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Abstract: In the context of TinyML, many research efforts have been devoted to designing forward
topologies to support On-Device Learning. Reaching this target would bring numerous advantages,
including reductions in latency and computational complexity, stronger privacy, data safety and
robustness to adversarial attacks, higher resilience against concept drift, etc. However, On-Device
Learning on resource constrained devices poses severe limitations to computational power and
memory. Therefore, deploying Neural Networks on tiny devices appears to be prohibitive, since
their backpropagation-based training is too memory demanding for their embedded assets. Using
Extreme Learning Machines based on Convolutional Neural Networks might be feasible and very
convenient, especially for Feature Extraction tasks. However, it requires searching for a randomly
initialized topology that achieves results as good as those achieved by the backpropagated model.
This work proposes a novel approach for automatically composing an Extreme Convolutional Feature
Extractor, based on Neural Architecture Search and Bayesian Optimization. It was applied to the
CIFAR-10 and MNIST datasets for evaluation. Two search spaces have been defined, as well as
a search strategy that has been tested with two surrogate models, Gaussian Process and Random
Forest. A performance estimation strategy was defined, keeping the feature set computed by the
MLCommons-Tiny benchmark ResNet as a reference model. In as few as 1200 search iterations, the
proposed strategy was able to achieve a topology whose extracted features scored a mean square
error equal to 0.64 compared to the reference set. Further improvements are required, with a target of
at least one order of magnitude decrease in mean square error for improved classification accuracy.
The code is made available via GitHub to allow for the reproducibility of the results reported in
this paper.

Keywords: Bayesian optimization; extreme learning machine; feature extraction; hyperparameter
optimization; neural architecture search; on-tiny-device learning; MLCommons Tiny

1. Introduction

In recent times, Machine Learning (ML) algorithms have improved remarkably in
both accuracy and, consequently, model complexity [1]. For this reason, deploying highly
accurate state-of-the-art ML models on tiny edge computing devices, such as microcon-
trollers (MCU) and sensors has become increasingly prohibitive. Thus, industry-leading
companies and worldwide-renowned research centers joined forces and created the TinyML
Foundation (www.tinyml.org (accessed on 23 October 2023)) in 2019. The foundation’s
purpose is to foster a vibrant community of hardware and software solutions developers to
facilitate the deployment of ML technologies on resource-restricted devices. Currently, the
most widely adopted strategy to deploy TinyML models on the edge is to compress, prune
and quantize complex models which have previously been trained on powerful computing
machines equipped with Graphical Processing Units (GPUs) or Tensor Processing Units
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(TPUs) by means of deep quantization [2] and other reduction techniques (e.g., structured
pruning [3]). Such compression significantly reduces the models’ requirements in terms of
both memory footprint and power consumption, with a marginal impact on their inference
accuracy, precision, and other performance metrics (e.g., MSE, mean square error, etc). The
hardware computational units used for training the models are usually integrated into the
Cloud infrastructure.

Training models on the latter, although well proven and commercially available, poses
several risks and limitations: in particular, data security and privacy are some of the major
sources of concern. In addition, the need for multiple re-trainings due to Concept Drift [4]
impacts the models’ latency and availability through time. A recent research topic, which
attracted many ML engineers, is On-Tiny-Device Learning (ODL), in which models are
deployed on tiny edge devices. Both training and inference phases are run on said devices,
potentially multiple times during their lifetime. Since ODL requires significantly low
model and data complexity from the start, it is challenging for ODL models to achieve
state-of-the-art accuracy compared to backpropagation [5].

In the context of ODL classification, specifically when dealing with data such as images
and audio tracks, a low-complexity model should compute a set of orthogonal features to
achieve satisfactory performance indicators. Convolutional Neural Networks (CNN) are
inherently capable of extracting such features thanks to the convolution operations they
embody [6]. Thus they work well as Feature Extractors (FEs); however, they are typically
too complex to be trained with backpropagation on device due to the large memory needed
to store activations [7,8]. An interesting solution to the problem of deploying CNN FEs for
ODL workflows, quite unexplored by the community to the best of the authors’ knowledge,
is provided by Extreme Learning Machines (ELMs). Starting from CNNs as the topology,
ELMs randomly initialize the weights of the CNN whose internal parameters are not
trained by means of backpropagation [9]. Their use has proved to be significantly beneficial
in terms of complexity reduction [10].

Accounting for the previously introduced context, this work proposes a novel au-
tomated methodology for devising sufficiently accurate ELM CNN FEs provided with a
dataset and a reference network, searching through a pre-defined search space by means of
Bayesian Optimization (BO). A search space is defined as all the possible NN topologies
that can be generated given a set of requirements that define the common characteristics of
the space. Having such FEs as part of an ML set-up would allow the whole classification
algorithm to be compatible with ODL requirements, at the expense of a one-time search
performed to exploit the Cloud or an off-line, powerful computing machine with “virtually”
unlimited assets. Two potential network topology spaces and two BO surrogate models,
namely Gaussian Processes (GPs) and Random Forests (RFs), have been investigated in
this paper.

The contents of the paper are structured as follows: Section 2 precisely defines the
problem at hand and the requirements that the solution must satisfy; Section 3 describes
some recent existing approaches aimed at solving similar problems; Section 4 provides
a detailed explanation of the experimental set-up; Section 5 reports the achieved results;
and finally, Section 6 draws insightful conclusions and describes how this work could
potentially be continued in the near future.

2. Problem Statement and Requirements

The following statement defines the problem that the proposed work attempts to
solve: “How to employ BO to automatically search and design a CNN FE featuring
randomly set parameters to extract robust features comparable to the ones generated by a
backpropagation trained reference FE?”.

This research aims, on a larger scale, to contribute to devising a fully capable ODL
model (intended to be composed by an FE and a classifier), with an equal or better accuracy
with respect to backpropagation training, which is free from requiring backpropagation and
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from the memory necessary for training all the parameters in the CNN FE. To the best of the
authors’ knowledge this objective is new in the context of the TinyML research community.

Table 1 summarizes the experimental setting considered in this study. Note that the
reasoning behind setting the target MSE to one, as illustrated in R3, stems from the concept
of the Peak Signal-to-Noise Ratio (PSNR). The PSNR is used as a quality measure to
compare co-decompressed or reconstructed images against their original versions. Its
formula is reported in Equation (1):

PSNR = 10 log10

(
R2

MSE

)
(1)

Table 1. List of requirements to be fulfilled by the solution proposed in this work.

Codename Requirement

R1 The proposed solution shall search and design an ELM CNN FE type topology.

R2
The devised ELM CNN FE shall generate features that can be compared with those
of a reference CNN which had been previously trained with backpropagation on a
given dataset.

R3 The mean square error (MSE) between the features mentioned in R2 shall be less
than or equal to one.

R4 The proposed solution shall employ BO.

R5 The proposed solution shall test at least two surrogate functions.

R6 The proposed solution shall be tested on at least two network topology spaces.

In Equation (1), R is the maximum fluctuation in the input image data type. In the
case of an 8 bit unsigned integer data type, R is 255. For RGB colored images, MSE is
computed separately for each color channel, and the average MSE over the three channels
is then considered within the PSNR formula. Assuming MSE = 1, PSNR is equal to 48 dB,
which corresponds to a qualitatively indistinguishable image with respect to its original
reference, as has been well known by image processing researchers since the 1980s [11].
Therefore, the MSE acceptability threshold has been set to one. Note that the PSNR metric
commonly involves a squared error, strongly highlighting the instances wherein said error
reaches its highest values, while using measures such as Mean Absolute Error (MAE) within
equation (1) would have a smoothing effect. Other studies, e.g., Bosse et al. [12], do, in fact,
apply MAE as a means of quality assessment when the opposite effect, i.e., a reduction in
the impact of outlier values, is required. Some even come to suggest that using MAE as
quality metric encourages blurry images [13]. Furthermore, the PSNR metric was chosen
to set a suitable MSE threshold, and using MSE as an error metric for the experiments had
already been established.

3. Related Works
3.1. Bayesian Optimization

Also known as Sequential Model Based (Bayesian) Optimization, BO is a sample
efficient, accurate global optimization strategy for black box, multi-extremal functions,
such as the NN training and validation process [14–17]. It is the de-facto standard in Au-
toML [18] and, more recently, AutoTinyML [19]. It is also well adopted at the industrial level
(e.g., Matlab (https://it.mathworks.com/help/stats/bayesian-optimization-algorithm.
html (accessed on 30 November 2023))).

The BO approach to parametric optimization originates from the work of Jonas
Močkus, who described the technique in a series of publications throughout the 1970s
and 1980s [20,21].

Garnett [14] describes BO as a philosophical approach to optimization problems, from
which a family of different algorithms have stemmed over the years. An optimization

https://it.mathworks.com/help/stats/bayesian-optimization-algorithm.html
https://it.mathworks.com/help/stats/bayesian-optimization-algorithm.html
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problem is defined as the systematic search within a quantitative domain for a point x∗

which globally maximizes an objective function f ∗, as shown in Equation (2):

x∗ ∈ argmax
x∈X

f (x). (2)

In such contexts, BO approaches rely on probability and Bayesian inference [22] to
reason about uncertain quantities within the optimization problem, including the objective
function itself.

Thus, the objective function is seen as a stochastic process. What is known and
assumed about the objective function is encoded within a probabilistic prior which applies
restrictions on the process itself. This prior will be iteratively shaped into a surrogate model,
i.e., an approximation of the unknown objective function, and it is often (but not always)
a Gaussian Process (GP). In the proposed work, both GP and Random Forest (RF) have
been tested as surrogate functions. A GP is a stochastic process which extends the concept
of multivariate Gaussian distribution to infinite dimensions. RF is an ensemble model
defined as a set of decision trees [23], and has been proven to be more computationally
efficient than GP [24], especially in contexts where some decision variables are discrete
or conditional, and when the number of total decision variables is high (greater than 20).
Examples of decision variables for NNs are: the learning rate (continuous); the number
of hidden layers, and the number of neurons per each hidden layer (discrete); if any of
the hidden layers are instantiated (conditional), etc. In such an example, the search space
would be tree structured.

At each iteration, an evaluation of the objective function is computed by sampling the
prior distribution at a given point x, which is chosen following the strategy that is defined
by the acquisition function. The acquisition function defines the ‘utility’ of evaluating each
point of the dominion, and each iteration’s x will correspond to the acquisition function’s
global maximum, i.e., the most useful point to evaluate next [16]. In the proposed work, the
acquisition function of choice was the Lower Confidence Bound measure (LCB), which is
defined as the weighted sum of the surrogate function’s mean µ and its standard deviation
σ. The weight λ defines the measure of exploration/exploitation and is multiplied by σ. In
the proposed work, λ is equal to 1.96 if the surrogate model is a GP, while it is equal to 1.5
if the surrogate is an RF.

Wang et al. [25] list recent significant advances in the field of BO.

3.2. Bayesian Optimization in Neural Architecture Search

Neural Architecture Search (NAS) is a form of AutoML wherein ML is exploited in
order to construct an optimal NN topology for a given dataset [26]. Said optimal NN is
then trained on the same data and its inference is evaluated as usual. Over recent years,
numerous approaches have been attempted in this research field, exploiting different search
space definitions, search strategies and additional mechanisms to improve efficiency. BO
has been used in combination with NAS in several previous works: three recent examples
are BOMP-NAS [27], BANANAS [28] and ProxyBO [29]. The first two exploit BO as
search strategy within the context of NAS, while the latter exploits BO to accelerate a NAS
procedure involving zero-cost proxies, achieving speed-ups of up to 5.41× over state-of-the-
art procedures. BOMP-NAS also exploited mixed-precision quantization within the search
strategy to obtain more compact output models; such search strategy output networks have
a comparable accuracy with respect to previous literature with speed-ups that reach up to
6×. BANANAS proposed a novel path-based encoding strategy to shape the search space,
thus obtaining improved search efficiency and more accurate output NNs with respect to
numerous state-of-the-art models over several benchmark procedures.

Furthermore, Yiyang et al. [30] proposed a BO-based NAS in the specific context of phys-
ical layout hotspot detection in two dedicated benchmark datasets; while Yang et al. [31]
defined a multi-objective NAS backed by a Pareto BO for the retrieval of an NN which is
optimal in terms of both accuracy and resource consumption, conducting experiments on
image datasets such as MNIST and CIFAR-10.
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The concept of NAS shares commonalities with the approach proposed in this work
since both consist of a guided search for an NN topology within a pre-defined search space.
The main difference between them is how the outputs of the search are evaluated. This
work focuses on the quality of the extracted features, comparing them to those created by a
backpropagation-trained reference network; the final aim is to devise an ELM FE topology
which is able to support the learning of an ODL model, without the computation and mem-
ory costs of backpropagation, and achieve state-of-the-art accuracy. NAS, instead, focuses
on the final performance of the designed NNs. Nevertheless, the structural components
that define the two approaches are the exact same; namely, the definition of a search space,
an efficient search strategy and a performance estimation strategy that feeds back into
future search attempts [32].

3.3. Limits of Backpropagation

The backpropagation algorithm, while foundational for training NNs, must confront
significant limitations, particularly in the context of deploying complex models on resource-
constrained edge devices, i.e., in the TinyML environment. A notable drawback is the
substantial memory load incurred by storing activations for recomputing weight values
during the backward pass [7]. The need to retain intermediate activations for gradient
descent optimization results in a prohibitive space complexity for tiny edge devices with
limited memory resources [33]. The memory-intensive nature of backpropagation impedes
the deployment of intricate NNs on such devices, hindering their widespread applicability
in real-world scenarios. Novel approaches, including model quantization [2,34,35], knowl-
edge distillation [36,37] and hardware accelerators [38,39], are being explored to mitigate
these challenges and enable the efficient execution of neural networks in edge computing
environments. As it has been shown that the backpropagation procedure not only poses
prohibitive requirements on memory and computation but is also profoundly different
from the neurobiological approach to learning information [40], the proposed work targets
the production of NNs that avoid backpropagation completely.

3.4. Extreme Learning Machines

Huang et al. first described the ELM in 2005 [41], clarifying and expanding upon the
concept in the following years [9,42]. The field of the application of ELMs subsequently
expanded to regression and multi-class classification [43]. Comprehensive descriptions of
the concept and its applications can be found in [44,45].

Simply stated, an ELM is an NN topology wherein the internal parameters or weights
are randomly generated and never trained. The final layer or layers, usually responsible
for the decisions within the supervised learning tasks (classification, regression, etc.) are
commonly optimized with methods that do not require backpropagation, e.g., Least Squares
optimization. Therefore, ELMs require significantly less computational resources to train
with respect to common, backpropagation-trained NNs. Since no training is required by
ELMs, they save their memory to store the activations that can support the mathematics
inherently defined by backpropagation. Furthermore, no dataset is required which is
another major source of savings in both storage and data acquisition workflow, making the
development of ELM-based workloads able to reach an unprecedented level of productivity
during the development of an application.

4. Materials and Methods
4.1. Datasets

CIFAR-10 [46] is a dataset derived from the 80 Million Tiny Images (https://groups.
csail.mit.edu/vision/TinyImages/ (accessed on 23 October 2023)) dataset. It contains
60,000 images collected from the internet and equally divided in 10 classes, depicting
animals and transportation vehicles. The training set consists of 50,000 images, while the
remaining 10,000 are part of the test set. Each image is 32 pixels wide and 32 pixels tall. The
data are freely available online in various encodings targeted towards specific programming

https://groups.csail.mit.edu/vision/TinyImages/
https://groups.csail.mit.edu/vision/TinyImages/
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languages, such as Python and C. This dataset was chosen for the application of the
proposed experimental setup as it is one of the most widely used image processing datasets
for ML, and also because it is part of the MLCommons Tiny standard benchmark [47].

The MNIST dataset [48], a seminal resource in the domain of ML, comprises a
compendium of 28 × 28 pixel grayscale images portraying handwritten digits rang-
ing from 0 to 9. Originally curated by the National Institute of Standards and Technol-
ogy (NIST), it underwent subsequent refinement and gained prominence through the
efforts of LeCun and collaborators. The dataset consists of 60,000 training images and
10,000 testing images.

Noteworthy for its accessibility, MNIST has emerged as a quintessential benchmark
for assessing the efficacy of ML algorithms, especially in the domain of image classification.
The widespread acceptance of the MNIST dataset as a standardized metric has established
a supportive milieu for methodological advancements and comparative analyses within the
ML community. This prevalent utilization has laid the groundwork for the evolution of new
techniques and systematic comparisons, thereby contributing to the ongoing refinement of
methodologies in the field.

4.2. Methodology

The definition of the guided search strategy has been constructed with the same
fundamental parts that define an NAS search: the definition of a dominion or search space,
the definition of a search strategy (in this case, BO) and the definition of a performance
estimation strategy.

4.2.1. Definition of the Search Space

Two different search spaces have been defined, stemming from the construction of
atomic blocks that will be repeated one or more times, with slight variations, within the
neural topologies pertaining to the search space. While the first atomic block, which defines
the type 1 neural topology search space, is inspired by ResNet [49], the second one is
original. A ResNet configuration represents the MLCommons Tiny benchmark network
with respect to the chosen dataset [47]. It was used as reference for the construction of
type 1 atomic blocks since it represents the standard upon which the TinyML community
has agreed. The following sub-sections will describe the structure of the two atomic
blocks, specifying which variables will be exposed to the search strategy to form the output
ELM topologies.

It is important to mention that all the generated topologies will have the same input
shape, as they will be fed with the same data, and the same output shape, as they will
extract features that will subsequently be compared—by means of MSE computation—with
a standard feature set, which will be detailed in Section 4.2.3. As MSE computation fails if
two vectors have different shapes, restricting the output shape was required.

The atomic block that defines the topologies of type 1 consists of the fundamental deep
residual network block: a 2D convolution layer followed by a batch normalization layer and
an activation layer. Between the last two, a residual addition with the output of the previous
block’s activation is allowed. The structure of the atomic block is illustrated in Figure 1.
Note that average pooling is applied only after the final block in each type 1 topology.

The parameters used as search variables for type 1 neural topologies are listed in
Table 2. Note that, as the convolution kernel is a square matrix, its size is a single integer
number that accounts for both width and height.

The atomic block that defines type 2 topologies consists of a 2D convolution layer
followed by an activation layer. Furthermore, the output of the activation goes through
two parallel transformations: on one hand, it is fed into a batch normalization layer, on the
other, it goes through a transposed 2D convolution, and the output is subtracted from the
whole block’s input; after that, batch normalization is applied again, and the two parallel
outputs are added together to form a single value. An additional max pooling layer may be
applied to the block if it is the last one in the chain. The leading idea behind this structure



Algorithms 2024, 17, 22 7 of 18

was to generate a local error measure that would be added to the output of the single block
and thus be considered by the subsequent block. The structure of type 2 atomic blocks
is illustrated in Figure 2. Note that max pooling is applied after the final block in each
type 2 topology.

The parameters that may vary between different type 2 topologies are almost the same
as in Table 2. The sole exceptions are:

• Sum of residuals before activation layer: in this case, the topology does not include
the possibility of summing the previous activation layer’s residual.

• Padding within the convolutional layers: for type 2 topologies, the ‘same’ padding is
always applied.
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Table 2. Search variables for type 1 topologies.

Scope Variable Data Type Search Bounds

Whole network Number of blocks Integer (1, . . ., 10)

Whole network Sum of residuals before
Activation layer Boolean (True, False)

Convolutional layer Padding type Categorical (‘valid’, ‘same’)

Convolutional layer Kernel size Integer (3, 5, 7)

Convolutional layer Number of filters Integer (16, 32, 64)

Convolutional layer L2 Regularization Boolean (True, False)

4.2.2. Definition of the Search Strategy

The adopted search strategy follows the BO approach. For type 1 topologies, GP and
RF surrogate models have been tested. In both cases, LCB was adopted as the acquisition
function, with λ equal to 1.96 if the GP was the surrogate model and 1.5 if RF was used.
It should also be noted that the RF surrogate was modeled over a uniform probability
distribution instead of a normal one, as using the former showed better MSE values in
early experimentation stages.

4.2.3. Definition of the Performance Estimation Strategy

The reference feature set consisted of the vectors that had been extracted by an off-
the-shelf pre-trained ResNet topology, from which the SoftMax layer used to perform
classification was eliminated to make it a FE. This NN represents the standard benchmark
for image classification, issued by MLCommons as part of the four Tiny benchmark case
studies [47]. The reference FE configuration was kept identical to the standard ResNet,
except for the aforementioned removal of the final SoftMax classification layer.
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The performance of all topologies obtained by the searches was evaluated by com-
puting the MSE between the extracted feature sets and the reference feature sets. The
reference FE was known to output high accuracy if attached to a SoftMax classifier, so the
underlying assumption of this performance estimation strategy was that identical accuracy
was expected if the topology obtained by the guided search produced identical features
with respect to the reference.

Since the MSE between two vectors with different dimensionalities cannot be com-
puted, topologies that produced feature vectors with different dimensionalities were
deemed invalid and were discarded. Furthermore, the BO search strategy verges towards
the maximization of a function; as the target was to achieve the minimum MSE possible,
the MSE metric was always multiplied by −1.

A flowchart describing the entirety of the experimental setup is presented in Figure 3.
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Figure 3. Flowchart describing the experimental setup.

5. Results

Each configuration of the guided search was executed within the same testing environ-
ment, i.e., on the same computing machine and using identical virtual code environments.
Experiments on the CIFAR-10 dataset were carried out for 48 h each, while those on the
MNIST dataset were carried out for 4 h each. As Section 5.2 shows, a type 1 search space
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combined with an RF surrogate model proved to be the best performing configuration
among the ones that were tried.

5.1. GP Surrogate Model with Type 1 Search Space
5.1.1. CIFAR-10 Dataset

The configuration that combined a GP surrogate model with type 1 topologies per-
formed poorly. Over the span of roughly 9000 iterations, the search showed no signs of
convergence towards a global optimum. This is very much visible in Figure 4, as the MSE
rolling average, which was computed every 10 iterations, stayed roughly constant over the
whole search. Note that, as the invalid networks described in Section 4.2.3 were discarded,
the line plot of the MSE at each iteration is not continuous.
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Figure 5 shows the variation in the optimum MSE found by the algorithm over
progressive iterations. After 48 h of execution, the best MSE found was 216.128.
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5.1.2. MNIST Dataset

Regarding the MNIST dataset, a similar behavior with respect to CIFAR-10 was
observed. It is important to notice, though, that the best MSE we found was lower
by two orders of magnitude, equal to 2.537.

Figure 6 shows the progression of the search over a 4 h period. Since the time allotted
for the execution of the experiment was significantly shorter, the sparsity of the line plot
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was more evident once the invalid MSE values were discarded. Thus, circular indicators
have been added to highlight the MSE values we found.
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Figure 7 shows the variation in the optimal MSE found by the algorithm. Important
progress can be seen in the initial iterations of the search. However, the minimum is reached
very early, and progress stops in the subsequent iterations.
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5.2. RF Surrogate Model with Type 1 Search Space
5.2.1. CIFAR-10 Dataset

The combination of type 1 topologies and an RF surrogate model proved to be the
best performing configuration, as the best MSE that it achieved was much lower than the
ones obtained with the other two configurations. As Figure 8 shows, after 100 iterations of
initial exploratory behavior, the MSE rolling average showed almost constant growth and
convergence towards values in the order of 10−1. In particular, the best MSE we found was
0.640, as shown in Figure 9. Using RF as the surrogate model resulted in longer iterations,
so the total number of attempted topologies was roughly six times lower with respect to
the first configuration.
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The structure of the best performing topology for CIFAR-10 is illustrated in Figure 10.
Its parameters are also listed in Table 3.

The best performing FE achieved by this search configuration still proved not to be
enough for an accurate classification, as it scored 37.4% accuracy on the CIFAR-10 dataset
once attached to a TinyRCE classifier [50]. TinyRCE had scored 78.5% accuracy when
attached to the reference FE.
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Table 3. Variable settings for best found topology (CIFAR-10 dataset).

Scope Variable Values

Whole network Number of blocks 10

Whole network Sum of residuals before
Activation layer False

Convolutional blocks Padding type ‘same’ (for all blocks)

Convolutional blocks Kernel size 5, 3, 7, 3, 3, 7, 7, 3, 7, 3.

Convolutional blocks Number of filters 16, 32, 16, 64, 16, 32, 32, 32, 64, 16.

Convolutional blocks L2 Regularization True, False, False, False, True,
True, True, True, True, True.

5.2.2. MNIST Dataset

While type 1 atomic blocks combined with an RF surrogate function worked best
for what concerns CIFAR-10, they performed the worst when it comes to MNIST. In fact,
the search progression shows little progress over time, as highlighted in Figure 11. Once
again, circular indicators have been added to the line plot, for MSE values to be more
clearly visible.
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Even though the progression of the search over time shows little progress, the optimal
MSE value was found rather late within this instance of the search, as shown by Figure 12.
The optimal value that was found is equal to 3.778.
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5.3. RF Surrogate Model with Type 2 Search Space
5.3.1. CIFAR-10 Dataset

Type 2 topologies combined with an RF surrogate model produced the worst results
in terms of optimal MSE. Although the behavior of the search showed similar trends with
respect to the previous case, as shown by Figure 13, the average MSE values were far
worse than before, in the order of 105. The best performing network found by this search
produced an MSE of 8196.919, as shown in Figure 14.
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5.3.2. MNIST Dataset

Type 2 neural blocks showed the most promise concerning MSE when dealing with
the MNIST dataset. As the search proceeded at a slower pace, less than 100 search iterations
were completed within the allotted 4 h of execution. Nevertheless, the optimal value that
was found within said time frame was the absolute lowest for MNIST: 1.468.

Figure 15 shows the progression of the search over time. Even though the rolling
average line plot increases, being visibly affected by some outlier values, a slight but per-
ceptible descent is hinted by the singular MSE values themselves, once again highlighted
with circular indicators for better visibility.

The structure of the best performing topology for the MNIST dataset is illustrated in
Figure 17. Its parameters are also listed in Table 4. It is interesting to notice how a shallower,
less complex FE proves to be more effective when dealing with the MNIST dataset compared
to CIFAR-10 with respect to the search outcome. This difference between the two mirrors
their composition, with CIFAR-10 being a more challenging dataset for NNs.
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Figure 17. Schema representing the best performing topology found in all searches for the MNIST
dataset. Every group of three squares represents a block; the first square describes its kernel size, the
second its number of filters and the third represents the presence/absence of regularization within
the block. See Figure 2 for the composition of a singular block.
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Table 4. Variable settings for best found topology (MNIST dataset).

Scope Variable Values

Whole network Number of blocks 3

Convolutional blocks Padding type ‘same’, ‘same’, ‘valid’.

Convolutional blocks Kernel size 3, 7, 3.

Convolutional blocks Number of filters 16, 16, 64.

Convolutional blocks L2 Regularization False, False, True.

5.4. Summary of the Results

Table 5 summarizes the results obtained for all the experiments. The best results are
highlighted in bold. It is evident that experiments on the MNIST dataset proved to be
consistent in terms of MSE magnitude, while the ones performed on CIFAR-10 have much
more variable results. Nevertheless, the best absolute MSE value was reached using type
1 neural blocks combined with an RF surrogate on the CIFAR-10 dataset, obtaining an
optimal value below the targeted threshold of one.

Table 5. Summary of obtained results. Best MSE results for each dataset are highlighted in bold.
Lower is better.

Dataset Search Space Topology Surrogate Model Optimal MSE Found

CIFAR-10 Type 1 GP 216.128

CIFAR-10 Type 1 RF 0.640

CIFAR-10 Type 2 RF 8196.919

MNIST Type 1 GP 2.537

MNIST Type 1 RF 3.778

MNIST Type 2 RF 1.468

6. Discussion and Conclusions

This work proposed an approach to building an ELM CNN FE based on BO and
NAS. Two search spaces were defined and tested, as well as two datasets and two different
surrogate models. The output of each search iteration was an FE topology which was
fed with image data, and an extracted set of feature vectors as the output. The datasets
used were CIFAR-10 and MNIST. The output was then compared to a reference feature set,
obtained by a trained FE based on the MLCommons Tiny benchmark ResNet model. The
best result in terms of similarity to the reference feature set achieved an MSE of 0.64 for the
CIFAR-10 dataset, and 1.468 for the MNIST dataset. This outcome was still not enough to
achieve a high classification accuracy using the FE as part of an ODL model; a TinyRCE
classifier fed by the obtained features scored a 37.4% test set accuracy, 41.1% less than what
the same classifier scored when fed with the reference features. Despite the unsatisfactory
results collected so far, the experimental approach itself proposes an innovative integration
of the NAS and BO techniques for the purpose of automatically designing a well-performing
ELM FE, as well as a simple yet effective evaluation procedure that allows us to assess
the quality of an FE without the necessity of training a learning agent connected to it.
An automatically designed ELM FE becomes a fundamental building block for an NN to
be deployed in ODL applications. Such an application would save all the memory required
to store the activations and dataset needed to support backpropagation-based learning,
which can eventually be reduced even further by weight selection techniques. This would
lower the costs of inference workloads enough to satisfy what is required by ODL in tiny
edge devices. Thus, the present study lays a solid groundwork for future improvements to
the proposed approach. In conclusion, this work serves as an initializer and catalyst for
future endeavors, inviting researchers to explore and build upon the theoretical framework
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presented herein. Future experimentation will focus on improving the search outcomes; in
particular, the target MSE to be achieved shall be lowered by at least one order of magnitude
(10−2). The correlation between the achieved MSE and the quality of the extracted features
has not been studied enough; future investigations are required in this regard. Additionally,
different metrics of feature quality could be experimented with. To improve the results of
the search, new atomic block structures (e.g., based on attention layers, recurrent neural
layers and many more) should be devised and tested, as well as different surrogate models
and acquisition functions. Furthermore, the experimental approach should be tested on a
greater variety of datasets, to better assess its generalizability. The datasets will include
image recognition ones—e.g., CIFAR-100, MSCOCO14—and audio recognition ones such
as Speech Commands.
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