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In today’s complex industrial environment, operators are often faced with challenging situations that require quick
and accurate decision-making. The human-machine interface (HMI) can display too much information, leading to
information overload and potentially compromising the operator’s ability to respond effectively. To address this
challenge, decision support models are needed to assist operators in identifying and responding to potential safety
incidents. In this paper, we present an experiment to evaluate the effectiveness of a recommendation system in
addressing the challenge of information overload. The case study focuses on a formaldehyde production simulator
and examines the performance of an improved Human-Machine Interface (HMI) with the use of an AI-based
recommendation system utilizing a dynamic influence diagram in conjunction with reinforcement learning. The
preliminary results indicate the potential of these methods to aid operators in decision-making during challenging
situations and enhance process safety in the industry.

Keywords: Decision support, Dynamic influence diagram, Reinforcement learning, Process safety, Intervention
procedures, Human-machine interface

1. Introduction

In a chemical process control room, operators

are responsible for monitoring the process and

responding to deviations. To do so they have to

handle the available information and follow a set

of procedures in order to restore the process to

normal. However, human errors can occur due to

overload or inadequate training. To address these

issues, optimal procedures are required to assist

operators in their tasks. We develop a system

that provides operators with the appropriate and

optimal procedure in real-time using a dynamic

influence diagram combined with reinforcement

learning. This system detects anomalies and pro-

vides operators with the reason for the deviation,

as well as the specific procedure to follow in each

case updated with the current state of the system.

This framework is then tested on a simulator of

formaldehyde production. Three deviation scenar-

ios are designed and presented to two groups of

participants. The first group has to respond to the

scenario without the recommendation system and
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the second group with. The efficacy of the recom-

mendation system is then evaluated based on its

ability to assist the participants in handling deviant

scenarios. The objective of this experiment is to

determine if this approach reduces the operator’s

workload and enhances situational awareness.

2. Background

The experiment is made to optimize the display of

the procedure to the operator. For this purpose, we

use artificial intelligence to display directly to the

operator the right procedure update with the live

value of the process. For this purpose, a dynamic

influence diagram combined with reinforcement

learning is used.

2.1. Procedures

Procedures are supporting tools that guide control

operators to manage process plant operations and

safety. These process operations can be; the start-

up and shut-down of a plant, normal operations,

emergency operations, and more. In a study done

by Bakar et al. (2017), to identify process safety

management elements that are main accident con-

tributors (from amongst 770major accident cases)

in chemical process plants, Operating procedures

were found to be the second most contributors to

accidents in this plants at 17% just after process

failures at 19%. Similarly, findings in the nuclear

industry have also shown that operators’ non-

compliance behaviour due to procedures is one

of the leading causes of accidents in this industry

Park and Jung (2003). As one of the process safety

management elements, these procedures are crit-

ical to ensuring safety and should be paid close

attention to beyond the initial stages of design and

installation.

Several constraints the procedures pose lead-

ing to these non-compliance behaviours have

been highlighted in industrial studies. These con-

straints, related to inaccuracy or incompleteness

and complexity of the procedures, have led to

non-compliance issues by operators, which is one

of the reasons for the accidents Park and Jung

(2003). Also, there have been studies on con-

straints related to design. That is, the design of

these procedures (medium of presentation and the

presentation style) and how they impact the oper-

ators’ workload, especially in emergencies, seeing

that some industries have moved over years from

paper-based, screen-based and, in some cases,

computerised procedures Gao et al. (2013),Xu

et al. (2008). The ease of use of the proce-

dures, their ability to support operators’ situa-

tional awareness and reduce workload within the

available time in abnormal situations are goals to

be attained by decision-makers if safety is to be

ensured. In this work, a screen-based procedure

(following best practices in procedural formatting

- HPOG) added or not with AI-based support is

developed to compare and assess the impact of

different procedural support mediums on process

control room operators during an intervention in

process safety scenarios.

2.2. AI-based Recommendation System

The AI-based recommendation system is using

both Deep Reinforcement Learning (DRL) and a

dynamic influence diagram. The DRL is trained

on the simulator in an online setting by interacting

with the environment and observing process be-

havior through its actions. The dynamic influence

diagram is constructed from expert knowledge

consisting of the physical equation of the plants.

Those models are combined to detect deviance in

the process and recommend the best action to the

operator by providing a detailed procedure with

specific values adapted to the current situation.

2.2.1. Dynamic Influence diagram

In the realm of decision-making under uncer-

tainty, influence diagrams Howard (1983) have

emerged as an effective modeling framework.

These diagrams provide a natural way to cap-

ture the semantics of decision-making with min-

imal clutter and confusion for the decision-maker

Shachter and Peot (1992). It is perfect to model

uncertainty in the process and provide the best rec-

ommendation. An influence diagram is a graphical

probabilistic model that provides a framework for

optimal decision-making under uncertainty. Dy-

namic Influence diagrams (DID) can be used to

monitor the process over time by modeling the dy-

namics of the system and the influence of various
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factors on the system’s behavior. DID can also be

used to predict the future behavior of the system

by simulating different scenarios and observing

their impact on the overall system. This allows for

better decision-making based on the potential out-

comes of different choices. Kjærulff et al. (2013).

In this study, the physical model of the plant is

used to build the dynamic influence diagram. The

different nodes can represent:

(1) values, such as temperature, pressure, etc.

(2) temporal clones of values, such as tempera-

ture, and pressure, representing the influence

of the past.

(3) failure, such as control valve failure.

(4) decisions, such as set points.

(5) costs associated with a particular event.

Each of these nodes is linked to other nodes

through causal links. There is an associated cost

called utility with each possible action of the de-

cision node. The model outputs to the operator the

action with the maximum expected utility.

For example, in the case of choosing the right

flow of nitrogen to avoid overpressure in a tank.

If A is a set point for a flow with options 0 −
1, . . . , 6 − 7 (Nm3/h), H is a specific alarm

link to the underpressure of the tank with states

False, T rue, and ε is a set of observations in

the form of evidence, then we can compute the

utility of each outcome of the hypothesis and the

expected utility of each action. The utility of an

outcome (0− 1, T rue) is U(0− 1, T rue), where

U(·) is our utility function. The expected utility

of performing action setting 4 − 5 Nm3/h as a

nitrogen flow is calculated by

EU(4− 5) = U(4− 5, T rue)P (True|ε)
+ U(4− 5, False)P (False|ε)

2.2.2. Using Dynamic Influence Diagram

The model is dynamic to monitor the process over

time. The model assesses the state of the system

at the current time and predicts the future state

for numerous subsequent time steps. The dynamic

influence diagram serves three distinct purposes:

(1) Detecting anomalies

(2) Predicting the future state of the system

(3) Determine an optimal decision.

The model is built using expert knowledge in

the form of the physical equation of the process.

The detection of anomalies uses the present data

and can detect for example a deviation from a set-

point. The model is able to predict the future state

of the system for the next time steps. According

to this prediction, an ideal scenario can be built

and presented to the operator. This recommen-

dation is based on the procedure associated with

the detected anomaly. The procedure is adapted to

provide concise instruction and precise values to

set according to the system’s current state to the

operator.

2.2.3. Specialized Reinforcement learning
Agent (SRLA)

Reinforcement Learning (RL) is a type of ma-

chine learning in which an agent learns to make

decisions by interacting with an environment and

receiving feedback in the form of rewards or

penalties. The goal of the agent is to learn a policy,

or a mapping of states to actions, that maximizes

its cumulative reward over time Sutton and Barto

(2018).

The equation of reinforcement learning can be

represented using the Q-learning algorithm, which

is a model-free reinforcement learning algorithm.

In Q-learning, an agent learns to make decisions

by iteratively updating a Q-value function that es-

timates the expected cumulative reward for taking

a particular action in a particular state. The Q-

value function can be represented as follows:

Q(s, a) = E[r + γ ∗max
a′

Q(s′, a′)] (1)

DRL extends Q-learning by using deep neu-

ral networks to estimate the Q-value function.

The neural network takes the state as input and

produces the Q-value estimates for all possible

actions as output. The Q-value function is then

updated by minimizing the difference between

the predicted Q-values and the actual Q-values

obtained from the rewards received by the agent

during training. The equation for updating the Q-

value function in deep reinforcement learning can

be represented as follows:
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Q(s, a) = Q(s, a)+

α(r + γ ∗max
a′

Q(s′, a′)−Q(s, a))
(2)

In both equations, the symbol γ represents the

discount factor, r represents the immediate reward

received by the agent, s represents the current state

of the agent, a represents the action taken by the

agent, s′ represents the next state of the agent, and

a′ represents the action taken in the next state.

The symbol α represents the learning rate, which

determines the step size of the Q-value updates.

Specialized Reinforcement Learning Agent
(SRLA) combines the advantages of probabilistic

modeling (such as dynamic influence diagram)

and Deep Reinforcement Learning (DRL) Abbas

et al. (2022) as shown in fig. 1. It allows the

DRL agent to specialize in a specific case within

the environment where the DRL agent is most

required (such as process abnormalities). Hence,

increasing training efficiency and reducing data

inefficiency.

In the figure, P (st) represents the probability

of being in a particular state, x∗(st) represents the

specialized state on which the DRL agent is acti-

vated and the system state S is filtered to provide

the information regarding that particular state. The

optimal control strategy π is then recommended to

the operator.

SRLA modifies eq. (2) as shown in eq. (3):

Q(x∗, a) = Q(x∗, a)+

α(r + γ ∗max
a′

Q(x∗′
, a′)−Q(x∗, a))

(3)

where x∗ represents the specialized state on

which the DRL agent is activated and trained and

is identified through a probabilistic model.

3. Framework

In our proposed AI recommendation system

framework with the Human-in-the-Loop (HITL)

setting, we use Multi Specialized Reinforcement

Learning Agent (M-SRLA) setting. The multi-

agents in this setting act independently and only

a specific agent is activated to suggest the optimal

control strategy to the operator in case of the iden-

tified process abnormality through the influence

diagram as shown in fig. 4. We name this frame-

work Human-Centered Artificial Intelligence for

Safety-Critical systems ”HAISC”.

3.1. Procedure and Dynamic Influence
Diagram

The procedure in this study is written as a hierar-

chical rule-based task representation format and is

further presented on screen for the operators. Each

procedure is written under three broad task con-

texts; troubleshooting, control, and evaluation. An

example is shown in fig. 2. The recommendation

of the influence diagram is based on the proce-

dure. The influence diagram detects the anomaly

and recommends the procedure associated with it.

The procedure is simplified by directly providing

the action to do without troubleshooting and con-

trol. In case of different anomalies at the same

time, the influence diagram chose the best action

to do according to their utility. The specific value

to set in the procedure is then specified jointly

with reinforcement learning. In this way, the pro-

cedure is adapted to the specific situation of the

system and provide the operator with a complete

and concise set of instruction.

3.2. Dynamic Influence Diagram and
Reinforcement learning

The approach uses an influence diagram to iden-

tify the specific failure in the system. Once the

procedure associated with the failure is identified,

the necessary step of the procedure according to

the current situation is displayed to the operator. If

the procedure requires continuous values to be set,

reinforcement learning is employed to specify the

appropriate value based on the current state of the

system. The influence diagram provides a value in

the form of an interval due to the discretization

of the data. If the value obtained from the rein-

forcement learning falls outside of this interval,

only the procedure along with the interval is dis-

played to the operator. This is done to ensure the

interpretability and safety of the overall system.

All in all the influence diagram models the system

globally and the reinforcement learning answers
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Fig. 1. Specialized Reinforcement Learning Agent (SRLA) Abbas et al. (2022)

precisely local issues.

Algorithm 1 Influence Diagram-based Procedure

Recommendation Algorithm

Input: System parameters

Output: Procedure with necessary steps and spe-

cific values

Detect anomalies

if multiple anomalies then
Choose a procedure with maximum expected

utility;
else

Use procedure link to the anomaly;

end
if specific value needs to be set then

Use DID to find the best interval I

Call DRL to determine the value a

if a ∈ I then
Use value;

else
Use interval;

end
end

3.3. Recommendation

The operator is provided with recommendations

that include the identified faults and the appro-

priate procedures for restoring the system to its

normal state. Traditionally, these procedures were

developed by experts. However, with the advent of

the AI framework, the procedures have been sim-

plified and specific values are now provided based

on the current state of the system. This eliminates

any extraneous or irrelevant steps, allowing the

operator to quickly and easily follow the complete

set of recommendations. fig. 3 depicts an example

of a simplified procedure compared to the tradi-

tional one.

Fig. 2. First steps of the procedure for one alarm

Fig. 3. Simplified procedure recommended
to the operator
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Fig. 4. Framework used for the case studies

4. Experimental study

4.1. Simulator

The simulator is one of the productions of

formaldehyde operating the partial oxidation of

methanol with air. The details of the simulator can

be found in Amazu and all (2023). The opera-

tor is responsible for monitoring the process and

correcting any deviations. fig. 5 shows the main

screen of the simulator, and for this preliminary

study, three scenarios have been created. In the

first scenario, a control valve failure in the tank

section occurred. The operator must open the tank

part of the system, switch to manual mode, and

adjust the set point of the flow value. In the second

scenario, a valve failure in the tank section oc-

curred. In this scenario, the operator must switch

to the backup system and adjust the pump power

due to a delay in the nitrogen flow coming from

the backup system. The third scenario simulated

a failure of temperature indicator control that has

an impact on the reactor. The operator needs to

maintain the right temperature in the reactor. The

first group of participants has all the procedures

available on the screen, while the second group

has additional support from the recommendation

system which provides a concise live procedure.

4.2. Physiological measurement

Physiological measurement is used to have an

objective measurement of the operator’s workload

and situation awareness and have a better insight

into the recommendation system’s benefit.

4.2.1. Heart rate

By monitoring the operator’s heart rate (HR) and

heart rate variability (HRV), before and after us-

ing the recommendation system, we can deter-

mine whether the system is reducing or increasing

their stress and workload levels Gao et al. (2013),

Muhajir et al. (2021). If the recommendation sys-

tem is effective, we would expect to see a decrease

in the operator’s workload and stress levels after

using the system compared to before. However, it

is important to note that a decrease in heart rate

doesn’t necessarily mean that the recommenda-

tion system is effective. There are other factors

that could contribute to a decrease in heart rate,

such as taking a break, delegating tasks, or even

just the passage of time. Therefore, it is impor-

tant to combine these physiological measures with

other metrics such as task completion time and

error rate to determine the effectiveness of the rec-

ommendation system. Monitoring the operator’s

HR, HRV, and EDA, can provide valuable insights

into their workload and the effectiveness of the

recommendation system.

4.2.2. Eye tracker

Eye tracking is a valuable technique for monitor-

ing participants during experiments. By tracking

eye movements, it is possible to gain more insights

into the participant’s cognitive states of attention,

mental workload, and situational awareness Hinss
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Fig. 5. Simulator main screen

et al. (2022), Amazu et al. (2022). During the

experiment, the eye tracker monitors the partic-

ipant’s eye movement as they interact with the

recommendation system on the human-machine

interface and respond to the different scenarios.

This information is analyzed to determine which

support types (screen or AI) are most effective

in guiding the participant’s decision-making pro-

cess. Additionally, eye tracking can reveal when

and where the participant experiences difficulty or

confusion, allowing researchers to identify areas

that require improvement.

4.3. Questionnaire
4.3.1. Workload

NASA-TLX (National Aeronautics and Space

Administration-Task Load Index) is a widely used

subjective rating scale that measures the perceived

workload and mental effort required to complete a

task. During the experiment, NASA-TLX is used

to assess the participant’s subjective workload af-

ter operating in a scenario. Participants rate their

overall perceived workload in the scenario based

on six different dimensions, including mental de-

mand, physical demand, temporal demand, perfor-

mance, effort, and frustration. The result compares

the workload of people with and without recom-

mendations during the scenarios.

4.3.2. Situation awareness

The Situation Awareness Rating Technique

(SART) is a subjective rating technique used to

assess situational awareness post-trial. It measures

the situational awareness of test participants in

ten dimensions; attention, information quality, and

more. During the experiment, SART is completed

post-scenario by the participants to assess their

overall situational awareness. The use of SART

in this experimental study allows us to study the

variation in situational awareness between the two

groups.

4.3.3. Recommendation system

Questionnaires are given to the participant to as-

sess the efficiency of the recommendation system.

The questionnaire is designed to gather feedback

from the participants on the ease of use, clarity,

and relevance of the recommendations provided

by the system. The questionnaire includes ques-

tions related to the participant’s perception of the

recommendation system’s ability to detect faults,

the accuracy of the recommendations provided,
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and the system’s usefulness in guiding decision-

making during the deviance scenarios.

5. Preliminary result

A pilot study was conducted to evaluate the per-

formance of the recommendation system. It was

with 2 participants without the recommendation

system and 2 with. It did not allow us to obtain

sufficiently significant statistical data. But we ob-

served that the group with the recommendation

system acts faster but tends to follow the recom-

mendation blindly. In this case, the recommenda-

tion system tends to reduce the workload but also

to reduce situational awareness. These promising

results suggest that the recommendation system

effectively reduces workload but decreases situa-

tional awareness during process safety decision-

making. Further research with larger participant

samples is needed to confirm these findings and

to optimize the design of the recommendation

system for wider application.

6. Conclusion

The presentation of the procedure to the operator

is crucial. Providing the operator with the right

and simplified procedure that adapts to the current

system state has shown promising results in as-

sisting the operator’s work. Thanks to the collab-

oration between the influence diagram and rein-

forcement learning, the recommended procedure

is interpretable and based on expert knowledge.

This system would be particularly advantageous

for operators in situations of overload, stress, or

inexperienced operators.
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