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ABSTRACT: Although Ziegler−Natta (ZN) catalysts play a major role in the
polyolefin market, a true understanding of their properties at the molecular level is
still missing. In particular, there is a lack of knowledge on the electronic properties of
Ti sites. Theoretical calculations predict that the electron density of the Ti sites in the
precatalysts correlates with the activation energy for olefin insertion in the Ti-alkyl
bond generated at these sites after activation by Al-alkyls. It is also well known that
the effective charge on the Ti sites in the activated catalysts affects the olefin π-
complexation. In this contribution, we exploit two electronic spectroscopies, UV−vis
and Ti L2,3-edge near-edge X-ray absorption fine structure (NEXAFS),
complemented with theoretical simulation to investigate three ZN precatalysts of
increasing complexity (up to an industrial system) and the corresponding catalysts
activated by triethylaluminum (TEAl). We provide compelling evidence for the
presence of monomeric 6-fold-coordinated Ti4+ species in all of the precatalysts,
which however differ in the effective charge on the Ti sites. We also unambiguously demonstrate that these sites are reduced by
TEAl to two types of monomeric 5-coordinated Ti3+, either alkylated or not, and that the former are involved in ethylene
polymerization. In addition, small TiCl3 clusters are formed in the industrial catalyst, likely due to the occurrence of severe reducing
conditions within the catalyst pores. These data prove the potential of these two techniques, coupled with simulation, in providing an
accurate description of the electronic properties of heterogeneous ZN catalysts.

KEYWORDS: Ziegler-Natta, Ti, NEXAFS, catalysts, electronic properties, UV-vis

1. INTRODUCTION

Ziegler−Natta (ZN) catalysts are at the heart of the polyolefin
production, affording at present almost 80 million tons of
polypropylene per year, with a worldwide economic turnover
exceeding 100 billion dollars,1 and their great properties are
recognized as a fundamental benchmark for the whole
chemical industry. Their extraordinary success in terms of
activity and selectivity is due to the perfect combination of four
indispensable components, namely, a titanium chloride
precursor, a high surface area MgCl2 support, organic
molecules acting as Lewis bases (namely, the electron donors),
and an aluminum alkyl activator.2−5 The first three
components constitute the precatalyst, which can be prepared
following different routes that have been optimized in decades
of industrial research6,7 to generate multigrain and porous
spherical particles as a result of aggregation of so-called
primary particles.8−14 This hierarchical structure is fundamen-
tal to guarantee controlled fragmentation during olefin
polymerization and to provide a polymer with the desired
morphology.
It is widely accepted that the primary particles are nanosized

and disordered MgCl2 plates (usually called δ-MgCl2) whose
surfaces are capped by TiCl4 and electron-donor molecules.15

Following the mechanical route, MgCl2 and the electron donor
are ball-milled together and post-treated with TiCl4: the longer

the grinding time, the higher the surface area and the
defectivity of the δ-MgCl2 primary particles, which are both
beneficial for the development of the catalyst activity.16−22

When the precatalysts are prepared with modern chemical
routes, for example, through the precipitation of a MgCl2
solution23−26 or through the solid-state conversion of Mg-
(OR)2 precursors in the presence of TiCl4 and the electron
donors,26−30 the size of the δ-MgCl2 primary particles
decreases by one order of magnitude and their structural
disorder increases, with a concomitant increase of the catalyst
performance. Besides affecting the size and the disorder of the
δ-MgCl2 primary particles, the synthesis protocol strongly
affects their morphology, i.e., the relative extension of different
surfaces. In our recent work,31,32 we demonstrated that the
mechanical ball-milling of MgCl2 favors the formation of
surfaces exposing strongly acidic Mg2+ sites (i.e., the (110),
(012) and (015) ones) at the expenses of the basal (001) one
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and that the relative contribution of the (110) surface to the
overall MgCl2 morphology is even greater for the chemically
activated ZN catalysts.
Since the structure and the morphology of the δ-MgCl2

primary particles are retained during the catalyst formation in
the presence of an aluminum alkyl activator, the synthetic
protocol ultimately drives the distribution of the active sites
and their stereospecificity.33−41 Albeit this concept is widely
accepted based on the analysis of the polymer produced, so far
direct experimental evidence on the different properties of the
Ti sites in ZN catalysts has been largely restricted. The
majority of experimental data on ZN catalysts refer to the
precatalysts or to aged catalysts, and usually provide
information on either MgCl2 or the electron donors, while
the properties of the Ti sites are only indirectly extrapolated.
One of the main aspects missing from the state-of-the-art
technology in ZN catalysis is an understanding of the
electronic features of the Ti sites, which in turn strongly
influences the monomer insertion process. Indeed, more
electron-deficient Ti active species are known to enhance
both the olefin π-complexation and the agostic interaction
within the α-agostic-assisted Cossee−Arlman mechanism.42

However, a few recent computational studies indicate that the
charge state of the Ti sites in ZN precatalysts is sensitive to the
coordination environment and correlates with the activation
energy of ethylene insertion into the Ti-alkyl bond.43,44 A
critical deficiency of experimental data mainly arises from some
intrinsic difficulties, which make the active sites elusive to most
of the experimental techniques. Among all, a small fraction of
the Ti sites (a few wt %) and their heterogeneity (i.e., co-
presence of active, poorly active/dormant, and inactive sites)
are the most relevant ones.45

Herein, we provide an unprecedented contribution in the
field by thoroughly investigating the electronic properties of
the Ti sites in three ZN precatalysts synthesized according to
different protocols (whereby δ-MgCl2 is obtained either by
mechanical or chemical routes), and in the three related
catalysts activated by triethyl aluminum (TEAl), before and
after ethylene polymerization, by coupling diffuse reflectance
(DR) UV−vis and Ti L2,3-edge near-edge X-ray absorption fine
structure (NEXAFS) spectroscopy, complemented by theoreti-
cal simulations. Both techniques provide information on the
electronic structure of the Ti sites, which in turn allow going
back to their geometrical structure at the atomic scale. In more
detail, absorptions in the UV−vis range are due to the transfer
of electrons from molecular orbitals (MO) mainly centered on
the ligand to molecular orbitals mainly centered on Ti [charge-
transfer (CT) transitions], and/or to the transfer of electrons
between filled and empty d orbitals in Ti (d−d transitions), the
latter being possible only for reduced Ti species.45 On the
other hand, Ti L2,3-edge NEXAFS spectra originate from
Ti(2p) → Ti(3d) electronic transitions and act as a probe of
the density of unoccupied valence states. Hence, both
techniques are in principle very sensitive to the Ti-ligand
interactions and able to discriminate between sites having a
similar geometrical environment but yet a different electronic
affinity toward the monomer. Nevertheless, DR UV−vis
spectroscopy has been only rarely used for investigating ZN
catalysts,45,46 and often the spectra were not sufficiently (or
properly) interpreted. In the last decade, some of the authors
systematically exploited DR UV−vis spectroscopy to inves-
tigate a series of ZN (pre)catalysts and related systems,47−52

never reaching, however, such a high level of details as in the

present work, which benefits the complementarity with
NEXAFS spectroscopy and density-functional theory (DFT)
calculation. As far as NEXAFS (in the soft X-ray range) is
concerned, the short attenuation length of soft X-rays has long
prevented the application of NEXAFS in reaction conditions,
and in situ observations of surface reactions were limited only
in the presence of gases with pressures lower than 10−6 Torr.
Recently, new experimental setups have been developed to go
beyond this limitation, and a few examples of operando
NEXAFS investigations of heterogeneous catalysts can be
found in the literature.53−62 Most of them are related to the
study of metal oxides or supported metal nanoparticles, while
to the best of our knowledge there are yet no examples of
NEXAFS applied to ZN catalysts.

2. EXPERIMENTAL SECTION
2.1. Samples. 2.1.1. Synthesis of Precatalysts. A ball-

milled MgCl2 sample (hereafter pristine MgCl2) was donated
by Toho Titanium Co., Ltd., with a specific surface area (SSA)
of 9.3 m2 g−1, as determined by N2 adsorption measurements.
Twenty-five grams of it was filled in a 0.5 L stainless steel pot
with 235 stainless steel balls (10 mm diameter) and subjected
to planetary ball milling. The milling time was adjusted to
make SSA about 8 times higher, resulting in an SSA of 73 m2

g−1. The MgCl2/TiCl4 precatalyst was prepared by titanation
of the so-obtained high surface area MgCl2 in the presence of
TiCl4 vapors at 80 °C, followed by degassing at the same
temperature in high vacuum, resulting in a final titanium
loading close to 1.0 wt % with respect to MgCl2.
The same pristine MgCl2 was also ball-milled (for the same

milling time) in the presence of ethylbenzoate (hereafter EB)
as an electron donor at a MgCl2/EB molar ratio of 16:1. The
so-obtained MgCl2/EB sample was reacted in heptane with
TiCl4 at 90 °C for 2 h, washed several times with fresh
heptane, and finally, dried under vacuum at 90 °C. The
resulting MgCl2/EB/TiCl4 precatalyst has the final Ti and EB
contents of 1.0 and 6.3 wt %, respectively.
The chemically activated ZN precatalyst, ZNC(DBP), was

prepared starting from Mg(OEt)2 according to a patent63 with
slight modifications,28,29,39 where n-dibutyl phthalate (here-
after DBP) was used as an internal electron donor. The Ti and
DBP contents were determined to be 2.6 and 14.1 wt %,
respectively.
All of the samples were stored and transferred thoroughly

under an inert atmosphere to avoid contamination by
moisture.

2.1.2. Activation of Precatalysts. The activation of the
precatalysts was accomplished at room temperature by
impregnating the powders with a diluted solution of triethyl
aluminum (TEAl) (10 v/v % in hexane), attaining an average
Al/Ti stoichiometry of 2:1. The impregnation was performed
in the glovebox, directly inside the measurement cells, and the
solvent was successively removed by degassing in a high
vacuum (DR UV−vis) or by flowing the cell with He
(NEXAFS).

2.2. Experimental Methods. DR UV−vis spectra were
measured with a Varian Cary5000 spectrophotometer,
equipped with a diffuse reflectance sphere. The samples were
measured in powder form, in a homemade cell with a window
in optical quartz (suprasil), which allows performing treat-
ments in a vacuum and/or in the presence of gases. The
spectra were collected in a reflectance mode and successively
converted as Kubelka−Munk F(R) function.
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Ti L2,3-edge NEXAFS spectra were collected at the APE-HE
beamline of the Elettra Sincrotrone Trieste facility in total
electron yield (TEY) mode, which renders the measure highly
surface sensitive (the probing depth being typically of a few
nm). An ambient-pressure NEXAFS cell was adopted,64

allowing to perform measurements in the presence of gases.
The samples, in powder form, were pressed inside a thin
indium plate and fixed inside the cell. All the procedures were
done inside a N2-filled glove box to prevent contamination.
The cell was then inserted inside the ultrahigh vacuum
chamber of the APE-HE beamline and connected to a gas line.
All of the measurements were performed under a 5 mL min−1

He flow at 1 bar. A liquid nitrogen trap was employed to
remove adventitious water contaminations from the gas line.
Ethylene polymerization was performed upon dosing small
ethylene pulses inside the He flow. The spectra were collected
with an energy step of 0.1 eV and an integration time per step
of 0.18 s. The so collected data were processed using
THORONDOR software65 to calibrate the energy of the
spectra (with reference to the 1s → π* transition at 399.8 eV
of nitrogen, present as Si3N4 in the membrane of the cell),66

subtract the anomalous background produced by the
interaction of soft X-rays with all of the crossed media (i.e.,
the Si3N4 membrane with a thickness of 100 nm,64 and a
thickness of 500 μm of He gas at 1 bar), flatten the baseline of
the spectra, and normalize them to the intensity of the most
intense feature of the Ti L3-edge.
2.3. Simulation of the UV−vis and Ti L2,3-Edge

NEXAFS Spectra. The UV−vis and Ti L2,3-edge NEXAFS
spectra of the precatalysts were simulated using the ORCA (v
4.2.1) code,67 adopting as structural models some of the
nanoclusters proposed by Takasao et al.68 In detail, the most
stable 15MgCl2/4TiCl4 models they proposed (Figure 7b,c in
ref 68) were simplified by selectively removing TiClx units.
The simplified nanoclusters were reoptimized using DFT at
the B3LYP level of theory,69,70 using the def2-TZVP as the
basis set.71 Four models were considered, as shown in Figure
1: (i) a Ti cation 6-fold-coordinated on the MgCl2(110)
surface, which is so far considered the most representative
picture for the Ti sites in ZN catalysts (hereafter referred to as
hexa-1); (ii) two 6-fold-coordinated Ti species in close

proximity to two intersecting MgCl2(110) surfaces (hereafter
hexa-2); (iii) a 5-fold-coordinated Ti cation at a corner
generated by the intersection of two MgCl2(104) surfaces
(hereafter penta); and (iv) a Ti2Cl2x dimer on a MgCl2(104)
surface (hereafter dimer), which in the past was considered
responsible for the stereoselective propylene polymerization,72

even though, more recently, its relevance has been
questioned.73−78 The atomic coordinates of the four models
are provided in the Supporting Information (SI).
The hexa-1 model in Figure 1 was used as a starting point

for building up five models representative for the possible Ti
species formed upon reaction with a TEAl activator, according
to the most common activation paths proposed in the
literature,2,5 which include the formation of a coordination
vacancy on the Ti site through the homolytic or heterolytic
cleavage of a Cl ligand (dechlorination) and the exchange of
another Cl ligand with an ethyl group (transalkylation or
metathesis). The five structurally optimized models (whose
atomic coordinates are provided in the SI) are represented in
Figure S1 and are referred hereafter as (i) TiIVCl5

⊕, obtained
from the heterolytic cleavage of a Cl ligand; (ii) TiIIICl5,
derived from the homolytic cleavage of a Cl; (iii) TiIVCl5R,
resulting from transalkylation; (iv) TiIVCl4R

⊕, obtained
through transalkylation of model TiIVCl5

⊕; and (v) TiIIICl4R,
obtained by transalkylation of model TiIIICl5.
For each one of the optimized models described above, the

UV−vis spectra and L2,3-edge NEXAFS spectra were simulated
to single out their spectroscopic fingerprints and to understand
the sensitivity of the two techniques to small variations in the
structure of the Ti sites. It is important to notice that none of
the models, alone, can reproduce the complexity of the ZN
(pre)catalysts, indicating that the real catalyst is not as simple
as the models. Meanwhile, some models capture features of the
experimental spectra more than the others, and hence,
comparison between simulated and experimental spectra can
allow discriminating between highly probable and less-
probable structures. The UV−vis spectra were simulated
through the simplified Tamm−Dancoff formalism proposed by
Grimme.79 States up to 10 eV were considered in the
calculations; all other parameters were set to the ORCA
defaults. L2,3-edge NEXAFS spectra were computed with the
DFT/ROCIS method.80 Since the L-edge transitions involve
core electrons, during the NEXAFS spectra simulation,
relativistic corrections have been included through the
ZORA formalism.81 The orbitals involved in the Ti L2,3
transitions were manually selected, including the Ti 2p as
donor orbitals and the 100 lower energy unoccupied orbitals as
acceptor ones; 100 transitions were calculated per spin state.
The spin−orbit coupling correction was included in the
calculations. The energy scale for simulated NEXAFS spectra
has been calibrated for an improved comparison with
experimental data by a multiplicative scaling factor (1.022).
The latter has been obtained by comparing the simulated
spectrum of TiCl4 with the experimental one available from the
literature.82

3. RESULTS AND DISCUSSION
3.1. Electronic Properties of the Ti4+ Sites in the

Precatalysts. Figure 2a shows the DR UV−vis spectra of the
three precatalysts, after normalization of the intensity to the
most intense band for a better comparison.83 The three spectra
mostly reflect the electronic fingerprints of the TiClx species
since bare MgCl2 has no absorption in the whole UV−vis

Figure 1. Four models representative of different types of TiClx
species on MgCl2 clusters (Mg atoms in orange, Cl atoms in green,
and Ti atoms in light blue). The models were selectively cut from the
machine learning-aided structures of TiCl4-capped MgCl2 nanoplates
determined by Takasao et al.68 Dashed lines indicate the MgCl2
surfaces involved in TiClx chemisorption.
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region and the contribution of the electron donors is negligible
(Figure S2). The spectra are very different from each other,
implying that the electronic properties of the Ti sites in the
precatalysts are not the same, despite the fact that the Ti4+ sites
are expected to have the same formal oxidation state (+4),
similar coordination (6-fold-coordinated), and should be
surrounded mainly by chlorine ligands in all of the cases.
Since Ti4+ has a d0 electronic configuration, in the DR UV−

vis spectra, we observe essentially the electron transfer between
the filled π levels of Cl and the vacant d orbitals of Ti, which
are split because of the crystal field effect. In the simple
assumption of octahedral coordination, the d orbitals of Ti are
split into dt2g and deg levels, separated by the crystal-field
splitting (ΔCF = 10Δq). Figure 2b represents a simplified
molecular orbital (MO) diagram for a Ti4+ surrounded by six
chlorine ligands in an octahedral field, taking into account that
chlorine, as all of the halides, is a π-donor ligand.84,85 A more
rigorous MO diagram is displayed in Figure S3. The charge-
transfer (CT) transitions observed by DR UV−vis spectros-
copy are also reported (arrows A and B in Figure 2b). Twelve
p orbitals (two for each chlorine ligand) are available for π-
bonding with the d orbitals of Ti4+, which combine with each
other to give symmetry-adapted linear combination (SALC)
orbitals of different symmetry. Only the t2g set has any
significant impact on the MO diagram since they mix with the
Ti4+ d orbitals of the same symmetry (dxy, dxz, dyz).

84 For π-
donor ligands, π-SALCs have lower energy than the metal
atomic orbitals. Hence, the bonding MOs of t2g symmetry are
ligand-centered and are filled, while the antibonding t2g* π-

MOs are metal-centered.85 This effectively raises the metal dt2g
atomic orbitals and decreases the magnitude of ΔCF with
respect to the σ-bonded case. According to this scheme, the
lowest energy electronic absorptions are due to transitions of
the type Cl(π) → Ti(dt2g) (transition A in Figure 2b and
bands A′ and A″ in Figure 2a) and Cl(π) → Ti(deg)
(transition B in Figure 2b and bands B in Figure 2a),
respectively.86 The experimental spectra are not constituted
simply by two bands (π → dt2g and π → deg) separated by
10Δq because the Cl-centered molecular orbitals are not
perfectly equivalent as displayed in Figure 2b for simplicity;84

this causes the splitting of the Cl(π) → Ti(dt2g) transition into
bands A′ and A″ in Figure 2a. The same splitting is not
observed for the Cl(π) → Ti(deg) bands because the second
component falls at higher wavenumbers, out of the measure-
ment range.
The spectra of Ti4+ hexahalides reported in the literature are

characterized by large variability in the position and in the
relative intensity of the abovementioned bands, especially
when the spectra of compounds in the solid state are compared
with those of the [TiCl6]

2− species in solution.87 As an
example, the transmission spectrum of [TiCl6]

2− in acetonitrile
displays the Cl(π) → Ti(dt2g) transitions in the 29 000−
31 850 cm−1 range and the Cl(π) → Ti(deg) bands in the
38 500−42 500 cm−1 range, while the reflectance spectrum of
solid K2TiCl6 shows both transitions at much lower energy, in
the 23 000−30 000 and 34 500−37 800 cm−1 intervals,
respectively. The differences have been ascribed to structural
variations induced by the packing of the cations in the solid

Figure 2. (a) DR UV−vis spectra of the three precatalysts. The position of the maxima of the absorption bands (evaluated at the minima of the
second derivatives) is also indicated, as well as the main assignments. (b) Simplified molecular orbital diagram for a Ti4+ metal center in an
octahedral field surrounded by six σ-bonded Cl− ligands, with a π-donor nature. The ligand-to-metal charge-transfer transitions observed by DR
UV−vis spectroscopy are also reported (arrows A and B). A more rigorous MO diagram is shown in Figure S3.

Table 1. Experimentally Observed Bands in the DR UV−vis and Ti L2,3 Edge NEXAFS Spectra of the Three Precatalysts and
Their Assignmenta

technique band label assignment units MgCl2/TiCl4 MgCl2/EB/TiCl4 ZNC(DBP)

UV−vis A′ Cl(π) → Ti(dt2g) cm−1 29 850 29 000 26 400
A″ Cl(π) → Ti(dt2g) cm−1 33 500 33 400 29 000
B Cl(π) → Ti(deg) cm−1 39 700 40 500 39 200

ΔCF(UV) cm−1 8025 9300 11 500
eV 0.99 1.15 1.43

NEXAFS a Ti(p) → Ti(dt2g) eV 458.26 458.26 458.26
b1 Ti(p) → Ti(deg) eV 459.86 459.79 460.02
b2 Ti(p) → Ti(deg) eV 460.52 460.62 460.50

ΔCF(NEXAFS) eV 1.93 1.94 2.00
aThe values of the crystal-field splitting, ΔCF, are also reported, where ΔCF (UV) = E(B) − [E(A′) + E(A″)]/2 and ΔCF(NEXAFS) = [E(b1) +
E(b2)]/2 − E(a).
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state, which results in a distortion of the anion distribution
(i.e., changes in angles and bond lengths).87

Similar differences characterize the spectra of the three
precatalysts reported in Figure 2a. The position of the bands
observed in the DR UV−vis spectra (evaluated as the minima
in the second derivative curves) are also indicated in Figure 2a
and summarized in Table 1. The spectrum of MgCl2/TiCl4
shows the first Cl(π) → Ti(dt2g) transition at the highest
energy (band A′, 29850 cm−1) but also the smallest crystal-
field splitting ΔCF(UV) (8025 cm−1 = 0.99 eV), where
ΔCF(UV) was evaluated as ΔCF(UV) = E(B) − [E(A′) +
I(A″)]/2, with E(A′), E(A″), and E(B) being the energy
positions of bands A′, A″, and B, respectively. The spectrum of
ZNC(DBP) shows the first Cl(π) → Ti(dt2g) transition at the
lowest energy (band A′, 26400 cm−1), and the largest
ΔCF(UV) (11 500 cm−1 = 1.43 eV). The spectrum of
MgCl2/EB/TiCl4 has intermediate properties, with the first
Cl(π) → Ti(dt2g) transition at 29 000 cm−1 and ΔCF(UV) =
9300 cm−1 = 1.15 eV, and a spectrum very similar to that
reported in the literature for [TiCl6]

2− in acetonitrile. Even
though the use of UV−vis spectroscopy is well established in
the literature for studying heterogeneous Ti-based catalysts
(e.g., in Ti-zeolites),60,88−92 determining the ΔCF values from
the position of the charge-transfer bands in the optical
spectrum is rather uncommon and, to the best of our
knowledge, never applied in the field of ZN catalysts. Usually,
ΔCF is estimated in a direct way from the energy position of
the d−d bands only for transition metals having a dn electronic
configuration with n ≠ 0, such as Ti3+ (d1 configuration).
The band assignment discussed above, based on LCAO

arguments and on the assumption of octahedral coordination
for the Ti cations, is fully confirmed by the simulation of the
UV−vis spectra for the four models shown in Figure 1, which
are reported in Figure S4. Even though only hexa-1 exhibits an
almost perfect octahedral symmetry, all of the four simulated
spectra are characterized by two main bands in the 28000−
42000 cm−1 region, separated by about 7000 cm−1 (0.87 eV),
which is compatible with the experimentally determined ΔCF
values. The position of the Cl(π) → Ti(dt2g) band at a lower
energy (band A) is the most sensitive to the geometry of the
model, spanning from about 31 500 cm−1 for penta to about
34 000 cm−1 for hexa-1, whereas the Cl(π) → Ti(dteg) band at
higher energy (band B) is almost constant for all of the models
at 40 000 cm−1. Interestingly, the same behavior is observed in
the experimental spectra: band B is almost at the same position
in the three experimental spectra, while band A (A′ + A″)
appears at different energy in the three spectra. This suggests
that UV−vis spectroscopy is indeed sensitive to the local
structure of the Ti sites in ZN precatalysts and that, on
average, the three precatalysts differ in the distribution of the
active sites. Unfortunately, the simulated spectra (Figure S4)
are not largely different from each other, and all are
qualitatively compatible with the experimental ones (Figure
2a). This implies that UV−vis spectroscopy cannot alone be
used to assess the structure of the Ti4+ sites in the three ZN
precatalysts or to discard less probable ones. We will see in the
following, however, that it will become fundamental to reveal
certain types of reduced Ti3+ species in ZN catalysts.
Complementary information can be obtained by analyzing

the Ti L2,3-edge NEXAFS spectra of the three precatalysts,
reported in Figure 3a after normalization to the intensity of the
first feature (band a). Generally speaking, a Ti 2p NEXAFS
spectrum originates from the 2p63dn → 2p53dn+1 electronic

transition. It consists of two sets of bands representing the L3
and L2 edges, which correspond to the 2p3/2 and 2p1/2
excitations, respectively. Hence, the separation between the
L3 and L2 edges is associated with the spin−orbit splitting of
the 2p orbitals. For all of the three precatalysts, the separation
of the L3 and L2 features is 5.3 eV, which is slightly lower than
the L3−L2 splitting observed in the Ti 2p NEXAFS spectrum
of TiO2 (5.5 eV)93−95 and FeTiO3 (5.4 eV).94 Both L3 and L2
edges are split in two main peaks (labeled as a and b, and c and
d, respectively). Within the molecular orbital picture, this
separation is explained as the splitting of the Ti 3d molecular
orbitals dictated by the symmetry of the Ti species. In the
simple picture of a transition metal in octahedral symmetry,
the two peaks in both the L3 and L2 edges are then related to
electronic transitions to the dt2g and deg orbitals. Therefore,
the energy difference between peaks a and b (or c and d)
corresponds to the crystal field splitting ΔCF(NEXAFS), which
increases in the series MgCl2/TiCl4 < MgCl2/EB/TiCl4 <
ZNC(DBP) in agreement with what was observed in the DR-
UV-vis spectra, even though the absolute values are higher.
This is in agreement with the literature, according to which for
10Δq values lower than 3 eV the energy splitting determined
by NEXAFS is higher than the real one.94 A comparison of
ΔCF(NEXAFS) and ΔCF(UV) for the three precatalysts is
shown in Figure S5.
Since the L2 features are normally broadened compared to

the L3 ones because of the shorter lifetime of the 2p1/2 core-
hole, we performed a detailed analysis on the L3 edge only.
The energy position of the dt2g and deg peaks (bands a and b in

Figure 3. (a) Experimental Ti L2,3-edge NEXAFS spectra of the three
precatalysts. (b) Second derivatives of the spectra reported in (a) in
the L3 edge region; (b′) reports a magnification of the second
derivative signal for the deg peak in the L3 edge. (c) Simulated Ti L2,3-
edge NEXAFS spectra of the four models shown in Figure 1,
normalized to the number of the absorbing atoms.
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Figure 3a) are reported in Table 1. For all of the three samples,
the deg peak is split into two main components, more evident
in the second derivative curves (labeled as peaks b1 and b2 in
Figure 3b′), indicative of at least two main families of Ti
sites.96 The larger sensitivity of the deg peak with respect to the
dt2g one can be explained considering that the deg orbitals are
oriented along the ligand σ-bonds, thus inducing a larger
hybridization of those orbitals with the SALCs centered on the
ligands. The origin of the splitting of the deg peak has been
investigated by simulating the Ti L3,2-edge NEXAFS spectra
(Figure 3c) of the four TiClx models described in Figure 1.
The spectra of the two models containing 6-fold-coordinated
Ti species on the MgCl2(110) surface (structures hexa-1 and
hexa-2) are very similar and well reproduce the experimental
ones, with two well-defined dt2g and deg peaks per each L-edge.
Interestingly, as already observed from UV−vis spectroscopy,
the dt2g−deg split is sensitive even to a small variation in the
local structure of the Ti cations and is slightly smaller for the
hexa-2 structure. On the other hand, the simulated spectra of
penta and dimer models are much more complex than the
experimentally observed ones and are characterized by intense
peaks that are not observed in the experimental spectra.
Overall, the thorough analysis of the DR UV−vis and Ti L3-

edge NEXAFS spectra, aided by theoretical simulation, allowed
us to conclude that (1) the majority of the Ti sites in the three
Ziegler−Natta precatalysts are monomeric 6-fold-coordinated
species; (2) in all cases, two main families of Ti sites
characterized by slightly different structural parameters can be
identified, whereby the term “family” implies a certain
variability within each member of the family; and (3) penta-
coordinated Ti4+ cations and dimeric Ti4+ species are very
unlikely. It is worth noticing here that the two techniques
converge to the same picture, despite the fact that the
information depths of UV−vis and TEY NEXAFS are very
different (TEY NEXAFS only probes a few nm of the surface
of the catalyst, while UV−vis is sensitive to the bulk).
Nevertheless, the three precatalysts differ in the average crystal
field splitting, ΔCF. For a specific system in a certain
coordination geometry, ΔCF depends on both the effective
oxidation state of the metal and the nature of the ligands.
Upon assuming that the nature of the ligands is roughly the
same for the three precatalysts (chlorine anions), the
differences in the ΔCF values determined by both techniques
indicate that the effective oxidation state of the Ti sites is

slightly different in the three cases. With reference to the
schematic MO diagram in Figure 2b, the higher the effective
oxidation state of Ti, the easier the electron transfer from the
Cl ligands. This corresponds to a decrease in the energy of the
dt2g* molecular orbitals, and hence, to an increase in the
splitting energy ΔCF. On this basis, the spectroscopic data
reported in Figures 2 and 3 and summarized in Table 1,
indicate that, on average, the Ti sites are slightly more positive
in ZNC(DBP) than in MgCl2/EB/TiCl4 and MgCl2/TiCl4.
This result apparently contradicts with previous findings from
theoretical calculations,76,97 according to which the presence of
electron donors nearby the Ti site should increase the Ti
electron density (and not decrease it) since the ionic nature of
the system allows Ti species to electronically feel the
surrounding environment in a remote fashion. Note, however,
that in real systems, the Ti charge reflects various factors
besides the presence of donors nearby, such as the Ti/Mg
ratio, as well as the local surface coverage.43 Hence, these data
highlight the importance of combining theoretical accounts
carried out on model systems with experimental data collected
on real systems, which are inevitably more complex.

3.2. Electronic Properties of Ti Sites in Activated
Catalysts. After interaction with TEAl (Al/Ti = 2:1), the DR
UV−vis spectra of the three precatalysts drastically change, as
shown in Figure 4. The general behavior is the same in the
three cases, although some differences can be pointed out. For
MgCl2/TiCl4 (Figure 4a) and MgCl2/EB/TiCl4 (Figure 4b),
the intense band ascribed to the Cl(π) → Ti(dt2g) charge-
transfer transition upward shifts by about 6000−7000 cm−1.
Likely, the same happens to the band assigned to the Cl(π) →
Ti(deg) transition, which however shifts outside the spectral
interval available with our experimental setup. Such shift is in
very well agreement with that predicted by Jørgersen by
moving from a 6-fold-coordinated Ti4+ to 6-fold-coordinated
Ti3+ sites.98,99 The almost complete disappearance of the
original band indicates that in both cases, in the adopted
experimental conditions, almost all of the Ti4+ sites are reduced
to Ti3+ by TEAl. It is worth noting that the spectrum of
activated MgCl2/EB/TiCl4 (Figure 4b) presents two shoulders
at 34 600 and 29 800 cm−1, which are not visible in the
spectrum of activated MgCl2/TiCl4 (Figure 4a). At lower
wavenumbers, a weak band appears around 21 500 cm−1 with a
long tail downward extending to 13 000 cm−1 (insets in Figure
4a,b), which is straightforwardly assigned to a Ti(dt2g) →

Figure 4. DR UV−vis spectra of the three precatalysts [MgCl2/TiCl4, MgCl2/EB/TiCl4 and ZNC(DBP), parts (a−c), respectively] before (black)
and after interaction with TEAl (red), at an Al/Ti ratio of 2:1. The position of the maxima of the absorption bands (evaluated at the minima of the
second derivatives) is also indicated, as well as the main assignments. The insets in (a) and (b) report the difference spectra calculated by
subtracting the spectrum of the precatalyst from that of the catalyst, magnified in the spectral region dominated by the d−d transition of the Ti3+

species.
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Ti(deg) d−d transition involving monomeric Ti3+ sites. The
energy position of this band is slightly higher than that
expected for a Ti3+ site surrounded by chlorine ligands and
might indicate the presence of an alkyl group in the Ti3+

coordination sphere,100 in accordance with the spectrochem-
ical series of the ligands.101

For ZNC (DBP) (Figure 4c), the evolution of the DR UV−
vis spectrum is similar but not the same. Also, in this case, the
intense charge-transfer bands at 29 000−26 400 cm−1 shift
upward of ca. 6000−7000 cm−1 but the phenomenon involves
only a fraction of the Ti sites. Moreover, in this case, an intense
and broad band appears in the lower energy region, covering
the entire 24 000−10 000 cm−1 range. Similar absorptions have
been already observed in TiCl3 salts,

48,102,103 as described in
detail in Section S4. Briefly, those bands are ascribed to
intersite transitions of type 2(3d1) → 3d0 + 3d2, taking place
between vicinal Ti3+ ions connected through a μ-Cl bridge,
thus adding a partial charge-transfer character to the d−d
transition, which is the reason for the high intensity.104 Hence,
the observation of those bands denotes the presence of TiCl3
clusters where couples of Ti3+ sites exchange electrons through
bridged chlorine ligands. The presence of TiCl3 clusters does
not exclude the presence of monomeric Ti3+ sites, which
however cannot be identified because their spectroscopic
fingerprints are much weaker and overshadowed by those of
the TiCl3 clusters. We anticipate that these sites are indeed
present, as revealed by NEXAFS, which however does not
provide information on the presence of TiCl3 clusters. The
lower reducibility of the Ti4+ sites and the simultaneous
observation of TiCl3 clusters in the ZNC(DBP) catalyst, not
observed in the other two activated catalysts even though the
activation conditions were the same, are two phenomena in
apparent contradiction. They can be explained by considering
that ZNC(DBP) is rich in micro- and mesopores. Hence, a
fraction of Ti sites may not be accessible by TEAl (at least until
the polymer-induced fragmentation typically occurring during
the olefin polymerization process takes place), explaining the
reduction to a smaller extent. At the same time, the
concentration of TEAl inside the accessible pores could
cause severe reducing conditions during drying.
Figure 5 shows the Ti L2,3-edge NEXAFS spectra of MgCl2/

EB/TiCl4 and ZNC(DBP) before (black) and after (red)
addition of TEAl. Starting the discussion from MgCl2/EB/
TiCl4 (Figure 5a), relevant changes are observed in the Ti L2,3-
edge NEXAFS spectrum after the addition of TEAl, which are
better highlighted in Figure 5a′, reporting the difference
spectrum calculated by subtracting the spectra of the
precatalyst from that of the catalyst. In both the L3 and L2
regions, new peaks appear at lower energy with respect to the
bands characterizing the spectrum of the precatalyst. Focusing
the attention on the L3 edge, we observe the appearance of
bands a′ at 456.8 eV and b′ at 459.2 eV (red arrows in Figure
5a′) at the expense of bands a and b (black arrows in Figure
5a′), respectively. On the basis of the literature on titanium
oxides, a shift of the L3 edge to lower energy by decreasing the
oxidation state of Ti is expected, of ca. 1.7−2.0 eV per
oxidation state.105,106 For mixed-valence state titanium oxides,
it has been demonstrated that the L3 energy position is in
between those of the end-member Ti3+ and Ti4+ compounds.
Hence, we interpret these changes as due to the conversion of
a fraction of the Ti4+ sites into monomeric Ti3+, in qualitative
agreement with the DR UV−vis results. The fact that not all
the Ti4+ is reduced to Ti3+, which occurs during the DR UV−

vis experiment, is ascribed to the different experimental setup.
The larger volumes and the complexity of the cell make the
NEXAFS setup less easy to be cleaned from moisture traces.
Hence, a fraction of TEAl might have acted as a scavenger,
instead of as a reductant. Finally, it is interesting to notice that
band b′ is much more intense than band a′, while the relative
intensity of bands a and b in the spectrum of the precatalyst
was almost the same. This is due to the fact that the low-lying
dt2g orbital is half-filled for a Ti

3+ site. Hence, the probability of
a Ti(2p) → Ti(dt2g) electronic transition is lower than for a
Ti4+ site, where the dt2g orbitals are totally empty. The average
dt2g−deg crystal field splitting values for these Ti3+ sites as
evaluated by NEXAFS is 2.45 eV.
For ZNC(DBP) (Figure 5b,b′), much fewer changes are

observed in the Ti L2,3-edge NEXAFS spectrum after the
addition of TEAl. Only a small decrease in the intensity of
bands a and b is observed (black arrows in Figure 5b′),
accompanied by the appearance of weak bands at 456.8 and
459.1 eV (bands a′ and b′, red arrows in Figure 5b′). Both
observations indicate that, in this case, a small fraction of Ti4+

sites is reduced by TEAl to monomeric Ti3+ species.
Nevertheless, the apparent insensitivity of the NEXAFS
spectrum to the effect of TEAl has an additional explanation.
According to the analysis of the DR UV−vis spectra shown in
Figure 4c, activation of ZNC(DBP) by TEAl promotes the
formation of TiCl3-like clusters. In this case, the NEXAFS
spectrum is not expected to change dramatically, as shown in
Figure S7 for TiCl3 polymorphs and discussed in Section S4.
This hypothesis is confirmed by the appearance of a weak band
at 455.8 eV (pink arrow in Figure 5b′), which is peculiar to the
violet α-form of TiCl3. Finally, the formation of TiCl3-like
clusters likely occurs within the pores of the catalyst, so that
they can escape detection by TEY NEXAFS.
To interpret the main features in the experimental UV−vis

and NEXAFS spectra of the activated catalysts in Figures 4 and
5, we have simulated the spectra of five models representative
of the possible Ti species formed upon reaction of TEAl with a
monomeric 6-fold-coordinated Ti4+ species (Figure S1), so
that it is possible to identify which are the models better

Figure 5. (a) Ti L3,2-edge NEXAFS spectra of the MgCl2/EB/TiCl4
precatalyst (black) and of the same after activation with TEAl, Al/Ti
= 2:1 (red). (a′) Difference spectrum calculated by subtracting the
spectrum of the precatalyst from that of the catalyst, in the L3 edge
region. (b) and (b′) The same as (a) and (a′) for the ZNC(DBP)
sample. Arrows in (a′) and (d′) indicate the bands that increase (red)
and decrease (black) in intensity after activation by TEAl.
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accounting for the experimentally observed features, as well as
to discard less-probable structures. Starting from UV−vis
spectra, the spectrum of TiIVCl5

⊕ shows an intense CT band at
lower energy with respect to the starting TiIVCl6, whereas
experimentally the CT bands shift to higher energy upon
activation by TEAl. Hence, the presence of TiIVCl5

⊕-like
species is discarded. On the contrary, all of the other simulated
UV−vis spectra are compatible with the experimental ones. In
particular, the spectrum of TiIIICl5 is the one that better
reproduces the experimentally observed band at 21 500 cm−1

(d−d transition), while the spectrum of TiIIICl4R is the one
that mostly accounts for the two shoulders at 34 600 and
29 800 cm−1 observed in the spectrum of the MgCl2/EB/TiCl4
catalyst.
Figure 6b shows the simulated NEXAFS spectra for the

same models. The spectrum of TiIVCl5
⊕ does not divert too

much from that of TiIVCl6, with the two main features of both
L edges slightly shifted to lower energies; this would be
compatible with the residual bands a and b in Figure 5, but that
model was already discarded by UV−vis spectroscopy. Both
TiIVCl4R

⊕ and TiIVCl5R models display a third feature per L
edge at higher energy, not compatible with the experimental
spectra so that the presence of those Ti species in the activated

catalysts is excluded. Finally, TiIIICl5 and Ti
IIICl4R models have

NEXAFS signals quite complex and similar to each other. Both
spectra show four bands for each L edge, shifted to lower
energy with respect to the spectrum of the starting TiIVCl6
model, which account well for the experimentally observed
bands a′ and b′ (in particular, a′ is very well reproduced by the
TiIIICl4R model).
All in all, the experimental DR UV−vis and NEXAFS data

coupled with DFT simulation clearly indicate that the majority
of the Ti sites in MgCl2/TiCl4 and MgCl2/EB/TiCl4 are
reduced by TEAl mostly to monomeric penta-coordinated
TiIIICl5 species, but also, to a minor extent, to alkylated
TiIIICl4R ones. Other species, such as TiIVCl5

⊕, TiIVCl4R
⊕, and

TiIVCl5R look much less probable. In ZNC(DBP), instead,
TEAl promotes the formation of small TiCl3 clusters (i.e.,
species where couples of Ti3+ sites share a bridged Cl ligand),
whose contribution dominates the UV−vis spectrum. Never-
theless, NEXAFS reveals that also in this case a minor amount
of monomeric Ti3+ species is formed.

3.3. Identification of Active Sites: In Situ Ethylene
Polymerization. The experimentally detected TiIIICl4R sites
satisfy all of the conditions required by the Cossee−Arlman
mechanism to be active in ethylene polymerization,42 while the

Figure 6. Simulated UV−vis (a) and Ti L2,3-edge NEXAFS (b) spectra for five models (Figure S1) representative of the possible Ti species formed
upon reaction of TEAl with the hexa-1 model (here labeled as TiIVCl6).

Figure 7. DR UV−vis (a) and Ti L3,2-edge NEXAFS (b) spectra of the MgCl2/EB/TiCl4 catalyst activated by TEAl, Al/Ti = 2:1 (red) and
evolution of the spectra upon addition of ethylene in the reaction cell (gray). The inset in (a) displays a magnification of the NIR region. (b′)
Difference spectrum calculated by subtracting the spectrum of the catalyst from the first one collected after ethylene polymerization. Arrows in (b′)
indicate the bands that decrease in intensity after activation by TEAl.
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TiIIICl5 species, being not alkylated, are not expected to
participate in it. To demonstrate the involvement of the former
in the ethylene polymerization reaction, we measured the DR
UV−vis and NEXAFS spectra after/during the initial stages of
ethylene polymerization under very mild conditions, repre-
sentative of prepolymerization conditions adopted in industrial
processes. Upon ethylene insertion into the TiIII−R bond, we
do not expect relevant changes in the electronic features of the
active sites since a polymeric chain is not dissimilar from the
alkyl group R. Nevertheless, in the initial stages of the reaction,
the formed PE has the capability to selectively mask the active
sites. In DR UV−vis spectroscopy, this happens because the
polymer locally changes the scattering properties of the
catalyst,107 while in TEY-NEXAFS the insulating polymer
chains attenuate the photoelectrons escaping from the
absorbing Ti atoms (i.e., the active sites). The net result is
that, when comparing the spectra collected before with those
collected after/during ethylene polymerization, an erosion of a
few bands should be observed in the latter: the bands affected
by the reaction will be associated with the sites involved in
polymer formation, while those unaffected will be ascribed to
the sites not involved in the polymerization.
Figure 7 shows the evolution of the DR UV−vis and Ti L2,3-

edge NEXAFS spectra upon ethylene polymerization on the
MgCl2/EB/TiCl4 catalyst activated by TEAl. An analogous
sequence has been obtained for the TEAl-activated ZNC-
(DBP) catalyst, as reported in Figure S8. In the DR UV−vis
spectrum (Figure 7a), ethylene polymerization (testified by the
appearance in the NIR region of the PE fingerprints grown
over the signals of the alkyl groups already present in the
catalyst, inset) causes the selective erosion of the bands at
34 600 and 29 800 cm−1, which can thus be ascribed to the Ti
sites involved in the catalysis. It is worth recalling that the
simulated spectrum better accounting for those two bands is
the spectrum of the TiIIICl4R model (Figure 6).
In the NEXAFS experiment (Figure 7b), ethylene polymer-

ization was carried out by sending ethylene pulses on the
catalyst and collecting a spectrum after each pulse. It is worth
noting that the total intensity of the NEXAFS spectra
decreases along with the sequence, but bands a′ and b′
decrease faster than bands a and b. This is well evident by
looking at the difference spectrum in Figure 7b′, which was
calculated by subtracting the spectrum of the catalyst from that
measured after the first ethylene pulse. The overall decrease in
intensity is associated with the formation of a layer of
polyethylene on all of the catalyst particles. However, the
bands ascribed to monomeric Ti3+ sites are those decreasing
faster (and basically the only ones affected after the first
ethylene pulse). The sequence of NEXAFS spectra indicates
that a consistent fraction of the monomeric Ti3+ sites is active
in ethylene polymerization. Similar behavior is observed for the
ZNC(DBP) catalyst (Figure S8b), where however the decrease
of bands a′ and b′ is less evident, the NEXAFS spectrum being
dominated by the unreactive TiCl3-like clusters.

4. CONCLUSIONS
In this contribution, we reported a thorough characterization
of the electronic properties of the Ti sites in three ZN
precatalysts with an increasing degree of complexity, and in the
corresponding catalysts obtained upon activation with TEAl. In
particular, we have analyzed two model samples (MgCl2/TiCl4
and MgCl2/EB/TiCl4) and an industrial-like one (ZNC-
(DBP)). DR UV−vis and Ti L2,3-edge NEXAFS spectroscopy,

combined with theoretical calculations, provided compelling
evidence for the presence of monomeric 6-fold-coordinated
Ti4+ species in all of the three precatalysts, categorized in at
least two main families characterized by slightly different
structural parameters. In particular, the experimental data are
not only compatible with hexa-coordinated Ti4+ species on
MgCl2(110) or equivalent surfaces, but also with the structure
proposed in the theoretical work by Cavallo and co-workers,41

which originates from chemisorption of TiCl4 at a step defect
on the thermodynamically more stable (104) surface. Ti-
chloride dimers and 5-fold-coordinated Ti4+ species have been
discarded since their spectroscopic fingerprints are not
compatible with the experimental data. While a number of
excellent theoretical works at present support 6-fold-coordi-
nated Ti4+ sites on the MgCl2(110) surface or analogous ones
as the most probable types of sites in MgCl2-based ZN
catalysts, the theoretical models still lack a direct experimental
validation. The observation of well-defined monomeric sites in
heterogeneous ZN precatalysts and in particular in the
industrial one is remarkable by itself, considering the
complexity of the catalyst formulation. Moreover, DR UV−
vis and Ti L2,3 NEXAFS spectra allowed us to estimate the
crystal-field splitting between the d orbitals of Ti, and from
there the effective positive charge on the Ti sites, which is
different in the three precatalysts and higher in the industrial
one. Determining experimentally the effective charge state of
the Ti4+ sites in ZN precatalysts is relevant for catalysis because
it correlates with the activation energy for olefin insertion into
the Ti-alkyl bond formed after activation.
After activation by TEAl, the majority of the Ti4+ sites in the

two model catalysts are reduced to monomeric 5-coordinated
Ti3+ sites, either in the form TiIIICl5 (i.e., with a coordination
vacancy but not alkylated) or in the form TiIIICl4R (i.e., with
both a coordination vacancy and an alkyl group). The latter,
less abundant, are the sites involved in ethylene polymer-
ization, as demonstrated by experiments performed in the
presence of ethylene. In the industrial catalyst, instead, TEAl
reduces only a fraction of the Ti4+ sites, forming both
monomeric 5-coordinated TiIIICl4R species active in ethylene
polymerization and small inactive TiCl3-like clusters. The
lower reducibility of the Ti4+ sites and the co-presence of TiCl3
clusters is explained by considering the porous nature of the
industrial catalyst. It is worth noticing that, although TiIII-alkyl
species have been proposed a long time ago as key
intermediates in olefin polymerization, their unambiguous
characterization has represented one of the main challenges in
the last 60 years. Recently, pulse EPR spectroscopy combined
with DFT calculations was adopted to characterize in detail the
molecular and supported TiIII-alkyl complexes,108,109 as well as
industrial ZN catalysts,110,111 providing structural details that
are in good agreement with our findings. However, with
respect to EPR that selectively detects only a fraction of the Ti
sites (those paramagnetically active), UV−vis and L2,3-edge
NEXAFS spectroscopy provide information on all of the Ti
sites, including those inactive in catalysis but which, never-
theless, are part of the catalyst body. We remark here that a
careful analysis of the data collected before and during/after
ethylene polymerization allows the isolation of the spectro-
scopic fingerprints of the active sites from those of the inactive
ones.
As a general remark, the present work has prompted the

development of new experimental setups and theoretical
methodologies to fully exploit the potentials of two electronic
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spectroscopies, UV−vis and NEXAFS, in providing direct
information on the nature of the Ti sites in ZN precatalysts, on
their changes in the presence of the aluminum-alkyl activator
and during ethylene polymerization. Both methods allow the
detection of all of the Ti sites present in the samples at each
catalytic stage, at the same time discriminating between active
and inactive species. The application of these techniques to a
platform of ZN catalysts of industrial interest under different
conditions will represent a new powerful tool for disclosing the
black box of the ZN catalytic process, even under reaction
conditions.
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