
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Reproducibility of Experiments achieved by TinyRCE / Carra, Alessandro; Pisani, Andrea; Pau, Danilo. - (2023).
[10.36227/techrxiv.24163929.v1]

Original

On the Reproducibility of Experiments achieved by TinyRCE

Publisher:

Published
DOI:10.36227/techrxiv.24163929.v1

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2985327 since: 2024-01-23T16:18:10Z

Experiment Reproducibility ___

On the Reproducibility of Experiments achieved by TinyRCE

Danilo Pau1*, Andrea Pisani1**, and Alessandro Carra1

1 System Research and Applications, STMicroelectronics Italia, Via Paracelso 20, 20864 Agrate Brianza, MB, Italy

* Fellow, IEEE and AAAIA

** Member, IEEE

Abstract—TinyRCE is a hyperspherical classifier aimed at Continual Learning On-Tiny-Devices, a challenging task in
which a Machine Learning model is required to learn from continuous streams of data while being directly installed on
a (tiny) device with limited computational resources. The classifier has so far been applied to several use cases,
including Human Activity Recognition, Ball Bearing Anomaly Classification, Keyword Spotting and Image Classification.
The proposed work in this paper focuses on the reproducibility of TinyRCE’s experimental results already published on
other papers. This to prove that all the published results are quantitatively reproducible. All the experiments have been
executed on two independent computing machines to profile the impact on accuracy of the computations. As the
outcomes are matching, the experimental reproducibility of TinyRCE’s accuracy over all the use cases has been
positively verified.

Index Terms—Experimental Reproducibility, Hyperspherical Classifier, Image Classification, Keyword Spotting, Restricted Coulomb
Energy Classifier, TinyML, Visual Wake Words.

I. INTRODUCTION

In the context of Machine Learning (ML), the complexity of

problems that modern models can solve is steadily growing. Model

complexity, in terms of memory footprint and required computational

power, is unfortunately steadily growing as well. Thus, deploying ML

on the Edge, i.e. on low-power Internet of Things (IoT) devices, is a

challenging task [1]. The TinyML Foundation*, a growing community

of research groups and tech companies, was established to foster the

development of low-complexity ML technologies, including

hardware, software, tools and new models. These models are meant

to solve their targeted problems accurately, and also to be deployable

on Edge devices such as microcontrollers (MCU) and/or sensors.

Currently, the majority of TinyML models are trained on the Cloud

[2] or on a computer that is equipped with a powerful graphical

processing unit (GPU) in a supervised fashion, and then deployed on

the target MCU or sensor for the inference phase only. On-Tiny-

Device Learning models are instead capable of being trained directly

on the target device, in real time w.r.t the acquisition of data [3]. Thus,

their model complexity estimations must include the training phase as

well.

Continual or Incremental Learning (CL) [4] is a branch of ML

where the source of information is a continuous stream of data. In

such context, a learning agent needs to neverendingly adapt to

incoming information.

TinyRCE is a Hyperspherical Classifier targeted at the execution of

On-Tiny-Device CL. It has been tested on several devices and use

Corresponding author: D. Pau (danilo.pau@st.com).

cases. In particular, it was tested over CL workflows regarding Human

Activity Recognition (HAR) and Ball Bearing Anomaly

Classification (BBAC) in [5], while in [6] it was tested against

MLCommons’** standard benchmark networks over Keyword

Spotting (KWS) and Image Classification (IC).

The proposed work demonstrates that the results claimed in [5] and

[6] are fully reproducible: in fact, the tests were executed on two

different machines, yielding to the same results.

The problem this work was set to solve is described in Section II;

Section III explains the experimental structure, while the results are

listed and discussed in Section IV. Finally, Section V draws several

conclusions and lists a few potential future developments.

II. PROBLEM STATEMENT

The experiments this work describes targeted the following

question:

‘Are the experimental results related to TinyRCE fully

reproducible regardless of the hardware on which the programs are

executed?’

Reproducibility is the cornerstone of the scientific method’s

reliability: when experiments can be repeated with consistent results

not only are the initial findings validated, but, most importantly, the

experiment’s hypotheses are verified. Furthermore, any

incongruences found in the result may lead to the identification of

potential errors or biases. Thus, testing any model for reproducibility

is of paramount importance.

* https://www.tinyml.org/
** https://mlcommons.org/en/

https://www.tinyml.org/
https://mlcommons.org/en/

III. STRUCTURE OF THE EXPERIMENT

TinyRCE’s learning algorithm has been coded in a Python class.

Each experimental use case (HAR, BBAC, KWS, and IC) had its own

separate directory, complete with Python scripts for dataset

preprocessing, feature extraction, and training/testing workflows. All

the experiments were run using the same Conda environment, which

included several open Python libraries, installed using pip. Python

version 3.9.12 was used, along with version 2.12.0 of TensorFlow.

The following is a list of the included libraries:

• Matplotlib;

• NumPy;

• TensorFlow;

• TensorFlow Datasets;

• CuPy;

• Tqdm;

• Scikit Learn;

• Bayesian Optimization (exact name: bayesian-optimization);

• Pandas;

• Seaborn;

• KerasCV.

The installation of the libraries triggered the automatic installation

of their dependencies, as well. As the installation of dependencies is

an automated process, they are not included in the list.

The experiments were run independently on two different Linux

workstations, codenamed W1 and W2. Details on the specifications

of these workstations, including processor model, provider, clock

frequency, RAM and Flash memories, and GPU model and provider,

as well as operative system (OS) version, are provided in Table 1.

Table 1. Property comparison between workstations.

Property W1 W2

Linux Version Ubuntu 20.04 Ubuntu 22.04

CPU model Intel® Core™ i7-

6700

Intel® Xeon®

Silver 4114

CPU cores 8 20

CPU frequency 3.40 GHz 2.20 GHz

GPU model NVIDIA Quadro

P400

NVIDIA Quadro

RTX 4000

RAM capacity 16.0 GiB 32.0 GiB

Flash capacity 1.00 TB 1.00 TB

IV. RESULTS

The experimental results categorized by use case are reported in

this section. Please refer to [5], [6] for a detailed description of the

performed experiments.

A. HAR

HAR experiments were performed over two different datasets

(SHL [7] and PAMAP2 [8]). Both involved simulating a continuous

data stream. The Feature Extractor (FE) was a custom-made Extreme

Learning Machine (ELM) based on a Convolutional Neural Network

(CNN) topology. Classes were presented sequentially with a train-test

split of 20%-80%, the opposite of the classical 80%-20% one adopted

by supervised learning. The maximum number of performed training

epochs was 6. Results are reported in Table 2. As there was no testing

apart from the CL one, test set accuracy was not measured.

Table 2. Results for HAR experiments.

Dataset Avg single class accuracy %

 W1 W2

SHL 99.62 99.51

PAMAP2 91.51 90.91

B. BBAC

The BBAC experiments involved the CWRU [9] dataset. All other

experimental conditions were equal to those reported in section a.

Results are reported in Table 3.

Table 3. Results for BBAC experiments.

Dataset Avg single class accuracy %

 W1 W2

CWRU 95.14 95.68

C. KWS

The KWS experiments were performed over the Speech

Commands v2 [10] dataset. After a preprocessing pipeline that

transforms the raw audio data into Mel Frequency Cepstral

Coefficients (MFCC), the data is fed into a CNN FE, which is an off-

the-shelf Depthwise-Separable CNN (DS-CNN), trained for 36

epochs. In this context, TinyRCE has been tested for both Continual

and K-Fold Learning. In CL, a 20%-80% train-test split has been used,

just like in the previous experiments. In K-Fold Learning, the dataset

was divided into 5 folds. The results achieved by TinyRCE have been

compared to those of a SoftMax classifier. All said results are reported

in Table 4, where non-matching results are highlighted in bold.

Table 4. Results for KWS experiments.

Classifier Learning

method

Avg single class

accuracy %

Test set

accuracy %

 W1 W2 W1 W2

TinyRCE CL 95.25 95.25 89.49 89.49

TinyRCE K-Fold - - 74.57 87.47

SoftMax CL 17.01 34.52 4.94 27.71

SoftMax K-Fold - - 97.16 97.16

The mismatch between results in the experiments involving

TinyRCE and K-Fold learning have several possible causes, involving

most likely the installed versions of NumPy, the interaction between

the NumPy library and the workstations’ OS versions, or some

difference in the exploitation of hardware-level algorithm

optimizations. Nevertheless, there is evidence backing the claim that

the experiment is reproducible: in workstation W1, TinyRCE showed

identical results to those obtained in W2 for all folds except the first

one, where it scored a lower accuracy, for reasons, as mentioned, yet

to be fully understood.

The mismatch between results involving SoftMax and CL were

caused by the random initialization of weights in the SoftMax layer,

which brought to different results over the singular experiments.

When repeating the experiments multiple times, the averages of the

obtained results were the same for both workstations: 6.22% for test

set accuracy and 14.22% for average single class accuracy.

D. IC

The IC experiments were performed over the CIFAR-10[11]

dataset. Images were encoded as NumPy matrices and fed to an off-

the-shelf FE based on ResNet-v1, which had been trained for 500

epochs. For CL, TinyRCE has also undergone a process of Bayesian

Hyperparameter Optimization in this case. A detailed description of

the hyperparameters that were used can be found in [6]. Said

hyperparameters included the train-test split, which was set to 57%-

43%. Once again, the results were compared to those obtained by a

SoftMax classifier. All results are reported in Table 5.

Table 5. Results for IC experiments.

Classifier Learning

method

Avg single class

accuracy %

Test set accuracy

%

 W1 W2 W1 W2

TinyRCE CL 87.17 87.16 78.50 78.50

SoftMax CL 100.0 100.0 10.0 10.0

V. CONCLUSIONS AND FUTURE WORKS

In this work, the reproducibility of the experiments regarding

TinyRCE has been verified. All use cases have been tested on two

separate and independent workstations, and the results that have been

achieved highlight that the experiments were fully reproducible, given

the same code.

Future works regarding TinyRCE will investigate improvements in

the FEs and experimentation over other use cases.

REFERENCES

[1] N. Kukreja et al., “Training on the Edge: The why and the how,” ArXiv Distrib.

Parallel Clust. Comput., Feb. 2019.

[2] F. Samie, L. Bauer, and J. Henkel, “From Cloud Down to Things: An Overview

of Machine Learning in Internet of Things,” IEEE Internet Things J., vol. 6, no.

3, pp. 4921–4934, Jan. 2019, doi: 10.1109/jiot.2019.2893866.

[3] Danilo Pau and Prem Kumar Ambrose, “Automated Neural and On-Device

Learning for Micro Controllers,” 2022 IEEE 21st Mediterr. Electrotech. Conf.

MELECON, Jun. 2022, doi: 10.1109/melecon53508.2022.9843050.

[4] M. Delange et al., “A continual learning survey: Defying forgetting in

classification tasks.,” IEEE Trans. Pattern Anal. Mach. Intell., no. 1, pp. 1–1,

Sep. 2019, doi: 10.1109/tpami.2021.3057446.

[5] Danilo Pau, Prem Kumar Ambrose, Fabrizio Maria Aymone, and Andrea Pisani,

“TinyRCE: Forward Learning under Tiny Constraints,” presented at the IEEE

MetroXRAINE 2023, Milan, Oct. 2023.

[6] D. P. Pau, A. Pisani, F. M. Aymone, and G. Ferrari, “TinyRCE: Multi Purpose

Forward Learning for Resource Restricted Devices,” IEEE Sens. Lett., pp. 1–4,

2023, doi: 10.1109/LSENS.2023.3307119.

[7] H. Gjoreski et al., “The University of Sussex-Huawei Locomotion and

Transportation Dataset for Multimodal Analytics With Mobile Devices,” IEEE

Access, vol. 6, pp. 42592–42604, Jul. 2018, doi: 10.1109/access.2018.2858933.

[8] “Time Series Models - PAMAP2 DataSet.”

https://kaggle.com/code/avrahamcalev/time-series-models-pamap2-dataset

(accessed Feb. 10, 2023).

[9] “Bearing Data Center | Case School of Engineering | Case Western Reserve

University,” Case School of Engineering, Aug. 05, 2021.

https://engineering.case.edu/bearingdatacenter (accessed Feb. 10, 2023).

[10] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary Speech

Recognition,” 2018, doi: 10.48550/ARXIV.1804.03209.

[11] “CIFAR-10 and CIFAR-100 datasets.” http://www.cs.toronto.edu/~kriz/cifar.html

(accessed Mar. 07, 2023).

