removed according the degree product (DP) of the joined nodes. The degree of the nodes is the 
number of links to the nodes5,34. Usually the high degree nodes are the so-called hubs1,5,34. The DP pruning 
strategy can be viewed as a strategy ranking the links reaching information from the topological connectivity 
of the nodes.

https://doi.org/10.1038/s41598-020-60298-7
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•	 BP: links are deleted according to the betweenness centrality product (BP) of the end nodes. The betweenness 
centrality of a node is the number of shortest paths from any couple of nodes passing from that node34,36. The 
higher is the betweenness centrality of the node, the higher the number of shortest paths passing along the 
node.

•	 BPw: links are removed according the weighted betweenness centrality product (BPw) of the joined nodes. 
The weighted betweenness centrality of a node is the number of weighted shortest paths from any couple of 
nodes passing from that node34,36. The higher the weighted betweenness centrality of the node, the higher the 
number of weighted shortest paths passing along the node. The BPw is the weighted counterpart of the BP 
pruning.

•	 SP: links are deleted according to the strength product of the ending nodes. The strength of a node is the sum 
of the weights of the links to that node30,34. SP can be viewed as the weighted counterpart of DP.

•	 TP: links are deleted according to the transitivity product of the ending nodes. The node transitivity is a 
notion measuring the probability that the adjacent nodes of a node are connected among them. The adja-
cent nodes of a node are also called the ‘neighbors’ of that node. The transitivity of a node is the proportion 
of links between the neighbors of a node divided by the number of links that could possibly exist between 
them. Equally, we can compute the transitivity considering the ‘triangles’ in the network, i.e. a triangle is a 
subgraph of three nodes. The transitivity of a node is computed as the ratio of the closed triangles (complete 
subgraphs of three nodes) connected to the node and all the possible triangles centered on the node. The node 
transitivity is also called ‘local transitivity’ or ‘node clustering coefficient’34,37. See Supplemental material S1 
for a detailed description. In network theory, the node transitivity is a measure of the magnitude to which 
nodes in a network tend to cluster together. The node transitivity defined here is a topological metric of nodes 
clustering not including the link weights.

•	 TPw: links are deleted according to the weighted transitivity product of the ending nodes. We adopted the 
weighted version of the topological node transitivity proposed by Barrat et al.37 This is also called weighted 
clustering coefficient of the node and it is a measure of the local cohesiveness that takes into account the 
importance of the clustered structure on the basis of the amount of interaction intensity found on the local 
triangles. Indeed, the weighted node transitivity counts for each triangle formed in the neighborhood of the 
node i, the weight of the two participating links of the node i. Such a measure, evaluates not only the number 
of closed triangles among the node i neighbors (like in the local binary transitivity above), but also the total 
relative weight of these triangles with respect to the strength of the node. See Supplemental material S1 for a 
detailed description. TPw is thus the weighted version of the transitivity product of the node (TP).

Figure 1. The network functioning measures. Simple examples of model networks under link removal 
depicting the different interpretation of the system functioning furnished by the measures used in this paper. 
The bar plot at the right of each network indicates the value of the functioning measures (normalized on the 
initial network functioning value). The links width indicates the link weights. Top row: topological (binary) 
sparse network; half row: weighted sparse network; bottom row: fully connected weighted network. The 
LCC quickly collapses in the sparse topological (binary) network with two link removals; Eff follows the LCC 
decrease whereas the TF holds almost unaltered (Fig. 1 top row). Introducing heterogeneity in link weights over 
the same sparse network, now the Eff does not follow the LCC decrease acting more similar to the TF (Fig. 1 half 
row). In the last row we depict a fully connected weighted network under higher weight link removals (strong 
links) the LCC holds constant under strong links pruning where instead Eff and TF quickly decrease (Fig. 1 
bottom row).
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In the case of ties, e.g. links with equal ranking, we randomly sort their sequence. We perform 103 simulations 
for each link attack strategy.

We remark that the link removal strategies we used were conceived for non-directed networks, that is net-
works with symmetric adjacency-weight matrices. Nonetheless, all the strategies can be easily adapted for 
directed networks, except the Rand, Weak and Strong link removals. For example, the DP strategy that removes 
link according to the degree product of the ending nodes can be applied to directed network with two strategies, 
one ranking link according to the nodes in-degree product and the second according to the nodes out-degree 
product. Analogously, the SP strategy that removes link according to the strength product of the ending nodes 
can be translated to directed networks using two strategies, one ranking links according to the nodes in-strength 
product and the second according to the nodes out-strength product. Further, all the strategies based on the 
betweeness centrality can be easily adapted to their directed versions; in this case the shortest paths passing 
along nodes-links are directed and the travel between nodes considers the directionality of the links. Last, we can 
perform the directed counterparts of the nodes transitivity-based strategies adopted here by using the ‘directed 
nodes transitivity measure’, also known as clustering coefficient in directed networks34. Differently, Weak and 
Strong strategies that rank the links in increasing and decreasing order of weight have not a ‘directed counterpart’, 
since the links cannot be classified as ingoing or outgoing a node (e.g. a link outgoing a node is clearly ingoing 
to another). Last, the directed counterpart of the Rand strategy is meaningless, since the link order is a simple 
random sorting.

the real-world complex networks data set. We test the efficiency of the link removal strategies using 
six well know real-world complex weighted networks.

 (i) US Airports flights transportation network (Air): This is a weighted transportation network obtained by 
considering the 500 US airports38. Nodes represent US airports and links represent air travel connections 
among them. The network reports the link weight expressed in terms of the number of available seats on a 
given connection on a yearly basis.

 (ii) The neural network of the nematode C. Elegans (Eleg): This biological network is a weighted representation 
of the neural network of C. Elegans39. Nodes are neurons and links are neural connections among them. 
The link weight is the number of connections between couples of neurons.

 (iii) Scientific collaboration network (Net): This is a social network representing the co-authorship in science 
publications40. Nodes are scholars and links depict the co-authorship relationship among them. The link 
weight indicates the number of co-authored papers by a couple of authors.

 (iv) Cargo ships transportation (Cargo): The international transportation network of global cargo ship move-
ments consists of shipping journeys between pairs of major commercial ports in the world in 200741. The 
link weight represents the number of shipping journeys between couples of nodes-ports.

 (v) The Escherichia Coli metabolic network (Coli): this biological network illustrates the common chemical 
reactions between metabolites in the E. Coli bacteria. Nodes are metabolites and links indicate the presence 
of common reactions. Link weights in the metabolic network of the bacteria E. Coli consist of the number 
of different metabolic reactions, in which two metabolites participate42.

 (vi) The UK faculty social network (UK): This social network represents the friendship among academic staff in 
a UK faculty. The personal friendship network of the UK faculty university consists of 81 nodes (individ-
uals) and 817 weighted friendship connections43. The network structure was constructed with a ques-
tionnaire, where the staff individuals formed a reliable scale and declared the strength of the friendship 
with other individuals in the faculty. The links weights are thus representing the strength of the friendship 
among individuals.

First, we selected this database because it is composed by the real-world weighted networks well known in 
literature and they are used in yet classic analyses. Second, they describe different realms from different fields of 
science with a widely different but solid interpretation of link weight. Last, the networks are of different struc-
tural properties, such as size (e.g. number of nodes, from N = 81 to N = 1589), number of links (from L = 817 to 
L = 4349) and connectivity level (average node degree <k > from 3.45 to 20.2). The real-world networks data set 
description and main structural features are in Table 1.

the network functioning measures. The largest connected cluster (LCC). The largest connected cluster 
(LCC) is a widely used measure of the network functioning1,4–6. The LCC is also known as the giant component 
(or giant cluster) and it is the highest number of connected nodes in the network. The LCC can be written:

( )LCC Smax (1)j=

where Sj is the size (number of nodes) of the j-th cluster.
Although the wide range of application, the LCC owns important shortcomings, for example by neglecting 

the other lower size nodes clusters and more important, neglecting the heterogeneity in the link weights30,35,44. 
The LCC is a simple indicator evaluating the binary-topological connectedness of the network; for this reason 
we adopt it like a measure of the simple topological connectivity of the network functioning not reflecting the 
heterogeneity of the link weights.

The total flow (TF). The total flow represents the actual or the potential flowing in the network30 and it is the 
sum of link weights. Let be the weighted network Gw, it can be represented by a N × N matrix W where the ele-
ment wij > 0 if there is a link of weight w between nodes i and j,and wij = 0 otherwise.

https://doi.org/10.1038/s41598-020-60298-7
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The total flow is:

TF w
(2)i

N

j

N

i j
1 1

,∑ ∑=
= =

For example, in the US Airports the TF measure represents the actual flows among airports (where ‘actual’ 
means the flying passengers in a year); also in the transportation Cargo ship network TF represent the actual 
flow indicating the shipping journeys between ports in a year. Differently, in the C. Elegans real-world complex 
weighted network, TF indicates the total number of connections realized between pairs of neurons. In other 
terms, TF can be viewed as the thermodynamics capacity or a quantity influencing the actual flow between nodes 
pairs in the network but do not uniquely determine it, e.g. the higher is the connection density in the C. Elegans 
network, the higher can be the information delivered between couple of neurons. The TF is the simplest weighted 
indicator of the network functioning, only quantifying the weight value of the removed links, neglecting their 
topological role in the network.

The efficiency (Eff). The concept of efficiency of the network was first introduced by Latora and Marchiori2 with 
the aim to encompass specific shortcomings associated to the shortest path based measures. In fact, the shortest 
path based measures, like the characteristic path length or the average geodesic length2,34, can be divergent when 
the network is not connected. For this reason, these measures based on the paths presents the shortcoming to 
diverge for disconnected networks making them poorly suited to evaluate network functioning under nodes-links 
removal. Differently, the network efficiency (Eff) can properly evaluate the functioning of both connected and 
disconnected networks, and this becomes a highly important property when we have to measure the network 
functioning under nodes-links attack. After this, the network efficiency can properly work with both binary 
and weighted structures, being able to consider the difference in link weights in the evaluation of the weighted 
network functioning. The efficiency of a network is a measure of how efficiently it exchanges information. On a 
global scale, i.e. considering all the nodes-components of the system, the efficiency quantifies the exchange of 
information across the whole network where information is concurrently exchanged. The efficiency is a robust 
and widely used weighted measure of the network functioning adopted in very different fields of science2,30,33–35. 
The average efficiency of the network is defined:

Eff
N N d i j

1
( 1)

1
( , ) (3)i j G

∑=
⋅ − ≠ ∈

where N is the total number of nodes and d(i,j) is the shortest path between node i and node j. In our analyses we 
adopted the weighted version of the efficiency metric with d(i,j) representing the weighted shortest path between 
node i and node j. To calculate the weighted shortest paths, we first applied a standard procedure by computing 
the inverse of the link weights30,34,35. This standard procedure has the aim to consider ‘shorter and wider routes’ 
the links of higher weight and ‘longer and narrow routes’ the links of lower weight. As a consequence, the proce-
dure evaluates as ‘tightly connected’ or ‘less distant’ the couples of nodes joined by the higher link weights. The 
weighted shortest path between two nodes will become the smallest sum of the inverse links weight necessary 
to travel between the nodes (with the links of higher weight representing ‘faster and of high delivery efficiency’ 
routes). This procedure is intended to consider in real-world networks strong links as more important for the 
network functioning with the weight of the link acting as an indicator of transport capacity-efficiency between 

Name US Airports C. Elegans Netscience Cargo ship E. Coli UK faculty

Type Transportation Biological Social Transportation Biological Social

Nodes Airports Neurons Scientists Ports Metabolites Individuals

Links Airport
Routes

Neurons
Connections Co-autorship Port

Routes Common reactions Friendship

Weights Passengers Connections number Common papers Shipping journeys Common reactions Friendship
Strength

N 500 279 1589 834 1100 81

L 2980 2287 2743 4349 3637 817

<k> 11.9 15.3 3.45 10.4 6.6 20.2

kmin, kmax 1,145 0,134 0,34 0,173 1,152 2,62

<w> 1815657 57.6 1.5 897.44 9.01 92.1

wmin, wmax 9416,49316361 0,1700 0, 30 0,24931 1,229 2,379

<Ew> 152320.2 3.76 0.43 97.70 1.36 4.57

<l> 2.99 2.46 5.82 3.34 3.84 2.1

Ref. 37 38 39 40 41 42

Acronym Air Eleg Net Cargo Coli UK

Table 1. Real-world complex networks features. N number of nodes; L number of links; <k> average node 
degree; kmin minimum node degree, kmax maximum node degree; <w> average node strength; wmin: minimum 
node strength, wmax maximum node strength, <Ew > average links weight, l average paths length.
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the connected nodes. For example, in the US Airports the link weights represent the passenger flowing among air-
ports in a year and, in this system, higher link weights indicate routes among pairs of airports with higher trans-
portation capacity in terms of passengers. In the transportation Cargo ship network, the link weight accounts the 
shipping journeys flowing between ports in a year and the it can be viewed as an indicator of the mass transport 
capacity between two ports. Analogously, in the C. Elegans real-world complex weighted network, the link weight 
counts the total number of connections realized between pairs of neurons and it can be viewed as a quantity influ-
encing the information signal flowing between neurons, e.g. the higher the connection density in the C. Elegans 
network, the higher can be the information delivered between couple of neurons. Once the weighted shortest 
paths are computed, the weighted network efficiency is the sum of the inverse of the weighted shortest paths 
among couples of nodes, with shorter paths producing higher functioning efficiency (Eff) in the network. For a 
detailed explanation of the weighted shortest path notion and of the related weighted efficiency measurement see 
Bellingeri et al.30

Ranking the efficacy of the link removal strategies. We consider the best link removal strategy as 
the one able to produce the faster functioning decrease in the network. In other words, the strategy able to select 
most important links in the networks. To evaluate the decrease in the network functioning we follow two ways. 
First, we consider the global functioning decrease along the removal process by computing the area below the 
curve of the measure of network functioning subjected to link removal. This is the analogous to what has been 
done in Schneider et al.45 where the authors used the largest connected component (LCC) parameter to evaluate 
the network functioning damage triggered by an intentional attack directed to the nodes. This procedure has 
the merit to resume the damage in a single number that Schneider et al.45 called robustness of the network (R). 
Faster decrease in the network functioning measure (for example the LCC in Schneider et al.44) returns lower R 
values indicating higher damage caused in the networks. The best attack strategies are those producing lowest R 
and thus the ones selecting most important components in the networks. We applied the robustness R as a global 
measure to evaluate the decrease of the three indicators of the networks functioning Eff, LCC and TF along the 
removal process. Nonetheless, it has been shown that the damage produced by the nodes attack strategies depends 
on the number of nodes removed in the network30,31,46. This means that comparing two strategies, e.g. A and B 
strategies, A can be more harmful than B when removing 10% of the nodes, yet strategy B becomes more efficient 
than A to decrease the network functioning when removing the 40% of the nodes31,46. The R measure is not fully 
able to compare the efficacy of the compared strategies in this case. For this reason, we also evaluate the link 
removal strategy in the first stages of the removal process, computing the decrease in the network functioning 
measures for 5%, 10% and 15% of links removal. To evaluate the removal process for narrow fraction of removals 
is particularly important because partial malfunctioning affecting a small amount links-components are more 
probable than the global destruction of the network represented by removing all the links. Adopting the two ways 
for quantifying the decrease in the network functioning measurements we present a thorough evaluation of how 
the link removal strategies are efficient along the whole removal process. One of the oldest indicator of network 
robustness under nodes-links removal is the percolation threshold qc indicating the removals fraction of nodes 
or links necessary to completely vanish the LCC1. However, the percolation threshold qc is inaccurate to fully 
describe the decrease in the network functioning owing the shortcoming to completely neglect the vulnerability 
of the network along the removal process30,31,46. In Fig. 2 we give an example of link removal and the associated 
robustness measure (R).

Results and Discussion
the network robustness against the link attack strategies. Eff. The link removal strategies based 
on the weight of the links (Strong) and on the betweenness centrality (BCw and BC) are the best to decrease 
Eff. When the robustness is computed along the entire removal process the BCw and BC strategies are the most 
effective in 2 out 6 of cases. Strong strategy is the best in the others 4 out 6 (Fig. 3 and Table 2). Even when the 
robustness is computed at the beginning of the removal process (5%, 10% and 15% of links removal), we generally 
found Strong and BCw more efficient than the other strategies (Fig. 4 and Table 3). The network efficiency (Eff) 
evaluates the information spreading in the system and it is shaped by two main factors, the topological (binary) 
and the weighted structure of the network. The topological structure is of high efficiency when links are distrib-
uted among nodes forming short paths in the networks. Many real-world networks have been found to own an 
efficient topological structure2,46 and many analyses focused the network features increasing the information 
spreading, such as the small-world phenomenon13,34. Differently, the weighted structure of the network can shape 
higher information spreading by presenting higher link weights (e.g. shortening the nodes pairs distance) and by 
delivering these strong links along the topological shortest paths (e.g. shortening the average distance among each 
nodes pairs). The finding that the weighted link removal strategies such as BCw and Strong are the best to decrease 
Eff would indicate that the weighted structure of the networks may play an important role into support the infor-
mation delivery efficiency in real-world systems. The best link removal strategies following BCw and Strong are 
the SP and the BPw. Taken together these findings indicate that, while the aim is to decrease the efficiency (Eff) of 
the real-world complex networks, the best methods to remove link are based on the link weight and on the link 
betweenness centrality.

LCC. In all the six real-world complex networks we analyzed here, the BC strategy is the most efficient to 
vanish the LCC (Fig. 3 and Table 2). This finding confirms, on the side of link removal strategies, recent out-
comes of a large benchmark comparison of the widely used nodes attack strategies showing how the recalculated 
nodes betweenness centrality attack is the best attack in 80% of the case, both in real and model networks6. Our 
and Wandelt et al.6 outcomes indicate that the betweenness centrality removal of the nodes and links is highly 
efficient because the definition of the betweenness is extremely well aligned with the aim to disrupt the main 

https://doi.org/10.1038/s41598-020-60298-7


7Scientific RepoRtS |         (2020) 10:3911  | https://doi.org/10.1038/s41598-020-60298-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

communication paths of the network thus triggering the faster fragmentation of the LCC. Nonetheless, the link 
removal strategy based on the nodes betweenness centrality, e.g. the BP that removes links according to the 
betweenness product of the ends nodes, is clearly less efficient than the BC link removal strategy, indicating that 
to individuate most central links raising information from the betweenness centrality of the ends nodes, may 
degrade the betweenness centrality properties of the ranked links, then resulting in a worsen efficacy into frag-
ment the LCC (Fig. 3). This last outcome would indicate that to select most important links sustaining the global 
topological connectivity of the networks is fundamental to sample direct information properties from the links; in 
the case this is not possible, and only nodes properties are available, the resulting important links ranking would 
be less reliable. We outline that our BC removal strategy is computed on the initial networks (e.g. before any link 
deletion). Many analyses showed that after nodes removal the betweenness properties of the remaining network 
components (both nodes and links) may change and thus the recalculated (adaptive) betweenness nodes attack 
is more efficacy than the non-recalculated counterpart5,6,46. For this reason, it will be a straightforward extension 
of the analyses presented in this paper to implement recalculated (adaptive) removal strategies based on the 
betweenness centrality that can be able to individuate changes in the network structure.

In all the six real-world networks we analyzed here, to add information on the link weights by deleting links 
according to the weighted betweenness centrality (BCw) worsen the efficacy into fragment the LCC with respect 
the binary link removal strategy BC (Fig. 3). For example, in the UK network BC removal strategy is the best 
method to fragment the LCC where instead BCw performs similar to the random removal of links Rand (Fig. 3). 
The higher BC link removal strategy efficacy to reduce the LCC is found even at the starting of the removal 
process, even less significant for Coli, Eleg and UK networks (Fig. 4). The higher BC efficacy we found in many 
real-world complex networks indicated that with the aim to reduce the network LCC, including link weights 
information can reduce the effectiveness of the removal strategies into select important links for the topological 
connectedness of the network. Many applications of network science from protection of power grid networks10 to 
vaccination plans halting epidemic spreading12,31 are considered mathematically equivalent to find the fastest LCC 
fragmentation; our findings indicate that with the aim to reduce the LCC, considering the link weights would be 
not useful and it would even worsen the selection of the most important links to the network connectedness, i.e. 
the links with higher betweenness centrality.

The role of the weak links in sustaining the cohesiveness of the system was already emphasized in the classic 
sociological paper of Granovetter23 which showed how weak acquaintances relationship play the role to connect 
communities far apart in social networks. Recent network theory studies confirmed this hypothesis showing that 
the largest connected cluster (LCC) is highly vulnerable to the removal of links with lower weight (weak links) 
but robust to deletion of links of higher weight (strong links)24–28. On the contrary, the strong link removal trig-
gers a faster (LCC) fragmentation in science co-authorship networks (Net)30,47. In this scientific social network, 
dense local nodes neighborhoods mainly consist of weak links, and the strong links depicting more intense and 
long-term relationships between leader scholars join far apart research communities thus resulting more impor-
tant for overall network connectivity48. We found higher vulnerability to weak link removal only for the trans-
portation networks, such as the Cargo and Air (Fig. 3). In the others real-world networks Weak strategy triggers 
similar LCC decrease than Strong (Coli and Eleg networks) whereas in the social networks Net and UK to delete 

Figure 2. The network functioning along the link removal process. Functioning efficiency measure (Eff) as a 
function of the fraction of link removed (q) for different attack strategies. The examples give in this chart are 
from the UK faculty network. Left chart: Strong strategy (green line) triggers a faster efficiency (Eff) decrease 
than the DP strategy (black line) and the robustness area (R) below the green curve is lower than the one below 
the black curve. The widely used percolation threshold qc is roughly the same for the two strategies (q = 0.98, 
vertical dashed) and this measure of the network functioning is not able to individuate the difference. Right 
chart: in this simulation for q = 0.16 (abscissa of the vertical dashed line) we observe a cross between Strong 
(green) and the BC (black) strategy curves; this means that the black strategy is more harmful at the beginning 
of the removal process (before q = 0.16) and the green strategy is more efficacy after q = 0.16. The robustness 
area resuming the entire process in a single value is not able to evaluate the local efficacy of the strategy; to 
understand the efficacy of the attack strategies in the first fraction of the removal process we add a comparison 
for three small values of q = (0.05, 0.1, 0.15).
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weak links causes slower LCC fragmentation. Even though in all real-world complex networks we analyzed, the 
BC strategy removing links according to the binary betweenness centrality of the links produced the faster LCC 
disruption (Fig. 3). This finding indicates that the links with higher betweenness centrality, i.e. the ones driving 
most of the shortest routes in the network, are the true key players of the real-world network topological con-
nectivity. For this reason, we bring an interesting remark inside the long-standing debate about weak-strong link 
importance, indicating that the links playing the major role into sustaining the cohesiveness of the system are 
clearly the ones driving most of the shortest routes in the network, not necessarily the weakest or the strongest 
links.

TF. When we focus the link removal problem with the aim to decrease the total flow (TF) in the networks, 
Strong strategy removing links in decreasing order of weight is the best strategy by definition (Figs. 3 and 4). In 
fact, the best solution of sorting links producing the faster total flow (total weights) decrease is mathematically 
equivalent to order a numerical vector in decreasing order of values. For this reason in Table 2 we rank the efficacy 
of the link removal strategies keeping out the Strong strategy; we then adopt the Strong outcomes as a benchmark 

Figure 3. Real-world complex networks robustness vs link removal strategies. The robustness R of the 
functioning measurements Eff, LCC and TF along the whole link removal process for each link attack strategy 
for the six real-world networks. The network robustness is normalized by the max robustness for that system 
functioning measure. The lower is R, the higher is the efficacy of that link attack strategy to damage the network. 
Link removal strategies: random (Ran), strong (Str), weak (We), link weighted betwenness centrality (BCw), link 
binary betwenness centrality (BC), end nodes end nodes degree product (DP), end nodes betwenness centrality 
product (BPw), end nodes betwenness centrality product (BPw), end nodes strength product (SP), end nodes 
binary transitivity product (TP), end nodes weighted transitivity product (TPw).
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comparison for the other strategies. For the whole removal process, in 2 out of 6 cases, the best methodology is the 
BCw strategy. This finding means that the links with higher weighted betweenness centrality, e.g. the more central 
links where passes the higher number of shortest routes among nodes, are also links owing higher weight. The 
higher efficacy of the BCw strategy is found in the Eleg biological network and for the social network UK (Fig. 4, 
Table 2). Neuronal networks are systems for the information delivery and they are expected to evolve toward 

E. Coli C. Elegans US Airports Cargoship Netscience UK Faculty

Eff

BCw Strong Strong Strong BC Strong

BC BCw BCw SP SP BC

BP SP BC BCw BCw BCw

LCC

BC BC BC BC BC BC

BCw TP Weak Weak BCw BP

TP SP BCw BCw SP Strong

TF

SP BCw SP SP SP BCw

BCw SP DP BCw BCw SP

BPw DP BP BPw BC BPw

Table 2. The three best strategy to decrease the real-world networks functioning measurements (i.e. Eff, LCC 
and TF) measured by the robustness area for each real-world networks.

Figure 4. Real-world complex networks robustness vs link removal strategies after small fraction of links 
removed. The robustness R of the functioning measurements Eff, LCC and TF after q = 5, 10, and 15% removed 
links for each links attack strategy for each real-world networks analyzed. The network robustness is normalized 
by the max robustness for that system functioning measure. The lower is R, the higher is the efficacy of that link 
attack strategy to damage the network. Link removal strategies: random (Ran), strong (Str), weak (We), link 
weighted betwenness centrality (BCw), link binary betwenness centrality (BC), end nodes end nodes degree 
product (DP), end nodes betwenness centrality product (BPw), end nodes betwenness centrality product (BPw), 
end nodes strength product (SP), end nodes binary transitivity product (TP), end nodes weighted transitivity 
product (TPw).

https://doi.org/10.1038/s41598-020-60298-7


1 0Scientific RepoRtS |         (2020) 10:3911  | https://doi.org/10.1038/s41598-020-60298-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

% Removals E. Coli C. Elegans US Airports Cargoship Netscience UK Faculty

Eff

5% SP Strong BCw Strong BP BCw

10% BCw Strong BCw Strong SP BCw

15% BCw Strong BCw Strong SP BCw

LCC

5% BC BC BC Weak BCw TP

10% BC BC BC BC BC TP

15% BCw BC BC BC BC TP

TF

5% BCw SP SP BCw SP BCw

10% SP BCw SP BCw SP BCw

15% SP BCw SP SP SP BCw

Table 3. Best strategy to decrease the real-world networks functioning measurements (i.e. Eff, LCC and TF) for 
5, 10, 15% of links removal.

Figure 5. Real-world complex weighted networks functioning decrease (Eff & LCC) under 5, 10, 15% of links 
removed. The system functioning is depicted under link removal for the three most harmful link attack strategies, 
e.g. Strong, BCw and SP. The system functioning is normalized by the initial functioning value (e.g. before any 
removal). The pink area depicts the difference between Eff and LCC measures along the link removal process. 
For all networks except Net, under BCw and SP link removal strategies, after small fraction of links removed we 
observe a quick efficiency (Eff) decrease whereas the largest connected cluster (LCC) decreases very slowly.
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higher functioning level. For this reason, we hypothesize that the C. Elegans neuronal networks evolved more 
central links playing the major role in the information delivery with higher number of connections (e.g. higher 
link weight). Further, the BCw is clearly more efficient than other strategies in the UK faculty social network. The 
higher efficacy of the BCw into decrease the total flow indicates that in the UK network links with higher weight 
are more likely to be those more central (higher weighted betweenness centrality). Translating this outcome into 
social network terms, it would indicate that stronger friendship relationship between individuals are likely to be 
the more central in this social network; since the link centrality computed with weighted betweenness is shaped 
by both the topological and weighted embedding of the link in the network, with an intricate interaction of these 
two factors, further future investigations will be necessary to shed light on this complex relationship emerging in 
the structure of weighted networks.

In 4 out of 6, the best strategy is the SP deleting links with higher strength product of the end nodes. We find 
this for the two transportation networks, i.e. Air and Cargo (Figs. 3 and 4). Given that the strength of the node 
is the sum of the link weights to it34,35, the finding that in real-world transportation networks the links connect-
ing nodes with higher strength are even more likely to be of higher weight indicates that the connection routes 
between the bigger airports or ports are also the wider in terms of passengers or boat shipping. Then, we find SP 
the most efficient strategy to decrease TF in the Coli real-world network representing the metabolites system of 
the E. Coli bacteria, e.g. the nodes are metabolites and links depict common reactions among them. The higher 
strength nodes are the metabolites involving the highest number of reactions in the Coli metabolic network and 
they can be viewed as the most common metabolites. Thus, to have higher SP links with higher weight would 

Figure 6. Real-world complex weighted networks functioning decrease (TF & LCC) under q = 5, 10, 15% of 
links removed. The system functioning is depicted under link removal for the three most harmful link attack 
strategies, e.g. Strong, BCw and SP. The system functioning is normalized by the initial functioning value (e.g. 
before any removal). The pink area depicts the difference between TF and LCC measures along the link removal 
process. For all networks except Net, under BCw and SP link removal strategies, after small fraction of links 
removed we observe a quick efficiency (TF) decrease whereas the largest connected cluster (LCC) decreases 
very slowly. In the Netscience network under BCw and SP link removal we find the opposite pattern: TF remains 
roughly constant and the LCC sharply decreases.
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indicate that the connections between most common metabolites are also the links indicating higher activity 
level (higher number of common reactions) between those metabolites. However, the SP is only slightly more 
efficient than the following removal strategies (Figs. 3 and 4). Even for the Net network, the best strategy is the SP 
that removes links according to the strength product of the end nodes. This finding depicts a specific structure 
for the science co-authorship network (Net) for which the strong links, that represent the scientific collaborations 
with higher number of common papers, are positioned among the most prolific scholars, e.g. the nodes of higher 
strength.

Comparing the measures of network functioning. For most of the strategies and most of the real-world net-
works, we find an important difference between the network functioning measures LCC and Eff when removing 
5, 10, 15% of links (Figs. 5 and S1 in Supplemental material). This difference is bigger for the removal strategies 
selecting highest link weights (Strong) and for the strategies removing link connecting higher strength (SP) and 
weighted betweenness nodes (BPw). For example, in Cargo and Eleg following the removal of 15% of links we 
observe Eff collapsing below the 50% of the initial value where instead the LCC measure does not decrease (Fig. 5, 
Strong column). Further in Coli network the removal of the 15% of highest SP links triggers the Eff decrease below 
the 60% of the initial value. Only in the Net network, the LCC follows the Eff trend, especially with BC strategy 

Figure 7. Real-world complex weighted networks functioning comparison. The measures of system 
functioning are plotted along the whole link removal for four harmful link attack strategies, e.g. Strong, BC, BCw 
and SP. The system functioning is normalized by the initial functioning value (e.g. before any removal). The 
bisector line indicates the perfect correlation between the two measures, e.g. the network response turned out 
by the measures is the same. The more the measures comparison is distant from the bisector line, the higher is 
the discrepancy of the system response furnished by the measures. For example, in the Eff vs LCC we see most of 
the comparison lying above the bisector line, indicating the faster decrease Eff decrease under the link removal 
strategies.
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(Fig. 5). This would confirm that in the science co-authorship network (Net) the links of highest weight play a 
fundamental role in sustaining system connectedness. The difference between the LCC and TF measures is even 
bigger: e.g. when removing 15% of strong links TF falls to the 25% of the initial value in Cargo and Net networks 
(Fig. 6, Strong column and Fig. S2 of the Supplemental material). Recent outcomes showing how five nodes attack 
can trigger an abrupt collapse of the weighted functioning measures (Eff and TF) while the LCC parameter that 
evaluate the simple binary connectedness of real-world complex weighted networks are almost unaffected, i.e. 
the attack toward few highest degree and strength nodes returns real-world systems in a connected but inefficient 
state30. The findings we present in this paper confirm and aggravate the measure gap in evaluating the network 
functioning, showing how the removal of a small fraction of links connecting higher betweenness, higher degree 
or higher strength nodes, in most of cases does not affect the LCC size yet quickly collapsing the network effi-
ciency Eff and the total flow TF. This evidence outlines how to adopt the simple network connectivity may be a 
misleading measure of the real-world networks integrity in the most likely case of real-world malfunctioning, e.g. 
when failure or attack occur with the system yet globally connected. Last, to furnish a complete parallel measure 
comparison of the network response under link removal, we depict the scatter plots of the normalized functioning 
measures in Fig. 7 for four harmful link attack strategies, e.g. Strong, BC, BCw and SP. The bisector line indicates 
the theoretical case of complete correlation between the two measures; in this ideal case the network response 
turned out by the different functioning indicators (Eff, LCC, and TF) is the same. We find strong decorrelation 
for the Eff vs LCC coupling, with most of the comparisons lying above the bisector line, indicating the sharper 
efficiency (Eff) decrease (Fig. 7, left column). Differently, we observe a good Eff vs TF correlation with most of 
the trends approaching the bisector lines. The last scatter plot depicting LCC vs TF clearly outline high level of 
decorrelation between the two measures of functioning with very faster decrease in the total flow of the network 
with associated very slow LCC fragmentation (Fig. 7, most of the comparisons are below the bisector line).

conclusions
In this paper we report the largest comparison in our knowledge of link attack strategies efficacy, by testing eleven 
different strategies over six real-world networks. We summarize the three main outcomes. First, the links removal 
strategies based on the binary betweenness centrality is the best method to fragment the LCC; to find the best 
links-nodes removal strategy to vanish the LCC is a central problem in complex network theory1,4–6,20–22,46, our 
outcomes show that the links removal strategy removing higher betweenness links is the best strategy to fragment 
the LCC thus indicating that the betweenness centrality is probably the most important feature to identify the 
nodes-links fundamental for the network connectedness. This outcome also places an interesting remark within 
the ‘weak-strong link importance’ classic debate, showing that the links playing the major role into sustaining the 
real-world networks connectivity are clearly the ones with highest betweenness, and they are not necessarily the 
weakest or the strongest links. Second, the removal strategy based on the weighted properties of the links, such 
as BCw and Strong, are the most efficient to decrease the network efficiency; since the efficiency (Eff) is a measure 
formed by the contribution of both the topological (binary) and the weighted structure of the network, this last 
outcome unveils that the weighted nature of the links may play a more important role into shaping the global 
system information spreading. Third, when removing a small strong links fraction we assist to the quick fall of 
the weighted measures of network functioning Eff and TF while the LCC indicator of the topological connectivity 
still holds to the initial value. Since real-world networks malfunctioning is likely to occur with the system still 
connected, as for example the case of routes closure in a transportation networks with locations still reachable 
but with longer or congested paths, our outcomes outline that to well evaluate the link importance in real-world 
networks it is necessary to i) adopt weighted measures of network functioning and ii) analyze the system response 
to reduced amount of removed links. Last, we outline that to protect nodes in real-world networks turns out to 
be easier than preserving the links, for instance it is easier to garrison the train stations than the railways, or it 
can be possible to protect the banks rather than to secure all the routes an armored car has to travel. Given the 
concrete difficult to protect link-connections rather than nodes in real-world networks, it turns out be even more 
important to focus on protecting fundamental links for the system functioning.

The analyses presented here may open future researches, such as by further investigating the role of the cou-
pling between the topological and the weighted structure in shaping the network robustness, for example by 
checking the efficacy of different link removals over model networks when specific structural parameters are 
tuned. For example, the weighted random graphs28 and the Hopfield-like models for weighted neural49 and 
social50 networks, show non-random association between the topological and weighted structure inducing higher 
connectivity robustness under strong links removal. Yet, such an analysis is out of the aim of the present work, 
it can be very interesting to test the response of these model networks under some of the different link removals 
strategies proposed in this paper with the aim to shed light on the causes of the real-world weighted networks 
robustness.
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