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Abstract: The Internet of Things (IoT) is rapidly growing, with an estimated 14.4 billion active
endpoints in 2022 and a forecast of approximately 30 billion connected devices by 2027. This
proliferation of IoT devices has come with significant security challenges, including intrinsic security
vulnerabilities, limited computing power, and the absence of timely security updates. Attacks
leveraging such shortcomings could lead to severe consequences, including data breaches and
potential disruptions to critical infrastructures. In response to these challenges, this research paper
presents the IoT Proxy, a modular component designed to create a more resilient and secure IoT
environment, especially in resource-limited scenarios. The core idea behind the IoT Proxy is to
externalize security-related aspects of IoT devices by channeling their traffic through a secure network
gateway equipped with different Virtual Network Security Functions (VNSFs). Our solution includes
a Virtual Private Network (VPN) terminator and an Intrusion Prevention System (IPS) that uses a
machine learning-based technique called oblivious authentication to identify connected devices. The
IoT Proxy’s modular, scalable, and externalized security approach creates a more resilient and secure
IoT environment, especially for resource-limited IoT devices. The promising experimental results
from laboratory testing demonstrate the suitability of IoT Proxy to secure real-world IoT ecosystems.

Keywords: authentication; cybersecurity; edge computing; Internet of Things (IoT); intrusion
prevention system (IPS); machine learning; gateways; oblivious authentication; proxy; virtual private
network (VPN)

1. Introduction

The Internet of Things (IoT) domain is continuing to grow. In 2022, IoT Analytics [1]
estimated 14.4 billion active endpoints despite the recent chip shortage. Moreover, they fore-
cast approximately 30 billion connected devices in 2027. This massive number of machines
has facilitated seamless data sharing and access to services worldwide, fundamentally
altering how we interact with technology. Indeed, those devices are becoming very popular
even in our homes. Around 40% of houses worldwide have an IoT device. Considering
only North America, this number grows to approximately 70% [2].

However, the rapid growth of IoT devices has come with significant security chal-
lenges. These interconnected devices, equipped with myriad sensors that capture data from
their surroundings, generate vast amounts of information. Unfortunately, many IoT devices
suffer from intrinsic security vulnerabilities due to limited computing power, low-cost de-
sign, and the absence of timely security updates [3]. In addition, even software developers
can play a significant role in introducing security vulnerabilities in IoT ecosystems since
they may not be fully aware of the potential threats that could affect their IoT project [4].
Indeed, many hobbyist open-source IoT projects contain potential issues [5].

These shortcomings create opportunities for malicious actors to exploit vulnerabilities,
e.g., weak or hard-coded passwords, inadequate encryption mechanisms, or insecure
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communication protocols. Consequently, compromised IoT devices can serve as entry
points for unauthorized access, leading to severe consequences, including data breaches
and potential disruptions to critical infrastructures. The urgent need for robust security
measures in the IoT ecosystem is exemplified by the rise of cyber attacks that target IoT
devices. In 2016, the discovery of the infamous Mirai malware [6] demonstrated the
potential of IoT devices being turned into remotely controlled bots, facilitating large-
scale Distributed Denial of Service (DDoS) attacks. The consequences of such attacks
could be devastating and even endanger human lives, impacting essential services and
healthcare systems.

The challenges associated with securing IoT devices are further complicated by factors
such as the diversity of devices and manufacturers, making it challenging to establish
uniform security standards and practices. Manufacturers often prioritize time-to-market
and cost efficiency over comprehensive security measures, leaving IoT devices susceptible
to exploitation. The result is a gap between the rapid expansion of IoT and the development
of robust security measures to safeguard these devices.

In response to these challenges, this research paper presents the IoT Proxy, a modular
component designed to enhance (resource-limited) IoT devices’ security. As part of the
FISHY project1 (funded by the European Union’s Horizon 2020 research and innovation
program2), the IoT Proxy is a critical component of a coordinated cyber-resilient platform
focused on establishing trusted supply chains. The core idea behind the IoT Proxy is
to externalize security-related aspects of IoT devices by channeling their traffic through
a secure network gateway equipped with different Virtual Network Security Functions
(VNSFs). This gateway, operating on a more powerful machine (w.r.t. resource-limited IoT
devices), enforces a cascade of security controls to bolster individual device security and
prevent threats from spreading throughout the network.

Due to its modular design, the IoT Proxy could include many VNSFs. In the context of
this paper, we will focus on the main security functionalities: a Virtual Private Network
(VPN) terminator (based on strongSwan3) and an Intrusion Prevention System (IPS) based
on machine learning techniques. A noteworthy feature of the IPS proposed in this paper
is the capability of executing the oblivious authentication of the connected IoT devices.
Indeed, the IoT Proxy can identify which devices are trying to use its services through their
network traffic profiles. In this way, authentication can be achieved without additional
computational overhead on edge devices, making its adoption compatible with the typical
resource constraints of IoT ecosystems.

Finally, IoT Proxy can be wholly virtualized, allowing complete scalability and adapt-
ing hardware resources according to specific workloads.

In summary, the main contributions of this paper are:

• introducing a modular platform for protecting resource-limited IoT devices;
• introducing a transparent security approach for IoT devices (and end-system users);
• introducing an authentication approach based on machine learning techniques (i.e.,

the oblivious authentication) with no additional computational overhead for the
IoT devices.

The rest of this paper is structured as follows. In Section 2, the paper presents the
state of the art in IoT security. Section 3 describes the main components of the IoT Proxy,
while Section 4 highlights the promising results obtained from laboratory testing. Then, in
Section 5, we conclude the paper by providing some insights about future work.

2. Related Work

The advent of the Internet of Things (IoT) has ushered in a remarkable era of innova-
tion, with applications spanning from smart homes to industrial automation. However,

1 https://fishy-project.eu/, accessed on 2 October 2023.
2 https://www.eeas.europa.eu/eeas/horizon-2020_en, accessed on 2 October 2023.
3 https://www.strongswan.org/, accessed on 3 October 2023.
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this proliferation of interconnected devices has brought to the forefront a pressing concern:
how to manage security, especially for legacy and resource-limited devices. Indeed, IoT
devices, often constrained by limited computing power and memory, have become enticing
targets for malicious actors seeking to compromise networks or gain unauthorized access.
Safeguarding these devices and the networks they inhabit is of paramount importance.

One avenue explored in related research is using Network Function Virtualization
(NFV) techniques [7] to bolster IoT security. Aman et al. [8] proposed a security framework
that leverages NFV to establish trust in IoT systems and combat malware propagation.
By categorizing IoT devices, using remote attestation [9], in three different categories
(trusted, vulnerable, or compromised), they effectively employ NFV to create distinct
networks for each category. Their results are promising, showcasing a 66% reduction
in compromised devices within a mere 10 s time frame. Another interesting solution
is the one proposed by Zolotukhin et al. [10]. They introduced an IoT defense system
founded on Software-Defined Networking (SDN) [11] and NFV [12], incorporating machine
learning to assess and respond to attack risks optimally. SDN’s separation of control and
data planes facilitates centralized network control and traffic manipulation. Cloud-based
servers emulate essential infrastructure components, such as routers and gateways, while
virtual Network Security Functions (vNSFs), including firewalls and intrusion detection
systems, fortify security. Moreover, analyzing another solution based on NFV and machine
learning techniques, Guizani et al. [13] proposed an architecture that is empowered by
NFV, featuring a learning model based on a Long Short-Term Memory (a specific type of
Recurrent Neural Network) [14]. This model is capable of promptly predicting malware
spread in heterogeneous IoT networks. Their solution scales effectively with network size
growth, thanks to the integration of machine learning with a virtualized patching system.
The ultimate objective of this study is the development of a versatile Intrusion Detection
System (IDS) capable of countering diverse malware threats.

Talking about IDS and Intrusion Prevention Systems (IPSs), it is possible to find
various solutions and methodologies explicitly tailored to enhance the security of IoT
environments in the literature. S. M. Kasongo [15] introduced an IDS tailored to Industrial
IoT (IIoT) applications [16], employing a Genetic Algorithm (GA) [17] for feature selection
combined with a random forest model. Their approach achieves high accuracy, surpassing
85% across multiple classifiers. Kumar et al. [18] presented a distributed IDS, harnessing
fog computing [19] to identify and mitigate Distributed Denial of Service (DDoS) [20]
attacks in blockchain-enabled [21] IoT networks. Their system comprises three critical
engines, facilitating effective attack detection and classification. Basati et al. [22] proposed
a Network-based Intrusion Detection System (NIDS) built upon deep neural networks
specifically designed for IoT networks. The Parallel Deep Auto-Encoder (PDAE) model
enhances accuracy while significantly reducing computational requirements.

In addition to traditional approaches, some researchers have explored modern method-
ologies such as Blockchain [21] and edge computing [23] to fortify IoT security.
Sharma et al. [24] introduced a blockchain-based solution for securing IoT devices, empha-
sizing data integrity and peer-to-peer authentication. Experimental results reveal improved
security compared to conventional hash algorithms [25]. Jiang et al. [26] embraced edge
computing, deploying a lightweight machine-learning algorithm for intrusion detection.
Their edge intelligent gateway ensures real-time threat detection with minimal network
performance impact.

Considering Virtual Private Networks (VPNs), this technology has emerged as a
popular choice for securing IoT traffic, and several studies have delved into its application
in this context. Raj et al. [27] developed a private VPN using a Raspberry Pi [28] as a
gateway, enhancing security and scalability for home smart IoT networks. Their results
demonstrate performance on par with commercial VPN solutions. Fan et al. [29] designed
an IoT gateway fortified with comprehensive security mechanisms, including an IPSec [30]
VPN for Transport Layer Security (TLS) [31]. Their modular framework enhances security
and stability, accommodating various network access modes. Alharbi et al. [32] presented
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the FOCUS system, which combines fog computing and VPN technology for challenge-
response authentication, effectively filtering out threats and ensuring low response latency.
To conclude, Zedak et al. [33] proposed a secure architecture for remote data acquisition in
IoT sensors, incorporating VPN technology to ensure secure end-to-end communication
among sensors.

Our present work aspires to build upon this body of research. By adopting a modular
approach and emphasizing portability through lightweight virtualization and Docker
deployment [34], we aim to offer an integrated solution that consolidates multiple security
controls rather than solely relying on a single technology. Our objective is to enhance the
protection of IoT device networks comprehensively.

Furthermore, we improve the preliminary work by Corno and Mannella [35], which
provides network protection by introducing a plugin-based modular approach for IoT gate-
ways. Their solution, to shield the IoT devices, requires the developers of such plugins to
provide a set of network requirements based on the Manufacturer User Description (MUD)
standard [36]. Instead, the approach presented in this paper is completely transparent,
since the IoT devices could be seamlessly protected by the IoT Proxy without the need for
writing a specific network configuration.

Indeed, the security solutions (e.g., IDS, VPN) employed by our approach have already
been successfully applied in IoT scenarios.

Nevertheless, to the best of our knowledge, our approach is the first one to provide
a comprehensive security solution specifically tailored for IoT scenarios, for example,
employing the oblivious authentication scheme to address the limited computational
resources of IoT devices. The modularity of our solution ensures both adaptability to
diverse IoT scenarios and its compatibility with new security solutions.

3. Proposed Approach

The Internet of Things (IoT) has ushered in a new era of connectivity, enabling machine-
to-machine communication and offering many applications. However, the proliferation
of IoT devices has raised significant security and privacy concerns. Many IoT devices are
constrained by limited computational power and memory, making them attractive targets
for malicious actors. The IoT Proxy project was conceived in response to these challenges.

IoT Proxy serves as a modular, secure gateway solution designed to improve the secu-
rity posture of IoT device networks. Its core mission is to outsource security management
tasks from the devices, acting as an intermediary between external networks and them. To
ensure portability and ease of integration with other platforms (e.g., the FISHY platform in
the context of the homonymous European project), the IoT Proxy harnesses the power of
containerization (specifically Docker containers [34]). Each component and virtual Network
Security Function (vNSF) is deployed on a dedicated Docker container. In this section, the
paper explains the main components of the IoT proxy and their interactions.

The heart of the IoT Proxy is the coordinator module, which acts as the primary access
point for IoT devices. This coordinator operates within a virtualized host environment,
running a Linux-based operating system. It serves as the central command hub for IoT
Proxy, responsible for interpreting configuration commands and orchestrating the various
security controls. The coordinator container includes essential components such as iptables
and a Python interpreter. These components are vital for configuring and managing the
IoT Proxy environment, ensuring a smooth and consistent operation.

The coordinator is surrounded by a set of vNSFs, each providing specific security
controls. These vNSFs can be dynamically activated or deactivated as needed, giving IoT
Proxy its modularity and adaptability. This architectural flexibility allows custom security
configurations tailored to the specific needs of IoT device networks. Adding or removing
vNSFs as necessary allows IoT Proxy to adapt to evolving security requirements. This
extensibility is achieved by updating a data structure within the coordinator, which maps
vNSF names to their corresponding Docker images.
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To facilitate communication between the coordinator and vNSFs, a named pipe serves as
a communication channel that enables the execution of configuration commands and serves
as a coordination conduit between the host system and the coordinator container, allowing a
seamless exchange of instructions and configurations and ensuring that IoT Proxy operates
effectively. IoT Proxy’s modular architecture makes it highly scalable and extensible.

Figure 1 depicts the workflow of a packet starting from an IoT device towards an
external network (e.g., the Internet). The device sends the packets to the coordinator
component (step 1), which acts as the proper gateway of our framework. The coordinator
internally redirects all the packets to the vNSFs in order for any data analysis or traffic
manipulation purposes (from step 2 to step 7). Finally, the IoT proxy emits the data to the
external world (step 8). The responses to such packets will perform the same path but in a
backward manner.
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Figure 1. IoT Proxy high-level workflow.

The versatile architecture of the IoT Proxy accommodates various security modules,
making it a robust and adaptable solution for securing IoT device networks. In the current
implementation, two primary vNSFs are supported: an IPsec-based VPN terminator (based
on strongSwan4) and a custom Intrusion Prevention System (IPS).

3.1. VPN vNSF

The primary objective of the VPN vNSF is to provide encryption, authentication, and
secure communication capabilities to IoT devices and networks. This module is based on
strongSwan an open-source IPsec VPN solution. By operating at the IP layer, this module
ensures IP packets’ confidentiality, integrity, and authentication, ensuring that data remain
confidential and tamper-proof during transit.

IoT Proxy can seamlessly configure strongSwan instances using specific commands,
making it straightforward to establish secure VPN connections for every IoT device man-
aged by the IoT Proxy. strongSwan’s versatility is underscored by its support for various
VPN types and robust encryption capabilities. It offers a spectrum of authentication meth-
ods, including Public Key Infrastructure (PKI) [37] and pre-shared keys, ensuring that IoT
devices can establish secure connections. The IKEv2 [38] protocol facilitates secure key
exchange, further enhancing the overall security of IoT communications.

3.2. IDS/IPS vNSF

Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs) frequently
serve as the first line of defense to safeguard computer networks, helping to identify and
respond to unauthorized accesses and malicious activities. Our system includes a vNSF that
allows us to monitor the IoT traffic and, if needed, autonomously react when an anomaly is
found. This component can perform two types of anomaly detection:

• network attack identification, where we detect attacks targeting an IoT device;
• oblivious authentication, where we can spot an IoT device mismatch (e.g., a thermal

sensor behaving as a webcam).

4 See note 3 above.
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Indeed, identifying an attack as soon as possible can help to react to and mitigate the
undesired behavior promptly. Some attacks are, however, more challenging to spot. Expert
attackers may try to hide their attempts by passing off their malicious network traffic as
benign traffic. However, thanks to the oblivious authentication mechanisms, we can detect
if a network flow related to a particular device starts behaving as another one.

To design this component, we extracted various aggregated features for every traffic
flow using NFStream5. We then feed these values to a machine-learning model for the flow
classification. In our implementation, we used some random forest classifiers implemented
with scikit-learn6. We experimentally proved that this approach achieves promising results
(see Section 4). In particular, we trained two different random forests:

• a coarse-grained classifier that distinguishes various attack categories (e.g., brute force,
DDoS, DoS, spoofing) and device categories (i.e., audio, camera, home automation,
power outlet), for a total of 15 classes;

• a fine-grained classifier that pinpoints the exact attack (e.g., SYN flood, SQL injection)
or device (e.g., Amazon Alexa Echo Dot, Wemo Smart Plug), totaling 80 classes.

Users can choose among the classifiers above through a configuration parameter when
deploying this module.

To train and test all our classifiers, we used the freely available CIC IoT Dataset 20237.
The paper by Neto et al. [39] contains the complete list of attacks, devices, and IoT categories
we used in our approach.

Our traffic analysis approach always performs a Shallow Packet Inspection (SPI) by
only looking at the network (e.g., IP) and transport (e.g., TCP, UPD, and ICMP) level
headers without analyzing the payloads. Thus, our solution complies with various privacy-
sensitive scenarios. Furthermore, it is also encryption-agnostic, allowing our approach to
work equally well with both encrypted (e.g., TLS or WS-Security) and clear connections.

Table 1 lists all the 59 flow features we used. Most features come in three flavors: client-
to-server, server-to-client, and global (round-trip) versions. The only features that are global
connection properties are related to the protocols; in fact, we distinguish between IPv4 and
IPv6, but also between some transport-layer protocols such as TCP, UDP, and ICMP.

This module can be configured as an IDS or an IPS, and its internal workflow is
depicted in Figure 2. In the IDS variant, the module logs the anomalous flow in a file
that can be used as a simple log or actively watched to perform a real-time analysis of the
IoT devices. When configured as an IPS (in addition to the logging), this component can
automatically add a DROP rule to the iptables firewall to block the IP address related to
the anomalous connection. When an attack targeting an IoT device is detected, the IPS
will block the external IP address (i.e., the attacker itself). On the other hand, in case of
an oblivious authentication failure, the module will block the IoT device’s IP address. It
is important to note that, due to how the Docker ecosystem works, the iptables kernel
module that we are configuring is the host machine’s one since containers are without a
proper kernel.

5 https://www.nfstream.org/, accessed on 6 October 2023.
6 https://scikit-learn.org/, accessed on 6 October 2023.
7 https://www.unb.ca/cic/datasets/iotdataset-2023.html, accessed on 7 October 2023.
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Table 1. Features for the flow classification. The checkmark means that the specific feature is
considered during the training phase.

Description Unit Global Sent Received

flow duration ms ✓ ✓ ✓
packet count packet ✓ ✓ ✓
byte count byte ✓ ✓ ✓
minimum packet size byte ✓ ✓ ✓
mean packet size byte ✓ ✓ ✓
st. deviation of packet size byte ✓ ✓ ✓
maximum packet size byte ✓ ✓ ✓
minimum inter-arrival time ms ✓ ✓ ✓
mean inter-arrival time ms ✓ ✓ ✓
st. deviation of inter-arrival time ms ✓ ✓ ✓
maximum inter-arrival time ms ✓ ✓ ✓
TCP packets with SYN set packet ✓ ✓ ✓
TCP packets with CWR set packet ✓ ✓ ✓
TCP packets with ECE set packet ✓ ✓ ✓
TCP packets with ACK set packet ✓ ✓ ✓
TCP packets with PSH set packet ✓ ✓ ✓
TCP packets with RST set packet ✓ ✓ ✓
TCP packets with FIN set packet ✓ ✓ ✓
use of IPv4 boolean ✓ - -
use of IPv6 boolean ✓ - -
use of TCP boolean ✓ - -
use of UDP boolean ✓ - -
use of ICMP boolean ✓ - -

Version January 8, 2024 submitted to Sensors 6 of 15
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Figure 2. IDS/IPS module workflow.

4. Experimental Results

In this section, we will discuss the results we obtained by experimentally testing our
solution on various real traffic. In particular, Section 4.1 contains an investigation of the
quality of our machine learning-based IDS/IPS vNSF, while Section 4.2 is a study of how
much the network throughput is affected by the IoT Proxy.
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4.1. Machine Learning Model Performance

As Section 3.2 explained, we trained two distinct random forests. In the following
paragraphs, we will analyze the dataset we used, and then we will show some classification
metrics showing the feasibility of our approach.

4.1.1. Dataset

We used the PCAP files from the CIC IoT Dataset 2023 [39] from the University of
New Brunswick to train and test our machine learning models. In our work, we recall
that a sample is a network flow; this can be a traditional TCP connection [40], a QUIC
connection [41], or just a simple ICMP packet [42].

We used the file names to identify the attacks in the dataset PCAP collection and the
MAC addresses to split the benign capture files according to their devices, following the
data published by Neto et al. [39]. Some PCAP files contained several benign flows with
an unknown MAC address. We decided to group these flows in an ad hoc class called
benign unknown to maximize the samples available for training and testing.

Our final dataset contains 129,092,256 samples (flows). Table 2 lists the number of
flows by protocol. Most flows are IPv4 TCP connections belonging to DoS and DDoS
attacks. UDP and ICMP flows are also present, mainly due to some UDP and ICMP attacks
and QUIC connections.

Table 2. Flow count by protocol.

Protocol IPv4 IPv6

TCP 124,028,344 6
UDP 4,878,325 46,212
ICMP 89,958 0
other 14,065 35,330

total 129,010,692 81,564

Table 3 reports the sample counts for the attack and device categories used by our
coarse-grained classifier. Due to their flooding nature, DoS and DDoS flows dominate the
dataset. Benign connections are only 0.39% of the entire data set. This meager fraction
will partially impact the detection accuracy of some device categories and types for the
oblivious authentication mechanism, as described in the following paragraphs.

Table 4 shows instead some means computed on four different bidirectional features:
flow duration, exchanged bytes, Package Inter-Arrival Time (PIAT), and the number of
TCP SYN packets.

By performing a cursory analysis, several traffic patterns are already noticeable. For
instance:

• lightning and power outlet connections are the longest ones since these devices are
usually online for several minutes or hours;

• recon attacks send very few bytes per connection, and this behavior is consistent with
how port and network scanning works;

• Mirai attacks [6] send vast quantities of bytes per connection since they are used to
flood devices;

• DoS attacks send many TCP SYN packets since many of these attacks try to open as
many channels as possible;

• DDoS attacks have a long PIAT since many of these attacks try to cause congestion by
deliberately opening slow connections.

We used 80% of the dataset (103,273,804 samples) and the remaining 20% (25,818,452 sam-
ples) to train and test our models. We used a stratified split on the class attacks and devices
to have more balanced train and test partitions.
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Table 3. Flow counts by attack and device category.

(a) Benign traffic.

Category Flows

audio 48,717
camera 126,364

home automation 10,630
hub 20,252

lighting 1323
next-gen 173

power outlet 2140
unknown 297,238

total 507,002

(b) Malicious traffic.

Category Flows

brute force 6452
DDoS 118,780,042
DoS 7,978,026

Mirai 512,905
recon 1,141,540

spoofing 147,823
web attack 18,466

total 128,585,254

Table 4. Some mean statistics by attack and device category.

Category Duration [ms] Bytes PIAT [ms] SYN Packets

audio 79,819.59 7257.89 1481.24 0.55
brute force 45,737.65 5662.02 1689.59 0.93
camera 31,344.17 44,393.27 806.44 0.22
DDoS 318,543.99 2314.38 22,238.50 6.40
DoS 427,393.55 7751.54 8180.93 24.55
home automation 120,800.44 6186.60 2436.34 0.51
hub 67,226.78 3951.05 2446.75 0.41
lighting 942,282.45 20,572.59 12,207.54 0.37
Mirai 23,256.00 288,397.63 1785.00 0.93
next-gen 1878.77 79,213.42 232.80 0.04
power outlet 693,913.67 14,842.67 7144.68 0.28
recon 12,464.81 1447.62 499.59 0.89
spoofing 32,446.62 24,107.19 3053.01 0.34
unknown 50,424.88 22,804.24 1303.65 0.49
web attack 33,310.13 5133.73 3222.72 0.43

4.1.2. Coarse-Grained Classifier

We trained a random forest to distinguish between 15 classes: 8 are related to be-
nign activities (audio, camera, home automation, hub, lighting, next-gen, power outlet,
and unknown), while 7 are attacks (brute force, DDoS, DoS, Mirai, recon, spoofing, and
web attacks).

Table 5 shows various classification metrics related to the coarse-grained classifier.
Figure 3, instead, shows the accuracies per each class.
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Table 5. Classification statistics for the coarse-grained model.

Statistic Value [%]

accuracy 95.72817533754541
balanced accuracy 69.56422432885422

AUC 96.51575656890216
F-score (macro) 35.80059247737348
recall (macro) 69.56422432885422

precision (macro) 28.473269071998175

The balanced accuracy of the random forest is 69.56%, making our approach more
than ten times more accurate than a random classifier8.

DDoS and DoS attacks are the easiest to spot for our classifier (with an accuracy of 96%
and 95%, respectively). On the other hand, the unknown benign category is the hardest
to detect; this might be caused by the variety of different flows belonging to this category,
which might not be completely separable from the other ones.
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Figure 3. Class accuracies for the coarse-grained model.

4.1.3. Fine-Grained Classifier

The fine-grained classifier is based on a random forest trained to distinguish among
80 classes, consisting of 33 attacks and 47 benign devices. Table 6 lists various classification
statistics of this machine learning model.

8 The balanced accuracy of a 15-class classifier is 1
15 ∼ 6.66%.
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Table 6. Classification statistics for the fine-grained model.

Statistic Value [%]

accuracy 96.0684655558229
balanced accuracy 60.3814098614751

AUC 94.34290472146797
F-score (macro) 33.337772924857084
recall (macro) 60.3814098614751

precision (macro) 28.746583759039684

The results obtained for this classifier are similar to the coarse-grained version, albeit
slightly inferior. This decrease in accuracy is attributable to the fact that this is a significantly
more challenging classification problem. Nonetheless, the balanced accuracy of our model
is 60.38%, a significant achievement since the balanced accuracy of a random classifier is
only 1

80 = 1.25%.

4.2. Overhead

We tested the network throughput degradation of the IoT proxy in our laboratory
using the platform whose characteristics are listed in Table 7.

Table 7. Features of our test platform.

Component Version

operating system GNU/Linux Ubuntu 20.04.1
kernel 5.15.0-72-generic
Python 3.8.10
Docker 20.10.21 (build baeda1f)
docker-compose 1.25.0
scikit-learn 1.1.0

CPU Intel® Core™ i7-1065G7 CPU @ 1.30GHz
RAM 8 GiB

We used iperf9 to estimate the bandwidth loss of the IoT proxy while communicating
with a remote IoT device. Our results are reported in Figure 4, where we show respectively
the bandwidth without the IoT proxy, with the IoT proxy without any active vNSF, by
activating only the IPS/IDS vNSF, by activating only the VPN vNSF, and by enabling both.

In the IPS/IDS vNSF, most of the time is spent analyzing the packets with NFStream.
We observed that using the coarse-grained or the fine-grained random forest does not affect
performance degradation, so the data in Figure 4 are consistent with both approaches.

When the IoT proxy has all the vNSF enabled, the percentage loss of bandwidth is
about 17%. Thanks to Docker’s lightweight virtualization technology, we can still maintain
a good bitrate even with all IoT Proxy modules enabled, providing a good balance between
security and performance for IoT devices.

9 https://iperf.fr/, accessed on 14 November 2023.

https://iperf.fr/
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Figure 4. Overhead of the IoT proxy components.

5. Conclusions

As the number of connected Internet of Things (IoT) devices continues to rise, the
inherent vulnerabilities in these devices have become a focal point for malicious activities,
jeopardizing data integrity, user privacy, and even critical infrastructures. Thus, the security
of IoT devices evolves from a technical necessity to a cornerstone for fostering innovation
and trust in the digital age.

To provide security at the network’s edge, especially for resource-limited IoT devices,
this paper introduces the IoT Proxy: a modular solution designed to fortify IoT devices’
security. The main goal of the IoT Proxy is to externalize security-related functions from the
devices to a more powerful gateway equipped with Virtual Network Security Functions
(VNSFs). This strategic offloading of security controls aims to mitigate the limitations of
individual IoT devices, such as constrained computing power and memory.

The modular design of the IoT Proxy allows for the inclusion of various VNSFs. In
the implemented proof of concept, we focused on two essential security functionalities:
a Virtual Private Network (VPN) terminator and an Intrusion Prevention System (IPS).
Notably, our IPS can identify the type of connected devices through a machine learning-
based technique called oblivious authentication.

Experimental results from laboratory testing demonstrate promising outcomes, show-
casing the efficacy of the IoT Proxy. The coarse-grained random forest achieves a balanced
accuracy of around 70%, while the fine-grained model achieves a balanced accuracy of
more than 60%. These results are respectively more than 10 times and about 50 times higher
than that of a random classifier. Notably, it is interesting that the coarse-grained classifier
can identify DoS and DDoS attacks with over 95% accuracy.

Thanks to its modular, scalable, and externalized security approach, the IoT Proxy
can create a more resilient and secure IoT environment, especially for resource-limited
IoT devices.
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5.1. Future Work

Several avenues for future research and development present themselves, expanding
on the capabilities of the IoT Proxy and addressing emerging challenges in the dynamic
landscape of IoT security.

One key direction for future work is the exploration of unsupervised machine learning
models to enhance anomaly detection capabilities within the IoT Proxy. In particular,
we intend to build upon the preliminary research we performed on the application of
autoencoders for cyber-attack detection [43]. The system could adapt and identify novel
threats by leveraging unsupervised learning techniques without relying on predefined
attack datasets. This approach holds promise for detecting previously unseen attack
patterns, contributing to the robustness of the intrusion detection mechanisms.

Live analysis of network traffic is another crucial feature we plan to research. In a
previous research paper [44], we investigated the applications of several machine learn-
ing techniques, including random forests and neural networks, trained on a dataset we
produced [45], to perform live detection of cyber attacks in multiple web scenarios. Adapt-
ing this approach to IoT scenarios and coupling it with the IoT Proxy could lead to an
omni-comprehensive IoT security solution, able to adapt to evolving network behaviors
and proactively guard against sophisticated and adaptive threats. Furthermore, adopting
sequence models, such as Long Short-Term Memory (LSTM) networks and transformers,
could enable a more accurate assessment of traffic patterns.

Moreover, the diversification of the datasets used for training and evaluation is
paramount. Future research should involve the exploration of other IoT datasets, en-
compassing a wide range of devices and network scenarios. This approach ensures the
generalizability and effectiveness of the IoT Proxy across diverse IoT ecosystems, each
presenting unique challenges and security considerations.

Another aspect that we plan to consider is the validity of the choices taken by the IoT
Proxy when multiple vNSFs are chained. Indeed, we have already investigated, in classical
network security scenarios, approaches to formally model policies of both physical and
virtualized network security appliances [46]. Such techniques could be specialized and
integrated into the IoT Proxy to continuously ensure the coherence of the deployed vNSFs
configurations with the high-level intents of IoT network administrators.

To adapt our solution to different IoT scenarios, such as 5G or 6G scenarios where
devices are directly connected to the Internet, a further engineering approach should be
considered. In these cases, a potential solution could be the deployment of a cloud-based
IoT Proxy. The devices could be securely connected to the IoT Proxy through a VPN.

In conclusion, future work involves refining and expanding the existing functionalities
of the IoT Proxy and delving into advanced techniques such as unsupervised learning,
live traffic analysis, and diverse dataset utilization. These endeavors aim to fortify the IoT
Proxy’s capabilities in the face of ever-changing IoT security challenges.
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DoS Denial of Service
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