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On-Device Learning
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Abstract—The challenge of deploying learning workloads of neural networks on ultra-low power tiny devices has recently
attracted several machine learning researchers in the TinyML community. A typical on-device learning session processes
real-time streams of data acquired by heterogeneous sensors. In such a context, this paper proposes TinyRCE, a forward-
only learning approach based on a hyperspherical classifier, which can be deployed on microcontrollers and potentially
integrated into the sensor package. TinyRCE is fed with compact features extracted by a convolutional neural network,
which can be trained with BP or can be an extreme learning machine with randomly initialized weights. A forget mechanism
has been introduced to discard useless neurons from the its hidden layer, since they can become redundant over the
time. TinyRCE has been evaluated with a new interleaved learning and testing data protocol to mimic a forward on-tiny-
device workload. It has been tested over the standard MLCommons Tiny datasets used for Keyword Spotting and Image
Classification, and against the respective benchmarks. 95.25% average accuracy was achieved over the former classes
(vs. 91.49%) and 87.17% over the latter classes (vs. 100%, caused by overfitting). In terms of complexity, TinyRCE
requires 22× less MACC than SoftMax (with 36 epochs) on the former, while it requires 5× more MACC than SoftMax
(with 500 epochs) for the latter. Classifier complexity and memory footprint are negligible w.r.t. the Feature Extractor, for
training and inference workloads.

Index Terms—Extreme Learning Machines, Feature Extraction, Hyper-Spherical Classifier, Keyword Spotting, On-Tiny-Device Learning,
TinyML.

I. INTRODUCTION

Supervised Artificial intelligence (AI) and Tiny Machine Learning
(Tiny ML) nowadays are widely used approaches. [1] benchmarked
multiple Deep Neural Networks (DNNs or NNs) reporting accuracy,
memory usage, complexity, and latency. As the complexity of the
DNNs increased, by addressing more challenging problems, the DNNs
required greater model size, bigger memory and more computational
capabilities. The deployment of complex DNNs on tiny devices and
their use to process sensor-generated data streams can also be affected
by a decrease in inference accuracy w.r.t. the training phase [2]. This
is due to numerous causes. The consequence is that continuous
updates and retraining of the DNNs are required over the time.
The de-facto standard training method, used by many deep learning
frameworks [1], is based on backpropagation (BP) and stochastic
gradient descent (SGD). Retraining with such a complex algorithm
requires powerful computational and storage assets. Unfortunately,
when using tiny devices, Continuous Learning (CL) is very costly on
them [3]. Moreover, BP is a type of sequential learning which can be
heavily affected by catastrophic forgetting (CF) [4] compromising
the CL objectives. Thus, most tiny devices push sensors data to the
cloud, which is capable to run highly asset-demanding AI workloads.
Although cloud-based solutions [5] feature more resources than the
tiny devices, they still account for many disadvantages. Privacy,
security of user data, latency, and power consumption are big concerns
for the TinyML community.

Therefore, there is the opportunity to reconsider supervised learning
procedures and extend the state of the art beyond BP by conceiving new
on-tiny-device learning algorithms. An approach to on-tiny-device
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CL without using BP is proposed by this paper, which is organized as
follows: Section II introduces the problem statement and requirements
to be fulfilled by the solution; Section III, reviews the existing
related works and reports their limitations; Section IV summarizes
the datasets used to shape the case studies for experimenting the
learning and testing workloads; Section V explains the proposed
solution, highlights differences with respect to the previous works and
describes how the On-Device Learning (ODL) field was approached;
the experimental results are reported in Section VI; Section VII
analyzes the complexity of the proposed solution with respect to its
deployment on microcontrollers (MCUs), followed by the conclusions
and future works in Section VIII.

II. PROBLEM STATEMENT AND REQUIREMENTS

The research question set by this paper is: can incremental learning
of multiple categories happen, totally on-line without CF, without
K-fold BP and still be deployable on tiny devices? Therefore, the
requirements, to solve such a problem, were set as shown in Table 1.
They shall be fulfilled by the proposed or existing (if any) solution.

TABLE 1. Requirements for any Tiny ODL solution.

No. Requirements
1. Real-time forward learning.
2. No BP.
3. Deployable on tiny MCU, optionally in the sensor fitting into the

embedded memory.
4. Capable of performing multi-class classification.
5. Capable of interleaving learning with inference workloads.
6. Requiring the minimum temporary storage of sensor data.
7. Featuring limited latency to run inference workloads.
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III. RELATED WORKS

A. On-device learning and Extreme Learning Machines

CL DNNs aim to learn different tasks without retraining from
scratch nor forgetting previous knowledge. CF [4] is the most common
issue affecting the performances of CL models. A related issue
affecting Tiny ODL models is concept drift (CD) [6]. [7] reported
a state-of-the-art review for both ODL and ML on tiny devices and
summarized the importance of the challenges faced.

Extreme Learning Machines (ELMs) are DNNs with randomly
initialized weights. Only the ELMs’ final dense layer is optimized
through linear methods. [8] introduced the concept of ELM on edge
devices. ELM was introduced by [9] for regression and multiclass
classification applications. [10] proposed a survey for on-line ELM.

B. Introduction to RCE and Hyperspherical Classifiers

Restricted Coulomb Energy (RCE) classifiers [11] are a branch of
hyper-spherical classifiers [12]. They are composed of three layers:
input, hidden, and output. Hidden neurons are dynamically initialized
hyperspheres defined by center points that are samples of the feature
space and a default radius. Each hidden neuron is fully connected
to the neurons of the input layer, while it is connected to only
one output neuron. New hidden neurons are instantiated during the
learning phase if some input feature vectors do not fall inside existing
hyperspheres, according to a pairwise metric, usually the Euclidean
distance. Multiple hidden neurons could ambiguously fire at once.
The radius of hidden neurons that misfire and lead to incorrect
predictions is reduced so that the corresponding hyperspheres cease
to contain the misclassified inputs. Should a hidden neuron feature
an very small radius, it can be considered redundant and therefore be
removed. Unfortunately, in a naive implementation, that would not
happen. [13] was a DNN to segment hands appearing into images.
The skin-colored pixels were classified and segmented using the RCE.
A new approach to reduce the neuron’s radius has been introduced
to lower the processing. However, it did not face how to remove the
redundant neurons. [14] proposed a RCE inductive classifier, which
was more efficient than other similar approaches. All the above
approaches were not meant for MCU deployment. They adopted the
traditional offline training methods and did not perform ODL on
MCU.

C. MLCommons Benchmark for Keyword Spotting and
Image Classification

The MLPerf Tiny Benchmark [15] is a collection of TinyML
benchmark models. They were created thanks to the collaborative
effort of more than 50 players, spanning from leading companies
to academic research groups. It focuses on 4 use cases: Keyword
Spotting (KWS), Visual Wake Words (VWW), Image Classification
(IC) and Anomaly Detection (AD). In particular, the KWS model is
the Depth-wise Separable Convolutional Neural Network (DS-CNN),
92.2% accurate over the Speech Commands v2 dataset [16], within
36 epochs, with BP. The IC benchmark is an implementation of
ResNetv1 [17], 86.5% accurate over CIFAR-10 [18] dataset within
500 epochs.

IV. DATASETS

KWS and IC datasets shaped the case studies considered by this
work. Speech Commands v2 [16] is a widely used Speech Recognition
dataset that represents the former use case. It is available under
the Creative Commons BY license, and is part of the TensorFlow
Datasets1 library. It provides 105,829 audio recordings of single word
utterances, recorded by volunteers with their own devices and shared
online in a WAV format with a sampling rate of 16 kHz. They are
divided into training (85,511 samples), validation (10,102) and testing
(4,890) subsets. The data is divided in 12 classes: 10 are associated
with relevant keywords. The two remaining ones are associated with
silent recordings and non-relevant keywords labeled as ‘Unknown’.
CIFAR-10 [18] is a dataset of low-res (32px×32px) RGB images
collected from the Internet. It consists of 60,000 images of vehicles
and animals divided in 10 classes (6,000 images per class), encoded
as NumPy matrices. The dataset is divided into 5 training batches
and 1 testing batch, of 10,000 images each. One task of this work
was to compare the MLCommons/Tiny benchmark neural networks
[15]. Therefore, the same pre-processing pipeline was used. In order
to mimic the incremental introduction of new classes over time, the
matrices were rearranged by label and sequentially presented to the
classifier, using 20% of the data of each class as training samples
and 80% as testing samples.

V. PROPOSED ODL ALGORITHM

Tiny Restricted Coulomb Energy (TinyRCE) NN is a hyperspherical
classifier variant proposed by this work. The raw data is input to
the CNN Feature Extractor (FE). Convolution operations into CNNs
extracts abstracted features from raw data tensors. Thus, a CNN
topology stripped of its final SoftMax layer is considered to be the
FE. It was trained offline, using BP. A random ELM-style initialization
for the FE was performed, and it impacted negatively the classifier’s
accuracy since it was not able to spatially separate features of
the different classes. The extracted features then fed the TinyRCE
classifier. For the KWS use case, the MLCommons benchmark DS-
CNN was adopted as FE after removing its classification layer. For
IC, the MLCommons benchmark ResNetv1 was used.

TinyRCE was designed to address all the requirements in Table
1. Only the hidden neurons of TinyRCE were optimized by the
ODL procedure. Data classes were presented sequentially to mimic
a CL set-up. TinyRCE adjusted its hidden and output layers by
processing the features extracted by the FE. CL and the dynamic
addition of new neurons into TinyRCE could quickly saturate the fixed
size of the MCU embedded memory if handled in an uncontrolled
way. Therefore, a culling mechanism was introduced. It worked by
assigning to each hidden neuron an unsigned 8 bits integer age value
and a floating point 32 bits reliability value. At time 𝑡0, said values
were set to 0 for each instantiated hidden neuron. The age value was
incremented by 1 every time a neuron fired. The reliability score
𝑠 𝑗 was updated accordingly to (1). Note that �̂�𝑡 represents a label
prediction done by the model for sample 𝑡, why 𝑦𝑡 represents the
true label of the same sample.

𝑠new
𝑗 =

{
𝑠old
𝑗 + 𝑅 𝑗−𝑑𝑖𝑠𝑡 (ℎ 𝑗 ,𝑥𝑡 )

𝑅 𝑗
if �̂�𝑡 = 𝑦𝑡

𝑠old
𝑗 − 𝑑𝑖𝑠𝑡 (ℎ 𝑗 ,𝑥𝑡 )

𝑅 𝑗
if �̂�𝑡 ≠ 𝑦𝑡 .

(1)

1https://www.tensorflow.org/datasets?hl=en
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In (1), the increment and decrement were different: the increment’s
numerator favored the correct predictions that involved inputs located
close to the hypersphere’s center instead of those involving inputs
located near its border. The decrement formula did the opposite. When
the feature fell inside the influence region of a hidden neuron 𝑗 that
matched the ground truth annotation, 𝑠 𝑗 was increased; otherwise,
decremented. This value enabled pruning of redundant neurons, which
was triggered if a threshold was exceeded. The threshold dependeded
on the maximum number of hidden neurons MCU could fit into its
memory. When pruning the redundant neurons, both the age score and
the reliability score were used. Neurons that were deemed redundant
were those with the least number of firings and the lowest reliability.

It is well known that hyper-spherical classifiers produce feature
spaces that overlap with each other’s classes. This implies to activate
simultaneously several hidden neurons associated with different
classes. Furthermore, at the end of the CL workflow the hyperspheres
associated with the last class dominated the feature space with respect
to the other classes’ hyperspheres, since they were exposed to the least
corrections over time. To avoid this issues, the dynamic instantiation
of the hyperspheres was modified w.r.t. the classic RCE algorithm.
Also, a method to make the model more robust to noise in the data
was introduced.

The dynamic instantiation of new hyperspheres was modified
as follows. If an input vector was positioned in a location of the
feature space not yet covered by any hypersphere, the radius of
the new hypersphere to instantiate (denoted by 𝑅∗) was determined
dynamically instead of being set by a user-defined standard value
𝑅: since the overlapping of hyperspheres with different labels led
to incorrect predictions, the model checked if the newly instantiated
hypersphere overlapped with other ones that were differently labeled.
If this was the case, then the radius of the new hypersphere was
set to the biggest possible value that caused no such an overlap.
Otherwise, the standard value was kept. This behavior is summarized
in (2), which defines 𝑅∗:

𝑅∗ =


𝑅 ∀ 𝑗 , 𝑑𝑖𝑠𝑡 (ℎ 𝑗 , 𝑥𝑡 ) > 𝑅

min
𝑗
(𝑑𝑖𝑠𝑡 (ℎ 𝑗 , 𝑥𝑡 )) − 𝑅 𝑗 otherwise.

(2)

Finally, to achieve better noise resilience, the implemented scoring
system also tied in to the neuron resizing policy. A hypersphere was
not supposed to be resized if its misfiring was caused by an data
outlier. An outlier was defined as a wrong prediction fired by a
hypersphere whose reliability score was in the first quartile among
all existing hyperspheres. Assuming the input was recognized as data
outlier, the misfiring of a hypersphere did not cause its resizing, only
the decrease of its reliability score.

In the case of IC, Bayesian Optimization [19] was applied to
find set of hyperparameters which maximised the testing accuracy.
The variables to optimize were; the standard radius 𝑅; the pruning
threshold; the train-test split used to divide the data; a growth law that
determined how 𝑅 would change from one class to the next during
CL, chosen among a constant function, a linear and an exponential
growth; a weight 𝑤 which was part of the target metric to optimize.
This target metric is described in (3), where acc𝑥 stands for accuracy,
and 𝑁 represents the number of classes.

score = acctest set − 𝑤 min{0, (0.9 − 1
𝑁

𝑁∑︁
𝑘=1

accclass 𝑘)} (3)

VI. EXPERIMENTS

For both KWS and IC, the FE produced 64-dimension features.
Randomly initialized versions performed poorly. On the contrary, the
off-the-shelf trained topologies from MLCommons python scripts
achieved well separated feature spaces.

TinyRCE proved to outperform the SoftMax over the ODL
procedure. For KWS, TinyRCE was 95.25% accurate (average on
tests) w.r.t. 91.49% of the SoftMax classifier trained with 36 epochs.
SoftMax performed very poorly (average accuracy 14.22%) if trained
using only 1 epoch w.r.t. TinyRCE. Over the standard test set, TinyRCE
performed comparably w.r.t. the benchmark network trained with BP.
For IC, SoftMax performed even worse: if trained with 500 epochs,
it totally overfit the training data, thus achieving 100% training
accuracy while performing as a random predictor if deployed on the
test set. On the contrary, TinyRCE’s average accuracy over the single
classes (87.17%) was closer to its accuracy on the scrambled test
set (78.5%). Histograms displaying the results for both use cases are
shown in fig. 1.

Fig. 1. Experimental results on KWS and IC.

VII. COMPLEXITY ANALYSIS FOR TINY DEVICES

Complexity was measured in Multiply and ACCumulate (MACC)
operations. The equations to estimate the complexity for TinyRCE’s
inference and learning phases are described in (4) and (5), respectively:

𝑀𝐴𝐶𝐶inference = ℎ × [(𝑛 × 5) + 10] (4)

ℎ is the number of hidden neurons, and 𝑛 is the dimensionality of the feature vectors;

𝑀𝐴𝐶𝐶learning = {ℎ × [(𝑛 × 5) + 10]} × (𝑁 × 𝐸). (5)

𝑁 is the number of training data, and 𝐸 is the number of epochs in the worst case.
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TABLE 2. Complexity Profiling and Memory Footprint Analysis for the
KWS use case.

Metrics
DS-CNN-
FE_BP

SoftMax
(1 epoch)

SoftMax
(36

epochs)
TinyRCE

MACC (M) Training 2.429E+5 3.494 125.8 5.643
Inference 2.664 9.480E-4 9.480E-4 3.960E-3

RAM (KiB) Training 866.3 64.0 64.0 64.0
Inference 64.0 64.0 64.0 64.0

FLASH
(KiB)

Inference 3.120 3.120 3.120 3.216

Inference
NUCLEO-
H743ZI2

- 38.05 38.05 38.10

time (ms)
B-U585I-
IOT02A

- 162.96 162.96 163.14

The complexity analysis was performed over two MCUs:
NUCLEO-H743ZI2 and B-U585I-IOT02A. The former runs at 480
MHz, with 1024 KiB of embedded RAM and 2048 KiB of embedded
FLASH memory, while the latter runs at 160 MHz, with 786 KiB
RAM and 2048 KiB FLASH embedded. About FEs, the analysis
consisted in evaluating the MACCs needed by each layer of the NN
for training and inference operations (e.g., forward pass, backward
pass). About the inference, RAM stored the activation buffers, while
Flash stored the trainable parameters. During the training phase
the parameters shall be continuously updated, so they are stored
in RAM. Hence, peak RAM utilization for all the topologies was
limited by the memory bottleneck imposed by the forward pass
through the frozen FEs. Total inference times were evaluated using
the STM32Cube.AI Developer Cloud2 service. For both KWS and
IC, the training of the FE with BP dominated complexity and memory
footprint. The difference between the two classifiers was marginal
due to the FE they had in common. About KWS, peak RAM was
866.3 KiB (estimated) for training and 64 KiB for inference. The
Flash memory required was 3.12 KiB for the DS-CNN and 3.216 KiB
for DS-CNN-FE_BP+TinyRCE. About IC, peak RAM was 455.12
KiB for training and 196.60 KiB for inference. The Flash memory
footprint was 2.68 KiB (estimated).

VIII. CONCLUSIONS AND FUTURE WORKS

This paper introduced TinyRCE, which performed forward-only
incremental classification on MCU. No BP was required, except for the
FE training. The FEs were off-the-shelf solutions from MLCommons
Tiny working group. A specific protocol for both training and testing
procedure was introduced, mimicking the streaming acquisition of
raw sensor data. TinyRCE proved to be more accurate than the
MLCommons benchmark models trained for multiple epochs on the
ODL training-testing workload. Complexity and memory footprint
were dominated by the offline-trained FEs. Future developments will
be focused on devising an ELM FE, in order to eliminate the BP
procedure applied to the FE. Further RAM and FLASH reduction
using low bit-depth features could ease the deployability into the
sensor itself. Also, new use cases regarding different data types (e.g.
time of flight) can be investigated.

2https://stm32ai-cs.st.com

TABLE 3. Complexity Profiling and Memory Footprint Analysis for the
IC use case.

Metrics
ResNet-

FE
SoftMax
(1 epoch)

SoftMax
(500

epochs)
TinyRCE

MACC (M) Training 92.75E+6 2.100 1,050.0 5,266.8
Inference 12.5 7.90E-4 7.90E-4 9.24E-2

RAM (KiB) Training 455.12 196.60 196.60 196.60
Inference 196.60 196.60 196.60 196.60

FLASH
(KiB)

Inference 2.600 2.600 2.600 2.680

Inference
NUCLEO-
H743ZI2

- 123.61 123.61 124.51

time (ms)
B-U585I-
IOT02A

- 527.03 527.03 530.86
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