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Abstract: In the pursuit of optimizing the efficiency, flexibility, and adaptability of agricultural
practices, human–robot interaction (HRI) has emerged in agriculture. Enabled by the ongoing ad-
vancement in information and communication technologies, this approach aspires to overcome the
challenges originating from the inherent complex agricultural environments. This paper systemat-
ically reviews the scholarly literature to capture the current progress and trends in this promising
field as well as identify future research directions. It can be inferred that there is a growing interest
in this field, which relies on combining perspectives from several disciplines to obtain a holistic
understanding. The subject of the selected papers is mainly synergistic target detection, while simu-
lation was the main methodology. Furthermore, melons, grapes, and strawberries were the crops
with the highest interest for HRI applications. Finally, collaboration and cooperation were the most
preferred interaction modes, with various levels of automation being examined. On all occasions,
the synergy of humans and robots demonstrated the best results in terms of system performance,
physical workload of workers, and time needed to execute the performed tasks. However, despite
the associated progress, there is still a long way to go towards establishing viable, functional, and
safe human–robot interactive systems.

Keywords: human–robot synergy; collaborative robotics; communication frameworks;
human-centered automation; agriculture 4.0

1. Introduction
1.1. Background

Robots and autonomous systems exploit their capability to sense, scrutinize, analyze,
and interact with the physical environment without or with minimal human intervention [1].
Focusing on the agricultural sector, the advent of robotic systems is envisioned to contribute
to ending hunger and malnutrition in a sustainable manner by conserving and restoring
ecosystems and natural resources [2–4]. Robots are considered as an integral element of
Agriculture 4.0, which comes as an evolution of precision agriculture, enabling farmers to
utilize the minimum required quantities for specific areas. Agri-robots belong to a broad
family of Information and Communications Technologies (ICT), also including, indicatively,
wireless sensor networks, farm management information systems, cloud computing, big data,
and artificial intelligence, that are prerequisites for the fourth agricultural revolution [5,6].

Taking advantage of the advancement of ICT, along with the reduction in the corre-
sponding costs, because of mass production, robots are being more and more implemented
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in agriculture [7]. Robotic systems can increase agricultural productivity, as they opti-
mize the efficiency of the implemented agricultural practices. In addition, robots have
the potential to take humans out of hazardous locations and address labor shortages of
seasonal workers [8]. Remarkably, the recent coronavirus pandemic has resulted in a
spike in investment in agri-robotics as a means of filling labor shortages [9,10]. Indicative
examples of agri-robot tasks are also sowing and planting, spraying, weeding, land prepa-
ration, insect and disease detection, plant monitoring, and phenotyping [11–13]. Moreover,
multi-purposed robots have been developed, thus adding intricacy to both software and
hardware and leading to increased costs [14].

In general, robots are able to carry out repetitive and predetermined assignments in
stable environments and are closely related to tasks belonging in the so-called “three D’s”,
namely dull, dirty, and dangerous tasks [15]. Unlike industrial settings, which contain a
stable environment with well-structured objects, agriculture is characterized by uncertainty,
heterogeneity, and unpredictable situations. Therefore, advanced technologies must cope
with highly complicated environments, variable physical conditions, and live produce,
which necessitates gentle and precise manipulations. More specifically, illumination, terrain,
and other atmospheric conditions are ill defined, while there is a high variability in crop
color, shape, and position that cannot be determined a priori [16]. These features render
the replacement of humans by autonomous robots in agriculture very challenging [17].

1.2. The General Context of Human–Robot Interaction in Agriculture
1.2.1. Human–Robot Interaction Definition

With the intention of addressing the challenges provoked by complex agricultural
environments, the synergy of humans and robots has been proposed. Human–robot
interaction (HRI) constitutes a multidisciplinary research field dealing with investigating,
designing, and evaluating these collaborative systems. It combines artificial intelligence,
robotics, ergonomics, engineering, computer science, and social science to endow robots
and humans with all the required competencies for proper interaction. In particular, HRI
refers to the process whereby humans act as a team with robots to achieve a goal and comes
from the confluence of information exchange, autonomy, and optimal task shaping [18].
HRI integrates the distinctive cognitive human skills of dexterity, perception, judging, and
decision making with those assets of robots concerning repeatable accuracy and strength.
The developed robot cognitive capabilities are a result of the integration of several sensors
such as laser scanners, radio-frequency identification (RFID), cameras, and actuators.
This innovative combination enables versatile use, robustness, flexibility, and adaptability
under a constantly evolving workflow [19]. HRI can be accomplished via proximal or
remote interaction. The ultimate objective of HRI is to free humans from dangerous and
routine tasks. For instance, in the case of pesticide spraying, there can be an operator
directing or supervising the task from a safe distance and away from harmful chemicals
with the use of a properly designed user interface. These semi-autonomous systems have
demonstrated remarkable results, outperforming fully autonomous robots [20]. In short,
human–robot synergy can provide many advantages, including flexibility when it comes to
system reconfiguration, reduction in the required working area, increasing productivity,
improvement of the quality of services, rabid capital depreciation, and the creation of
highly skilled jobs [21].

1.2.2. Main Design Concepts

One of the most challenging issues in HRI is the design of these synergistic systems,
owing to the wide range of different working conditions and levels of interaction that may
be faced. Human operators can be easily accused of being responsible for “human error”
when they fail to notice an off-nominal instance. Nevertheless, insufficient design of the
system and the associated interactions can lead to less-than-optimal compensatory reaction
of the humans [22]. Every betterment of HRI is based predominantly on two principles: the
autonomy level of the robot and the closeness of human and robot during their interaction.
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The level of autonomy that these interactive systems can achieve relies on strategies that
enable HRI in such an adaptable way that humans can intercede when it is required. In
broad terms, the design should not limit the visual perspectives and mobility of humans or
include inconvenient software. Also, robots should be programmed with cognitive skills
to interact in an accurate and fluid manner, thus guaranteeing the dynamic autonomy of
the system. In addition, different situations should be investigated in relation to proximity,
such as following, passing, avoiding, and touching. The design of human–robot interactive
systems should also consider the human-to-robot ratio along with the specific roles of the
former (programmer, bystander, operator, supervisor, and information consumer). Design
concepts also pay attention to adaption, task shaping, and the working time during which
humans and robots coexist in the same workspace, while every objective has to match with
the next one [23].

1.2.3. Communication Frameworks

Interaction, by definition, calls for the development of communication frameworks,
which aspire to simplify the knowledge sharing between robots, or machines in general,
and humans. In essence, more natural ways of communicating need to be investigated,
such as body language and vocal communication. The former term encompasses facial
expressions, body postures, and hand gestures, whereas the latter is limited by the noisi-
ness of agricultural environments and the dissimilar ways that someone may pronounce a
command. Out of these communication channels, hand gesture recognition, either through
acquisition of data from vision sensors or specially designed gloves, has attracted the inter-
est of the scientific literature [24,25]. Furthermore, surface electromyography sensors have
been used for recording the electric potential of muscles [26], while hybrid methodologies
have also been examined [27]. In brief, the main shortcomings of the above approaches
are as follows: (a) vision sensors run into problems whenever changes take place with
many people, complex backgrounds, and illumination changes [28]; (b) gloves usually limit
natural movements [29]; and (c) electromyography sensors generate massive and noisy
datasets [30]. Although the literature on the development of non-verbal communication
tools in agriculture is still scarce, some efforts have been presented with encouraging
results [24,31]. Finally, face recognition has not yet been widely used in agricultural envi-
ronments due to the above-mentioned problems associated with vision sensors as well as
restrictions imposed by privacy policies [32].

1.2.4. Safety and Human Factors

The primary concern concerning these fenceless synergistic systems is to ensure safety
and health of humans and disclose all the risk factors that may harm them [33]. Oc-
cupational health in centered upon improving the shared workspace to help workers
avoiding risky postures that can potentially cause injuries (physical ergonomics). In addi-
tion aspects, like mental workload and work stress are taken into consideration (cognitive
ergonomics) [34]. On the other hand, occupational safety includes accident control mea-
sures. Overall, occupational health and safety can impact the efficiency of the system,
response time, quality of work, and collaborative performance. Accordingly, an optimal
synergistic human–robot system should be designed from the perspective of mental wel-
fare, psychological comfort, and occupational health and safety. These aspects are related
to perceived safety. The key elements that determine perceived safety are considered
to be predictability, sense of control, experience, familiarity, transparency, comfort, and
trust [35,36]. As a final note, only authorized and qualified workers must work together
with a robot, while attention is paid to the establishment and evaluation of safety protocols
and risks. The latter must be thoroughly investigated in the design phase, as unweighted
factors, including uncertainty in interpreting and possible failures of human or robots, may
take place during HRI.
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1.2.5. Human–Robot Interaction Evaluation and Metrics

The design of synergistic systems necessitates the consideration of the implications
of automation on the performance of both robot and human as a means of optimizing the
overall benefits for the system. As a result, a significant feature of the design of collaborative
tasks is the appraisal of their performance, fluency, effectiveness, and adaptability through
adequate metrics allowing for reproducible evaluations. Several studies are concerned
with metrics for HRI [37–40]. Indicatively, Vásconez et al. [23] summarized the main
metrics that have been studied for evaluating the synergistic systems [41,42] and grouped
them into six categories in relation to their usage, namely (a) mission effectiveness (e.g.,
performance of the mission); (b) human behavior efficiency (e.g., decision making and
problem recognition); (c) human cognitive indicators (e.g., situation awareness, trust in
robotic systems, and situation awareness); (d) human physiological indicators (comfort
and fatigue); (e) robot behavior efficiency (e.g., autonomy level, human awareness, and
learnability); and (f) collaborative metrics (e.g., collaborative problem recognition and
action implementation efficiency, team situation awareness, and social patterns and roles).
As stated in [40], the metrics do not entirely measure the impact of the autonomy level on
interaction, since they normally focus on the observation of either humans or robots and not
on their capabilities, therefore introducing error in analysis. As a general remark, it is very
difficult to evaluate such kinds of systems in a broad and objective assessment. Moreover,
the lack of efficient human-in-the-loop assessment has made it problematic to conclude
whether such adaptation could bring about satisfying HRI [43]. Finally, the majority of
relevant studies are limited to how the robotic system affects the human factors without,
however, focusing on the opposite; how human factors impact the system [22].

1.2.6. Aim and Structure of the Paper

This paper provides a systematic review investigating the state of the art in HRI and
the main challenges that must be addressed, focusing solely on the field of agriculture.
The research is conducted through the lenses of different aspects by screening the relevant
scholarly literature based on the PRISMA guidelines [44]. The remainder of the present
paper is structured as follows. Section 2 describes the implemented methodology for the
bibliographic survey, how the methodological quality of the selected studies and level of
automation were evaluated, and the classification framework that was used. The results
are analyzed in Section 3, also including the list of the selected papers and related statistics.
Finally, Section 4 contains the main conclusions of the present review study, along with a
discussion from a broader perspective to identify future research directions.

2. Materials and Methods
2.1. Critical Steps in Performing the Systematic Review

A systematic review is considered a rigorous approach to literature review that in-
volves identifying, synthesizing, and evaluating all the available scientific evidence, both
qualitative and quantitative. They are used to produce a robust, empirically derived
response to a research question related to a specific topic. By adhering to systematic re-
view principles, they offer distinct advantages over traditional literature reviews. These
advantages include enhanced review quality through increased transparency, improved
objectivity, and mitigation of researcher bias. Additionally, systematic reviews encourage
researchers to critically assess the quality of evidence, thus strengthening the overall review
process. While systematic reviews provide comprehensive and unbiased insights, their
validity can be influenced by factors such as variations in evidence availability and quality,
potential study selection biases, resource limitations, and challenges in addressing complex
research inquiries. Nevertheless, systematic reviews remain invaluable tools for evidence
synthesis, enabling informed decision making, statistical robustness, and identification
of significant patterns and trends. It is important, however, to interpret their findings
cautiously within the appropriate contextual framework.
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In the present systematic review, seven steps were used in a manner similar to the
relevant literature [45,46]:

(1) Formulation of a primary research question: “What is the state of the art and what are
future perspectives in HRI in agriculture?”

(2) Development of a research protocol: The methodology followed for screening the rel-
evant literature and data extraction and analysis was included in a written document.
This was accepted by all the authors of this study, prior to the start of the literature
search, to minimize bias.

(3) Literature search: The methodology for selecting the relevant studies is described in
Section 2.2 along with the implemented electronic databases, inclusive criteria, and
review stages based on the PRISMA guidelines [44].

(4) Data extraction: Specific items, regarding references (including journal, title, and
authors), objective, method, crop type, interaction modes, automation levels, and key
outcomes, were gathered in an online shared spreadsheet.

(5) Quality appraisal of the selected studies: Although quality remains a challenging
concept to define, the present study used the tool developed by Hoy et al. [47]
(described in Section 2.3), which comprises specific internal and external validity
criteria.

(6) Data analysis and results: The first step in this procedure included a simple descriptive
assessment of each study, presented in tabular form, followed by a statistical analysis.

(7) Interpretation of results: Conclusions were drawn based on the available scientific
evidence, while areas were identified to focus on for future research.

2.2. Literature Search

The search engines of Google Scholar, ScienceDirect, Scopus, IEEE Xplorer, and MDPI
were used for the purpose of seeking publications associated with HRI in agriculture. To that
end, Boolean keyword combinations of “human-robot interaction/collaboration/synergy”
and “agriculture” were used. Subsequently, the references of each article were scanned with
the intention of finding studies that had not been noticed during the initial search. This
process was reproduced until there were no more relevant publications. The ultimate search
was performed on 15 December 2022. The titles and the abstracts of the resulting papers
were then reviewed. As a next step, the full text of the relevant studies was carefully read
to ascertain their appropriateness. For the selection of the final scientific literature to be
considered, the following criteria should be met: (a) both humans and robots are involved;
(b) HRI is considered in the decision and/or action stage; (c) I application domain is agriculture;
(d) conference papers are also included, provided that the conference is indexed by SCOPUS.
Non-English studies, Master theses, and doctoral dissertations were not included in the
research. A final consensus meeting of the co-authors was held to discuss the content and
adequacy of the selected papers based on the above criteria and resolve any difference of
opinion. A flowchart summarizing the implemented methodology of the present systematic
review is depicted in Figure 1, based on the PRISMA guidelines [44] for transparently reporting
how the relevant literature was selected. The bibliographic survey on HRI in agriculture
resulted in 32 relevant studies that fulfill the imposed inclusion criteria, of which 21 are journal
papers and 11 are conference papers.
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Figure 1. Flow diagram regarding the present systematic review process for selecting the
relevant studies.

2.3. Methodological Quality Assessment

Assessing the risk of bias of the methodology applied in the selected investigations is
very crucial for interpreting literature reviews so as not to underestimate or overestimate
their results. In this review study, the risk of bias tool developed by Hoy et al. [47] was
considered. This tool is made of 4 and 6 items with reference to external and internal
validity criteria, respectively, accompanied by a summary item corresponding to the overall
assessment of the quality of the methodology. The first ten items are yes/no questions
oriented toward detecting potential bias in measurement methods. If no insufficient
information exists, the corresponding answer is “No” [47]. For studies that do not involve
participants, such as those developing mathematical models, using simulations, or dealing
with design principles, some items may be filled in with “C”. This letter stands for “Can’t
say”, similar to [48,49]. These items were not taken into consideration in the final summary
item. All the authors of this paper independently took part in the reviewing process by
answering all the questions to assess the risk of bias of the methodology for each study.
A consensus meeting was held to compare the results and find a commonly accepted
final answer. Additional criteria were applied pertaining to “C” cases, such as reliable
measurement method and appropriate methodology validation.

As far as the eleventh summary item is concerned, which represents the overall
methodological quality, it was rated as follows:
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• High (++), indicating low risk of bias;
• Acceptable (+), indicating moderate risk of bias;
• Low (−), indicating high risk of bias.

In practice, depending on the number of “Yes” answers in the first 10 items of the
tool of Hoy et al. [47], each paper was scored in the range 0–100% (each “Yes” answer
has a 10% contribution to the final score). Similar to [49], 75% was considered as the
lower limit, beyond which high (++) overall quality of the methodology was established.
Moreover, scores between 50% and the above limit were rated as acceptable, while those
below 50% represent studies with relatively low methodological quality.

2.4. Classification of Modes of Human and Robot Working Together

In the present analysis, the classification followed by [12,21,50] is incorporated, where
five different modes of robots and humans working together may come about:

• Isolation mode, where HRI is never permitted, while normally, barriers are used;
• Coexistence mode, which is similar to the above mode, yet without barriers;
• Synchronization mode, where robot and human focus on different tasks in a synchro-

nized manner and work in different working areas;
• Cooperation mode, where robot and human focus, again, on different tasks, however,

working in the same working area;
• Collaboration mode, where robot and human focus on the same task and work in the

same working area.

Obviously, the isolation mode refers to conventional robots, commonly used in in-
dustry, and together with coexistence mode does not consider any interaction between
the human and the robot. In contrast, the other three modes correspond to the gradual
increase in the level of human–robot synergy. As stressed in [21], it can be problematic to
discriminate the existing mode, as this categorization comes from industry. Furthermore,
contemporary user interfaces allow for synergy via virtual shared workspaces. In these
cases, the criterion was whether robot and human are working on the same task.

2.5. Assessment of the Level of Automation during Decision and Action Stage

In general, automation can take place in four stages [51], namely (a) information ac-
quisition (acquisition stage); (b) information analysis (analysis stage); (c) decision selection
(decision stage); and (d) action implementation (action stage). Within each of these stages,
automation can be realized at a wide range of levels. Following the analysis of Parasuraman
et al. [51] for the decision and action stages, a 10-point scale is used in the present study.
In this scale, the higher levels characterize increased autonomy of computer (or robot in
the present analysis) over human action. Therefore, if a function can be fully carried out
exclusively by a human, the lowest level (i.e., “1”) is given, while the higher level (i.e., “10”)
denotes that robot decides and acts autonomously. The intermediate levels of automation
represent partial automation and different modes of HRI. Indicatively, at level 4, robot
proposes an alternative decision, but the human continuously has the authority to either
choose another decision/action or prefer the suggested alternative. In contrast, at level 6,
the robot gives a limited time for a veto to the human before automatically executing its
own decision. The utilized 10-point scale regarding the levels of autonomy, along with the
four classes of functions, are shown in Figure 2. In this regard, it should be emphasized
that, usually, a range of automation levels are used instead of a unique level, since there
may be different alternative situations during HRI [52,53].
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acquisition (acquisition), information analysis (analysis), decision selection (decision), and action
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to [51].

3. Results
3.1. Preliminary Data Visualization Analysis

Data visualization analysis is regarded as an advantageous practical tool to analyze
and illustrate massive data amounts, conduct data-driven judgments, interpret the current
trends in the research field of interest, and identify research gaps.

3.1.1. Time Distribution

A preliminary data visualization analysis is presented in this subsection starting from
the time distribution of the reviewed studies in Figure 3. As can be deduced from this
bar chart, investigation of HRI in agriculture is a recent research field that has concerned
scholarly literature for almost the last twenty years, due to the sector-specific extension
of “Industry 4.0”. As elaborated in the Introduction, robotics has found fertile ground in
agriculture, enlarging their preceding role of performing only non-cognitive and routine
missions. However, in contrast with other HRI applications, like those found in industrial
settings, rehabilitation and medicine, and education, the peculiar agricultural environment
introduces further challenges to the design of synergetic systems. Therefore, only 32 studies
were found, most of which were published in recent years. This increase justifies, to some
extent, the growing interest in complementary combination of robot and human capabilities
in agricultural applications, while also taking advantage of the tremendous progress of
ICT.

3.1.2. Distribution of the Contributing International Journals, Conferences, and Disciplines

Subsequently, the sources where the articles were published were reviewed to de-
termine the research approaches, which drew on knowledge from different disciplines.
As can be seen in Figure 4a, “Computers and Electronics in Agriculture” was the main
international journal of the current survey. This journal is associated with the application
of computer hardware and software to meet the challenges emerging in the framework of
smart agriculture, in which robotics is of central importance. Other journals with the same
objective, but with less contribution, were “Industrial Robot”, “Journal of Field Robotics”,



Sensors 2023, 23, 6776 9 of 23

and “Robotica”, which are not purely interested in the agricultural domain. An interdis-
ciplinary journal with significant contribution was also “Applied Sciences”, which deals
with different aspects of applied natural sciences as well as “Biosystems Engineering”.
The latter publishes research in engineering for biological systems, including agriculture.
“Engineering Proceedings” and “Computers & Industrial Engineering” focus mainly on
industrial engineering and the use of computers and electronic communication, which
constitute an integral part of it.
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In addition, “IEEE Transactions on Systems, Man, and Cybernetics: Systems” and
“Systems Research and Behavioral Science” cover the field of systems engineering with
a range of engineering methods, including modeling, simulation, and optimization, and
examination of issues from an economic and social perspective. Moreover, a journal aimed
at investigating the human factors in the design and management of technical systems at
work, namely “Applied Ergonomics”, contributed one article. Finally, “Transactions On
Human Machine Systems” and “Human Behavior and Emerging Technologies” include
human systems and organizational interactions, system testing and assessment, and cog-
nitive ergonomics in systems and organizations. As far as the selected conference papers
are concerned, the biggest contribution was from “IFAC-PapersOnLine” (formerly “IFAC
Proceedings Volumes”) and IEEE International Conferences emphasizing robotic systems,
including human–robot synergetic systems. In conclusion, several disciplines are engaged
in finding innovative HRI solutions in agriculture by redefining problems outside the
usual boundaries. Based on the scope and scholarly audience of the above journals and
conferences, ten disciplines were identified, which are summarized in Figure 4b, whose
theories and methodologies are combined so that unique insights are gained to face the
challenges of agricultural environments.

3.2. Methodological Quality of the Reviewed Studies

The 32 reviewed papers are summarized in the first column of Table 1 in chronological
order: from the first study of Bechar and Edan [52], published in 2003, up to the most
recent one of Vásconez and Cheein [54], which was published in November 2022. As
mentioned in Section 2.2, the tool developed by Hoy et al. [47] is used in the present study
for assessing the methodological quality of the reviewed papers. According to the imposed
criteria, all studies proved to be of a high methodological quality (with “++” assigned in
the eleventh column), which corresponds to low risk of bias. The items that appeared as
more questionable were those related to the quality of the sampling. In some studies, the
sampling frame was not a close representation of the target population, since, usually, the
authors themselves or a few university students may take part in experimental sessions,
sometimes selected in a non-random way. Nevertheless, the implemented methodology
was of relatively high quality, counterbalancing this disadvantage.
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Table 1. Assessment of the methodological quality of the reviewed papers. Note that items
1–4 correspond to external while 5–10 correspond to internal validity [47].

Reference
External Validity Internal Validity Overall Quality

1 2 3 4 5 6 7 8 9 10 11

[52] Y N Y Y Y Y Y Y Y Y ++
[55] C C C C C Y Y Y Y Y ++
[56] C C C C C Y Y Y Y Y ++
[57] C C C C C Y Y Y Y Y ++
[58] C C C C C Y Y Y Y Y ++
[53] C C C C C Y Y Y Y Y ++
[59] C C C C C Y Y Y Y Y ++
[60] C C C C C Y Y C Y Y ++
[61] C C C C C Y Y Y Y Y ++
[20] Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ ++
[62] Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ ++
[63] Υ N Υ Υ Υ Υ Υ Υ Υ Υ ++
[64] C C C C C Y Y Y Y Y ++
[65] C C C C C Y Y Y Y Y ++
[66] Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ ++
[67] C C C C C Y Y Y Y Y ++
[68] C Y C Y Y Y Y Y Y Y ++
[69] C C C C C Y Y Y Y Y ++
[70] C C C C C Y Y Y Y Y ++
[71] C C C C C Y Y Y Y Y ++
[72] C Y Y Y Y Y Y Y Y Y ++
[21] C C C C C Y Y C C Y ++
[73] C N C Y Y Y Y Y Y Y ++
[74] N N Y Y Y Y Y Y Y Y ++
[75] Y N Y Y Y Y Y Y Y Y ++
[76] C C C C C Y Y Y Y Y ++
[77] Y Y Y Y Y Y Y Y Y Y ++
[78] Y N C Y Y Y Y Y Y Y ++
[24] C N C Y Y Y Y Y Y Y ++
[79] C C C C C Y Y Y Y Y ++
[80] C Y N C Y Y Y Y Y Y ++
[54] C C C C C Y Y Y Y Y ++

“C”: cannot say; “N”: no; “Y”: yes; “++”: high quality (low risk of bias); “+”: acceptable (moderate risk of bias);
“−“: low quality (high risk of bias). “1”: Was the study’s target population a close representation of the national
population in relation to relevant variables, e.g., age, sex, occupation? “2”: Was the sampling frame a true or
close representation of the target population? “3”: Was some form of random selection used to select the sample,
or, was a census undertaken? “4”: Was the likelihood of non-response bias minimal? “5”: Were data collected
directly from the subjects (as opposed to a proxy)? “6”: Was an acceptable case definition used in the study?
“7”: Was the study instrument that measured the parameter of interest shown to have reliability and validity (if
necessary)? “8”: Was the same mode of data collection used for all subjects? “9”: Was the length of the shortest
prevalence period for the parameter of interest appropriate? “10”: Were the numerator(s) and denominator(s) for
the parameter of interest appropriate? “11”: Summary item on the overall risk of bias [47].

3.3. Brief Review of the Relevant Literature

The selected studies are also included in Table 2, whose columns epitomize some
important aspects of them, namely the citation of the paper at hand, its subject, the imple-
mented methodology, the examined crop, the interaction mode (based on the taxonomy
described in Section 2.4), the automation level (as described in Section 2.5), and the main
results. A summary of the aforementioned aspects, which were investigated by the relevant
studies, is provided in Figure 5a–d, while a discussion follows immediately after.
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Table 2. List of the selected papers along with their citation, subject, implemented methodology,
examined crop, interaction mode, automation level, and main results.

Ref 1 Subject Method Crop Interaction Mode Automation Level 2 Main Results

[52] Target
detection Lab exp 3 Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

Synergy increased the
performance by 4%

and by 14% compared
with the solely manual

or autonomous
detection, respectively

[55] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

An objective function
was developed for
evaluating system

performance, while the
optimal collaboration

level may change
depending on human
and robot sensitivities

[56] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

The best system
performance and

collaboration level
depend on the

environment, the task,
and the system
characteristics

[57] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

Real-time switching of
the synergistic levels
was accomplished by
developed algorithms
for increasing system

performance

[58] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

Real-time switching of
the synergistic levels

was achieved, resulting
in improved system

performance by more
than 90%

[53] Target
detection Simulation Melon Isolation;

Collaboration 1; 3–4; 5–7; 10

Operational costs were
studied, showing that
human decision time
strongly affects the

performance

[59]

Target
detection/
Precision
spraying

Lab
exp/Simulation Grape Isolation;

Collaboration 1; 3–4; 5–7; 10

Four levels of HRI 7

were developed and
tested, as well as a
spraying coverage

optimization function

[60] Robot
navigation

Design
Principles N/A N/A N/A

A taxonomy was
presented and

evaluated in terms of
an existing user

interface for robot
teleoperation

[61] Movements
identification

Design
Principles Olive N/A N/A

Guidelines are
described for

addressing problems in
sharing human–robot

environments

[20]

Robot naviga-
tion/Target
detection/
Precision
spraying

Field and
lab exp Grape Synchronization 1–2

Multiple views, head
-mounted display, PC 4

keyboard contributed
to higher perceived

usability
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Table 2. Cont.

Ref 1 Subject Method Crop Interaction Mode Automation Level 2 Main Results

[62]

Robot naviga-
tion/Target
detection/
Precision
spraying

Field and
lab exp Grape Synchronization 1–2

Similar results to [20],
while camera

placement on the
top-back of the robot

and on the
end-effector

improved the
surroundings and
activity awareness

[63]

Target
detection/
Precision
spraying

Field exp Grape Isolation;
Collaboration 1; 3–4; 5–7; 10

The collaborative
spraying system

reduces the sprayed
material by half

[64] Social
navigation Simulation N/A Coexistence N/A

A controller modifies
the length of

personal space and
velocity in order to

keep a social distance

[65] Stress
management Simulation N/A Isolation;

Cooperation 1–3; 10 Collaboration allows
for saving time

[66] Load lift and
carrying Field exp Strawberry Cooperation N/A

The pilot study
showed that the

experienced workers
positively viewed the

cooperation and
considered it safe

[67] Stress
management Simulation N/A Cooperation;

Collaboration 3–5

The developed
protocol provides the
highest efficiency as

compared to a system
without synergy

[68]
Fleet of robots

(tele-
)operation

Field exp N/A Collaboration 3–7

The AR 5 system
improves the

situational awareness
of a human for

managing a fleet of
robots

[69] Harvesting Simulation Orange N/A N/A

The developed
risk-averse solution
minimizes economic

costs

[70] Stress
management Simulation N/A Cooperation;

Collaboration 3–5

H-R 6 synergy can
respond to

emergency stresses
situations fast and

effectively

[71] Harvesting Simulation
Strawberries

and
grapes

Cooperation N/A

Development of
model and simulator
to predict efficiencies

of coupled
operations pertaining
to manual harvesting
and robot transport

[72] Harvesting Field exp/
Simulation Strawberry Cooperation N/A

Simulations
robustness of [71]
was evaluated; 5
robots serving as

tray-transport from
25 pickers improved
efficiency by 10.2%
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Table 2. Cont.

Ref 1 Subject Method Crop Interaction Mode Automation Level 2 Main Results

[21] Ergonomics
and safety

Design
Principles N/A N/A N/A

A combined
approach is proposed

that redefines
practical limits,

reprioritizes safety
measures, and
determines the

riskiest postures

[73] Target
detection Lab exp Strawberry Collaboration 2–5

Both experienced and
non-experienced

groups opt for robots
producing more false

positive results

[74] Harvesting Field exp Tea Cooperation N/A
The robot kept on a
side-by-side route
with two workers

[75]
Human
activity

recognition
Field exp N/A Cooperation N/A

The prediction of the
defined sub-activities

demonstrated an
85.6% average
accuracy, while

fusion of all sensors’
data can yield the

maximum accuracy

[76] Harvesting Simulation Citrus
varieties N/A N/A

H-R collaboration
can optimize

economic viability of
robotic harvesters,
especially when it
occurs in the early

stages of harvesting

[77] Ergonomics Lab exp N/A Cooperation N/A

A deposit height of
robot equal to 90 cm

was suggested by
avoiding large
lumbar flexion

[78]
Human
activity

recognition
Field exp N/A Cooperation N/A

Six continuous
activities with

wearable sensors
were performed for a
HRI scenario under
several variants for
obtaining a dataset

for ergonomics
research

[24]
Human
activity

recognition
Field exp Pistacia Cooperation 5

A real-time
skeleton-based

recognition
framework was

developed using 5
hand gestures and

successfully tested in
field experiments
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Table 2. Cont.

Ref 1 Subject Method Crop Interaction Mode Automation Level 2 Main Results

[79]
Transitioning
toward H-R

synergy

Design
Principles N/A N/A N/A

The interplay among
the socio-economic

factors and
underlying mental
models driving the

shift from pure
automation to HRI
are presented via a
systems thinking

approach

[80]
Robot naviga-
tion/Precision

spraying

Field
exp/Simulation Grape Collaboration 1–3

Both groups
(computer experts
and farmers) made
effective use of user
interfaces with the

tangible one
receiving more

positive evaluations

[54] Load lift and
carrying Simulation Avocado Cooperation 5

H-R synergy
increases the

production but
necessitates slightly
more energy during

harvesting
1 Ref: Reference; 2 automation levels according to Sheridan scale [81]; 3 Exp: Experiments; 4 PC: Personal
Computer; 5 AR: Augmented Reality; 6 H-R: Human–Robot; 7 HRI: Human–Robot Interaction.

Starting from the subject of the reviewed papers (Figure 5a), most of them dealt with a
very demanding agricultural task, namely target detection. The key problems come from
the peculiar agricultural environment. In essence, occlusion and changing illuminations
properties, as well as variability in fruit color, size, shape, texture, orientation, and position,
are limiting factors. Apart from the problems related to the location of targets, the uneven
and continuously changed terrain and atmospheric conditions make target detection more
complicated. Several performance measures have been used for target recognition, includ-
ing detection time, probability of target detection, and non-target detection (false alarm).
Automatic target detection in such environments is characterized by poor performance.
Consequently, interaction with humans can be advantageous, considering their superior
perception and action capabilities allowing them to adapt to unforeseen agricultural events.

The majority of the studies associated with implementing HRI for optimizing target
detection [52,53,55–59,63] followed a certain methodology for comparing the performance
of four different human–robot types of synergy:

• Humans alone detect and mark the targets, while HRI is never permitted. This is
compatible with both level 1 in Sheridan’s scale and isolation mode;

• Robots recommend the targets and humans approve and mark them. In particular,
the targets are automatically identified with the use of a detection algorithm. Then,
humans recognize the algorithm’s true detections by ignoring the false ones and mark
the possible missing targets. This interaction corresponds to levels 3–4 in Sheridan’s
scale, as mentioned in these studies. In addition, following the analysis described in
Section 2.4, this interaction is classified as collaboration, since both robots and humans
focus on the same task;

• The targets are automatically detected by the corresponding machine learning algo-
rithm, with the human role being to cancel the false findings, while, like at the above
level, the humans marks the missing items. This type of synergy is equivalent to levels
5–7 in the Sheridan scale and, again, is classified as collaboration;
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• Purely autonomous marking of targets takes place, in which human intervention is
never permitted. Obviously, similar to the first type of synergy that was mentioned
above, no HRI exists, demonstrating the highest level of automation in the Sheridan
scale, namely 10.
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Most of these studies used melons as a target, while grapes were also investigated
corresponding in aggregate to approximately 35.5% of all studies (Figure 5b). On all occa-
sions, the collaboration of humans and robots was found to increase detection performance
and the corresponding time needed for detection. Both of these outcomes were observed
to strongly depend on human decision time. Interestingly, when a field experiment was
conducted to evaluate in practice the impact of the synergy on a site-specific spraying
application, the proposed collaborative spraying system demonstrated a 50% reduction in
the utilized sprayed pesticide [63]. Preliminary laboratory experiments in [82] investigated
the opinion of experienced and non- experienced groups on errors produced by machine
learning algorithms in a synergistic task.

Moreover, five studies [20,60,62,64,68] investigated robot navigation, which is also
a demanding task, because of the particular nature of the rural environment. Adamides
et al. [20,62] examined the usability of two types of output devices, two types of input
devices, and single or multiple views toward optimizing a teleoperated robotic sprayer,
while in [60], a taxonomy was proposed pertaining to usability guidelines. Similarly,
Mallas et al. [80] investigated the efficiency of two user interfaces by using two groups in
field and simulation experiments, namely computer experts and farmers. Additionally,
in [68], the importance of augmented reality was investigated as a means of supervising
two autonomous tractors in a test field. Finally, three computational studies [65,67,70]
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concentrated on greenhouse stress management and how human–robot synergy can both
provide higher efficiency and save time.

Focusing on HRI for harvesting applications, Rysz et al. [69,76] developed a risk-
averse optimization solution and validated it by using a simulated grove setting, including
information for different citrus varieties. A vehicle was successfully implemented in [74]
for following the worker during tea plucking, as proved by the experimental field results.
Furthermore, Seyyedhasani et al. [71,72] investigated the use of harvest-aid robots for
carrying trays to decrease the non-productive walking times of pickers by utilizing data
collected from two strawberry fields. In the same vein, to increase situation awareness,
in [75,78], wearable sensors were used for gathering data during a human–robot syner-
gistic task involving six sub-activities, which were carried out under different variants.
Furthermore, in order to provide more natural means of communication between robot
and human, Moysiadis et al. [24] developed a skeleton-based recognition system for hand
gestures, which enabled a real-time HRI framework tested in field experiments. In [66],
the same robotic system (Thorvald, SAGA Robotics SA, Oslo, Norway) with [24] was used
for transporting the picked strawberries, and the opinion of workers on their interaction
with it was assessed. For that purpose, a brief questionnaire with a five-point scale was
employed.

Aiming at occupational health, which has been recognized as an integral element of
collaborative robotic systems, kinetic and kinematic data as well as muscle activation levels
were collected in [77] from experienced workers in laboratory experiments to investigate the
optimal deposit height of an unmanned ground vehicle. For a similar purpose, Vasconez
and Cheein [54] evaluated, in simulated scenarios, the expected production and also the
physical workload of workers. Benos et al. [21] examined both ergonomics and safety
during HRI operations from an agriculture-oriented perspective, while guidelines for
addressing problems in shared environments were described in [61]. Finally, the socio-
economic factors driving the shift from pure automation to HRI were analyzed through the
prism of a systems thinking approach by Aivazidou and Tsolakis [79].

In general, simulated environments were used in the majority of the reviewed studies,
while experiments, either in the field or in the laboratory, were also utilized, as well as
studies dealing with design principles (Figure 5c). Simulations can be a valuable tool for
investigating HRI in agriculture compared to real-world experiments. Benefits associated
with simulations are (a) cost-effectiveness, as physical experiments include expensive
equipment and land; (b) flexibility to study various scenarios; (c) scalability, enabling
researchers to examine large-scale agricultural systems; and (d) risk-free experimentation
without the fear of damaging crops or putting human operators at risk. It is worth stressing
that simulations cannot fully replicate the intricacies of real-world environments. Therefore,
it is essential to validate simulation outcomes by conducting physical experiments. This
validation process ensures the dependability and precision of the findings before applying
them in real agricultural settings.

Finally, as can be gleaned from Table 2, several automation levels, according to the
Sheridan scale, were tested either in field/laboratory experiments or in simulated environ-
ments to test the potential of using different interaction levels in agricultural applications.
In total, collaboration and cooperation modes, according to the analysis presented in
2.4, were the most usual modes (Figure 5d).

4. Discussion and Conclusions

The present systematic review aimed to shed light on an ever-increasing topic that
concerns several sectors worldwide, namely HRI. This emerging research field was method-
ically analyzed from the perspective of agriculture, which includes complex and dynamic
ecosystems as well as live produce highly sensitive to physical and environmental condi-
tions. A comprehensive examination of the present status was carried out by systematically
reviewing the relevant literature. In total, 32 scientific papers were found. These studies
are a result of the synergistic efforts of multiple disciplines including agricultural sciences,
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human factors, sociology, and ICT. After an assessment of their methodological approach,
the content of the reviewed articles was discussed in terms of their subject, implemented
methodology, examined crop, interaction mode, automation level, and main results.

In summary, most studies dealt with target detection, while studies focusing on detec-
tion in combination with precision spraying and/or robot navigation were also observed.
Furthermore, simulation was the most preferred methodology, as multiple parameters can
be examined. However, field experiments have also been conducted showing encouraging
results regarding the benefits of HRI in agriculture. The most studied crops, in descending
order of frequency, were melons, grapes, and strawberries, with collaboration and coopera-
tion being the most common interaction modes. These crops have high demands for careful
handling, accurate harvesting methods, and precise evaluation of ripeness. Due to the
time-consuming and labor-intensive nature of these tasks, the implementation of robotics
and automation in these crops can greatly enhance productivity and efficiency. Overall, a
range of factors such as the unique attributes of these crops, economic considerations, labor
factors, technological feasibility, and research focus collectively contribute to the increased
interest in HRI applications, specifically for these high-value crops. These applications
can serve as valuable sources of technical knowledge and practices to be disseminated
and encouraged among other crop producers. This will aid in the effective adoption of
these technologies by considering the requirements, benefits, and potential challenges
associated with them. Creating platforms for collaboration and the exchange of knowledge
among agricultural growers can bring significant advantages for establishing a supportive
ecosystem.

As can be deduced from the existing literature on HRI in agriculture, the brittleness
of autonomous robotic systems in uncontrolled and dynamic conditions in tandem with
variability in environments and live produce can result in ineffective operations and
production losses. To that end, human workers can complement autonomous systems by
overcoming their shortcomings. Nevertheless, the path to fully reap the associated benefits
of the capabilities of human–robot synergistic systems is still long. A broad range of research
areas is open for further development to meet the needs of reliability and feasibility, thus
reaching the stage of being commercially available. As human–robot interactive systems
consist of several sub-systems, which should be integrated and coordinated to successfully
transfer information and execute tasks as a single unit, several factors should be considered,
while various issues must be addressed.

First, considering the tremendous progress in ICT and AI, future research should
enable the efficient real-time fusion of a variety of complementary sensors to allow suf-
ficient localization, safe robot navigation, and sensing capabilities. The improvement of
coordination issues between humans and robots, through providing robots with a better
understanding of human intentions and actions, constitutes a promising research area.
Moreover, usability issues pertaining to user interfaces should be tackled. The user interface
is the point of interaction between humans and robots, allowing the former to control the
robotic system to receive feedback from it and achieve effective operation. Consequently,
intensive research efforts are required in the direction of developing user-friendly graphical
interfaces (GUI). These interfaces should be able to decrease the mental workload, through
methods such as avoiding both the inclusion of software that is not convenient to use
and restrictions on the mobility of the operator. Advancement in user interfaces will also
enable synergy between humans and teams of light-weight unmanned ground or/and
aerial vehicles. This constitutes the next demanding step in HRI for addressing the current
challenges and optimizing agricultural practices. Toward that direction, human–robot nat-
ural communication frameworks should be improved. With the advancement of big data
and the enhanced capabilities of computer hardware, deep learning technology exhibits
superior reasoning capabilities compared to traditional machine learning algorithms [83].
Hence, it has gained extensive adoption in industrial domains in recent years, where it
has been implemented to solve problems related to communication frameworks, such as
hand gesture [84,85] and facial expression recognition under various conditions [32,86].
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Likewise, advancement in accuracy of machine learning recognition algorithms can further
improve the credibility of wearable-sensor-based multi-posture recognition [87].

Future research in the field of HRI in agriculture should give due consideration to the
social aspects involved. This entails examining the effects of automation on rural communi-
ties, including the exploration of possible changes in skill requirements and socio-economic
disparities that may arise [88]. It is imperative to employ user-centered design principles
and participatory approaches, actively involving farmers and rural communities during
the development process. This approach will ensure that designs are both socially and cul-
turally appropriate, leading to enhanced user acceptance. A deep understanding of social
acceptance and trust will be gained by exploring stakeholders’ perceptions and attitudes.
Factors contributing to trust building, such as transparency, liability, and accountability,
should be taken into account [12,89]. Moreover, ethical considerations, encompassing
aspects such as privacy and data security, need to be thoroughly examined. By prioritizing
these social aspects in future research, a responsible adoption of robotic systems can be
accomplished that aligns with the values and needs of society.

Future research should also put effort into safety aspects in terms of safeguarding
workers, crops, and surrounding settings. Also, attention should be paid to the optimal
design of HRI systems, including the structure of the team, their specific role, human factors,
and complex mechanisms of robotic systems [90,91]. In addition, economic aspects should
be investigated in depth regarding the practical use of collaborative robots in agriculture,
as farmers will only invest in them on the condition that their investment is going to be
profitable after a reasonable time. Future research should also involve the assessment of the
environmental implications of using robots, such as their potential to minimize chemical
usage and soil erosion and contribute to the advancement of sustainable farming practices.

The introduction of collaborative robotics is, however, not a trivial issue. It requires
open dialogue between stakeholders, clear objectives, proper incentives, and information
from policy makers. An effective approach would be the organization of frequent sympo-
siums and workshops that involve farmers in the co-design process. These initiatives can
provide a space where farmers, robotics experts, policymakers, and researchers can actively
participate in meaningful discussions. By facilitating the exchange of knowledge and expe-
riences, these forums can enable the identification of specific limitations, opportunities, and
collaborative solutions. Flexible education and training programs need to be developed
to equip agricultural workers with the necessary skills to interact with robotic systems
effectively. This can involve tailored training modules on robot usage, maintenance, safety
protocols, and troubleshooting. Agricultural extension services, technology providers, and
vocational training centers can collaborate to provide tailored hands-on training programs
that meet farmers’ specific needs. To study skill competencies compared to emerging robot
demands, interdisciplinary research initiatives should also be undertaken focusing on
recognizing areas where skills are lacking, assessing how robotics affect job responsibilities,
and investigating the social and economic consequences of their implementation. These
endeavors may involve cooperation among agricultural scientists, robotics engineers, and
behavioral researchers, with the aim to comprehend the human aspects of productive
interaction between humans and robots in agricultural environments.

The above considerations for future research directions, which were discussed in this
section, are summarized in Figure 6.

In conclusion, this review paper presents an extensive evaluation of the present
state of HRI in agriculture, emphasizing the progress made, capabilities, technological
limitations, and potential applications of this technology within the agricultural domain.
Through a comprehensive analysis of the existing literature, this review is expected to
serve as a valuable reference for researchers, practitioners, and policymakers who aim to
gain insights into the dynamic landscape of agricultural robotics. Finally, by identifying
areas necessitating further research and development, this paper seeks to stimulate future
innovations and collaborations, thereby fostering the seamless integration of robotics to
enhance productivity, sustainability, efficiency, and safety in the agricultural sector.
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