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A B S T R A C T

This work focuses on deriving guidelines for choosing structural theories for composite shells
using Convolutional Neural Networks (CNN). The Axiomatic/Asymptotic Method (AAM) is used
to evaluate higher-order structural theories’ accuracy and computational efficiency based on
polynomial expansions. AAM exploits the Carrera Unified Formulation to derive the finite
element matrices and obtain natural frequencies. The outcomes of AAM concerning the accuracy
and computational cost are used to train CNN for various composite shell configurations. The
trained network can then be used as a substitute for finite element models to estimate the
accuracy of a given structural theory. The results are provided via Best Theory Diagrams (BTD),
in which the set of generalized displacement variables to retain the best accuracy can be read for
a given amount of nodal degrees of freedom. Verification is carried out using results from FEM.
The results proved the computational efficiency of CNN and highlighted the influence of the
shell thickness for the proper choice of the structural theory. Third-order terms and transverse
stretching are often necessary to obtain acceptable accuracy.

. Introduction

Modeling composite structures requires a trade-off between accuracy and computational overhead. Focusing on 2D theories of
omposite plates and shells, numerical models must deal with several mechanical behaviors, such as transverse anisotropy and shear
eformability. One approach is the use of an increasing number of generalized unknown variables, i.e., the nodal degrees of freedoms,
hrough higher-order polynomial thickness expansions [1–4] or the inclusion of non-polynomial terms [5–8]. The structural theories
riginated from this approach, often referred to as higher-order theories (HOT), approximate the laminate as an Equivalent Single
ayer (ESL), meaning that the amount of adopted variables is independent of the number of layers. This specific family of theories
s a valuable tool due to their flexibility and practically unlimited variety, given that different expansions can be used for each
isplacement component. Their accuracy is strictly problem dependent, and a systematic approach to selecting the suitable model
or the considered application is desirable. The Axiomatic/Asymptotic Method (AAM) [9–11] can be directly applied to higher-order
heories to identify the best models for different levels of numerical complexity. The first step of this process is the axiomatic choice
f a maximum order of the polynomial expansions, with the complete one being usually assumed as the reference model. Terms are
hen suppressed, and for each expansion, a level of accuracy can be evaluated with respect to the reference solution. A fundamental
spect of this approach is the definition of the accuracy parameter. As shown in other works [12–14], depending on how the
recision error is evaluated, different theories can emerge as the optimal ones for the same structural problem, further improving
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Fig. 1. Reference geometry for shell models.

the capabilities of higher-order ESL models. The AAM requires the comparison of all possible combinations of terms up to the fixed
order of expansion, and this can make its implementation computationally expensive in the case of more complex structures, mainly
due to the computational efforts needed to evaluate such a large number of solutions. A possible way to derive information about
the best theory to adopt for a specific problem in a much more convenient way can be found in the use of Machine Learning (ML)
techniques, specifically Neural Networks (NN) [15,16]. The use and capabilities of these mathematical tools have been growing
in the last years in many different fields, also including structural mechanics [17–25]. This paper uses a specific family of NN,
Convolutional Neural Networks (CNN) [26–28]. The aim is to exploit the superior capabilities of CNN to include multiple problem
features in the training process and create a surrogate model able to substitute FEM analysis to compute natural frequencies. Such a
result is desirable to lower the computational cost of the AAM approach and generalize the results obtained. The former goal may be
achieved by using only a fraction of FEM results to train the network; the latter by incorporating multiple features, e.g., boundary
conditions and thickness, and obtaining multiple outputs, e.g., natural frequencies. Stemming from the methodology and results
described in [29–31], the approach is based on the Carrera Unified Formulation (CUF) [32], an efficient and generalized way to
derive the governing equations for virtually any structural theory and related finite element formulation. Here, for the first time,
CNN is applied to obtain the Best Theory Diagrams (BTD) for various composite plate and shell configurations utilizing the accuracy
in estimating different natural frequencies of the structure. This selection can be made at a fraction of the cost required by the full
implementation of the AAM by simply reducing the necessary results to perform such an evaluation. The paper has the following
structure: Section 2 briefly goes over the CUF and the considered structural models, Section 3 presents the AAM and the concepts of
the Best Theory Diagram, Section 4 describes the architecture and the use of the CNN, while results and conclusions are presented
in Sections 5 and 6, respectively.

2. Carrera Unified Formulation and finite elements

The structural theories analyzed in this paper were obtained using the Carrera Unified Formulation. The starting point for
describing the adopted modeling approach based on the CUF is the definition of the reference system. The one used for 2D
multi-layered shell models is presented in Fig. 1. The reference frame is curvilinear, with 𝛼 and 𝛽 coinciding with the principal
curvature lines and z along the thickness. Doubly curved shells were considered, with the curvature radii 𝑅𝛼 and 𝑅𝛽 . 𝛺𝑘 refers to
the mid-surface of the 𝑘th layer, with h𝑘 being its thickness.

The analyzed models are built using expansion functions of the displacement field. In the framework of the CUF, it is possible to
build refined 2D models with an advanced description of the through-the-thickness mechanical behavior by introducing so-called
expansion functions F𝜏 . The displacement field can then be expressed as:

𝐮(𝛼, 𝛽, 𝑧) = (𝑢𝛼 , 𝑢𝛽 , 𝑢𝑧) = 𝐹𝜏 (𝑧)𝐮𝝉 (𝛼, 𝛽) 𝜏 = 0,… , 𝑁 (1)

with 𝑁 being the number of terms of the expansion and u𝜏 the set of generalized displacement unknowns. The Einstein notation
is used on 𝜏 and similarly is done throughout the entirety of this section. For reference, a fourth-order expansion based on Taylor
polynomials used on all three displacement components is:

𝑢𝛼 = 𝑢𝛼1 + 𝑧 𝑢𝛼2 + 𝑧2 𝑢𝛼3 + 𝑧3 𝑢𝛼4 + 𝑧4 𝑢𝛼5
𝑢𝛽 = 𝑢𝛽1 + 𝑧 𝑢𝛽2 + 𝑧2 𝑢𝛽3 + 𝑧3 𝑢𝛽4 + 𝑧4 𝑢𝛽5

2 3 4
(2)
2

𝑢𝑧 = 𝑢𝑧1 + 𝑧 𝑢𝑧2 + 𝑧 𝑢𝑧3 + 𝑧 𝑢𝑧4 + 𝑧 𝑢𝑧5
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The FE formulation of the displacement field uses the shape functions N𝑖 for the interpolation on the nodes of the elements and
accounts for the 𝑘th layer,

𝐮𝑘(𝛼, 𝛽, 𝑧) = 𝐹 𝑘
𝜏 (𝑧)𝑁𝑖(𝛼, 𝛽)𝐮𝑘𝜏𝑖 𝜏 = 0,… , 𝑁 𝑖 = 1,… , 𝑁𝑛 (3)

where N𝑛 is the number of nodes of the element and u𝑘
𝜏𝑖 are the nodal generalized displacement variables. The variation of the

displacement field can be written as:

δ𝐮𝑘(𝛼, 𝛽, 𝑧) = 𝐹 𝑘
𝑠 (𝑧)𝑁𝑗 (𝛼, 𝛽)δ𝐮𝑘𝑠𝑗 𝑠 = 0,… , 𝑁 𝑗 = 1,… , 𝑁𝑛 (4)

The in-plane, 𝛜𝑘𝑝 , and out-plane, 𝛜𝑘𝑛 , strain components can be obtained through the following geometric relations:

𝛜𝑘𝑝 =
{

𝜖𝑘𝛼𝛼 , 𝜖
𝑘
𝛽𝛽 , 𝜖

𝑘
𝛼𝛽

}𝑇
= (𝐃𝑘

𝑝 + 𝐀𝑘
𝑝 )𝐮

𝑘 (5)

𝛜𝑘𝑛 =
{

𝜖𝑘𝛼𝑧, 𝜖
𝑘
𝛽𝑧, 𝜖

𝑘
𝑧𝑧

}𝑇
= (𝐃𝑘

𝑛𝛺 + 𝐃𝑘
𝑛𝑧 − 𝐀𝑘

𝑛)𝐮
𝑘 (6)

The matrices 𝐃𝑘
𝑝 , 𝐃𝑘

𝑛𝛺, 𝐃𝑘
𝑛𝑧, 𝐀𝑘

𝑝 , and 𝐀𝑘
𝑛 are:

𝐃𝑘
𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝛼
𝐻𝑘

𝛼
0 0

0 𝜕𝛽
𝐻𝑘

𝛽
0

𝜕𝛽
𝐻𝑘

𝛽

𝜕𝛼
𝐻𝑘

𝛼
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐃𝑘
𝑛𝛺 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 𝜕𝛼
𝐻𝑘

𝛼

0 0 𝜕𝛽
𝐻𝑘

𝛽

0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

𝐃𝑘
𝑛𝑧 =

⎡

⎢

⎢

⎣

𝜕𝑧 0 0
0 𝜕𝑧 0
0 0 𝜕𝑧

⎤

⎥

⎥

⎦

(7)

𝐀𝑘
𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1
𝐻𝑘

𝛼𝑅𝑘
𝛼

0 0 1
𝐻𝑘

𝛽𝑅
𝑘
𝛽

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐀𝑘
𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐻𝑘

𝛼𝑅𝑘
𝛼

0 0

0 1
𝐻𝑘

𝛽𝑅
𝑘
𝛽

0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(8)

H𝑘
𝛼 and H𝑘

𝛽 are defined as:

𝐻𝑘
𝛼 = 𝐴𝑘(1 + 𝑧𝑘∕𝑅𝑘

𝛼) (9)

𝐻𝑘
𝛽 = 𝐵𝑘(1 + 𝑧𝑘∕𝑅𝑘

𝛽 ) (10)

A𝑘 and B𝑘 are the coefficients of the first fundamental form of 𝛺𝑘, and z𝑘 is the thickness coordinate through the 𝑘th layer. For shells
with constant radii of curvature, A𝑘=B𝑘=1. A more extensive description of these geometrical parameters can be found in [33].

In this paper, shell finite elements with nine nodes were used and obtained through Lagrange shape functions to interpolate the
displacements. Shape functions are defined on a local reference system of the nine-node element - -1 ≤ 𝜉, 𝜂 ≤ 1 - as shown in Fig. 2,
and their explicit form can be found in [34]. According to the FE formulation, the geometric relations become:

𝛜𝑘𝑝 = 𝐹𝜏 (𝐃𝑘
𝑝 + 𝐀𝑘

𝑝 )(𝑁𝑖𝐈)𝐮𝑘𝜏𝑖 (11)

𝛜𝑘𝑛 = 𝐹𝜏 (𝐃𝑘
𝑛𝛺 − 𝐀𝑘

𝑛)(𝑁𝑖𝐈)𝐮𝑘𝜏𝑖 + 𝐹𝜏,𝑧(𝑁𝑖𝐈)𝐮𝑘𝜏𝑖 (12)

where 𝐈 is identity matrix. This paper adopted the Mixed Interpolation of Tensorial Components (MITC) approach [35,36]. According
to this formulation, the strain components are obtained through specific interpolation strategies. First, three sets of interpolation
points – referred to as ‘‘tying points’’ – are defined in the element local coordinate system. Each set of points is used for the
interpolation of different strain components, as explicitly indicated in Fig. 3, and this is done through their respective interpolation
functions. The interpolation functions can be conveniently grouped as follows:

𝐍𝑚1 = [𝑁𝐴1, 𝑁𝐵1, 𝑁𝐶1, 𝑁𝐷1, 𝑁𝐸1, 𝑁𝐹1]

𝐍𝑚2 = [𝑁𝐴2, 𝑁𝐵2, 𝑁𝐶2, 𝑁𝐷2, 𝑁𝐸2, 𝑁𝐹2]

𝐍𝑚3 = [𝑁𝑃 , 𝑁𝑄, 𝑁𝑅, 𝑁𝑆 ]

(13)

For further details on the mathematical formulation of MITC, the reader can refer to [34]. The strain components are interpolated
as follows:

𝛜𝑘𝑝 =
⎡

⎢

⎢

⎣

𝐍𝑚1 0 0
0 𝐍𝑚2 0
0 0 𝐍𝑚3

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛜𝛼𝛼𝑚1
𝛜𝛽𝛽𝑚2
𝛜𝛼𝛽𝑚3

⎤

⎥

⎥

⎦

(14)

𝛜𝑘𝑛 =
⎡

⎢

⎢

𝐍𝑚1 0 0
0 𝐍𝑚2 0

⎤

⎥

⎥

⎡

⎢

⎢

𝛜𝛼𝑧𝑚1
𝛜𝛽𝑧𝑚2

⎤

⎥

⎥

(15)
3

⎣ 0 0 1⎦ ⎣ 𝛜𝑧𝑧 ⎦



Journal of Sound and Vibration 575 (2024) 118255M. Petrolo et al.
Fig. 2. Nine-node finite element, Q9.

Fig. 3. MITC9 tying points for different strain components - (a) Interpolation of 𝜖𝛼𝛼 and 𝜖𝛼𝑧, (b) Interpolation of 𝜖𝛽𝛽 and 𝜖𝛽𝑧, (c) Interpolation of 𝜖𝛼𝛽 .

Subscripts m1, m2, and m3 refer to quantities evaluated in the tying points of the respective group. The strain components at the
tying points, e.g., 𝛜𝛼𝛼𝑚1 , must be evaluated directly from the displacements using Eqs. (5) and (6). As an example, 𝜖𝛼𝛼 becomes

𝜖𝛼𝛼 = 𝑁𝐴1𝜖𝛼𝛼𝐴1 +𝑁𝐵1𝜖𝛼𝛼𝐵1 +𝑁𝐶1𝜖𝛼𝛼𝐶1
+𝑁𝐷1𝜖𝛼𝛼𝐷1

+𝑁𝐸1𝜖𝛼𝛼𝐸1
+𝑁𝐹1𝜖𝛼𝛼𝐹1

(16)

where

𝜖𝛼𝛼 = 𝑁 (𝐴1)
𝑖,𝛼 𝐹𝜏𝑢𝛼𝜏𝑖 +

1
𝐻𝛼𝑅𝛼

𝑁 (𝐴1)
𝑖 𝐹𝜏𝑢𝑧𝜏𝑖 . (17)

The superscript, A1, indicates where the shape function and its derivative - ,𝛼 - are evaluated.
Hooke’s law is considered for the definition of the constitutive equations. For an orthotropic material, isolating in-plane and

normal stress components, it holds:

𝛔𝑘𝑝 = 𝑪𝑘
𝑝𝑝𝛜

𝑘
𝑝 + 𝑪𝑘

𝑝𝑛𝛜
𝑘
𝑛 (18)

𝛔𝑘𝑛 = 𝐂𝑘
𝑛𝑝𝛜

𝑘
𝑝 + 𝐂𝑘

𝑛𝑛𝛜
𝑘
𝑛 (19)

The material coefficient matrices are defined as follows:

𝐂𝑘
𝑝𝑝 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶𝑘
11 𝐶𝑘

12 𝐶𝑘
16

𝐶𝑘
12 𝐶𝑘

22 𝐶𝑘
26

𝐶𝑘
16 𝐶𝑘

26 𝐶𝑘
66

⎤

⎥

⎥

⎥

⎥

⎦

𝐂𝑘
𝑝𝑛 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 𝐶𝑘
13

0 0 𝐶𝑘
23

0 0 𝐶𝑘
36

⎤

⎥

⎥

⎥

⎥

⎦

𝐂𝑘
𝑛𝑝 =

⎡

⎢

⎢

⎢

⎢

0 0 0

0 0 0
𝑘 𝑘 𝑘

⎤

⎥

⎥

⎥

⎥

𝐂𝑘
𝑛𝑛 =

⎡

⎢

⎢

⎢

⎢

𝐶𝑘
55 𝐶𝑘

45 0

𝐶𝑘
45 𝐶𝑘

44 0
𝑘

⎤

⎥

⎥

⎥

⎥

(20)
4

⎣𝐶13 𝐶23 𝐶36 ⎦ ⎣ 0 0 𝐶33 ⎦



Journal of Sound and Vibration 575 (2024) 118255M. Petrolo et al.
The coefficients C𝑖𝑗 are functions of Young’s moduli E1, E2, E3, Poisson’s ratios 𝜈12, 𝜈13, 𝜈23, and shear moduli G12, G13, G23. For each
layer, these equations are first considered in the material coordinates – 1, 2, 3 – then rotated to the global curvilinear coordinates sys-
tem — 𝛼, 𝛽, z. The explicit form of each C𝑖𝑗 coefficient is not reported for brevity, but they can be found in [37,38]. Constitutive and
geometrical relations are substituted in the Principle of Virtual Displacements (PVD) to obtain the governing differential equations,

δ𝐿int = δ𝐿ext − δ𝐿ine (21)

Lint is the work done by internal forces, Lext is the work done by the external forces, and Line is the inertial work. For a multilayered
shell and in the case of free-vibrations, Eq. (21) becomes:

∫𝛺𝑘
∫𝐴𝑘

δ𝝐𝑘𝑇 𝝈𝑘𝐻𝑘
𝛼𝐻

𝑘
𝛽 d𝛺𝑘d𝑧 + ∫𝛺𝑘

∫𝐴𝑘

𝜌𝑘δ𝒖𝑘𝑇 𝒖̈𝑘𝐻𝑘
𝛼𝐻

𝑘
𝛽 d𝛺𝑘d𝑧 = 0 (22)

𝜌𝑘 is the mass density of the 𝑘th layer, 𝛺𝑘 and A𝑘 are the integration domains over 𝛼, 𝛽, and z, 𝑇 indicates the transpose of a vector,
and the double dots the acceleration. By substituting strains and stresses in Eq. (22) and describing the displacement field through
the FE formulation defined in Eq. (3), the variations of the internal and inertial works can be rewritten as:

δ𝐿𝑘
int = δ𝐮𝑘𝑇𝑠𝑗 𝐤

𝑘𝜏𝑠𝑖𝑗𝐮𝑘𝜏𝑖 (23)

δ𝐿𝑘
ine = δ𝐮𝑘𝑇𝑠𝑗 𝐦

𝑘𝜏𝑠𝑖𝑗 𝐮̈𝑘𝜏𝑖 (24)

where 𝐤𝑘𝜏𝑠𝑖𝑗 and 𝐦𝑘𝜏𝑠𝑖𝑗 are the stiffness and mass matrices in the form of fundamental nuclei (FN). FN are 3 × 3 arrays working as
basic assembly units and are formally independent of the order of the structural theory,

𝐤𝑘𝜏𝑠𝑖𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑘𝑘𝜏𝑠𝑖𝑗𝛼𝛼 𝑘𝑘𝜏𝑠𝑖𝑗𝛼𝛽 𝑘𝑘𝜏𝑠𝑖𝑗𝛼𝑧

𝑘𝑘𝜏𝑠𝑖𝑗𝛽𝛼 𝑘𝑘𝜏𝑠𝑖𝑗𝛽𝛽 𝑘𝑘𝜏𝑠𝑖𝑗𝛽𝑧

𝑘𝑘𝜏𝑠𝑖𝑗𝑧𝛼 𝑘𝑘𝜏𝑠𝑖𝑗𝑧𝛽 𝑘𝑘𝜏𝑠𝑖𝑗𝑧𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(25)

The explicit expressions for each term of the mass and stiffness fundamental nuclei can be found in [34,39]. The FE matrices can be
obtained by cycling over the four indexes (𝜏, 𝑠, 𝑖, 𝑗). Once the matrices for each layer are obtained, they can be assembled depending
on the modeling approach considered. Only Equivalent-Single Layer (ESL) models were analyzed in this paper, meaning that a single
set of unknown variables is used across the entire thickness, independently of the number of layers in the structure. The governing
equation for the free-vibration problem can finally be rewritten as:

𝐦𝑘𝜏𝑠𝑖𝑗 𝐮̈𝜏𝑖 + 𝐤𝑘𝜏𝑠𝑖𝑗𝐮𝜏𝑖 = 0 (26)

The assembly over all nodes and elements and the introduction of the harmonic solution leads to the well-known eigenvalue problem,

(−𝜔2
𝑛𝑴 +𝑲)𝑼 𝑛 = 0 (27)

with 𝐔𝑛 being the 𝑛th eigenvector and 𝜔𝑛 the 𝑛th angular frequency.

3. Axiomatic/Asymptotic method

The Axiomatic/Asymptotic Method is an approach to analyze the influence of generalized variables on the solution and select
the most convenient structural theory for best accuracy and lowest computational cost [12–14,40]. This paper uses AAM with
structural theories based on polynomial expansions of unknown variables. A fourth-order expansion was chosen as the highest
order as it delivers high accuracy for the problem under consideration. In this scenario, 215 possible structural theories can be
derived by selecting various combinations of expansion terms. It is essential to mention that this tally includes the arrangement
where all terms are deactivated, but this configuration is excluded from consideration as irrelevant. Among the remaining 215-1
theories, only those featuring the activation of three constant terms were considered since these are crucial for significant results.
Consequently, the total number of possible combinations is 212. The accuracy of a theory can be evaluated as a percentage error
over a quantity of interest, such as displacements or natural frequencies. However, the large amount of required FEM analyses may
be a limiting factor, especially for complex structures. This work explores a possible solution to this issue by using Convolutional
Neural Networks, drastically reducing the number of FEM results required to perform the selection procedure. The result of the AAM
can be conveniently represented using the Best Theory Diagram, shown in Fig. 4. The BTD provides several pieces of information;
namely, for a given number of DOF, it indicates the combination of generalized variables providing the minimum error; furthermore,
it reports the lowest error obtainable for a given number of DOF. The BTD may be used to evaluate the accuracy of any theory;
e.g., if five DOF are considered, the BTD may be used to assess the performance of FSDT. The control parameter used in this paper
is the error over a single natural frequency,

%𝐸𝑓𝑖 = 100 ×
|𝑓𝑖 − 𝑓𝐸4

𝑖 |

𝑓𝐸4
𝑖

(28)

where f𝐸4
𝑖 is the 𝑖th frequency evaluated using a full fourth-order Taylor expansion. In previous works [40], the error measure was a

mean value among those from the first ten frequencies, and the best models were built to obtain a given mean accuracy over the first
5
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Fig. 4. Best Theory Diagram.

Table 1
Example of best theory representation.
DOF u𝛼1 u𝛽1 u𝑧1 u𝛼2 u𝛽2 u𝑧2 u𝛼3 u𝛽3 u𝑧3 u𝛼4 u𝛽4 u𝑧4 u𝛼5 u𝛽5 u𝑧5

8 ▴ ▴ ▴ ▵ ▴ ▵ ▴ ▵ ▵ ▴ ▴ ▵ ▴ ▵ ▵

ten frequencies. The present work evaluates how a given theory’s accuracy can change depending on the modes. Such information
may be helpful in various scenarios, e.g., when commercial codes are used in which the structural theory cannot be modified,
and the user must be aware that, depending on the mode number, the accuracy can change. For every structural configuration
considered, the resulting best theory for a given number of active DOF can be conveniently represented in tabular form using black
and white triangles to indicate active and inactive terms, respectively, see Table 1. The model described in Table 1 has the following
displacement field:

𝑢𝛼 = 𝑢𝛼1 + 𝑧2 𝑢𝛼3 + 𝑧3 𝑢𝛼4 + 𝑧4 𝑢𝛼5
𝑢𝛽 = 𝑢𝛽1 + 𝑧 𝑢𝛽2 + 𝑧3 𝑢𝛽4
𝑢𝑧 = 𝑢𝑧1

(29)

4. Convolutional Neural Network

The computational cost and time required by the AAM can be prohibitive, especially when dealing with larger structures. By tak-
ing advantage of the generalization capabilities of ML techniques, it is possible to reproduce the output of an Axiomatic/Asymptotic
procedure with a drastic reduction in the number of required numerical results. In this work, the focus is on Convolutional Neural
Networks (CNN) to identify the most influential expansion terms affecting the accuracy of solutions obtained from free-vibration
analyses of composite shells. Specifically, a CNN is employed to compute the error in estimating the first ten natural frequencies
using a given set of active generalized displacement variables. The errors were then used to obtain the BTD for different structural
configurations. The trained CNN can, then, be used to evaluate the accuracy of a given structural theory, e.g., it may accept as an
input the displacement field of FSDT and provide the error in computing the first ten natural frequencies. The creation, training, and
testing of the CNN were performed using Python and the well-known libraries of Tensorflow and Keras. The network was designed to
manage both multi-dimensional inputs and outputs. The input representation of each model was obtained by encoding the sequence
of active generalized displacement variables of a specific structural theory into a series of 0 and 1, corresponding to a deactivated
and active expansion term, respectively, e.g.,

𝑢𝛼 = 𝑢𝛼1 + 𝑧 𝑢𝛼2 + 𝑧4 𝑢𝛼5
𝑢𝛽 = 𝑢𝛽1 + 𝑧 𝑢𝛽2 + 𝑧3 𝑢𝛽4 => [1 1 1 0 0 1 0 1 0 1 0 0]
𝑢𝑧 = 𝑢𝑧1 + 𝑧 𝑢𝑧2 + 𝑧2 𝑢𝑧3

(30)

Constant terms were not included in the encoded sequence, as they were always set as active. The sequence was then re-shaped into
a 3 × 4 matrix, constituting the actual input provided to the network. The complete architecture of the CNN is described in Table 2,
and it resulted from numerous tests aimed at selecting the best-performing one for this specific application while also trying to keep
the number of parameters relatively low. It presents a first block of three convolutional layers with 128 3 × 3 filters. All of them
used a Rectified Linear Unit (ReLU) activation function. A uniform stride of 1 was used to perform the convolution, and padding
was added to preserve the original size of the input through these layers, improving the network’s capabilities. The output of the
6
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Table 2
Parameters and architecture of the adopted CNN.
Layer Filters (Size)/Nodes Activation function

Convolutional 128 (3 × 3) ReLU
Convolutional 128 (3 × 3) ReLU
Convolutional 128 (3 × 3) ReLU
Flatten – –
Dense 128 ReLU
Dense 128 ReLU
Output 10 Sigmoid

Table 3
Material properties used in this paper.
𝐸11/𝐸22 25

𝐸22/𝐸22 = 𝐸33/𝐸22 1
𝐺12/𝐸22 = 𝐺13/𝐸22 0.5
𝐺23/𝐸22 0.2
𝜈12 = 𝜈13 = 𝜈23 0.25

Table 4
𝜔̄1, simply-supported shell with a/h = 10, [0◦/90◦/0◦].
R/a 𝜔̄1 𝜔̄1 [30]

2 13.007 13.007
5 11.972 11.972
Plate 11.756 11.756

last convolutional layer is straightened into a one-dimensional array through the ‘‘Flatten’’ layer and passed to the second block of
the network, made of two dense layers with 128 neurons, each adopting a ReLU as an activation function. Finally, the output of the
CNN is obtained through the last layer with ten units, corresponding to the percentage errors over the first ten natural frequencies.
For the training process, the network’s hyperparameters update at each step was performed using the Adam optimizer [41], with a
learning rate of 0.001. The loss function adopted was the Mean Absolute Percentage Error (MAPE), which provided the best results
in the initial evaluation phase,

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖|
𝑦𝑖

(31)

where 𝑛 is the number of samples considered, 𝑦𝑖 the 𝑖th expected value, and 𝑦𝑖 the corresponding inferred one. A total of 500 training
epochs and a batch size of 8 were used. The number of samples used to train the network was equal to the 10% of the 212 considered
theories. Depending on the number of active DOF, the number of theories with a given number of DOF changes. For each number
of DOF, the number of randomly selected models was a percentage inversely proportional to its population. This selection process
was designed to provide the network with a data set as informative as possible and achieve an improved generalization.

5. Numerical results

In this paper, various configurations of composite shells were analyzed by varying thickness, boundary conditions, and curvature
radii, with the latter kept equal along 𝛼 and 𝛽. The normalized material properties are summarized in Table 3. To lower the
computational costs, a quarter of a square shell was considered and meshed with 4 × 4 Q9 elements. Symmetry boundary conditions
were applied; therefore, only symmetrical modal shapes were considered. An ESL formulation was used, and the full fourth-order
E4 Taylor expansion was assumed as the reference model.

First, a preliminary assessment was conducted to ensure the quality of the FE discretization. As a reference, the results on
the first natural frequency provided in [30] were used, obtained using a full fourth-order Taylor expansion. Table 4 shows the
results for a simply-supported shell, and a perfect match was found between the reference and the obtained values, reported in the
non-dimensionalized form:

𝜔̄ = 𝜔

√

𝜌𝑎4

ℎ2𝐸22
(32)

where 𝜌 represents the density of the material, 𝑎 is the side length of the structure, ℎ is the thickness, and 𝐸22 the material’s elastic
7

modulus in direction ‘‘2’’. The same verification was performed for a clamped–free shell, see Table 5.
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Table 5
𝜔̄1, clamped–free shell with R/a = 10, [0◦/90◦/0◦].
a/h 𝜔̄1 𝜔̄1 [30]

4 7.250 7.250
20 24.144 24.144

Fig. 5. BTD for simply-supported shell with R/a=2 - (a) I natural frequency, (b) II natural frequency.

Fig. 6. BTD and WTD for simply-supported shell with R/a=2 - (a) III natural frequency, (b) IV natural frequency.

5.1. Simply-supported

The first numerical case considered a simply-supported shell with a/h=10 and stacking sequence [0◦/90◦/0◦]. Different values
of curvature radii were used, R/a=2, 5, and infinite. BTD were evaluated using the AAM procedure and the CNN for the first ten
natural frequencies. Figs. 5 to 7 show the BTD for the first five frequencies of the R/a=2 shell. ‘AAM’ indicates the results obtained
by computing the frequencies of all combinations of structural theories stemming from the fifteen terms of a fourth-order set. ‘CNN’
indicates the results obtained by the convolutional neural network trained with 10% of all combinations. In each plot, two best
sets are shown, i.e., structural theories providing the best accuracy for a given number of nodal DOFs. Furthermore, to quantify the
worst accuracy for a given DOF, the Worst Theory Diagram (WTD) is also shown in Fig. 6a. Tables 6 to 8 show the best models with
five, eight, and twelve DOF, respectively. The aim is to show how the set of best generalized displacement variables depends on the
mode considered. Figs. 8 to 10 show BTDs for the R/a=5 case. Tables 9 to 11 show the best theories; for the sake of brevity, five
frequencies were reported instead of ten. To verify the accuracy of the best theories concerning the modal shapes, Fig. 11 shows
the first five modes obtained with the 8-DOF best theories and compared with the ones stemming from the reference, full E4 model
reported in Fig. 12. The results for the plate case are reported in Figs. 13 to 15 and Tables 12 to 14. The results obtained for the
simply-supported case suggest the following:

• The CNN can reproduce the BTD for different frequencies with high accuracy using 10% of the computational overhead of
the FEM approach. Furthermore, the best models built by considering natural frequencies as control parameters reproduce the
8

modal shapes very well.
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Fig. 7. BTD simply-supported shell with R/a=2 - V natural frequency.

Fig. 8. BTD for simply-supported shell with R/a=5 - (a) I natural frequency, (b) II natural frequency.

Fig. 9. BTD for simply-supported shell with R/a=5 - (a) III natural frequency, (b) IV natural frequency.
9
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c
f
n

Fig. 10. BTD for simply-supported shell with R/a=5 - V natural frequency.

Table 6
Best theories with five DOF for the first ten frequencies, simply-supported shell with R/a = 2.

I

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▵ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

II

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

III

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

IV

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▵ ▵ ▵ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

VI

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

VII

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

VIII

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

IX

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

X

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▵ ▵ ▵ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

• Best theories depend on the mode number. As the number of waves increases, the role of higher-order generalized displacement
variables becomes more critical, with third-order terms becoming necessary for the best accuracy.

• FSDT is a best theory for the first mode.
• Transverse stretching is often necessary to have errors smaller than 1%.
• The role of the curvature is not particularly relevant for choosing the best set of displacement variables.
• The WTD presented for the third natural frequency of the R/a=2 case shows the lower limit’s behavior for the accuracy of a

structural theory. Even higher-order models can suffer from significant errors.

5.2. Clamped–free

This section focuses on a different set of boundary conditions and the effect of thickness. The shell has two opposite edges
lamped and the other two free; R/a=10. Figs. 16 to 18 show BTDs for a/h=20, whereas Tables 15 to 17 presents the best theories
or the first five frequencies. The results for the thick case with a/h=4, are shown in Figs. 19 to 21 and Tables 18 to 20. The
10

umerical results suggest that
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Table 7
Best theories with eight DOF for the first ten frequencies, simply-supported shell with R/a = 2.

I

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▵

II

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▵

III

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▵

IV

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▴

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▴

VI

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▴

VII

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▵

VIII

𝑢𝛼 ▴ ▵ ▴ ▴ ▴

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▵ ▵ ▵

IX

𝑢𝛼 ▴ ▴ ▴ ▵ ▴

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

X

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▴

Table 8
Best theories with twelve DOF for the first ten frequencies, simply-supported shell with R/a = 2.

I

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

II

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

III

𝑢𝛼 ▴ ▴ ▴ ▴ ▴

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▵

IV

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▴

𝑢𝑧 ▴ ▴ ▵ ▴ ▴

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

VI

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

VII

𝑢𝛼 ▴ ▴ ▴ ▴ ▴

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▵

VIII

𝑢𝛼 ▴ ▴ ▴ ▵ ▴

𝑢𝛽 ▴ ▵ ▴ ▴ ▴

𝑢𝑧 ▴ ▴ ▴ ▵ ▴

IX

𝑢𝛼 ▴ ▴ ▴ ▴ ▴

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▵

X

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴
11



Journal of Sound and Vibration 575 (2024) 118255M. Petrolo et al.
Table 9
Best theories with five DOF for the first five frequencies, simply-supported shell with R/a = 5.

I

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▵ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

II

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

III

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

IV

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▵ ▵ ▵ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

Table 10
Best theories with eight DOF for the first five frequencies, simply-supported shell with R/a = 5.

I

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▵

II

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▴

III

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▵ ▵ ▴

IV

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▴

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▴

Table 11
Best theories with twelve DOF for the first five frequencies, simply-supported shell with R/a = 5.

I

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

II

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▴

III

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

IV

𝑢𝛼 ▴ ▴ ▴ ▴ ▴

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▵ ▴ ▴

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▴

𝑢𝑧 ▴ ▴ ▴ ▵ ▴

Table 12
Best theories with five DOF for the first five frequencies, simply-supported plate.

I

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▵ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

II

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

III

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

IV

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▵ ▵ ▵ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵
12
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Fig. 11. First five modes obtained using the best 8-DOF theories, simply-supported shell with R/a=5 - (a) Mode I, (b) Mode II, (c) Mode III, (d) Mode IV, (e)
Mode V.

Table 13
Best theories with eight DOF for the first five frequencies, simply-supported plate.

I

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▵

II

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▴

III

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▵ ▵ ▴

IV

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▴

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▴

Table 14
Best theories with twelve DOF for the first five frequencies, simply-supported plate.

I

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▵

II

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

III

𝑢𝛼 ▴ ▴ ▴ ▴ ▴

𝑢𝛽 ▴ ▴ ▵ ▴ ▴

𝑢𝑧 ▴ ▴ ▵ ▵ ▴

IV

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▵ ▴ ▴

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴
13



Journal of Sound and Vibration 575 (2024) 118255M. Petrolo et al.
Fig. 12. First five modes obtained using the full E4 theory, simply-supported shell with R/a=5 - (a) Mode I, (b) Mode II, (c) Mode III, (d) Mode IV, (e) Mode
V.

Fig. 13. BTD for simply-supported plate - (a) I natural frequency, (b) II natural frequency.

• The thickness of the shell has a predominant role in the definition of the best theories. The thickness is the most relevant
among the parameters considered in this paper.

• As the shell becomes thick, the higher-order terms are mandatory to obtain acceptable accuracy. Five Best models with five
DOFs are no more FSDT as third-order terms are necessary.

• The role of transverse stretching remains crucial for accuracy.
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Fig. 14. BTD for simply-supported plate - (a) III natural frequency, (b) IV natural frequency.

Fig. 15. BTD for simply-supported plate - V natural frequency.

Fig. 16. BTD for clamped–free shell with a/h=20 - (a) I natural frequency, (b) II natural frequency.
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Fig. 17. BTD for clamped–free shell with a/h=20 - (a) III natural frequency, (b) IV natural frequency.

Fig. 18. BTD for clamped–free shell with a/h=20 - V natural frequency.

Table 15
Best theories with five DOF, clamped–free shell with a/h = 20.

I

𝑢𝛼 ▴ ▵ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

II

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▵ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

III

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

IV

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

V

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵
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Table 16
Best theories with eight DOF, clamped–free shell with a/h = 20.

I

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▵

II

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▵

III

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▵

IV

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▴

V

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▴

Table 17
Best theories with twelve DOF, clamped–free shell with a/h = 20.

I

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▴

II

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▴

III

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▴

IV

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▴

V

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▴

Table 18
Best theories with five DOF, clamped–free shell with a/h = 4.

I

𝑢𝛼 ▴ ▵ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

II

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

III

𝑢𝛼 ▴ ▵ ▵ ▵ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

IV

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

V

𝑢𝛼 ▴ ▴ ▵ ▵ ▵

𝑢𝛽 ▴ ▵ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▵ ▵ ▵

Table 19
Best theories with eight DOF, clamped–free shell with a/h = 4.

I

𝑢𝛼 ▴ ▵ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▴

II

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▵

III

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▵

IV

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▵

V

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▵ ▴ ▵ ▵
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Fig. 19. BTD for clamped–free shell with a/h=4 - (a) I natural frequency, (b) II natural frequency.

Fig. 20. BTD for clamped–free shell with a/h=4 - (a) III natural frequency, (b) IV natural frequency.

Table 20
Best theories with twelve DOF, clamped–free shell with a/h = 4.

I

𝑢𝛼 ▴ ▴ ▵ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

II

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

III

𝑢𝛼 ▴ ▴ ▵ ▴ ▴

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▴ ▴

IV

𝑢𝛼 ▴ ▴ ▴ ▴ ▵

𝑢𝛽 ▴ ▴ ▴ ▴ ▴

𝑢𝑧 ▴ ▵ ▴ ▵ ▴

V

𝑢𝛼 ▴ ▴ ▴ ▴ ▴

𝑢𝛽 ▴ ▴ ▵ ▴ ▵

𝑢𝑧 ▴ ▴ ▴ ▵ ▴
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Fig. 21. BTD for clamped–free shell with a/h=4 - V natural frequency.

6. Conclusions

This paper investigated the adoption of a Convolutional Neural Network to find the best structural theories for the free vibration
analysis of composite shells. The focus was on Equivalent Single Layer models with higher-order expansions up to the fourth-order.
CNN was trained using finite element analyses carried out using the Carrera Unified Formulation. CNN training features included
the active generalized displacement variables, i.e., the structural theory, and the first ten frequencies were the output. Best Theory
Diagrams were built using the Axiomatic/Asymptotic Method for different shell configurations, providing us with the reference
results for the evaluation of the performance and reliability of the network. In doing so, the role of structural parameters such as
thickness, curvature, and boundary conditions on the accuracy of a specific model was also investigated. From the analysis of the
best theories and BTDs obtained using the newly developed ML approach, it can be observed that:

• The CNN can successfully identify the best theories for a specific structural configuration. The accuracy was verified using
reference finite element results, and excellent matches were found. A CNN can thus be used to test the accuracy of any structural
theory for a given set of parameters, providing essential guidelines on the modeling strategy.

• The training of the CNN required only a limited pool of data, equal to 10% of the total amount of possible combinations of
expansion terms, leading to a drastic reduction of computational overhead compared to previous works based solely on finite
element computations. The computation of the BTD through CNN required, on average, 10% of the computational time of
the complete FE analysis. The training process requires a fraction of the time needed for an FE analysis, and the total cost is
related to the size of the training set.

• Another advantage the CNN brings is the possibility of operating with multiple outputs, thus being capable, if appropriately
trained, of providing information regarding different indicators simultaneously, possibly leading to the definition of an overall
performance score.

• The analysis of the best theories highlighted the critical role of third-order terms as the number of waves increases.
Furthermore, the thickness of the shell is the predominant factor for the choice of the structural theory. For thick shells,
third-order terms and transverse stretching are mandatory for acceptable accuracy.

• The discrepancies observed between the results generated by the AAM and the CNN are primarily located in the top part of
the BTD, where errors are low, and the number of combinations is low. For instance, there are only fourteen theories with
fourteen DOF, and the training process may be affected by such a low number of samples.

• The newly developed ML approach can be extended to virtually any structure to help define the optimal modeling approach.
Different categories of structural models can also be considered, e.g., those using different mathematical formulations for the
expansion functions or having different geometries, e.g., spherical shells and beams.

Future works will extend the present approach to time domain responses. There may be different strategies: machine learning could
be trained to provide the modes to be used for superposition or could directly provide the time response.
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