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Abstract—TinyRCE is a hyperspherical classifier aimed at Continual Learning On-Tiny-Devices, a challenging task in 
which a Machine Learning model is required to learn from continuous streams of data while being directly installed on 
a (tiny) device with limited computational resources. The classifier has so far been applied to several use cases, 
including Human Activity Recognition, Ball Bearing Anomaly Classification, Keyword Spotting and Image Classification. 
The proposed work in this paper focuses on the reproducibility of TinyRCE’s experimental results already published on 
other papers. This to prove that all the published results are quantitatively reproducible. All the experiments have been 
executed on two independent computing machines to profile the impact on accuracy of the computations. As the 
outcomes are matching, the experimental reproducibility of TinyRCE’s accuracy over all the use cases has been 
positively verified. 

 
Index Terms—Experimental Reproducibility, Hyperspherical Classifier, Image Classification, Keyword Spotting, Restricted Coulomb 
Energy Classifier, TinyML, Visual Wake Words. 

 
 

I. INTRODUCTION 

In the context of Machine Learning (ML), the complexity of 

problems that modern models can solve is steadily growing. Model 

complexity, in terms of memory footprint and required computational 

power, is unfortunately steadily growing as well. Thus, deploying ML 

on the Edge, i.e. on low-power Internet of Things (IoT) devices, is a 

challenging task [1]. The TinyML Foundation*, a growing community 

of research groups and tech companies, was established to foster the 

development of low-complexity ML technologies, including 

hardware, software, tools and new models. These models are meant 

to solve their targeted problems accurately, and also to be deployable 

on Edge devices such as microcontrollers (MCU) and/or sensors. 

Currently, the majority of TinyML models are trained on the Cloud 

[2] or on a computer that is equipped with a powerful graphical 

processing unit (GPU) in a supervised fashion, and then deployed on 

the target MCU or sensor for the inference phase only. On-Tiny-

Device Learning models are instead capable of being trained directly 

on the target device, in real time w.r.t the acquisition of data [3]. Thus, 

their model complexity estimations must include the training phase as 

well. 

Continual or Incremental Learning (CL) [4] is a branch of ML 

where the source of information is a continuous stream of data. In 

such context, a learning agent needs to neverendingly adapt to 

incoming information. 

TinyRCE is a Hyperspherical Classifier targeted at the execution of 

On-Tiny-Device CL. It has been tested on several devices and use 
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cases. In particular, it was tested over CL workflows regarding Human 

Activity Recognition (HAR) and Ball Bearing Anomaly 

Classification (BBAC) in [5], while in [6] it was tested against 

MLCommons’** standard benchmark networks over Keyword 

Spotting (KWS) and Image Classification (IC). 

The proposed work demonstrates that the results claimed in [5] and 

[6] are fully reproducible: in fact, the tests were executed on two 

different machines, yielding to the same results. 

The problem this work was set to solve is described in Section II; 

Section III explains the experimental structure, while the results are 

listed and discussed in Section IV. Finally, Section V draws several 

conclusions and lists a few potential future developments. 

II. PROBLEM STATEMENT 

The experiments this work describes targeted the following 

question: 

‘Are the experimental results related to TinyRCE fully 

reproducible regardless of the hardware on which the programs are 

executed?’ 

Reproducibility is the cornerstone of the scientific method’s 

reliability: when experiments can be repeated with consistent results 

not only are the initial findings validated, but, most importantly, the 

experiment’s hypotheses are verified. Furthermore, any 

incongruences found in the result may lead to the identification of 

potential errors or biases. Thus, testing any model for reproducibility 

is of paramount importance. 

* https://www.tinyml.org/ 
** https://mlcommons.org/en/ 

https://www.tinyml.org/
https://mlcommons.org/en/


 

 

III. STRUCTURE OF THE EXPERIMENT 

TinyRCE’s learning algorithm has been coded in a Python class. 

Each experimental use case (HAR, BBAC, KWS, and IC) had its own 

separate directory, complete with Python scripts for dataset 

preprocessing, feature extraction, and training/testing workflows. All 

the experiments were run using the same Conda environment, which 

included several open Python libraries, installed using pip. Python 

version 3.9.12 was used, along with version 2.12.0 of TensorFlow. 

The following is a list of the included libraries: 

• Matplotlib; 

• NumPy; 

• TensorFlow; 

• TensorFlow Datasets; 

• CuPy; 

• Tqdm; 

• Scikit Learn; 

• Bayesian Optimization (exact name: bayesian-optimization); 

• Pandas; 

• Seaborn; 

• KerasCV. 

The installation of the libraries triggered the automatic installation 

of their dependencies, as well. As the installation of dependencies is 

an automated process, they are not included in the list. 

The experiments were run independently on two different Linux 

workstations, codenamed W1 and W2. Details on the specifications 

of these workstations, including processor model, provider, clock 

frequency, RAM and Flash memories, and GPU model and provider, 

as well as operative system (OS) version, are provided in Table 1. 

 

Table 1. Property comparison between workstations. 

Property W1 W2 

Linux Version Ubuntu 20.04 Ubuntu 22.04 

CPU model Intel® Core™ i7-

6700 

Intel® Xeon® 

Silver 4114 

CPU cores 8 20 

CPU frequency 3.40 GHz 2.20 GHz 

GPU model NVIDIA Quadro 

P400 

NVIDIA Quadro 

RTX 4000 

RAM capacity 16.0 GiB 32.0 GiB 

Flash capacity 1.00 TB 1.00 TB 

IV. RESULTS 

The experimental results categorized by use case are reported in 

this section. Please refer to [5], [6] for a detailed description of the 

performed experiments. 

A. HAR 

HAR experiments were performed over two different datasets 

(SHL [7] and PAMAP2 [8]). Both involved simulating a continuous 

data stream. The Feature Extractor (FE) was a custom-made Extreme 

Learning Machine (ELM) based on a Convolutional Neural Network 

(CNN) topology. Classes were presented sequentially with a train-test 

split of 20%-80%, the opposite of the classical 80%-20% one adopted 

by supervised learning. The maximum number of performed training 

epochs was 6. Results are reported in Table 2. As there was no testing 

apart from the CL one, test set accuracy was not measured. 

 

Table 2. Results for HAR experiments. 

Dataset Avg single class accuracy %  

 W1 W2 

SHL 99.62 99.51 

PAMAP2 91.51 90.91 

B. BBAC 

The BBAC experiments involved the CWRU [9] dataset. All other 

experimental conditions were equal to those reported in section a. 

Results are reported in Table 3. 

 

Table 3. Results for BBAC experiments. 

Dataset Avg single class accuracy %  

 W1 W2 

CWRU 95.14 95.68 

C. KWS 

The KWS experiments were performed over the Speech 

Commands v2 [10] dataset. After a preprocessing pipeline that 

transforms the raw audio data into Mel Frequency Cepstral 

Coefficients (MFCC), the data is fed into a CNN FE, which is an off-

the-shelf Depthwise-Separable CNN (DS-CNN), trained for 36 

epochs. In this context, TinyRCE has been tested for both Continual 

and K-Fold Learning. In CL, a 20%-80% train-test split has been used, 

just like in the previous experiments. In K-Fold Learning, the dataset 

was divided into 5 folds. The results achieved by TinyRCE have been 

compared to those of a SoftMax classifier. All said results are reported 

in Table 4, where non-matching results are highlighted in bold. 

 

Table 4. Results for KWS experiments. 

Classifier Learning 

method 

Avg single class 

accuracy %  

Test set 

accuracy % 

  W1 W2 W1 W2 

TinyRCE CL 95.25 95.25 89.49 89.49 

TinyRCE K-Fold - - 74.57 87.47 

SoftMax CL 17.01 34.52 4.94 27.71 

SoftMax K-Fold - - 97.16 97.16 

The mismatch between results in the experiments involving 

TinyRCE and K-Fold learning have several possible causes, involving 

most likely the installed versions of NumPy, the interaction between 

the NumPy library and the workstations’ OS versions, or some 

difference in the exploitation of hardware-level algorithm 

optimizations. Nevertheless, there is evidence backing the claim that 

the experiment is reproducible: in workstation W1, TinyRCE showed 

identical results to those obtained in W2 for all folds except the first 

one, where it scored a lower accuracy, for reasons, as mentioned, yet 

to be fully understood. 

The mismatch between results involving SoftMax and CL were 

caused by the random initialization of weights in the SoftMax layer, 

which brought to different results over the singular experiments. 



 

 

When repeating the experiments multiple times, the averages of the 

obtained results were the same for both workstations: 6.22% for test 

set accuracy and 14.22% for average single class accuracy. 

D. IC 

The IC experiments were performed over the CIFAR-10[11] 

dataset. Images were encoded as NumPy matrices and fed to an off-

the-shelf FE based on ResNet-v1, which had been trained for 500 

epochs. For CL, TinyRCE has also undergone a process of Bayesian 

Hyperparameter Optimization in this case. A detailed description of 

the hyperparameters that were used can be found in [6]. Said 

hyperparameters included the train-test split, which was set to 57%-

43%. Once again, the results were compared to those obtained by a 

SoftMax classifier. All results are reported in Table 5. 

 

Table 5. Results for IC experiments. 

Classifier Learning 

method 

Avg single class 

accuracy %  

Test set accuracy 

% 

  W1 W2 W1 W2 

TinyRCE CL 87.17 87.16 78.50 78.50 

SoftMax CL 100.0 100.0 10.0 10.0 

V. CONCLUSIONS AND FUTURE WORKS 

In this work, the reproducibility of the experiments regarding 

TinyRCE has been verified. All use cases have been tested on two 

separate and independent workstations, and the results that have been 

achieved highlight that the experiments were fully reproducible, given 

the same code. 

Future works regarding TinyRCE will investigate improvements in 

the FEs and experimentation over other use cases. 
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