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Terahertz Multiple Access: A Deep Reinforcement Learning
Controlled Multihop IRS Topology

Muhammad Shehab, Member, IEEE, Mohamed Elsayed, Member, IEEE, Abdullateef Almohamad, Member, IEEE,
Ahmed Badawy, Member, IEEE, Tamer Khattab, Senior Member, IEEE, Nizar Zorba, Senior Member, IEEE

Mazen Hasna, Senior Member, IEEE, Daniele Trinchero.

We explore THz communication uplink multi-access with
multi-hop Intelligent reflecting surfaces (IRSs) under correlated
channels. Our aims are twofold: 1) enhancing the data rate of a
desired user while dealing with interference from another user
and 2) maximizing the combined data rate. Both tasks involve
non-convex optimization challenges. For the first aim, we devise
a sub-optimal analytical approach that focuses on maximizing
the desired user’s received power, leading to an over-determined
system. We also attempt to use approximate solutions utilizing
pseudo-inverse (Pinv) and block solution (BLS) based methods.
For the second aim, we establish a loose upper bound and employ
an exhaustive search (ES). We employ deep reinforcement learn-
ing (DRL) to address both aims, demonstrating its effectiveness in
complex scenarios. DRL outperforms mathematical approaches
for the first aim, with the performance improvement of DDPG
over the block solution ranging from 8% to 57.12%, and over
the pseudo-inverse ranging from 41% to 190% for a correlation-
factor equal to 1. Moreover, DRL closely approximates the ES for
the second aim. Furthermore, our findings show that as channel
correlation increases, DRL’s performance improves, capitalizing
on the correlation for enhanced statistical learning.

Index Terms—Artificial intelligence, multi-access communica-
tion, sub-millimeter wave communication, communication system
performance.

I. INTRODUCTION

IN the field of wireless communication, 6G is expected to
cater to significantly advanced services and data-intensive

applications compared to its predecessor, 5G. These applica-
tions, such as immersive remote presence, connected robotics
(CRAS), digital twins, and immersive extended reality (XR),
necessitate a colossal 1000-fold increase in capacity com-
pared to 5G mobile systems [1]. To address these demands
and reconcile the tension between service needs and limited
spectrum resources [2], there is a call to extend existing
wireless spectrum bands and venture into the higher tera-
hertz (THz) frequency range, spanning from 0.1 THz to 10
THz. These frequencies are poised to play a pivotal role
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in 6G wireless communications due to their potential for
substantially enhanced capacities and data rates. However,
these higher Radio Frequencies (RF) bring challenges such as
substantial path attenuation, elevated propagation losses, and
intermittent wireless connections. Moreover, RF waves with
extremely short wavelengths result in limited communication
distances and increased vulnerability to molecular absorption
and obstruction [1]. To enhance received signal power and
achievable data rates, this paper explores the Intelligent re-
flecting surfaces (IRS) as a burgeoning and highly promising
technological advancement. [3]. IRS operates by manipulating
incident electromagnetic waves, programmatically adjusting
phase shifts of semi-passive reflecting elements to enable
a smart radio environment, enhancing data rates in a cost-
effective and energy-efficient manner [4].

II. LITERATURE REVIEW

Numerous recent studies have scrutinized the deployment
of IRS in THz communications to evaluate its potential in
improving coverage and achievable data rates [5] - [11]. For
example, one study [5] focused on an IRS-assisted multi-
hop multi-pair unicast network, where multiple sources com-
municate with multiple destinations, proposing distributed
control of multiple IRSs to optimize achievable rates. Another
study [6] explored a multi-IRS-assisted massive multiple-input
multiple-output system, aiming to boost minimum received
signal power. It involved a base station (BS) equipped with
multi-antennas transmitting independent signals to remote
users with single antennas, enabling cascaded line-of-sight
(LOS) communication links through cooperative signal reflec-
tions from various IRS groups. In [7], the authors assessed
the effectiveness of a decode-and-forward (DF) relaying as-
sisted multi-IRS system in a scenario where a single source
communicates with a single destination, seeking to determine
the optimal IRS configuration, the number of IRSs, and the
number of IRS reflecting elements that maximize the ergodic
rate. Additionally, in [8], the authors considered a multi-
hop IRS-assisted multi-user downlink communication scenario
where the BS communicates with K users, optimizing the
beamforming at the BS and multiple IRS phase shift reflection
matrices to maximize the sum rate. Furthermore, in [9], the au-
thors explored an uplink multi-hop IRS communication system
where multiple users communicate with a single destination,
to extend the link range in THz communications and maximize
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power at the receiver (Rx). They introduced a cascaded passive
IRS THz system to overcome the substantial propagation
losses due to air molecule absorption.

Notably, the studies from [5] to [9] employed mathemat-
ical techniques to address their optimization problems. In
contrast, research papers [10] and [11] utilized the DRL
algorithm to tackle non-convex optimization challenges. The
authors suggested a hybrid beamforming scheme for multi-
hop IRS-aided networks to enhance the coverage of THz
communication links. They investigated the joint design of
analog beamforming at the IRSs and digital beamforming
at the BS to mitigate propagation losses in THz downlink
broadcast systems, which involve a single source and multiple
destinations.

A. Contributions
To enhance the range of THz links and compensate for

losses at such high frequencies, we employ multi-hop IRS,
often referred to as cascaded IRSs, as a fundamental element
in our system model. Given the limited coverage typically
associated with THz links, we focus on small areas where
multiple users are not expected. Our optimization problem
centers around a two-user system, to find the optimal phase
shifts for the multi-hop IRS elements. This optimization
aims to maximize the received rate for a specific user and
the combined rate for both users. The primary challenge
in our approach arises from the non-convex nature of the
objective function due to constraints related to the constant
amplitude of the IRS reflecting elements, as well as non-
linear constraints and complex multi-hop links. Solving this
NP-hard problem optimally remains elusive, and conventional
mathematical techniques struggle to provide an analytical
solution. Moreover, an exhaustive search (ES) approach is
impractical for large-scale communication systems [10], [11].
Additionally, optimizing Rx rates leads to an over-determined
system. To address these combined challenges, we employ
DRL, specifically utilizing a Deep Deterministic Policy Gra-
dient (DDPG) based scheme. This approach allows us to
obtain efficient and feasible solutions. To the best of our
knowledge, no prior studies in the existing literature have
utilized the DRL approach to tackle the challenge of solving
over-determined systems of equations in uplink cascaded IRS
multiple access scenario. In this research, our objective is to
address the existing gap in the literature by utilizing DDPG to
simultaneously tune the phases of every individual IRS within
the cascaded IRS system. We specifically consider the scenario
of spatially correlated channels [12] between IRS1 and IRS2.
We aim to approach two alternative scenarios, each with a
different objective: a) maximizing the rate for any specific
user, or b) maximizing the sum rate for both users.

We detail our contributions below against our two main
objectives (two alternative scenarios), where both scenarios
consider multi-hop IRSs and multiple access systems operating
in the THz range:

• Scenario 1: Maximize the data rate for a single user,
considering the second user as an interferer.

– We formulate the optimization problem for the cas-
caded IRS phase shifts, encompassing IRS1 and

IRS2, and establish that it is non-convex and com-
putationally challenging.

– Noticing the over-determined nature of this problem,
we present two sub-optimal solutions to determine
the ideal phase shift matrices of IRS1 and IRS2 that
optimize the received power for the desired user,
utilizing pseudo-inverse Pinv and block solutions
(BLS).

– We develop a DDPG scheme to obtain the ideal
phase shifts for the desired user and compare
its performance against the sub-optimal state-of-art
schemes, as shown in Table 1.

• Scenario 2: Maximize the combined data rate for two
users.

– We provide analytical insights into this problem,
specifically for cascaded IRSs.

– We design a DDPG algorithm to calculate the ideal
phase shifts for the cascaded IRSs that optimize the
total data rate

• We then simulate and compare the results obtained for
both scenarios. We benchmark these results against an
upper bound derived from ES and a lower bound gener-
ated from randomly assigned phase shifts.

The subsequent sections of this research paper are organized
as follows: In section II, we delve into the system and channel
model concerning the multi-hop IRS scenario. Section III
delves into the problem formulation, focusing on maximiz-
ing the data rate for the desired user while dealing with
interference, while in section IV, we explore the problem of
maximizing the total data rate for both users. Here, we derive
the end-to-end sum rate within the cascaded IRS scenario.
Moving on to section V, we introduce our proposed solution
that employs the DDPG algorithm for controlling the phase
shifts of the cascaded IRS. Numerical simulations, which shed
light on our findings, are the subject of discussion in section
VI. Lastly, in section VII, we draw our conclusion.

Notation: For more convenience, frequent symbols and
parameters along with their description are illustrated in Table
2.

III. SYSTEM MODEL

In our system model, we consider an uplink multi-hop
IRS communication system operating in the THz frequency
range, depicted in Figure 1. Within this system, we have
two users, each equipped with a single antenna. Notably,
the communication process is facilitated by highly directional
parabolic antennas employed by both users to transmit signals
precisely focused at the center of IRS1. Subsequently, these
signals undergo reflection by the IRS1 elements, followed by
a secondary reflection from IRS2 before reaching the final
destination at Rx. The choice of THz frequencies is deliberate,
primarily due to their suitability for scenarios with limited
coverage areas—perfect for users 1 and 2. To mitigate the
significant THz propagation losses caused by absorption in
the air molecules we implemented a cascaded IRS system.
Consequently, this setup effectively amplifies signal strength,
particularly for signals facing challenges in traversing long
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TABLE 1: Comparing Pseudo-Inverse with Block Solution and DDPG.

Feature Pseudo-Inverse Block Solution DDPG
Complexity High Medium Low
Adaptability Static Configuration Static Configuration Dynamic Learning

Objective 1 (Rate of Desired User) Sub-optimal Decent Performance Superior
Objective 2 (Sum Rate) N/A N/A Near-optimal (Close to ES)
Handling Non-Convexity Not suitable Not suitable Effective

Learning from Environment No No Yes
Channel Correlation Impact Low Moderate Significant

distances due to their short wavelength and high frequency.
The cascaded IRS configuration emerges as a strategic solution
to enhance the overall robustness and efficiency of the commu-
nication process within the challenging THz spectrum. Further,
each transmitter (Tx) and Rx is equipped with antennas
having diameters of Dt and Dr respectively. The distances
between various points in the system are defined as follows:
rtk, for the distance between the users and IRS1, r2 for the
distance between IRS1 and IRS2, and r3 for the distance
between IRS2 and the Rx. The horizontal distances between
the transmitters and the center of IRS1, IRS1 and IRS2, the
center of IRS2 and the Rx are denoted as rk,1,h, r2,h, and
r3,h, respectively. The angles of incidence and reflection with
respect to the center of the illuminated areas at IRS1 and IRS2

are represented by θi1,1, θi2,1, θr,1, θi,2, and θr,2. The heights
of the two transmitters, IRS1, IRS2, and the Rx are indicated
as ℓTx,1, ℓTx,2, ℓs1, ℓs2, and ℓRx respectively. The IRSs act
as beamformers that focus the incoming signal at a particular
reflection direction by modifying the phases of the reflecting
units (RUs). The number of RUs in IRS1 and IRS2 are M and
N respectively. The transmitted signal for each user k, where
k ∈ 1, 2, is represented by

xk =
√
Ptzk, (1)

Here, zk denotes the signal corresponding to user k and has a
unit power(i.e., E[|zk|2] = 1, E[.] designates the expectation),
and Pt represents the transmit power for each user. Thus, the
received signal for each user k is

yk = hHr ΦNHH
m,nΦMhHt,kxk + n0,

yk = hHr ΦNHH
m,nΦMhHt,k

√
Ptzk + n0, (2)

where ht,k ∈ C1×M is the communication link be-
tween each user k and IRS1; Hm,n ∈ CM×N is
the communication link between IRS1 and IRS2; hr ∈
CN×1 is the communication link between IRS2 and the
Rx; ΦM = diag(e−jη1 , e−jη2 , ..., e−jηM ) and ΦN =
diag(e−jψ1 , e−jψ2 , ..., e−jψN ) are the phase shift reflection
matrices for IRS1 and IRS2, respectively, that satisfy the
constant modulus constraint on each diagonal element of
the matrix, |ϕm|2 = |e−jηm |2 = 1, ∀m ∈ {1, 2, ...,M},
|ϕn|2 = |e−jψn |2 = 1, ∀n ∈ {1, 2, ..., N}; and diag(.)
symbolizes the diagonal matrix. Moreover, the phase shifts
of the mth and nth reflecting elements are represented by ηm
and ψn, where the values of ηm and ψn range between 0 and
2π, and the noise n0 ∼ CN(0, σ2) denotes the AWGN for
each user in linear scale. The deterministic phase shifts are
associated with the distances that the signals from each user

k travel during the first hop, as well as the link between IRS2

and RX during the third hop.

Ωk = 2πrtk/λ, and Ω3 = 2πr3/λ, (3)

where λ is the wavelength.

A. Communication Channel Model

The Tx and Rx channels ht,k, and hr follow the Rician
fading model [11], [13]

ht,k =

√
K1

K1 + 1
h̄t,k +

√
1

K1 + 1
h̃t,k, (4)

hr =

√
K2

K2 + 1
h̄r +

√
1

K2 + 1
h̃r, (5)

Here, K1 signifies the Rician factor for ht,k, with h̄t,k in
C1×M representing the Line-of-Sight (LOS) component and
h̃t,k in C1×M as the non-Line-of-Sight (NLOS) component.
Similarly, K2 is the Rician factor for hr, where h̄r in CN×1

denotes the LOS component, and h̃r in CN×1 represents
the NLOS component. The channel between IRS1 and IRS2,
Hm,n ∼ CN(0,R), follows the spatially correlated Rayleigh
fading channel model, where R represents the covariance
matrix that is derived according to the exponential spatial
correlation model. It is controlled by the parameter ρ within
the interval [0, 1], denoting the correlation coefficient among
neighboring RUs, and it is given as below:

[R]m,n = ρ|m−n|e|m−n|θi,2 , (6)

where θi,2 is the angle of arrival between IRS1 and
IRS2. High values of ρ, result in high correlation among
Hmn elements, and in cases where ρ is less than 1 (i.e.
not equal to 1), the significant correlations are between
adjacent RUs only, with considerably low correlation at
large distances. Further, we assume that the channels ht,k,
and hr are perfectly known for all the transmitters and the Rx.

B. Transmitters and Receiver Antenna Gains

The gains for the users’ and Rx antennas Gt(o) and Gr(o)
are expressed as

Gt,k(o) = 4et
J1(

πDt sin(o)
λ )

sin(o)
. (7)

Gr(o) = 4er
J1(

πDr sin(o)
λ )

sin(o)
. (8)
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Fig. 1: Cascaded IRS system model.

Here, J1(·) denotes the first-order Bessel function of the first
kind, Dt stands for the antenna diameter of the Tx, and Dr

stands for the antenna diameter of the Rx. The angle, measured
from the broadside of the antenna, is denoted as o [14].

Thus, the maximum gain is for o = 0 and is denoted as

Gt,k(o) = et(
πDt

λ
)2. (9)

Gr(o) = er(
πDr

λ
)2. (10)

Here, et and er represents the aperture efficiencies for the Tx
and the Rx respectively. Additionally, the gain of each RU is
expressed as detailed in [14].

G(θi1,k) = 4 cos(θi1,k), 0 ≤ θi1,k ≤ π/2, (11)

where θi1,k is the angle of incidence from user k to IRS1 [14].

C. Analysis of Loss Factors

The total losses and gains on the path between each Txk
and the Rx are denoted by Lτ,k. This includes the antenna
gains, free space path loss (FSPL), and THz absorption loss
(AS).

Lτ,k = LFSPL,τ,k Labs,k, (12)

where Labs,k represents the total THz absorption losses for
each Txk . The losses in the THz range are calculated based on

atmospheric conditions using the simplified model suggested
in [16]. LFSPL,τ,k represents the total FSPL for each Txk and
is denoted as

LFSPL,τ,k = LFSPL,k LFSPL,r. (13)

LFSPL,k for the signal reflected from IRS1 towards IRS2 is
represented as

LFSPL,k =
( λ4π )

2 Gt,kGθi1,kGθr,1
rt2k

, (14)

and LFSPL,r between IRS1 and the Rx is expressed as

LFSPL,r =
( λ4π )

4 Gθi,2Gθr,2Gr

r22r
2
3

. (15)

The total FSPL for each Txk is expressed as

LFSPL,τ,k =

(
λ

4π

)6
Gt,kG(θi1,k)G(θr,1)G(θi,2)G(θr,2)Gr

r2tkr
2
2r

2
3

.

(16)

D. Rate of the Desired User Under Interference

The rate of the desired user under an interference scenario
is expressed as

Rk = log2(1 + γk), (17)

Here, γk represents the Signal-to-Interference-plus-Noise-
Ratio (SINR) for user k:
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γk =
P

(k)
Rx

K∑
i=1
i ̸=k

P
(i)
Rx + σ2

, (18)

In this equation, P (k)
Rx denotes the power received for user k,

and σ2 represents the noise variance.
1) Derivation of the User’s Received Power (P (k)

Rx )
In our setup, both users transmit at IRS1, covering all

elements of IRS1 from different angles and distances. The
power reflected from the mth RU of IRS1 can be expressed
as in [14], excluding the calculation of absorption losses.1.

P (k)
r,m =

(
λ

4π

)2
Gt,kG(θi1,k)G(θr,1)

r2tk
× |ht,km|2|ϕm|2Pt,

(19)
Here, ϕm = e−jηm represents the reflection coefficient of the
mth RU of IRS1; Gt,k denotes the antenna gain of user k at
the Tx; G(θi1,k) is the gain of the RU from the incident angle,
G(θr,1)is the gain of the RU form the reflection angle, and rt,k
is the distance between Txk and RU m. Similarly, the power
reflected from the nth RU of IRS2 when it is illuminated by
the signal reflected by the mth RU of IRS1 can be expressed
as follows:

P (k)
r,mn =

(
λ

4π

)4
Gt,kG(θi1,k)G(θr,1)G(θi,2)G(θr,2)

r2tkr
2
2

(20)

×|ht,km|2|ϕm|2|Hmn|2|ϕn|2Pt,

In this equation, ϕn = e−jψn represents the reflection coef-
ficient of the nth RU of IRS2, and Hmn denotes the (m,n)
element of the channel matrix H connecting IRS1 to IRS2.
The received power captured at the receiver Rx through the
channel Hmn can be expressed as follows:

P (k)
rx,mn =

(
λ

4π

)2
P

(k)
r,mn

r23
Gr|hrn|2, (21)

and the total power received for user k at the Rx is
expressed as [14]

P
(k)
Rx =

∣∣∣√Lτ ,k

M∑
m=1

N∑
n=1

|ht,km||Hmn||hrn| (22)

×e−j(φtkm+ηm+φmn+ψn+φrn+Ωk+Ω3))
∣∣∣2Pt,

where φtkm is the phase for the Tx channel for user k and
mthRU , φmn is the phase for the hm,n channel for mth and
nth RU, and φrn is the phase for the Rx channel for nth RU.
Therefore, (22) can be re-written as

P
(k)
Rx =

∣∣∣√Lτ ,k

M∑
m=1

N∑
n=1

|ht,km||Hmn||hrn|

×e−j(φtkm+ηm+φmn+ψn+φrn+Ωk+Ω3)
∣∣∣2Pt. (23)

1The absorption loss, Labs,k , is included in Lτ,k which will show later in
the expression for the total received power.

Proposition 1. It can be shown that the total received power
for each Txk at the Rx can be given as follows:

P
(k)
Rx =

∣∣∣√Lτ ,ke
−jΩ3hHr ΦNHH

mnΦMhHt,ke
−jΩk

∣∣∣2 Pt. (24)

Proof. The proof is given in Appendix A.

2) Derivation of the User’s SINR
To this end, substituting (24) in (18) leads to the below

signal-to-interference-plus-noise ratio (SINR) for user 1

γk =

∣∣∣√Lτ ,ke
−jΩ3hHr ΦNHH

m,nΦMhHt,ke
−jΩk

∣∣∣2 Pt∑K
i=1
i ̸=k

∣∣√Lτ ,ie−jΩ3hHr ΦNHH
m,nΦMhHt,ie

−jΩi
∣∣2 Pt + σ2

.

(25)

IV. MAXIMIZING THE RATE OF A DESIRED USER UNDER
INTERFERENCE

In this section, we provide the analytical derivations of
the first objective, which is maximizing the rate of a desired
user, while the other user is considered an interferer. Our
objective is to find the optimum phases for the multi-hop
IRSs that maximize the received rate of the desired user. We
will show that the rate maximization problem is non-convex
and finding a closed-form expression of the IRS phases is
mathematically intractable. Then we propose a sub-optimal
solution to the problem through maximizing the received
power of the desired user. In addition, we propose a DDPG
algorithm that maximizes the rate of the desired user.

To maximize the rate of the desired user under interference,
we need to solve:

max
ΦN ,ΦM

log2 (1 + γk) , (26)

s.t. C1 : |ϕm|2 = 1,∀m ∈ {1, 2, ...,M},
C2 : |ϕn|2 = 1,∀n ∈ {1, 2, ..., N},

The optimization problem presented in (26) is considered NP-
hard, making the solution non-trivial due to the non-convexity
arising from the constant amplitude constraints of IRS1 and
IRS2 reflecting elements. The constant modulus constraint
is a mathematical condition that restricts the square of the
magnitude of a complex variable to a fixed value. This non-
convexity introduces challenges in finding the global optimum,
resulting in multiple local optima. Consequently, obtaining
an analytical closed-form expression for the optimal phase
shifts of both IRSs is mathematically intractable. The optimal
solution needs to strike a balance between enhancing the
received Signal-to-Noise Ratio (SNR) for the desired user and
mitigating interference from the other user, although these sub-
objectives may not necessarily align. Therefore, we employ a
sub-optimal approach for (26) by focusing on maximizing the
power received for the desired user [15].

1) Sub-optimal Solutions: Maximizing the Received Power
of the Desired User

To maximize the total received power of the desired user
(e.g. user 1), we will solve the following system of equations:

ηm+ψn+φt1m +φmn+φrn+Ω1+Ω3 = ν, ∀m,n. (27)
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TABLE 2: List of frequently used parameters and symbols.

Parameters and Symbols Description
xk Transmitted signal for each user k
yk Received signal for each user k
zk Signal for each user k
Pt Transmit power for each user
λ Wavelength
hr Channel between IRS2 and the receiver

Hm,n Channel between IRS1 and IRS2

ht,k Channel between each user k and IRS1

n0 AWGN in linear scale
K1, K2 Rician Factor for the transmitter channel and receiver channel

R Covariance Matrix
ΦM , ΦN Phase shift reflection matrix for IRS1 and IRS2, respectively
ϕm, ϕn Phase shift of IRS1 reflecting element m and IRS2 reflecting element n, respectively
ηm Phase shift of mth IRS1 reflecting element
ψn Phase shift of nth IRS2 reflecting element

Dt, Dr Antenna diameters for each Txk and Rx, respectively
rtk , r2, r3 Distance between: each user k and IRS1, IRS1 and IRS2, and IRS2 and Rx, respectively

rk,1,h, r2,h, r3,h Horizontal distance between: user k and center of IRS1, centers of IRS1 and IRS2,
and center of IRS2 and Rx, respectively

θik,1 Incident angle from user k w.r.t. the center of the illuminated area at IRS1

θr,1 Reflected angle w.r.t. the center of the illuminated area at IRS1

θi,2 Incident angle from IRS1 w.r.t. the center of the illuminated area at IRS2

θr,2 Reflected angle w.r.t. the center of the illuminated area at IRS2

ℓTx,k , ℓRx, ℓs1, ℓs2 The height of the Txk , Rx, IRS1 and IRS2, respectively
M, N Number of reflecting elements for IRS1 and IRS2 respectively

[R]m,n Covariance matrix obtained based on the exponential spatial correlation model
ρ|m−n| Correlation-coefficient among the adjacent RUs
Ωk Phase shifts corresponding to signal traveled from user k to IRS1

Ω3 Phase shift corresponding to signal traveled from IRS2 to Rx

o Angle measured from the broadside of the antenna
Gt(o), Gr(o) Gains for the users’ and receiver antennas respectively

Lτ,k Total losses and gains on the path between each Txk and the Rx

LFSPL,τ,k Total FSPL for Txk
Labs,τ,k Total absorption loss for Txk
Gt,k Gr Txk , and Rx antenna gains

G(θi1,k), (θr,1) Gain of IRS1 RU from the incident and reflection angles
Pr,m The power reflected from the mth RU of IRS1

Pr,mn The power reflected from the nth RU of IRS2 because of being
illuminated by the signal reflected by the mth RU of IRS1

Prx,mn The received captured power at the Rx

PRx The total received power for user k at the receiver (Rx )
φtkm

The phase for the transmitter channel for user k and mth RU
φmn The phase for the hm,n channel for mth and nth RU
φrn The phase for the receiver channel for nthRU
γk The received SINR for the Txk at the Rx

Rk , The data rate for user k
Rsum The sum rate for both users
∆Φ Phase Search Step

Here, ν is an arbitrary constant. Equation (27) can be inter-
preted as follows: P (k)

Rx will be maximized when the phases
across all the paths established by the different IRS elements
of both IRSs are constant for all m and n. Without loss of
generality, we can set ν = 0. Equation (27) represents an
over-determined system of equations with M +N unknowns
(the phase shifts of the elements of IRS1 and IRS2) and M×N
equations (corresponding to the different paths established
through all combinations of the M reflective elements of IRS1

and the N reflective elements of IRS2).
The set of equations in (27) can be represented as:

AΘ = C, (28)

Here, Θ is a column vector with dimensions (M +N)× 1
representing the phase shifts of IRS1 and IRS2, denoted
as η1, η2, ..., ηM , ψ1, ψ2, ..., ψN . A is a binary matrix with

dimensions (M×N)×(M+N), and C is a column vector with
dimensions (M ×N)× 1. C contains known constant values,
including the phase shifts of the Tx channel, ht,k, the phase
shifts of the channel between IRS1 and IRS2, Hmn, and the
phase shifts of the Rx channel, hr. We address this problem by
employing two sub-optimal mathematical techniques, namely,
the Pinv method and the BLS. These methods allow us to
determine the unknown phase shifts, ηm and ψn, and calculate
the received power for a selected user (in this case, user 1,
chosen arbitrarily as the desired user).

Pseudo-Inverse Solution: The Pinv solution for the over-
determined system in (28) is expressed as

Θ = A+C. (29)

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3357701

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY 7

where A+ is the Pinv of the matrix A defined as

A+ = (ATA)−1AT, (30)

Block Solution: Based on the spatially correlated channel
assumption, a low-complexity approximate solution built on
the exponential correlation model can be developed for higher
values of the correlation-coefficient, ρ, between the adjacent
RUs. In the case where the channel correlation is very high,
the channel, Hmn, can be assumed to have a block structure,
where the elements in the channel matrix are organized into
groups, where each group shares the same phase and exhibits
no correlation between the contiguous blocks [9]. Since the
number of unknowns M + N , the total number of IRS1

and IRS2 elements, is smaller than the number of equations
M × N , the total number of elements in the channel matrix
between IRS1 and IRS2, then we need to reduce the number
of equations. The primary concept behind the BLS is to
minimize the number of equations by treating each group of
channel elements as one block with the same value. This will
result in redundant equations in the channel matrix Hm,n

that can be eliminated using row reduction methods such
as Gaussian elimination reducing the rank of Hm,n to the
number of blocks M×N

Nblk
. This reduction in the rows of the

channel matrix will be reflected in the equation (27) which
will no longer be over-determined because the number of
equations is reduced. An important point to emphasize is that
the count of independent IRS1 and IRS2 elements remains
consistent. However, through this approach, the number of
equations has been streamlined from M × N to M + N .
By employing this method, the previously over-determined
system can be resolved whenever the number of blocks
M×N
Nblk

≤M +N .
As described in Algorithm 1, we will first check if the

Algorithm 1 Block Solution-based Framework
1: Input: ht, M , Hm,n, N , hr , Nblk
2: Output: ηm, ψn, PRxk

3: if M +N ≤M ×N then
4: Divide the elements of channel Hm,n into blocks.
5: if M +N ≥ M×N

Nblk
then

6: Calculate the total received power using (23) by treating
each group of channel elements as one block with the same value.

7: else
8: if M +N < M×N

Nblk
then

9: Solve (27) using the Pinv solution, and calculate the
total received power using (23).

10:
endif

11:
endif

12:
endif

number of unknowns M + N is less than or equal to the
number of equations M × N . If this condition is met, it
implies that the system is over-determined. In this case,
we will divide the elements of the channel matrix Hm,n

into blocks. After dividing it into blocks, if the number of
unknowns M + N is greater or equal to the number of
equations M×N

Nblk
, then we will calculate the total received

power using the formula (23) treating each group of channel

elements as one block with the same value. Else if the
number of unknowns M +N is still smaller than the number
of equations M×N

Nblk
, then we will solve (27) using the Pinv

solution, and calculate the total received power using (23).

Since the rate maximization problem for one of the users
under interference from the other is a subset of the broader
problem of maximizing the sum rate, we directly move to the
latter and address the former within after establishing the DRL
setup.

V. MAXIMIZING THE SUM RATE FOR BOTH USERS

In our second scenario, we aim to find the optimal phase
shifts for the elements of both IRS1 and IRS2 to maximize
the total data rate for all users at the receiver Rx, which can
be formulated as follows:

Rsum =

K∑
k=1

log2 (1 + γk) . (31)

Therefore, the problem formulated for IRS1 and IRS2 is to
determine the phase shift matrices ΦN and ΦM that maximize
the total sum rate Rsum, and it can be formulated as

max
ΦN ,ΦM

K∑
k=1

log2 (1 + γk) , (32)

s.t. C1 : |ϕm|2 = 1,∀m ∈ {1, 2, ...,M},
C2 : |ϕn|2 = 1,∀n ∈ {1, 2, ..., N},

Similar to the optimization problem presented in (26), this
optimization problem is NP-hard, and finding a solution is
non-trivial because of its non-convex nature caused by the
constant amplitude constraints of IRS1 and IRS2 reflecting
elements. As a result, obtaining an analytical solution is not
feasible. To address this issue, we employ the Deep Rein-
forcement Learning (DRL) technique, specifically the DDPG
algorithm, instead of attempting to solve the challenging
problem through mathematical methods. Moreover, we provide
two limiting cases for the solution of this problem; an upper
bound case where there is no interference and full channel
phase compensation can be achieved as well as a lower bound
case where phases of the elements of the IRSs are randomly
chosen [15].

A. Upper bound on Performance

Assuming the case of null interference and that the IRSs
can be used to fully cancel phase shifts between different
reflection paths, a relaxed upper bound on the sum rate can
be established using (25), where the SINR on user k becomes

γUk =

∣∣∣√Lτ ,k|hHr ||HH
m,n||hHt,k|

∣∣∣2 Pt
σ2

, (33)

and the upper bound on the sum rate becomes

RUsum =

K∑
k=1

log2
(
1 + γUk

)
. (34)
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VI. DDPG FOR CASCADED IRS PHASE CONTROL

A. Introduction to DDPG

In the DDPG scheme (see Fig. 2), the agents (represented by
the IRSs) interacts with the environment (the communication
system model) to learn an optimal policy. The state s(T ) of
the agent at time step T is determined by various factors
such as the the received SINRs for Tx1

and Tx2
at the

Rx, and the previous sum rate for both users at time step
(T − 1). The action a(T ) taken by the agent includes the
IRS1 and IRS2 phase shift matrices. The agent’s objective is
to maximize the reward r(T ), which stands for the highest
sum-rate achieved. The DDPG scheme is a powerful and
effective approach for solving the non-convex optimization
problems in our system. It enables the agent to learn and
adapt to the dynamic environment, making it well-suited for
the optimizations problems in the THz cascaded IRS system
[19].

The target networks and the online networks are the two sets
of networks that the DDPG algorithm uses. An actor network
and a critic network are part of the online networks. At each
time step, the actor network chooses an action for each state
based on the input state. The actor network’s choice of action
is evaluated by the critic network for quality. On the other side,
the target networks are utilized to increase the learning process
stability. The specifications of the online networks are used to
update the target networks regularly. Only a small portion of
the parameters from the online networks are communicated to
the target networks during the soft updates. The agent interacts
with the environment by taking actions based on the current
situation and receives feedback in the form of rewards during
the learning process. The agent stores these experiences in a
replay memory, which is a collection of past experiences. This
replay memory is then used to randomly sample experiences
to train the networks. The DDPG algorithm employs off-
policy learning, meaning that the agent learns from past
experiences stored in the replay memory rather than relying
solely on the most recent experience. The weights of the
networks are updated using the DDPG algorithm based on
the loss function using an optimization technique, such as the
Adam optimizer. The loss function is intended to maximize
the expected cumulative reward (Q-value) estimated by the
critic network and reduce the difference between the predicted
actions and the target actions. The DDPG algorithm seeks
to identify the best possible policy that maximizes the sum
rate in the current environment by repeatedly updating the
weights of the networks based on the accumulated experiences.
The agent’s learning process doesn’t stop until it reaches an
acceptable level of performance or convergence. The DDPG
scheme is a powerful and effective approach for solving the
non-convex optimization problems in (26) and (32) in our
system. It enables the agent to learn and adapt to the dynamic
environment, making it well-suited for the optimization of the
THz cascaded IRS uplink scheme [19].

As stated earlier, the optimization problems in (26) and
(32) are non-convex, and finding the optimum phases that
maximize the rate through ES is computationally infeasible.
Hence, we design DDPG solutions to find the optimum

phases of the cascaded IRS. In this section, we introduce our
approach using the DDPG algorithm to tackle the optimization
problems outlined in equations (26) and (32) for the cascaded
IRS system. Deep learning isn’t a suitable fit for such a
dynamic wireless communication context because it relies
on the availability of training data, and deep Q-networks
are also unsuitable since they are designed for discrete-time
spaces exclusively. Furthermore, the convergence of the policy
gradient (PG) algorithm isn’t sufficient within the framework
of wireless communication. The DDPG model we’ve chosen
is well-suited for our dynamic, continuous, and non-convex
wireless communication scenario. It is designed for continuous
action spaces and is well-suited for problems where the action
space is not discrete. It has been applied to various continuous
dynamic tasks, making it suitable for scenarios where wireless
communication parameters need to be adjusted continuously
[17]-[18].

The primary aim of the DDPG model is to learn the policy
that solves the optimization problems outlined in (26) and (32).
The DDPG scheme consists of essential components: agents,
states s(T ), actions a(T ), rewards r(T ), the policy function µ,
and the Q-value function Q(s, a|θQ). Our agents, IRS1 and
IRS2, operate in the environment which is the communication
system, and the states s(T ) represent the received SINR for
Tx1 at Rx, the SINR for Tx2 at Rx, and the sum rate for
users at time step (T − 1). The actions a(T ) correspond to the
phase shifts of IRS1 and IRS2, and the reward r(T ) is based
on the received power for user 1 for our first objective and the
sum rate for the users for the second objective. Our goal is to
optimize the average rewards, which involve both immediate
and future rewards. The DDPG scheme incorporates four
NNs: the actor, the critic, the target actor, and the target critic
networks, ensuring stability in the learning process [19].

B. DDPG System Mapping

The initial stage in addressing the optimization problem in
our system model involves mapping it to the fundamental com-
ponents of the DDPG algorithm. These components include
defining the state, the action, and the reward functions. We
will explore this mapping process and provide an overview of
how the DDPG algorithm behaves.

1) State space
The state space of the DDPG agent at timestep T is specified

as follows:
For the first objective:

s(T ) = [γ
(T−1)
1 , γ

(T−1)
2 , P

(T−1)
Rxk

], (35)

For the second objective:

s(T ) = [γ
(T−1)
1 , γ

(T−1)
2 , R(T−1)

sum ], (36)

Here, γ(T−1)
1 , γ(T−1)

2 , P (T−1)
Rxk

, and R
(T−1)
sum represent the

received SINR for Tx1
at the Rx, the received SINR for Tx2

at the Rx, and the sum rate for users at time step (T − 1)
respectively.
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Fig. 2: DDPG model

2) Action Space
The actions correspond to the phase shift values assigned

to IRS1 and IRS2 elements. These actions are expressed as an
array that specifies the phase of each IRS element. Therefore,
the action space is determined by the policy function as
follows:

a(T ) = µ(s(T )|θµ) + n(T ) (37)

Here, µ represents the policy function, and θµ designates the
weights of the NN , and n(T ) describes the noise generated
by the Ornstein Uhlenbeck (OU) process [20]. Given that
the action space is continuous, the exploration of this space
is managed using noise produced by the OU process. This
involves generating noise samples from a correlated normal
distribution.

3) Reward function
The reward function for the first objective is defined based

on the maximum received power for the desired user:

r(T ) = P
(T )
Rxk

(38)

where P (T )
Rxk

is the maximum received power for user 1. For
the second objective, it is represented as the maximum sum
rate for users :

r(T ) = R(T )
sum (39)

where R(T )
sum represents the actual sum-rate for the users.

4) DDPG Scheme
The objective of the DDPG scheme is to train IRS1 and

IRS2 agents to optimize their actions to maximize the average
reward over the long term, which corresponds to the power
received for the first user, and the sum rate of both users. These

agents adapt their randomized policies and phase shift matrices
to navigate the stochastic variations in the environment and
ensure a consistent long-term average reward. This approach
prioritizes sustained performance over immediate responses to
the unpredictable fluctuations in the channel.

The DDPG implementation process is explained in Algo-
rithm 2. Initially, we set the time step T to 0 and initialize
the replay buffer D with a capacity of M . Then, we randomly
initialize the parameters of the actor network (θµ) and the
critic network (θQ). After that, we will set the target actor
network parameters (θµ

′
) to be the same as the actor network

parameters (θµ) and set the target critic network parameters
(θQ

′
) to be the same as the critic network parameters (θQ).

In each iteration, IRS1 and IRS2 agents observe the state,
which includes the received SINR for Tx1 in the previous
state, denoted as γ(T−1)

1 at Rx, the received SINR for Tx2
in the previous state, represented as γ(T−1)

2 at Rx, and the
reward from the previous state. Subsequently, they compute
the actions ΦM and ΦN that optimize the long-term reward.
The actor network is responsible for this task, while the critic
network takes the state and action as inputs and produces an
estimate of the expected reward, encompassing the user 1’s
received power and the users’ sum rate. After calculating the
reward, a new state is observed, and IRS1 and IRS2 agents
adjust the phases accordingly until the system learns to achieve
the optimal reward. To enhance stability, the target actor and
critic networks are periodically updated based on the most
recent actor and critic parameter values.

Further, the architecture of the DDPG algorithm consists of
four NNs, comprising the critic and actor networks, along
with the target critic and target actor networks. The role of
these target networks is pivotal in improving the stability of the
learning process. They are employed in the Q-target formula
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to estimate the value of future states, which is used to train
the current networks [19].

Algorithm 2 DDPG-based Framework
1: Initialization: Begin by setting T to 0 and initializing the replay

buffer of the DDPG agent, denoted as D, with a capacity of M .
2: Randomly initialize the actor network weights as θµ and the critic

network weights as θQ.
3: Initialize the target networks: Set θµ

′
to θµ and θQ

′
to θQ.

4: for T = 1 to ∞ do
5: Observe the current state s(T ) and choose an action while

taking into account the exploration noise generated by the OU
process. a(T ) = µ(s(T )|θµ) + nT

6: Execute action a(T ) at IRS1 and IRS2.
7: Obtain the immediate reward r(T ), observe the sub-

sequent state s(T+1), and then record this transition as
(s(T ), a(T ), r(T ), s(T+1)) within the reply buffer D.

8: Select a random mini-batch of transitions from the replay
buffer D B ← {(s(i), a(i), r(i), s(i+1))} ∈ D .

9: Compute the targets in the following manner:
Q̃(s(i), a(i)|θQ) = r(i) + ΓQ(s(i+1), µ(s(i)|θµ

′
)|θQ

′
)

10: Update the parameters θQ in the critic
network by minimizing the loss function: L =
1

|B|
∑|B|

i=1

(
Q̃(s(i), a(i)|θQ

′
)−Q(s(i), a(i)|θQ)

)2

11: Adjust the parameters θµ in the actor network
using the sampled policy gradient: ∇θµJ ≈
1

|B|
∑|B|

i=1∇aQ(s(i), a(i)|θQ)∇θµµ(s(i)|θµ)
12: Update the target actor and target critic networks: θQ

′
←

τθQ + (1− τ)θQ
′
θµ

′
← τθµ + (1− τ)θµ

′

13: end for

C. Complexity Analysis

To disclose the complexity of the DDPG algorithm, we
demonstrate a quantitative analysis of the proposed DDPG-
based scheme CDDPG versus the complexity of Pinv , BLS,
and ES methods. In our analysis, we focused on the compu-
tations performed during the exploitation stage of the DDPG
algorithm to evaluate its complexity, which heavily relies on
the actor network’s architecture. Deep NNs (DNNs) consist
of input, output, and concealed layers (i.e. the layers that lie
between the input and output strata of a DNN). We examine
several factors in our analysis, including the count of states
(S), the count of neurons within the input of each layer (I),
the count of concealed layers (H), the count of neurons in
the output of each layer (O), and the count of actions (A).
The complexity of the input layer relates to S × I, and the
complexity of the concealed layers correlates to H × I × O,
and the complexity of the output layer is connected to O×A.
Consequently, the cumulative complexity of the DDPG scheme
is expressed as follows:
CDDPG = S× I+H × I× O+ O×A

Furthermore, in the DDPG scheme, the action yielding the
highest reward is always selected, and a linear search is per-
formed on the output. Consequently, the overall computational
complexity of a NN forward pass can be represented as [21]:
CDDPG = S× I+H × I× O+ O×A+A

Please note that the above analysis assumes a simplified
perspective and doesn’t consider additional factors such as

0 20 40 60 80 100 120 140

IRS Elements Count (M+N)

-20

0

20

40

60

80

100

120

140

160

L
o
g
 C

o
m

p
le

x
it
y

DRL Complexity

P
inv

 Complexity

BLS Complexity, N
BLK

 = 9

ES Complexity

Fig. 3: Complexity of DRL vs. Pinv vs. BLS vs. ES. M =
N = 64, NBLK = 9.

0 20 40 60 80 100 120 140

IRS Elements Count (M+N)

-2

0

2

4

6

8

10

L
o
g
 C

o
m

p
le

x
it
y

Complexity of DRL

Complexity of P
inv

Complexity of BLS, N
BLK

 = 9

Fig. 4: Complexity of DRL vs. Pinv vs. BLS. M = N = 64,
NBLK = 9.

activation functions, regularization techniques, or the training
process itself.

In contrast, the Pinv solution of a matrix A with
dimensions MN × (M + N) is computed using its singular
value decomposition (SVD), a useful computational technique
for dimensionality reduction in over-determined systems,
with a complexity of O((MN)2 × (M + N)), where
MN > (M + N), and M and N represent IRS1 and IRS2

number of elements, respectively [22], [23]. On the other
hand, for the BLS method, the complexity of inverting a
matrix A with dimension of MN

Nblk × (M + N) is reduced to
O((MN

Nblk
)2 × (M +N)), where M×N

Nblk
≤ (M +N).

Furthermore, the complexity of the ES method (CES) is
given as:
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CES = O

(
K×

(
⌊ 2π

∆Φ
⌋+ 1

)(M+N)
)
, (40)

where K designates the users’ count and ⌊ 2π
∆Φ⌋ stands for

the number of phase search steps. Consequently, the DDPG
algorithm shows lower complexity than that of the Pinv , BLS,
and ES techniques as the IRS elements count increases. This
relationship is illustrated in figures: Fig.3 and Fig.4.

VII. NUMERICAL RESULTS

In this section, we assess the performance of the suggested
DDPG-based cascaded IRS-aided wireless THz communica-
tion scheme. To evaluate the DDPG system’s effectiveness, we
conduct a comparative analysis, focusing on two key scenarios:
one aimed at maximizing the rate for the desired user (user 1)
and the other at maximizing the total rate for both users.

When optimizing the rate for the desired user, we establish
two reference benchmarking schemes for our system, both
utilizing 18 reflecting elements for IRS1 and IRS2. The first
scheme relies on a Pinv approach, while the second employs
the BLS method. Furthermore, for the sum rate maximization
scenario, we compare the sum rates achieved using the DDPG
algorithm with a discretized ES approximation. This compar-
ison serves to demonstrate that the DDPG system performs
closely to the ES method. To mitigate the computational
complexity associated with the ES, we limit the number of
reflecting elements to 4 for both IRS1 and IRS2. We discretize
the phase shifts within the range of 0 to 2π with a search step
of 2π/72, resulting in (72 + 1)(M+N) possible combinations
of phase shift reflection matrices. After obtaining the optimal
phase shift matrices, we compute the corresponding total rate
for users. Additionally, we benchmark the DDPG-derived sum
rates against those calculated using random phase generation
(i.e., without optimization) as an additional reference point.

A. Simulation Parameters

The simulation parameters, as shown in Table 3, provide the
details of the experimental setup, which include the use of 18
reflecting elements for both IRS1 and IRS2, two users (K =
2), each equipped with a single antenna (Nt = 1), and the Rx
also had one antenna (Nr = 1). The wavelength was set at λ =
10−3. The channels, encompassing the link between user 1 and
IRS1, user 2 and IRS1, IRS2, and the Rx, are characterized by
a Rician fading model involving Rician factors of K1 = 10
and K2 = 10. The path loss exponent for the Tx to IRS1

channel is 2, and the same exponent is applied to the channel
between IRS2 and the Rx. We selected a carrier frequency
of f = 300 × 109 and a bandwidth of BW = 2 × 109. The
noise spectral density was set to NPSD = −174dB/Hz, with
a noise figure at the Rx of FdB = 10dB. The coordinates
for IRS1 were (xr1 = 5, yr1 = 10, hr1 = 12), and for IRS2,
the coordinates were (xr2 = 10, yr2 = 10, hr2 = 12). The
distance between user 1 and IRS1 varied between rt1 = 3 m
and 15 m, while user 2 maintained a fixed distance of 15m
from IRS1. The coordinates of the Rx were (xrx = 20, yrx =
0, hr = 5). The antenna diameter was set at Dt = 0.12 m,

TABLE 3: Parameters Used in Simulation

Simulation Parameters Values
Number of Users (K) 2

Number of antennas per user Nt 1
Number of antennas at the receiver Nr 1

Speed of the light c 3× 108

Carrier Frequency f 300× 109

Wavelength λ 1× 10−3

Number of IRS1 (M) and IRS2 (N) Reflecting Elements 18, 18
Coordinates of IRS1 (xr1, yr1, hr1) (5,10,12)
Coordinates of IRS2 (xr2, yr2, hr2) (10,10,12)
Distance between User 1 and IRS1 3 to 15
Distance between User 2 and IRS1 15

IRS1 and IRS2 Reflection Amplitudes α 1
IRS1 and IRS2 half-power Spacing dx λ/2

IRS1 and IRS2 Element Spacing dy λ/2
Antenna diameter in meters Dt 0.12

Coordinates of Rx (xrx, yrx, hr) (20,0,5)
Bandwidth 2× 109 MHz

Noise power spectral density NPSD −174 dB/Hz
Noise figure at the receiver FdB 10
Average Noise power in dB N0 −174 dB/Hz
Noise power in linear scale no 7.9621× 10−11

Transmitters to IRS1 Path loss exponent 2
IRS2 to receiver Rx Path loss exponent 2

Rician Factor 10
Critic Network learning rate 3× 10−4

Actor Network learning rate 1× 10−4

Target Critic Network learning rate 3× 10−4

Target Actor Network learning rate 1× 10−4

Discount factor of the future reward Γ 0.99
Coefficient of Soft Updates τ 1× 10−3

Batch size 128
Replay Buffer Capacity C 105

Number of episodes 10000

and the heights of user 1 and user 2 were both ht = 5. We
defined the distance ratio (DR) as rt1, the distance from user 1
to IRS1, divided by rt2, the distance from user 2 to IRS1. Our
results were obtained through 103 Monte-Carlo simulations.

The suggested DDPG scheme involves two NNs: the actor
and critic networks. Both of these networks are constructed as
dense NNs, each comprising four layers. In these networks,
each layer is a linear module with two parameters: the input
size and the output size. For the actor network, the input
consists of the states, with a size of 3 neurons, while the output
represents the action and comprises 36 neurons. Between the
input and output layers, there are two hidden layers, each
with 128 neurons. These hidden layers employ the Rectified
Linear Unit (ReLU) activation function. To ensure sufficient
gradient information, the output layer of the actor network
uses the tanh(·) activation function. As for the critic network,
the input includes both the count of states and actions, which
are concatenated to form the input of the critic network. Two
hidden layers exist between the input layer and the output
layer, with 128 neurons in each hidden layer. Again, ReLU
activation functions are applied in the hidden layers. The
output layer of the critic network produces the Q-value and
consists of 36 neurons. To update the network parameters, both
the actor and critic networks use the Adam optimizer. The
results are obtained by considering the average rate over 1000
iterations. The actor network is configured with a learning rate
of 3 × 10−4, while the critic network uses a learning rate of
1 × 10−4. The discount factor for future rewards Γ is 0.99,
and the batch size is set at 128. The replay buffer (denoted
as C) has a capacity of 105, and the number of episodes for
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Fig. 5: DDPG algorithm convergence.

training the model is set to 10, 000.

B. DDPG Convergence

The results depicted in Fig. 5 demonstrate the convergence
of the DDPG scheme. In the figure, rewards are plotted
against episodes, and it’s evident that rewards increase over
time, indicating a successful learning process. The DDPG
algorithm learning time requires 11.53 hours for 10,000
episodes for each distance ratio value when running a single
program at a time. Once trained, the implementation time for
1000 iterations is 16.421875 seconds for the DDPG, 30.6875
seconds for the Block Solution, and 947.546875 seconds
for the Pinv solution. We conducted these computations on
the HP EliteBook x360 830 G7 Notebook PC, featuring an
Intel(R) Core(TM) i7-10510U CPU running at 1.80GHz (2.30
GHz) and 32.0 GB of RAM.

C. Maximizing the Rate of a Desired User under Interfer-
ence

1) Distance Ratio Impact:
In the scenarios aiming to maximize the rate for user 1

at the Rx, we consider different correlation factors (ρ) and
DRs between user 1 and user 2. We employ various methods,
including DDPG, BLS, and Pinv solution, to showcase the
performance differences among them. Figures 6, 7, and 8
depict the rate of user 1 achieved with the DDPG scheme
across DRs ranging from 0.2 to 1. As the DR increases, user
1’s rate decreases due to the increased interference from user
2, who is getting closer to user 1.

2) Correlation-Factor Impact:
Fig. 6, Fig. 7, and Fig. 8 illustrate the behavior of user

1’s data rate concerning ρ. As ρ decreases, the data rates for
user 1 decrease for all methods, including DDPG, BLS, and
Pinv . Conversely, when ρ increases, the data rates achieved by
the DDPG technique increase as well. Thus, the enhancement
in performance achieved by the DDPG algorithm over the
BLS ranges from 8% to 57.12%, while its improvement over
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the Pinv spans from 41% to 190% for ρ = 1. This is due
to the DDPG algorithm’s improved learning efficiency with
higher correlation values. Consequently, the DDPG scheme
outperforms other methods, showcasing superior performance
in scenarios with high correlation. This aligns with our ob-
servations, indicating that as channel correlation increases,
the performance of DRL exhibits improvement, effectively
leveraging the correlation for enhanced learning. These results
underscore the significance of correlated channels in our
scenario and their positive impact on data rates. It’s important
to note, however, that for low values of ρ, the gap in data
rates between DDPG and other methods retracts. Thus, for
ρ = 0.75, the enhancement in performance achieved by the
DDPG algorithm over BLS ranges from 2.75% to 21.6%,
while its improvement over Pinv spans from 13.5% to 102.2%.
Whereas for ρ = 0.25, the DDPG algorithm demonstrates a
performance improvement over BLS ranging from 0.25% to
3%, and over Pinv , it spans from 2.1% to 9.7%.

D. Maximizing the Sum Rate for both Users

In the scenario of maximizing the sum rate for both users
at the Rx, Fig.9 displays the sum rates as a function of the
DR between user 1 and user 2, using the DDPG method with
various correlation coefficients ρ.

1) Learning Rate Impact:
Notably, the results show that as ρ increases, the sum rates

achieved with the DDPG solution also increase. It’s important
to highlight that constant learning rates were maintained in all
our simulations for the DDPG scheme, with a rate of 10−4

for the actor network and 3 × 10−4 for the critic network.
The impact of these learning rates on the DDPG data rates is
demonstrated in Fig.10, where we compare different learning
rates, including 10−3, 10−4, and 10−5 for the actor network,
and 3×10−3, 3×10−4, and 3×10−5 for the critic network. The
results show that the highest DDPG data rate is achieved when
the learning rate for the actor networks is 10−4, and for the
critic networks, it’s 3× 10−4. Therefore, these learning rates
produce the best average rewards, while too small (10−5) or
too large (10−3) learning rates result in lower average rewards.
The optimal learning rate of 10−4 is a key factor for achieving
better rewards in the DDPG scheme.

2) DDPG vs Exhaustive Search:
Moreover, to assess the effectiveness of our DDPG scheme,

we conducted a comparison between the sum rates generated
by the DDPG algorithm and those obtained through a
discretized ES approach used to find the maximum sum
rate by determining the optimal phase shift matrix. The
ES method, while highly accurate, involves significant
computational complexity. To mitigate this, we reduced the
number of reflecting elements for IRS1 to M = 4 and
IRS2 to N = 4, instead of the original M = N = 18. For
each IRS element, we considered phase shifts ranging from
0 to 2π with a search step size of 2π

72 . Consequently, the
total number of phase shift matrix combinations amounts to
(72+ 1)4. The sum rates were computed for two users across
100 Monte-Carlo simulations. The results are presented in
Fig. 11, where it’s evident that the DDPG algorithm’s sum
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rates closely align with the ES outcomes with the specified
granularity.

VIII. CONCLUSION

In this research paper, we focused on the uplink multiple
access scenario within a cascaded IRS system, to address
the challenges associated with short-range communications in
THz networks. Our primary goals were twofold. The first
objective was to maximize the data rate for the intended
user. We determined that this problem was not amenable
to closed-form mathematical solutions due to its non-convex
nature. As a result, we proposed two sub-optimal approaches
to enhance the received power for the desired user. The second
objective was to maximize the total data rate for both users,
which presented a more intricate, non-convex problem. To
tackle these optimization challenges, we employed DDPG
algorithms, known for their effectiveness in handling non-

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3357701

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY 14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance Ratio

0

1

2

3

4

5

6

7

8

9

10
S

u
m

 R
a
te

 [
b
it
s
/s

/H
z
]

DDPG SumRate vs Upperbound vs ES for  =0.9 and M=N=4

DDPG

Exhaustive Search (ES)

Upperbound

Random Generation

Fig. 11: Comparison between DDPG sum rate, ES, and upper
bound vs distance ratio for correlation-coefficient ρ = 0.9.
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convex optimization problems, to optimize the cascaded IRS
system. The DDPG algorithm allowed us to approximate
optimal IRS phase configurations that boosted the received
data rate for the intended user as well as the overall data rate
for both users.

Our simulation results demonstrated that, for the first ob-
jective, DDPG consistently outperformed sub-optimal methods
such as Pinv and BLS, achieving higher data rates. Regarding
the second objective, DDPG’s achieved data rates closely
matched those of a discretized ES, with a search step equal
to 2π/72. Furthermore, DDPG highlighted the importance
of channel correlation in improving the learning process and
achieving enhanced data rates. In summary, our paper presents
a pioneering use of DDPG for optimizing cascaded IRS phase
shifts, addressing an unexplored research area, and achieving
superior performance.
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APPENDIX

The total received signal power for each Txk at the Rx in eq. (23) can be expressed as:

P
(k)
Rx = |

√
Lτ ,ke

−jΩ3hHr ΦNHH
m,nΦMhHt,ke

−jΩk |2Pt. (41)

Proof. • Multiply the Rx channel hHr by IRS2 phase shift reflection matrix ΦN :

[
hHr ΦN

]
=
[
h∗r1, . . . , h

∗
rn, . . . , h

∗
rN

]︸ ︷︷ ︸
1×N

×



e−jψ1 0 . . . . . . . . . 0

0 e−jψ2 0
. . . . . . 0

... 0
. . . . . . . . .

...
...

. . . . . . e−jψn
. . .

...
...

. . . . . . . . . . . .
...

0 . . . . . . . . . 0 e−jψN


︸ ︷︷ ︸

N×N

(42)

[
hHr ΦN

]
=
[
h∗r1e

−jψ1 , . . . , h∗rne
−jψn , . . . , h∗rNe

−jψN
]︸ ︷︷ ︸

1×N

(43)

• Multiply the result of the previous operation by HH
m,n:

[
hHr ΦNHH

mn

]
=
[
h∗r1e

−jψ1 , . . . , h∗rne
−jψn , . . . , h∗rNe

−jψN
]︸ ︷︷ ︸

1×N

×



h∗11 h∗21 . . . . . . . . . h∗M1

h∗12 h∗22
. . . . . . . . . h∗M2

...
. . . . . . . . . . . .

...
...

. . . . . . H∗
mn

. . .
...

...
. . . . . . . . . . . .

...
h∗1N . . . . . . . . . . . . h∗MN


︸ ︷︷ ︸

N×M

(44)

[
hHr ΦNHH

mn

]
=
[∑N

n=1 h
∗
rne

−jψnh∗1n,
∑N
n=1 h

∗
rne

−jψnh∗2n, . . . ,
∑N
n=1 h

∗
rne

−jψnh∗MN

]
︸ ︷︷ ︸

1×M

(45)

• Multiply the result of the previous operation by IRS1 phase shift reflection matrix ΦM :

[
hHr ΦNHH

mnΦM

]
=
[
hHr ΦNHH

mn

]︸ ︷︷ ︸
1×M

×



e−jη1 0 . . . . . . . . . 0

0 e−jη2 0
. . . . . . 0

... 0
. . . . . . . . .
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. . . . . . e−jηm
. . .
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. . . . . . . . . . . .
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
︸ ︷︷ ︸

M×M

(46)

[
hHr ΦNHH

mnΦM

]
=

[∑N
n=1 h

∗
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n=1 h

∗
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−jψnh∗2n, . . . ,
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∗
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−jψnH∗
MN

]
︸ ︷︷ ︸

1×M

×
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... 0
. . . . . . . . .
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. . .
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
︸ ︷︷ ︸

M×M

(47)
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[
hHr ΦNHH

mnΦM

]
=
[∑M

m=1

∑N
n=1 h

∗
rne

−jψnH∗
mne

−jηm
]

︸ ︷︷ ︸
1×M

(48)

• Multiply the result of the previous operation by the Tx channel of user K hHt,k:

[
hHr ΦNHH

mnΦMhHt,k
]
=
[∑M

m=1

∑N
n=1 h

∗
rne

−jψnH∗
mne

−jηm
]

︸ ︷︷ ︸
1×M

×


h∗t,k,1
h∗t,k,2

...
h∗t,k,M


︸ ︷︷ ︸

M×1

(49)

hHr ΦNHH
mnΦMhHt,k =

M∑
m=1

N∑
n=1

h∗rne
−jψnH∗

mne
−jηmh∗t,km (50)

hHr ΦNHH
m,nΦMhHt,k =

M∑
m=1

N∑
n=1

|hrn|e−jϕrne−jψn |Hmn|e−jϕmne−jηm |ht,km|e−jϕt,km (51)

hHr ΦNHH
mnΦMhHt,k =

M∑
m=1

N∑
n=1

|ht,km||Hmn||hrn|e−j(ϕt,km+e−jηm+e−jϕmn+e−jψn+ϕrn) (52)

• From the obtained result we can deduce that the total received signal power for each Txk at the Rx can be written as
follows:

P
(k)
Rx =

∣∣∣√Lτ ,ke
−jΩ3hHr ΦNHH

mnΦMhHt,ke
−jΩk

∣∣∣2 Pt,
= |
√
Lτ ,k

M∑
m=1

N∑
n=1

|ht,km||Hmn||hrn|e−j(φtkm+ηm+φmn+ψn+φrn+Ωk+Ω3))|2Pt (53)
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