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A B S T R A C T

In this work, high-order beam (1D) finite element models for the modal analysis of structures made of
compressible and nearly-incompressible hyperelastic soft materials are presented in the well-established
framework of Carrera Unified Formulation (CUF). In this investigation, the modal behavior of soft structures
subjected to progressively increasing loads can be correctly predicted by higher-order structural theories,
and the influence of pre-stress conditions applied on the modal response of structures is investigated. The
mathematical formulation of hyperelastic isotropic materials is presented in terms of invariants of the right
Cauchy–Green strain tensor, obtaining the most general expression of the Piola–Kirchoff 2 stress tensor and
tangent elasticity tensor, both independent of the model adopted for the material strain energy function.
Governing equations in matrix forms for the static nonlinear analysis and subsequent vibration problem around
non-trivial equilibrium states are derived through the Principle of Virtual Displacements (PVD) under a total
Lagrangian formulation, defining the fundamental nuclei of stiffness matrices and internal and external forces
vector, all independent of expansion theories and kinematic models adopted in the mathematical modeling
of finite elements. Actual numerical results are obtained by an iterative Newton–Raphson linearized scheme
coupled with line-search algorithms, and they are compared with results obtained by the commercial code
ABAQUS. Our proposed models are tested with large strain problems involving hyperelastic slender and
thin-walled structures, for which mode aberration such as crossing or bearing are observed.
1. Introduction

Large amplitude vibrations and nonlinear dynamics of complex
structures are nowadays challenging research topics in different engi-
neering fields; the dynamical behavior of membranes, soft actuators,
sensors, and bio-inspired devices like micro-pumps and seismic iso-
lators is fundamental for accurate structural modeling, health moni-
toring, and effective functionalities of smart devices. In this scenario,
hyperelastic soft materials and structures have become more and more
attractive due to their enhanced elastic properties and multi-physics
applications since they show enhanced thermo-elastic or electro-elastic
properties, and they have spread in manufacturing processes, smart
material applications, design of micro and nano sensors, actuators,
and bio-inspired structures also in critical environments. In the last
decades, intense studies of hyperelastic material have been proposed,
formulating the constitutive law in terms of a strain energy function
approach based on different phenomenological capabilities shown by
experimental testing of soft structures [1–4].
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In hyperelasticity, large elastic deflections, strains, and rotations
are observed when subjected to high static and cyclic loads. In early-
stage research, these elastic properties of hyperelastic materials were
investigated, typically adopting mathematical modeling in dynamical
problems based on a-priori assumptions of the geometrical actual con-
figuration, superimposing the deformed configurations and limiting
the possible range of investigations. Lately, these limitations were
overcome, and dynamical properties related to large strains were inves-
tigated, adopting extended mathematical formulations and experiments
as done in [5,6]. In a finite element scenario, instead, dynamical
problems involving soft materials and structures in the large ampli-
tude regime deal with the time integration of governing equations
strictly dependent on the viscoelastic constitutive behavior. Khaniki
et al. [7] presents an intense review of the dynamics of hyperelastic
soft structures. Due to both geometrical and material nonlinearities,
including viscoelasticity, the strong nonlinear behavior of these ma-
terials results in a lack of analytical solutions available only for a
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few benchmark problems. In particular, the dynamic response of hy-
perelastic structures is governed by different structural features when
near-resonance behavior is analyzed; the response is controlled by
internal dissipation and viscoelasticity differently to cases far away
from resonance where only mass and stiffness of the structures char-
acterize the dynamical response, as reported by Amabili [8]. For these
systems, softening and hardening behavior are often observed; thus,
the frequency response can be characterized by complex phenomena
and internal resonance. Pamplona et al. [9] analyzed the internal
resonance behavior of thin-walled cylindrical vessels under internal
pressure. Breslavsky et al. [10] investigated the large amplitude vi-
bration of thin plates adopting a Neo-Hookean strain energy function
hyperelastic model. The nonlinear vibrations of thin hyperelastic plates
were also investigated by the same authors in [11]. Soares et al. [12]
analyzed the nonlinear vibration of thin hyperelastic membranes in
pre-stressed configurations. Balasubramanian et al. [13] presented an
experimental and numerical investigation of vibrations of clamped
rubber plates. Arani et al. [14] analyzed the dynamic response of an in-
compressible hyperelastic cylindrical shell subjected to radial harmonic
perturbations.

Despite these difficulties, small-amplitude vibrations and modal
analysis of beams, plates, and shells hyperelastic structures are in-
teresting fields thanks to their application. Natural frequencies and
mode shapes of hyperelastic media in the compressible and nearly-
incompressible material regimes are the starting point for a complete
description of a full dynamic response characterization. Thanks to their
huge elastic properties, typical investigations of modal behavior of
soft structures are investigated in pre-stressed conditions; the influence
of stretching ratios and large strains or rotations on the natural fre-
quencies and mode shapes is an attractive research field, but also, in
this case, available solutions refer to simple geometries or boundary
conditions considered.

In this work, a finite element formulation of beam-like structures
based on CUF for the modal analysis of isotropic hyperelastic materials
is proposed. In the proposed finite element model, the displacement
field is expressed by kinematic models and expansion theories coupled
under a recursive index notation. Refined fully nonlinear structural
models are defined in CUF formalism, which allows a straightforward
implementation of any higher-order model and compact definitions of
matrix-form physical quantities independent of the polynomial expan-
sion adopted [15–17]. The capabilities of 1D beam and 2D plate models
in modal analysis of materials and structures in non-trivial equilibrium
states are established in [18,19]. More recently, Unified models have
been extended to hyperelastic materials finite element modeling, and
the capabilities of beam, plates, and solid models to deal with static
nonlinear analysis of soft compressible and nearly-incompressible soft
structures are established in [20–22].

Here, the fully nonlinear 1D beam model for the modal analysis of
hyperelastic materials and structures is presented, defining the finite
element procedure in the CUF framework: (i) first, the analytic ex-
pression of physical quantities (Piola–Kirchoff 2 stress tensor, tangent
elasticity tensor) under the hyperelastic constitutive law are derived,
written in terms of invariant of the right Cauchy–Green strain tensor,
in Section 2; (ii) second, Unified 1D beam models, kinematic models
and cross-section expansion theories are described in Section 3; (iii)
subsequently, the nonlinear governing equations for the nonlinear static
analysis and linear free vibration problem in non-trivial equilibrium
states are exploited through the Principle of Virtual Displacements,
defining the matrix-form and Fundamental Nuclei (FN) of internal
and external forces vector, tangent stiffness matrix and mass matrix,
presented in Section 4; (iv) actual numerical results and analysis of
different benchmark problems through refined 1D models are discussed
in Section 5, presenting the accuracy of our models in the analysis of
compressible and nearly-incompressible structures; (v) finally, the main
2

conclusions evinced are discussed in Section 6.
2. Constitutive law

2.1. Kinematics and strain measures

Let Ω be a continuum body in the Euclidean space and let 𝜮 =
{𝐞1, 𝐞2, 𝐞3} be the classical Cartesian reference frame. A material par-
ticle 𝐏0 = (𝑥0, 𝑦0, 𝑧0) follows the evolution in time of the continuum
body that occupies a continuous sequence of regions of the Euclidean
space. Starting from the reference configuration Ω𝟎, the configuration
at the generic instant 𝑡 is called the current configuration, and the
material particle now occupies the position 𝐏 = (𝑥, 𝑦, 𝑧). In the classical
continuum mechanics approach, the current position of the generic
material point is described by the deformation function, which maps the
material point in the actual configuration to the related position in the
reference configuration. Thereafter, one can define the classical strain
measures adopted in continuum mechanics, namely the deformation
gradient 𝐅 = 𝜕𝐏∕𝜕𝐏0 and the right Cauchy–Green strain tensor 𝐂 =
𝐅𝑇𝐅. Typically, isotropic hyperelastic mathematical models are defined
starting from the invariants of the right Cauchy–Green strain tensor,
following objectivity arguments and independence with respect to the
reference frame, thus one defines:

𝐼1 = tr(𝐂) (1)

2 =
1
2
((tr(𝐂))2 − tr(𝐂2)) = tr(cof(𝐂)) (2)

𝐼3 = det(𝐂) = det(𝐅𝑇𝐅) = 𝐽 2 (3)

here tr(⋅) and det(⋅) are the trace and the determinant operators,
of(⋅) is the matrix of the cofactors and 𝐽 is the determinant of the
eformation gradient tensor. Different strain measures will be assumed
n this work; the Green–Lagrange strain tensor is also here presented.
nalyzing the infinitesimal behavior of a material fiber during the
volution process of the body to its deformed state, one can define
he Green–Lagrange strain tensor starting from the right Cauchy–Green
ensor, obtaining the following relation:

= 1
2

(

𝐅𝑇𝐅 − 𝐈
)

= 1
2

(

𝐂 − 𝐈
)

(4)

2.2. Hyperelastic constitutive law in terms of invariants

In the present work, hyperelastic models are defined under the
so-called decoupled formulation in accordance with the Flory decom-
position [23] by considering the deformation gradient as the product
of its volumetric and isochoric components, thus:

𝐅 = 𝐅𝑣𝑜𝑙𝐅̄ → 𝐅𝑣𝑜𝑙 = 𝐽
1
3 𝐈; 𝐅̄ = 𝐽− 1

3 𝐅 (5)

Consistently with the decomposition here adopted, also the right
Cauchy–Green tensor is rewritten as:

𝐂 = 𝐂𝑣𝑜𝑙𝐂̄ → 𝐂𝑣𝑜𝑙 = 𝐽
2
3 𝐈; 𝐂̄ = 𝐽− 2

3 𝐂 (6)

In the above relations, 𝐅𝑣𝑜𝑙 , 𝐂𝑣𝑜𝑙 are associated to a volume-changing
behavior, instead 𝐅̄, 𝐂̄ to a volume-preserving behavior. In the principal
reference frame of the eigenvector of each tensor, one can define then
the so-called modified principal stretches as the eigenvalues of 𝐅̄, 𝐂̄.

In this framework then, the strain–energy function is assumed as a
decoupled representation, in which the volumetric and isochoric parts
are two distinct contributions:

𝛹 (𝐂) = 𝛹𝑣𝑜𝑙(𝐽 ) + 𝛹𝑖𝑠𝑜(𝐂̄) = 𝑈 (𝐽 ) + 𝛹̄ (𝐼1, 𝐼2) (7)

where 𝐼1, 𝐼2 are the invariants of the isochoric part of the right Cauchy–
Green tensor 𝐂̄. In Eq. (7), the volumetric part of the strain energy
function is considered a penalization function to enforce material in-
compressibility. In literature, many models for 𝑈 (𝐽 ) are described. In
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the present paper, the classical quadratic volumetric expression of 𝑈 (𝐽 ),
presented by Sussman and Bathe [24], is adopted, explicitly:

𝑈 (𝐽 ) = 1
𝐷1

(𝐽 − 1)2 = 𝑘
2
(𝐽 − 1)2 (8)

where 𝐷1 = 2∕𝑘 is the incompressibility parameter defined starting
from the bulk modulus 𝑘 of the material. Consistently, with the previ-
ously introduced decomposition, the PK2 (Piola–Kirchoff 2) is written
as sum of volume-changing and volume-preserving parts:

𝐒 = 2 𝜕𝛹
𝜕𝐂

= 𝐒𝑣𝑜𝑙 + 𝐒𝑖𝑠𝑜 (9)

𝐒𝑣𝑜𝑙 = 2
𝜕𝛹𝑣𝑜𝑙
𝜕𝐂

= 𝐽 𝑝 𝐂−1 (10)

𝐒𝑖𝑠𝑜 = 2 𝜕𝛹̄
𝜕𝐂

= 𝐽− 2
3 (I − 1

3
𝐂−1 ⊗ 𝐂) ∶ 𝐒̄ = 𝐽− 2

3 P ∶ 𝐒̄ (11)

where P is the fourth-order projection tensor, required in the definition
of the correct deviatoric operator in the material reference frame due
to the Total Lagrangian Formulation, 𝐒̄ = 𝜕𝛹̄

𝜕𝐂̄ is the rescaled/modified
PK2 stress tensor and I = 𝛿𝑖𝑘𝛿𝑗𝑙𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 is the fourth-order
identity tensor. In this explicit form, the hydrostatic pressure 𝑝 in Eq. (11)
is a crucial variable in the stress description of nearly-incompressible
material. Under the hypothesis of volumetric strain energy function
Eq. (8), the hydrostatic pressure is related to the total volumetric strain
by a linear relation, in fact:

𝑝 =
𝜕𝛹𝑣𝑜𝑙
𝜕𝐽

= 𝜕
𝜕𝐽

(

𝑘
2
(𝐽 − 1)2

)

= 𝑘(𝐽 − 1) = 𝑘( 𝛺
𝛺0

− 1) = 𝑘(𝛥𝛺
𝛺0

) = 𝑘𝜀𝑣

This derivation holds independently on the specific strain energy func-
tion considered, but a linear relation between the hydrostatic pressure
and the volumetric strain is found only under the hypothesis of the
classical quadratic volumetric model. To stabilize these formulations,
different volumetric models have been presented in the last decade
to alleviate the volumetric locking arising from this limitation [25].
In the framework of decoupled hyperelastic models, the hydrostatic
pressure is used as penalization of Lagrange’s multiplier to enforce
incompressibility (namely 𝐽 = 1).

2.3. Incremental formulation and tangent elasticity tensor

In the framework of the finite element method for geometrically and
materially nonlinear problems, incremental formulations are typically
employed. In a common hyperelastic scenario, the constitutive equation
Eq. (9) can be rewritten by the total differential form [26]:

𝛥𝐒 = C 1
2
𝛥𝐂 = C𝛥𝐄 (12)

where C is the so-called tangent elasticity tensor, defined starting the
linearization of the constitutive law:

C = 2
𝜕𝐒(𝐂)
𝜕𝐂

= 4 𝜕2𝛹
𝜕𝐂𝜕𝐂

(13)

The previously introduced decomposition of volume-changing and
volume-preserving components is also considered for the tangent elas-
ticity tensor:

C = C𝑣𝑜𝑙 + C𝑖𝑠𝑜 (14)

These components can be derived straightforwardly, starting from the
definition of PK2 and applying the derivative operator with respect to
the right Cauchy–Green strain tensor:

C𝑣𝑜𝑙 = 𝐽 (𝑝 + 𝐽
𝑑𝑝
𝑑𝐽

)𝐂−1 ⊗ 𝐂−1 − 2𝐽𝑝𝐂−1 ⊙ 𝐂−1 (15)

C𝑖𝑠𝑜 = 2(P ∶ 𝐒̄)⊗ 𝜕𝐽−2∕3

𝜕𝐂
+ 2𝐽−2∕3 𝜕(P ∶ 𝐒̄)

𝜕𝐂
(16)

where Ī = 𝛿𝑖𝑙𝛿𝑗𝑘𝐞𝑖⊗ 𝐞𝑗 ⊗ 𝐞𝑘⊗ 𝐞𝑙,  = (I+ Ī)∕2 is fourth-order unit tensor
and 𝐂−1⊙𝐂−1 is the symmetric part of the Hadamard product between
𝐂−1 and 𝐂−1. Here, only the analytic expression of these components is
reported, but more details about the derivation can be found in [26].
3

Fig. 1. Unified 1D models: scheme and kinematic models coupling representation.

3. Unified formulation of hyperelastic beams

The extension of CUF finite element models for hyperelastic materi-
als has already been presented by Pagani et al. [20], in which the for-
mulation of hyperelastic solid beam finite elements in the CUF frame-
work is established. Lately, Augello et al. [21] and Pagani et al. [22]
presented the unified 2D plate and 3D solid hexahedral models for
hyperelastic materials assessing the capabilities of CUF models by dif-
ferent benchmark problems in compressible and nearly-incompressible
hyperelasticity. Under CUF formalism, the unknown displacement field
is expressed as a polynomial expansion of the discretized unknown
displacement variables, adopting a recursive index notation, that allows
the coupling of kinematic models and arbitrary cross-section expansion
functions. In the classical orthonormal {𝑥, 𝑦, 𝑧} Cartesian reference
frame, the three-dimensional displacement field is then expressed as

𝐮(𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑥, 𝑧)𝐮𝜏 (𝑦) 𝜏 = 1,… ,𝑀 (17)

where 𝐹𝜏 (𝑥, 𝑧) is the set of cross-section expansion functions that
characterizes the expansion theory in the mathematical model adopted,
𝑀 is the cross-section expansion orderm and 𝐮𝜏 is the vector of gener-
alized displacement components along the beam axis. Fig. 1 shows the
geometrical representation of the unified 1D beam CUF model.

In the previous definition of displacement field Eq. (17), Einstein’s
notation for repeated indices is employed. Higher-order structural the-
ories can be implemented by choosing the expansion basis function
𝐹𝜏 (𝑥, 𝑧) that completely characterizes the model. In the present work,
two different classes of expansion functions are considered, TE (Taylor
Expansion) class and LE (Lagrange Expansion) class. TE models make
use of 2D MacLaurin polynomials as the basis for the cross-section
expansion of the generalized beam axis displacements and, depending
on the expansion order, higher-order theories are defined hierarchically
in an automatic way. As examples, the TE-1 linear expansion model is
explicitly expressed as

⎧

⎪

⎨

⎪

⎩

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑢𝑥1 (𝑦) + 𝑥𝑢𝑥2 (𝑦) + 𝑧𝑢𝑥3 (𝑦)
𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑢𝑦1 (𝑦) + 𝑥𝑢𝑦2 (𝑦) + 𝑧𝑢𝑦3 (𝑦)
𝑢𝑧(𝑥, 𝑦, 𝑧) = 𝑢𝑧1 (𝑦) + 𝑥𝑢𝑧2 (𝑦) + 𝑧𝑢𝑧3 (𝑦)

(18)

where 𝑢𝑥𝑖 , 𝑢𝑦𝑖 and 𝑢𝑧𝑖 , 𝑖 = 1… 3, stand for the displacements and ro-
tation components of the beam axis, and the TE-2 parabolic expansion
models expressed as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑢𝑥1 (𝑦) + 𝑥𝑢𝑥2 (𝑦) + 𝑧𝑢𝑥3 (𝑦) + 𝑥2𝑢𝑥4 (𝑦) + 𝑥𝑧𝑢𝑥5 (𝑦)
+ 𝑧2𝑢𝑥6 (𝑦)

𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝑢𝑦1 (𝑦) + 𝑥𝑢𝑦2 (𝑦) + 𝑧𝑢𝑦3 (𝑦) + 𝑥2𝑢𝑦4 (𝑦) + 𝑥𝑧𝑢𝑦5 (𝑦)
+ 𝑧2𝑢𝑦6 (𝑦)

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝑢𝑧1 (𝑦) + 𝑥𝑢𝑧2 (𝑦) + 𝑧𝑢𝑧3 (𝑦) + 𝑥2𝑢𝑧4 (𝑦) + 𝑥𝑧𝑢𝑧5 (𝑦)
+ 𝑧2𝑢𝑧6 (𝑦)

(19)

where, again, 𝑢𝑥𝑖 , 𝑢𝑦𝑖 and 𝑢𝑧𝑖 , 𝑖 = 1… 6, are the generalized unknowns
of the problem, referred to the reference beam axis considered. In the
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Fig. 2. Unified 1D models: Equivalent-single-layer and component-wise models.
case of LE-models, instead, along the beam cross-section, Lagrange-type
polynomials are adopted as expansion basis in a resulting model of
pure displacement variables exploiting the isoparametric formulation.
In the present work, the linear LE-2 (four-node), parabolic LE-3 (nine-
node), and cubic LE-4 (sixteen-node) expansion models will be adopted
in the formulation of the cross-section kinematics. As examples, the
displacement field of a LE-2 parabolic expansion model is reported,
expressed as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑥(𝑥, 𝑦, 𝑧) = 𝐹1(𝑥, 𝑧)𝑢𝑥1 (𝑦) + 𝐹2(𝑥, 𝑧)𝑢𝑥2 (𝑦) + 𝐹3(𝑥, 𝑧)𝑢𝑥3
+ ⋯ + 𝐹9(𝑥, 𝑧)𝑢𝑥9 (𝑦)

𝑢𝑦(𝑥, 𝑦, 𝑧) = 𝐹1(𝑥, 𝑧)𝑢𝑦1 (𝑦) + 𝐹2(𝑥, 𝑧)𝑢𝑦2 (𝑦) + 𝐹3(𝑥, 𝑧)𝑢𝑦3
+ ⋯ + 𝐹9(𝑥, 𝑧)𝑢𝑦9 (𝑦)

𝑢𝑧(𝑥, 𝑦, 𝑧) = 𝐹1(𝑥, 𝑧)𝑢𝑧1 (𝑦) + 𝐹2(𝑥, 𝑧)𝑢𝑧2 (𝑦) + 𝐹3(𝑥, 𝑧)𝑢𝑧3
+ ⋯ + 𝐹9(𝑥, 𝑧)𝑢𝑧9 (𝑦)

(20)

where the cross-section expansion functions are the classical Lagrange
polynomials in the parabolic case. One key feature of LE expansion
models is the local expansion of the specific zone of the cross-section by
pure unknowns of the model, guaranteeing local refinements. A more
detailed derivation of LE-class models and basis function adopted can
be found in [27]. The capabilities of higher-order TE and LE models to
deal with the component-wise modeling of mechanical and aeronauti-
cal structures, the nonlinear static analysis, and pre-stressed vibration
analysis are demonstrated in [28–30]. Finally, independently of the
structural expansion theory adopted, the generalized displacement field
along the beam axis (chosen as reference for the cross-section expan-
sion) is discretized following the classical finite element procedures,
thus

𝐮𝜏 (𝑦) = 𝑁𝑖(𝑦)𝐮𝜏𝑖 (21)

where the generalized nodal displacements along the beam axis are
now expanded adopting the 𝑁𝑖(𝑦) shape functions, obtaining the final
resulting discretized unknown of the problem 𝐮𝜏𝑖. In Eq. (21), the index
𝑖 stand for the summation along the finite nodes per element adopted
in the discretization of the beam axis, and 𝑁𝑛 stand for the order of
the expansion that, in the case of classical Lagrange’s shape function
involved in FEM (and also adopted in this present work), corresponds
with the total number of finite nodes. Finally, the 3-D displacement
field is expressed, in the CUF framework as

𝐮(𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑥, 𝑧)𝐮𝜏 (𝑦) = 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖(𝑦)𝐮𝜏𝑖 (22)

Eq. (22) is the most general expression of displacement field approx-
imated with a coupled expansion of cross-section structural theories
and finite element approximation, in a resulting final formulation
of refined higher-order 1D beam theories independent of the chosen
kinematic models of expansion theory adopted. In this work, both
TE-class models and LE-class models are adopted. In literature, the
adoption of these different models results in different approximation
theories of the displacement and stress field inside the structure. The
4

TE-class models are addressed as ESLMs (Equivalent Single Layer Mod-
els), in which the displacement field of the beam cross-section is
evaluated as an homogenized equivalent cross-section in which the
properties of the material are combined to build an equivalent but
unique description. From a finite element matrices point of view, the
properties of each layer in terms of stiffness matrices are summed
together in a resulting single layer in which the properties of the
entire cross-section are included. The LE-class models are addressed
as Layer-Wise (LW) or Component-Wise (CW) theories and they are
typically adopted in composite materials modeling [31,32]; they allow
an independent kinematic description of each cross-section combining
the mechanical properties of different cross-section sub-components
at their interfaces, by imposing displacement continuity in the case
of node superposition since the degrees of freedom are pure nodal
displacement components. The difference between these models and as-
sembling procedures are shown in Fig. 2. Typically, LW models lead to a
more accurate description of both displacement components and stress
fields since ESLMs show limitation in the computation of out-of-plane
normal and transverse shear. Commonly adopted beam models, based
on a polynomial expansion of the displacement field, are typically
inaccurate in the geometrically and material nonlinear analysis due to
a-priori assumption of displacement components that lead to incorrect
stresses distribution, such as transverse normal and shear stresses at
the beam edges. In the framework of CUF, as detailed and analyzed in
Carrera et al. [33], the adoption of higher-order models implemented
straightforwardly in a finite element scenario can deal efficiently with
this inconsistency, providing accurate stress distributions considering
enriched displacement field kinematics and avoiding the adoption of
ad-hoc technique such as shear correction factors or warping functions.

4. Governing equations in terms of Fundamental Nuclei

4.1. Internal, external and inertial forces vectors

In the present work, the derivation of the governing equation in
weak form is carried out by means of PVD. Supposing that the body
volume forces are negligible, PVD is written as:

𝛿𝑖𝑛𝑡 + 𝛿𝑖𝑛𝑒 = 𝛿𝑒𝑥𝑡 (23)

where 𝛿𝑖𝑛𝑡 is the internal strain energy done by virtual displacement,
𝑒𝑥𝑡 is the work of external loads done by virtual displacements and
𝑖𝑛𝑒 is the work done by inertia forces, defined as:

(a) 𝛿𝑖𝑛𝑡 = ∫𝛺
𝛿𝑬𝑇𝑺𝑑𝑉 (b) 𝛿𝑒𝑥𝑡 = ∫𝛺

𝛿𝒖𝑇 𝐩𝑑𝑉

(c) 𝛿𝑖𝑛𝑒 = ∫𝛺
𝛿𝒖𝑇 𝜌 𝒖̈𝑑𝑉

(24)

where 𝐒 is the PK2 stress tensor, 𝐄 is the Green–Lagrange strain tensor,
𝐩 is the vector of external loads, 𝐮̈ is the nodal accelerations vector
and all volume integrals are referred to the material (or reference)
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configuration. These energetic contributions, under the CUF formalism,
can be written in matrix form in terms of FNs (Fundamental Nuclei)
by imposing the discretization adopted for the displacement field of
the single refined finite element model. To define the matrix form of
these energetic contributions, the virtual variation of the displacement
field is introduced, adopting the same index notation and polynomial
expansion with different independent indices, adopting the 𝑗 index
or virtual measures along the axis nodes and 𝑠 index for the cross-
ection expansion of virtual displacement component, obtaining an
ndependent quantity with respect of real one, therefore:

𝐮(𝑥, 𝑦, 𝑧) = 𝐹𝑠(𝑥, 𝑧)𝛿𝐮𝑠(𝑦) = 𝐹𝑠(𝑥, 𝑧)𝑁𝑗 (𝑦)𝛿𝐮𝑠𝑗 𝑗 = 1, 2,… , 𝑁𝑛,

𝑠 = 1,… ,𝑀 (25)

Referring to the internal energy contribution, the full Green–Lagrange
strain tensor can be rewritten in terms of nodal displacement unknowns
and expansion functions with the same index notation. Introducing now
Voigt’s notation for the representation of physical symmetric quantities,
the strain tensor is written in vector form:

𝑬 = (𝐛𝑙 + 𝐛𝑛𝑙)𝐮 = (𝐛𝑙 + 𝐛𝑛𝑙) 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖(𝑦)𝐮𝜏𝑖 = (𝐁𝜏𝑖
𝑙 + 𝐁𝜏𝑖

𝑛𝑙)𝐮𝜏𝑖 (26)

Applying the formal matrices of derivatives operators to expansion
function of the displacement field, the expressions of algebraic matrices
𝐁𝜏𝑖
𝑙 and 𝐁𝜏𝑖

𝑛𝑙 are carried out, and their explicit forms can be found in
Pagani et al. [28]. Under these assumptions, the virtual variation of
the strain tensor is:

𝛿𝑬 = 𝛿((𝐁𝜏𝑖
𝑙 + 𝐁𝜏𝑖

𝑛𝑙)𝐮𝜏𝑖) = (𝐁𝑠𝑗
𝑙 + 2𝐁𝑠𝑗

𝑛𝑙 )𝛿𝐮𝑠𝑗 (27)

Substituting now Eq. (27) into Eq. (24)(a):

𝛿𝑖𝑛𝑡 = ∫𝛺
𝛿𝐮𝑇𝑠𝑗 (𝐁

𝑠𝑗
𝑙 +2𝐁𝑠𝑗

𝑛𝑙 )
𝑇𝑺𝑑𝑉 = 𝛿𝐮𝑇𝑠𝑗

[

∫𝛺
(𝐁𝑠𝑗

𝑙 +2𝐁𝑠𝑗
𝑛𝑙 )

𝑇𝑺 𝑑𝑉
]

= 𝛿𝐮𝑇𝑠𝑗𝐅
𝑠𝑗
𝑖𝑛𝑡

(28)

where 𝐅𝑠𝑗
𝑖𝑛𝑡 the 3 × 1 FN of the internal forces vector:

𝐅𝑠𝑗
𝑖𝑛𝑡 = ∫𝛺

(𝐁𝑠𝑗
𝑙 + 2𝐁𝑠𝑗

𝑛𝑙 )
𝑇𝑺𝑑𝑉 (29)

Referring to the external load contribution in the variational principle,
the FN of the external load vector is exploited by means of the same
derivation procedure described for the internal energy contribution. If
𝐩 is the conservative loads vector applied to the structure, one has:

𝛿𝑒𝑥𝑡 = ∫𝛺
𝛿𝒖𝑇 𝐩𝑑𝑉 = ∫𝛺

𝛿𝐮𝑇𝑠𝑗𝐹𝑠(𝑥, 𝑧)𝑁𝑗 (𝑦)𝐩 𝑑𝑉 = 𝛿𝐮𝑇𝑠𝑗𝐅
𝑠𝑗
𝑒𝑥𝑡 (30)

where 𝐅𝑠𝑗
𝑒𝑥𝑡 the 3 × 1 FN of the external forces vector:

𝐅𝑠𝑗
𝑒𝑥𝑡 = ∫𝛺

𝐹𝑠(𝑥, 𝑧)𝑁𝑗 (𝑦)𝐩 𝑑𝑉 (31)

Regarding the inertial contribution of the energetic balance principle,
one can write, following the same derivation procedure, the matrix
form of the inertial energy contribution:

𝛿𝑖𝑛𝑒 = ∫𝛺
𝛿𝒖𝑇 𝜌 𝒖̈𝑑𝑉 = ∫𝛺

𝛿𝐮𝑇𝑠𝑗𝐹𝑠(𝑥, 𝑧)𝑁𝑗 (𝑦)𝜌𝐹𝜏 (𝑥, 𝑧)𝑁𝑖(𝑦)𝐮̈𝜏𝑖𝑑𝑉

= 𝛿𝐮𝑇𝑠𝑗𝐌
𝜏𝑠𝑖𝑗 𝐮̈𝜏𝑖 (32)

where 𝐌𝜏𝑠𝑖𝑗 the 3 × 3 FN of the mass matrix:

𝐌𝜏𝑠𝑖𝑗 = ∫𝛺
𝐹𝑠(𝑥, 𝑧)𝑁𝑗 (𝑦) 𝜌 𝐈 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖(𝑦)𝑑𝑉 (33)

Adopting CUF, all these FNs result independent of the polynomial
expansion order; thus, Eqs. (29), (30), and (33) define unique expres-
sions of physical quantities for any arbitrarily polynomial expansion.
Assigning the kinematic models for the beam axis discretization and
the cross-section expansion basis functions, so by choosing the shape
functions 𝑁𝑖(𝑦), 𝑁𝑗 (𝑦), 𝐹𝜏 (𝑥, 𝑧) and 𝐹𝑠(𝑥, 𝑧) and exploiting the sum-
5

mation over the recursive indices expansion (namely the summation
over indices 𝑖 and 𝑗, 𝜏 and 𝑠), FN are obtained straightforwardly. More
details about the generic expansion of the FN can be found in [34].

Considering then Eqs. (28), (30) and (32), the variational principle
written in matrix form is:

𝛿𝐮𝑇𝑠𝑗𝐅
𝑠𝑗
𝑖𝑛𝑡 + 𝛿𝐮𝑇𝑠𝑗𝐌

𝜏𝑠𝑖𝑗 𝐮̈𝜏𝑖 = 𝛿𝐮𝑇𝑠𝑗𝐅
𝑠𝑗
𝑒𝑥𝑡 (34)

The summation over indices 𝜏, 𝑠, 𝑖 and 𝑗 gives the internal and ex-
ternal forces vectors and the mass matrix for the single element con-
sidered, obtained straightforwardly by following the CUF assembling
procedure [34]. Assembling the FE matrices along the discretization
considered, the final definition of PVD in matrix form states:

𝐅𝑖𝑛𝑡(𝐮) +𝐌𝐮̈ = 𝐅𝑒𝑥𝑡(𝐟 ) (35)

4.2. Linearization of governing equations

Governing equations for the undamped vibration problem in non-
trivial equilibrium states, based on the PVD, are carried out here. In
hyperelasticity, the presence of both geometrical and physical nonlin-
earities in the constitutive equation leads to strongly nonlinear govern-
ing equilibrium equations. In a finite element scenario, solutions are
typically obtained by numerical incremental-iterative schemes based
on linearization principles. Starting from Eq. (35), the unbalanced nodal
forces vector or residual nodal forces vector is defined as:

𝝓𝑟𝑒𝑠(𝐮, 𝐮̈, 𝐟 ) = 𝐅𝑖𝑛𝑡 +𝐌𝐮̈ − 𝐅𝑒𝑥𝑡 (36)

In this way, the generic equilibrium condition is equivalently expressed
by the condition 𝝓𝑟𝑒𝑠(𝐮, 𝐮̈, 𝐟 ) = 0. If (𝐮0, 𝐮̈0, 𝐟0) is the given equilibrium
state, one can linearize Eq. (36) considering a Taylor expansion of the
residual nodal forces vector truncated at first order for an increment
(𝛥𝐮, 𝛥𝐮̈, 𝛥𝐟 ), thus

𝝓𝑟𝑒𝑠(𝐮0 + 𝛥𝐮, 𝐮̈0 + 𝛥𝐮̈, 𝐟0 + 𝛥𝐟 ) = 𝝓𝑟𝑒𝑠(𝐮0, 𝐮̈0, 𝐟0) +
𝜕𝝓𝑟𝑒𝑠
𝜕𝐮

𝛥𝐮 +
𝜕𝝓𝑟𝑒𝑠
𝜕𝐮̈

𝛥𝐮̈

+
𝜕𝝓𝑟𝑒𝑠
𝜕𝐟

𝛥𝐟 =

= 𝝓𝑟𝑒𝑠(𝐮0, 𝐮̈0, 𝐟0) +
𝜕𝐅𝑖𝑛𝑡
𝜕𝐮

𝛥𝐮

+ 𝜕
𝜕𝐮̈

(

𝐌𝐮̈
)

𝛥𝐮̈ −
𝜕𝐅𝑒𝑥𝑡
𝜕𝐟

𝛥𝐟 =

= 𝝓𝑟𝑒𝑠(𝐮0, 𝐮̈0, 𝐟0) +𝐊𝑇 𝛥𝐮 +𝐌𝛥𝐮̈

− 𝐈𝛥𝝀𝐟 𝑟𝑖𝑓 (37)

In Eq. (37), the finite variation of the internal forces vector is ex-
pressed by the definition of tangent stiffness matrix, the hypothesis of
the constant mass matrix is exploited in the definition of the linearized
contribution of inertia load, and the hypothesis of conservative loads is
considered writing then the finite variation of external forces vector as
the variation of the load factor. The three terms in this final equation
are related to the finite variation of internal, external, and inertial
work, respectively. The linearization of the internal work is carried
out considering a generic finite increment of the nodal displacement
vector and a first-order truncated Taylor expansion of the internal
forces contribution. The FN of the tangent stiffness matrix, under CUF
formalism, can be defined as follows:

𝛥(𝛿𝑖𝑛𝑡) = 𝛥
(

∫𝛺
𝛿𝑬𝑇𝑺𝑑𝑉

)

= ∫𝛺
𝛿𝐄𝑇 𝛥𝐒𝑑𝑉 + ∫𝛺

𝛥(𝛿𝐄𝑇 )𝐒𝑑𝑉 =

= 𝛿𝐮𝑇𝑠𝑗𝐊
𝜏𝑠𝑖𝑗
𝑙𝑙 𝛥𝐮𝜏𝑖 + 𝛿𝐮𝑇𝑠𝑗𝐊

𝜏𝑠𝑖𝑗
𝑇1

𝛥𝐮𝜏𝑖 + 𝛿𝐮𝑇𝑠𝑗𝐊
𝜏𝑠𝑖𝑗
𝜎 𝛥𝐮𝜏𝑖

= 𝛿𝐮𝑇𝑠𝑗𝐊
𝜏𝑠𝑖𝑗
𝑇 𝛥𝐮𝜏𝑖 (38)

where 𝐊𝜏𝑠𝑖𝑗
𝑙𝑙 is the FN of the linear stiffness matrix, 𝐊𝜏𝑠𝑖𝑗

𝑇1
is the FN of the

nonlinear contribution of the tangent stiffness matrix, and 𝐊𝜏𝑠𝑖𝑗
𝜎 is the

FN of the geometrical stiffness matrix. Considering the summation over
the indices and CUF assembling procedure as previously addressed, the
second term of Eq. (37) is obtained. The complete derivation of the
analytic expression of the tangent stiffness matrix FN for hyperelastic
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material can be found in [20,22]. The linearized form of the inertial
contribution of the variational principle is exploited again through the
hypothesis of the constant mass matrix considering the same derivation
procedure, by a Taylor expansion truncated at the first order around a
known equilibrium condition:

𝛥(𝛿𝑖𝑛𝑒) = 𝛥(𝛿𝐮𝑇𝑠𝑗𝐌
𝜏𝑠𝑖𝑗 𝐮̈𝜏𝑖) = 𝛿𝐮𝑇𝑠𝑗𝛥𝐌

𝜏𝑠𝑖𝑗 𝐮̈𝜏𝑖 + 𝛿𝐮𝑇𝑠𝑗𝐌
𝜏𝑠𝑖𝑗𝛥𝐮̈𝜏𝑖

= 𝛿𝐮𝑇𝑠𝑗𝐌
𝜏𝑠𝑖𝑗𝛥𝐮̈𝜏𝑖 (39)

Given the definitions of linearized energetic contributions, at each
generic non-trivial equilibrium state, the condition 𝝓𝑟𝑒𝑠(𝐮 + 𝛥𝐮, 𝐮̈0 +
𝛥𝐮̈, 𝐟0 + 𝛥𝐟 ) = 0 is fulfilled. The nonlinear governing equation for the
displacements, accelerations, and nodal forces increments is rewritten
as follows:

𝐊𝑇 𝛥𝐮 +𝐌𝛥𝐮̈ = −𝝓𝑟𝑒𝑠(𝐮0, 𝐮̈0, 𝐟0) + 𝐈𝛥𝝀𝐟 𝑟𝑖𝑓 (40)

For a quasi-static nonlinear analysis, for which the inertial con-
tribution is negligible, coupling Eq. (40) with a displacement–load
increment constraint since 𝛥𝜆 is an additional variable of the problem,
the numerical iterative scheme is represented by this last system of
equations
{

𝐊𝑇 𝛥𝐮 = −𝝓𝑟𝑒𝑠(𝐮0, 𝐮̈0, 𝐟0) + 𝛥𝝀𝐟 𝑟𝑖𝑓

𝑐(𝛥𝐮, 𝛥𝐟 ) = 0
(41)

This last equation is solved iteratively, updating the unbalanced nodal
forces vector considering the provisional iteration step solution, un-
til the nodal displacement and forces increments satisfy condition
𝝓𝑟𝑒𝑠(𝐮, 𝐮̈, 𝐟 ) = 0, up to a certain convergence tolerance. The constraint
equation characterizes the numerical scheme adopted, one can imple-
ment displacement control, load control, and path-following methods
by adopting a different constraint. In the present work, the path-
following method proposed by Crisfield [35] is employed, and the
implementation of such arc-length iterative solver in a CUF-based
finite element scenario is described in detail in [28]. In the context of
arc-length-based numerical solvers for nonlinear algebraic systems of
equations, the additional equation governing the nodal displacement
increment within the path-following approach corresponds to a multi-
dimensional constraint represented by the equation of a sphere. This
sphere is centered at 𝐮0 with a radius equal to 𝐿0, defined as follows:

(𝐿0)2 = (𝛥𝑢(𝑘)) ⋅ (𝛥𝑢(𝑘)) (42)

Here, the subscript (𝑘) denotes the generic 𝑘th internal iteration on
the considered load step. The above expression establishes a constraint
relation for the potential generic increment of the non-trivial solution,
simultaneously restricting the possible increment 𝛥𝜆. Eq. (42) serves
as the foundational equation for deriving the corresponding constraint
equation for the load factor increment. For a more comprehensive
examination of path-following methods and arc-length type solvers, the
reader can refer to [36].

For an undamped vibration analysis instead, since the structure is
already considered at equilibrium, all the unbalanced nodal vectors
contributions of Eq. (37) are null, and no load variations are considered
on the structure thus also 𝛥𝜆 = 0. Under these conditions, the governing
equation for the free-vibration problem is:

𝐊𝑇 𝛥𝐮 +𝐌𝛥𝐮̈ = 0 (43)

Imposing a generic harmonic behavior of the nodal displacement incre-
ment of the form 𝛥𝐮 = Φ𝑒𝑖𝜔𝑡, the well-known linear eigenvalue problem
of linearized vibrations is obtained:

𝐊𝑇Φ𝑒𝑖𝜔𝑡 − 𝜔2𝐌Φ𝑒𝑖𝜔𝑡 = 0 (44)

(𝐊𝑇 − 𝜔2𝐌)Φ𝑒𝑖𝜔𝑡 = 0 (45)

2

6

(𝐊𝑇 − 𝜔 𝐌)Φ = 0 (46)
Fig. 3. Linearized vibration problem around equilibrium state: graphical interpretation.

Eq. (46) corresponds to the classical eigenvalue problem in the small-
amplitude free vibration problem around the trivial equilibrium state,
solved numerically employing already available libraries and packages
based on the Arnoldi algorithm for eigenvalue computation. After the
computation of the tangent stiffness matrix in the chosen non-trivial
equilibrium state, the linear eigenvalues problem is then uniquely
defined and thereafter solved, obtaining the natural frequencies and
modal shapes of vibration around the equilibrium state (different from
the trivial one) since the eigenvalues (or modal shapes) coming from
the solution of Eq. (46) are the harmonic increments of displace-
ment variables from the deformed state. Fig. 3 shows the geometrical
representation of the algorithm presented in this work.

5. Numerical results

The accuracy of proposed higher-order 1D CUF-based finite ele-
ments for hyperelasticity is now established in this section, analyzing
different case studies of undamped vibration problems in trivial and
non-trivial equilibrium states of beam structures. In this work, the
modal behavior of isotropic compressible and nearly-incompressible
soft materials is investigated, and the actual results are compared with
consistent solutions computed using commercial software. The effect
of large strains on the undamped natural frequencies of hyperelastic
structures is investigated, and also the influence of the mathematical
model adopted in the finite element discretization on mode detection
is discussed.

5.1. Free-vibration of a neo-Hookean thick and thin beam

The first study case is the free vibration analysis of a rectangular
cross-section compressible beam. Small amplitude vibrations around
the undeformed configuration are now investigated for different geo-
metrical configurations and material conditions. Natural frequencies of
the double-clamped square cross-section beam of height ℎ = 10 mm
and thickness 𝑡 = 6 mm are investigated in two different geometrical
conditions: a thick beam for which the slender ratio 𝐿∕ℎ = 10 and a thin
beam for which instead 𝐿∕ℎ = 100. Geometry and boundary conditions
are depicted in Fig. 4.

Material is modeled with the decoupled Neo-Hookean isochoric
strain energy function and the classical quadratic model for the vol-
umetric component:

𝛹 = 𝛹𝑣𝑜𝑙(𝐽 ) + 𝛹̄ (𝐼1) =
𝑘
2
(𝐽 − 1)2 +

𝜇
2
(𝐼1 − 3) (47)

where 𝜇 is the infinitesimal shear modulus, for all the simulation set
equal to 50 MPa, 𝑘 is the bulk modulus, set to 𝑘 = 2∕3𝜇, in a resulting
Poisson’s ratio 𝜈 = (3𝑘−2𝜇)∕(2(3𝑘+2𝜇)) = 0. In all further investigations
of this case study, the material density of the hyperelastic beam is set
to a typical value of silicone rubber, thus 𝜌 = 1340 kg∕m3.
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Table 1
Compressible beam, case L/h = 10: convergence analysis on natural frequencies [Hz]. In brackets, the percentage difference between the proposed models and the 3D elasticity
solution is given.

LE-2 (parabolic model) LE-3 (cubic model) 3D ABQ

Mode 5B4 10B4 15B4 20B4 5B4 10B4 15B4 20B4 C8D20RH

1 165.776(0.297%) 165.748(0.003%) 165.747(0.280%) 165.747(0.280%) 165.327(0.025%) 165.290(0.003%) 165.287(0.001%) 165.285(0.000%) 165.285
2 268.728(0.731%) 268.707(0.723%) 268.707(0.723%) 268.707(0.723%) 266.849(0.026%) 266.796(0.007%) 266.789(0.004%) 266.785(0.003%) 266.778
3 447.768(0.713%) 447.199(0.585%) 447.188(0.583%) 447.187(0.582%) 445.269(0.151%) 444.642(0.010%) 444.612(0.003%) 444.601(0.001%) 444.597
4 702.324(1.457%) 701.908(1.397%) 701.900(1.396%) 701.900(1.395%) 693.016(0.112%) 692.372(0.019%) 692.323(0.012%) 692.287(0.007%) 692.240
5 856.881(7.635%) 860.799(8.128%) 860.704(8.116%) 852.887(7.134%) 799.437(0.420%) 797.447(0.170%) 797.092(0.125%) 797.612(0.190%) 796.096
6 861.709(1.974%) 852.980(0.941%) 852.894(0.931%) 860.686(1.853%) 849.345(0.511%) 845.238(0.025%) 845.089(0.008%) 845.043(0.002%) 845.025
7 1294.772(2.279%) 1291.848(2.048%) 1291.793(2.043%) 1291.788(2.043%) 1270.174(0.336%) 1266.414(0.039%) 1266.226(0.024%) 1266.079(0.012%) 1265.924
8 1365.896(1.404%) 1364.976(1.336%) 1365.896(1.404%) 1365.896(1.404%) 1360.741(1.022%) 1347.720(0.055%) 1347.175(0.014%) 1347.035(0.004%) 1346.981
9 1376.907(0.806%) 1365.896(0.000%) 1364.589(−0.096%) 1364.555(−0.098%) 1365.896(0.000%) 1365.896(0.000%) 1365.896(0.000%) 1365.896(0.000%) 1365.896
10 1724.067(8.242%) 1722.166(8.123%) 1721.977(8.111%) 1721.941(8.109%) 1599.650(0.431%) 1595.535(0.173%) 1594.822(0.128%) 1595.871(0.194%) 1592.787

DOFs 432 837 1242 1647 768 1488 2208 2928 13086
Table 2
Compressible beam case L/h = 10: effect of the expansion theory on natural frequencies [Hz]. The percentage difference between proposed results and the 3D elasticity solution
is reported in brackets.

1D CUF, Expansion theory 3D ABQ

Mode TE-1 TE-2 TE-3 TE-4 LE-2 LE-3 C8D20RH

1 165.747(0.280%) 165.747(0.280%) 165.286(0.000%) 165.285(0.000%) 165.747(0.280%) 165.285(0.000%) 165.285
2 268.707(0.723%) 268.707(0.723%) 266.788(0.003%) 266.785(0.003%) 268.707(0.723%) 266.785(0.003%) 266.778
3 447.187(0.582%) 447.187(0.582%) 444.605(0.002%) 444.601(0.001%) 447.187(0.582%) 444.601(0.001%) 444.597
4 701.900(1.395%) 701.900(1.395%) 692.311(0.010%) 692.287(0.007%) 701.900(1.395%) 692.287(0.007%) 692.240
5 852.887(7.134%) 852.887(7.134%) 860.435(8.082%) 797.612(0.190%) 852.887(7.134%) 797.612(0.190%) 796.096
6 965.834(14.297%) 860.686(1.853%) 845.058(0.004%) 845.043(0.002%) 860.686(1.853%) 845.043(0.002%) 845.025
7 1291.788(2.043%) 1291.788(2.043%) 1266.185(0.021%) 1266.079(0.012%) 1291.788(2.043%) 1266.079(0.012%) 1265.924
8 1365.896(1.404%) 1364.555(1.305%) 1347.083(0.008%) 1347.035(0.004%) 1365.896(1.404%) 1347.035(0.004%) 1346.981
9 1364.555(−0.098%) 1365.896(0.000%) 1365.896(0.000%) 1365.896(0.000%) 1364.555(−0.098%) 1365.896(0.000%) 1365.896
10 1931.669(21.276%) 1721.941(8.109%) 1720.951(8.046%) 1595.871(0.194%) 1721.941(8.109%) 1595.871(0.194%) 1592.787

DOFs 549 1098 1830 2745 1242 1647 13086
Table 3
Compressible beam, case L/h = 100: convergence analysis on natural frequencies [Hz]. In brackets, the percentage difference between the proposed models and the 3D elasticity
solution is given.

LE-2 (parabolic model) LE-3 (cubic model) 3D ABQ

Mode 5B4 10B4 15B4 20B4 5B4 10B4 15B4 20B4 C8D20RH

1 1.685(0.057%) 1.685(0.000%) 1.685(0.004%) 1.685(0.003%) 1.685(0.054%) 1.685(0.003%) 1.685(0.001%) 1.685(0.000%) 1.685
2 2.808(0.060%) 2.807(0.011%) 2.807(0.009%) 2.807(0.008%) 2.808(0.052%) 2.807(0.003%) 2.807(0.001%) 2.807(0.000%) 2.807
3 4.661(0.397%) 4.644(0.031%) 4.643(0.011%) 4.643(0.008%) 4.660(0.391%) 4.643(0.024%) 4.642(0.004%) 4.642(0.001%) 4.642
4 7.761(0.395%) 7.734(0.039%) 7.732(0.021%) 7.732(0.019%) 7.760(0.377%) 7.732(0.021%) 7.731(0.004%) 7.731(0.001%) 7.731
5 9.222(1.367%) 9.107(0.102%) 9.100(0.028%) 9.099(0.016%) 9.220(1.354%) 9.106(0.091%) 9.099(0.017%) 9.098(0.005%) 9.097
6 15.343(2.074%) 15.071(0.261%) 15.041(0.062%) 15.145(0.758%) 15.354(2.146%) 15.068(0.243%) 15.038(0.045%) 15.141(0.727%) 15.031
7 15.356(1.429%) 15.157(0.111%) 15.147(0.044%) 15.036(0.689%) 15.338(1.305%) 15.152(0.080%) 15.142(0.013%) 15.033(0.706%) 15.140
8 25.528(13.754%) 22.566(0.553%) 22.469(0.124%) 22.453(0.052%) 25.517(13.703%) 22.560(0.526%) 22.464(0.099%) 22.448(0.028%) 22.442
9 25.703(2.829%) 25.061(0.262%) 25.016(0.082%) 25.009(0.056%) 25.687(2.765%) 25.049(0.213%) 25.004(0.035%) 24.998(0.009%) 24.996
10 38.179(21.887%) 31.644(1.023%) 31.394(0.224%) 31.351(0.087%) 38.152(21.801%) 31.632(0.984%) 31.383(0.190%) 31.341(0.055%) 31.324

DOFs 432 837 1242 1647 768 1488 2208 2928 9558
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ig. 4. Double clamped Neo-Hookean beam: geometrical features and boundary
onditions.

As a preliminary investigation, convergence analysis is carried out
onsidering different 1D CUF-based beam models for the thick and
hin beam case. For each kinematic discretization employed for the
eam axis, different cross-section expansion polynomials are consid-
red. From now on, these definitions will be referred to bilinear,
7

t

uadratic, and cubic beam axis models as B2, B3, and B4; cross-section
pproximation by a single bilinear, quadratic, and cubic model will be
ddressed as LE-2 (four nodes), LE-3 (nine nodes) and LE-4 (sixteen
odes). The geometrical representation of some 1D CUF beam models
mployed in the present analysis is reported in Fig. 5. Actual numerical
esults obtained adopting 1D CUF elements are compared with the
umerical results obtained by the ABAQUS commercial software. Refer-
nce results for the thick beam were obtained adopting 750 C3D20RH
exahedral elements (20-node quadratic brick coupled with hybrid
ormulation, linear pressure interpolation, and reduced integration);
nstead, 334 C3D20RH were employed in the computation of reference
olution for the thin beam. The total degrees of freedom (DOFs) for each
athematical model adopted in 1D-CUF discretization and 3D ABAQUS
odels will be compared.

Tables 1 and 2 show the convergence analysis carried out in the
ase of a thick beam; both convergences achieved incrementing the
umber of the finite element along the axis and effects of the expansion
heory are investigated. The same investigation is carried out in the
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c

Fig. 5. Double clamped neo-Hookean beam: examples of 1D beam 1D CUF elements adopted.
Table 4
Compressible beam, case L/h = 100: effect of the expansion theory on natural frequencies [Hz]. The percentage difference between proposed results and the 3D elasticity solution
is reported in brackets.

1D CUF, Expansion theory 3D ABQ

Mode TE-1 TE-2 TE-3 TE-4 LE-2 LE-3 C8D20RH

1 1.685(0.003%) 1.685(0.003%) 1.685(0.000%) 1.685(0.000%) 1.685(0.000%) 1.685(0.000%) 1.685
2 2.807(0.008%) 2.807(0.008%) 2.807(0.000%) 2.807(0.000%) 2.807(0.000%) 2.807(0.000%) 2.807
3 4.643(0.008%) 4.643(0.008%) 4.642(0.001%) 4.642(0.001%) 4.643(0.008%) 4.642(0.001%) 4.642
4 7.732(0.019%) 7.732(0.019%) 7.731(0.001%) 7.731(0.001%) 7.732(0.019%) 7.731(0.001%) 7.731
5 9.099(0.016%) 9.099(0.016%) 9.098(0.005%) 9.098(0.005%) 9.099(0.016%) 9.098(0.005%) 9.097
6 15.036(0.030%) 15.036(0.030%) 15.141(0.727%) 15.033(0.013%) 15.145(0.758%) 15.141(0.727%) 15.031
7 15.145(0.034%) 15.145(0.034%) 15.033(−0.706%) 15.141(0.004%) 15.036(−0.689%) 15.033(−0.706%) 15.140
8 22.453(0.052%) 22.453(0.052%) 22.448(0.028%) 22.448(0.028%) 22.453(0.052%) 22.448(0.028%) 22.442
9 25.009(0.056%) 25.009(0.056%) 24.998(0.009%) 24.998(0.009%) 25.009(0.056%) 24.998(0.009%) 24.996
10 31.351(0.087%) 31.351(0.087%) 31.341(0.055%) 31.341(0.055%) 31.351(0.087%) 31.341(0.055%) 31.324

DOFs 549 1098 1830 2745 1242 1647 9558
Table 5
Compressible beam, case L/h = 100 and L/h = 10: comparison between natural frequencies obtained adopting the linear elastic constitutive law
and hyperelastic constitutive law, frequencies in [Hz].

L/h = 100 L/h = 10

1D CUF 3D ABQ 1D CUF 1D CUF 3D ABQ 1D CUF
Mode Linear elastic Linear elastic Hyperelastic Linear elastic Linear elastic Hyperelastic

1 1.685 1.685 1.685 165.285 165.285 165.285
2 2.807 2.807 2.807 266.785 266.778 266.785
3 4.642 4.642 4.642 444.601 444.597 444.601
4 7.731 7.731 7.731 692.287 692.240 692.287
5 9.098 9.097 9.098 797.612 796.096 797.612
6 15.141 15.031 15.141 845.043 845.025 845.043
7 15.033 15.140 15.033 1266.078 1265.924 1266.079
8 22.448 22.442 22.448 1347.035 1346.981 1347.035
9 24.998 24.996 24.998 1365.896 1365.896 1365.896

10 31.341 31.324 31.341 1595.871 1592.787 1595.871
case of the thin beam with a slender ratio 𝐿∕ℎ = 100, and results are
listed in Tables 3 and 4. For coarser discretizations, adopting a few
finite elements along the beam axis, evident discrepancies concerning
reference results are observed, and not all the investigated models are
able to capture the global frequency behavior of the beam in both
geometrical configurations considered. Therefore, from now on, 20 B4
elements along the axis of the beam will be employed in further analy-
sis. Clearly, for very elongated structures, all Taylor models can capture
correctly all the frequencies while also adopting lower order models,
results are in perfect agreement with the reference one. Still, this result
is not achieved anymore in the case of the thick beam, for which higher
order models (TE-3, TE-4, and LE-3) are necessary to compute accurate
results. Thus, from now on, only LE-4 cubic expansion models will be
adopted for further analysis.

For verification purposes, since the undamped vibration problem is
analyzed around the trivial equilibrium state, these last analysis are
compared with the classical linear eigenvalue problem for a linearly
elastic material around the undeformed state. Adopting the same 1D
CUF model made of 20B4-LE-3 and 3D ABAQUS models described
before, the natural frequencies of the equivalent linear elastic materials
with Poisson’s ratio 𝜈 = 0 and Young’s modulus 𝐸 = 2𝜇(1 + 𝜈) = 2𝜇 are
investigated in both 𝐿∕ℎ = 100 and 𝐿∕ℎ = 10 configurations. Table 5
ompares the natural frequencies of the linear elastic beams with the
8

previously obtained results starting from a hyperelastic constitutive
law. A perfect match is observed.

5.2. Cantilever beam subjected to bending and shear

The second case study is the modal analysis of a cantilever square
cross-section beam in non-trivial equilibrium conditions. The beam is
subjected to two vertical concentrated loads at the tip free-end. The
modal analysis is performed around different deformed configurations
for increasing values of external load. The equilibrium path is computed
first by performing a static nonlinear analysis, considering the beam in
different material compressibility conditions. Furthermore, in each non-
trivial equilibrium state, the influence of the compressibility on natural
frequencies and modal shapes is investigated with a modal analysis in
the chosen interested point. Geometrical features, boundary conditions,
and discretization model adopted are shown in Fig. 6.

Material is modeled again with the same Neo-Hookean strain energy
density function Eq. (47) already defined in the previous case. Material
parameters 𝑘 and 𝜇 are chosen in such a way the resulting Poisson’s
ratio tends to the limit value of 𝜈 = 0.5, starting from a compressible
material condition with 𝜈 = 0.125. Material constants considered in
each case are reported in Table 6. The material density of the hyper-
elastic beam is the same as the previous case study, thus again set to
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Fig. 6. Cantilever Neo-Hookean beam: geometry, boundary conditions and discretization.
Fig. 7. Cantilever square cross-section beam: equilibrium paths for all material
conditions.

Table 6
Cantilever Neo-Hookean beam: material properties for different compressibility
conditions.

E [MPa] 𝐷1 = 2∕𝑘 [MPa−1] 𝜈 𝜇 [MPa]

Compressible 100 4.5 ⋅ 10−2 0.125 44.444
Nearly-incompressible, case 1 100 1.2 ⋅ 10−3 0.49 33.557
Nearly-incompressible, case 2 100 1.2 ⋅ 10−4 0.499 33.355
Nearly-incompressible, case 3 100 1.2 ⋅ 10−5 0.4999 33.355

𝜌 = 1340 kg∕m3. Reference results are obtained by ABAQUS commercial
finite element code, adopting the same discretization adopted for the
previous study case described in Section 5.1, instead actual results
obtained by the presented implementation of high order CUF models
are obtained considering now 20B4 - 2LE-3 1D CUF elements for con-
vergence reason and volumetric locking prevention. Fig. 7 illustrates
the equilibrium path of the cantilever beam for each material condition,
analyzing the modulus of vertical tip displacement versus the modulus
of the single load value applied, and comparing the nonlinear path of
each case considered.

In particular, different values of vertical displacement of the tip-
free end for different load values applied are listed in Table 7, where
the actual 1D CUF equilibrium path is compared to the 3D ABAQUS
solution. Minor differences are observed at extremely deformed con-
figurations due to local effects. Furthermore, the modal analysis in
the same non-trivial state is conducted for all different compressibility
conditions considered. In the first investigations, dependence on load
conditions and deformed configuration is analyzed. The undamped
vibration problem is solved around different non-trivial equilibrium
states, obtaining the associated natural frequencies for each material
condition under analysis.

Table 8 lists the first five modes in each material condition in two
different deformed configurations. Significant differences are observed
9

Table 7
Cantilever square cross-section beam: vertical tip displacement for different load values
and material conditions [mm]. Comparison between 3D ABAQUS model results and 1D
CUF results.

𝐹 = 5 N 𝐹 = 10 N 𝐹 = 20 N

1D CUF 3D ABQ 1D CUF 3D ABQ 1D CUF 3D ABQ

𝜈 = 0.125 −37.5140 −37.8263 −59.7240 −60.2539 −78.1179 −78.9955
𝜈 = 0.49 −36.6995 −37.3115 −58.7537 −59.6533 −77.1931 −78.4105
𝜈 = 0.499 −36.6035 −37.1045 −58.6403 −59.4295 −77.1168 −78.2279
𝜈 = 0.4999 −36.6480 −37.0770 −58.8465 −59.3996 −77.1154 −78.2030

Table 8
Cantilever square cross-section beam: natural frequencies in non-trivial equilibrium
states for different material conditions [Hz].

𝐹 = 10 N

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

𝜈 = 0.125 51.983 55.394 248.576 272.316 403.699
𝜈 = 0.49 52.886 56.114 250.416 273.799 348.649
𝜈 = 0.499 53.459 56.876 250.209 274.392 345.918
𝜈 = 0.4999 52.787 55.998 250.693 273.831 344.717

𝐹 = 30 N

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

𝜈 = 0.125 71.724 79.072 253.693 292.286 416.499
𝜈 = 0.49 72.943 79.975 254.757 287.430 367.265
𝜈 = 0.499 74.124 81.209 256.079 289.079 369.714
𝜈 = 0.4999 73.107 80.108 255.150 287.964 367.316

at higher frequency modes; the material conditions do not affect lower
frequency modes. Fig. 8 shows the load–frequency plots of the first
twelve natural frequencies. At low frequencies, even for highly de-
formed configurations, compressibility does not provide any significant
effects; natural frequencies vary following almost the same behavior.
Higher modes show variations with respect to the compressible cases
in terms of natural frequency value, but in the nearly-incompressible
regime, they show a similar global behavior. In some cases, natural
frequencies are unaffected by the material compressibility conditions.

Furthermore, the free vibration problem is solved in the three
different deformed configurations, specifically for load values of 𝐹 =
5 N, 𝐹 = 15 N, and 𝐹 = 25 N for the case 𝜈 = 0.125 and 𝜈 = 0.49. Given
then the natural frequencies and the complete modal behavior of the
structures in non-trivial equilibrium states, further investigations are
provided in terms of Modal Assurance Criterion (MAC) by comparing
the sets of eigenvectors and investigating the consistency and corre-
lation between mode shapes to evidence differences between normal
modes of vibrations of structures in different equilibrium states or
material conditions. In general, given two sets 𝐴 and 𝐵 of eigenvectors,
the MAC matrix comparing these two sets is defined as follows

𝑀𝐴𝐶𝑖𝑗 =
|{𝛷𝐴𝑖

}𝑇 {𝛷𝐵𝑗
}|2

𝑇 𝑇 (48)

{𝛷𝐴𝑖

} {𝛷𝐴𝑖
}{𝛷𝐵𝑗

} {𝛷𝐵𝑗
}
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Fig. 8. Cantilever beam in non-linear equilibrium states: natural frequencies for increasing value of the free-end vertical load.
.

Fig. 9 shows the MAC matrix, in the case of 𝜈 = 0.49, between
mode shapes in different non-trivial equilibrium states and the unde-
formed configuration. The same correlation analysis is performed for
the compressible material condition, and resulting MAC matrices are
shown in Fig. 10. Along the equilibrium path, mode shapes are already
interacting at low load values, and no additional local effects are
evidenced for extremely deformed configurations. Finally, in different
non-trivial equilibrium states, the correlation between modal shapes
of the compressible and nearly-incompressible case of 𝜈 = 0.49 is
investigated, and resulting MAC matrices are shown in Fig. 11.

5.3. Square cross-section beam laying on a plane

The third study case is the modal analysis of a beam laying on
a horizontal plane in correspondence of its bottom surface. Small
amplitude vibrations are investigated in the case of a thick beam with
a side ℎ = 10 mm and slender ratio 𝐿∕ℎ = 10. Geometry, boundary
conditions, and discretization model adopted are shown in Fig. 12.
First, performing a free vibration analysis around the undeformed
configuration, the influence of compressibility condition on the modal
shapes and frequencies is investigated, then the modal behavior is
analyzed when the beam is loaded with a uniform axial pressure,
10
Table 9
Laying Neo-Hookean beam: material properties for different compressibility conditions

k [MPa] 𝝁 [MPa] E [MPa] 𝝂

Compressible 2.222222222 2.222222222 5 0.125
Nearly-incompressible 8333333.333 1.666666778 5 0.4999999

analyzing how natural frequencies are influenced by the non-linear
equilibrium conditions.

Material is modeled again with the Neo-Hookean strain energy
function Eq. (47). The beam is considered again in both compressible
and nearly-incompressible material conditions by fixing the Young’s
modulus of the structures and varying the Poisson’s ratio, the resulting
material properties adopted in this case study are listed in Table 9.
The material density of the hyperelastic beam is now set to 𝜌 =
1150 kg∕m3.

Reference results are obtained by ABAQUS commercial finite el-
ement code, with the same discretization adopted for the previous
study case described in Section 5.2. Due to geometrical boundary
conditions, three rigid motions are possible (translation along 𝑥 and
𝑦 axis, rotation about 𝑧 axis). Thus the first three natural frequencies
are null. Fig. 13(a) shows the value of the first 30 natural frequencies
of the compressible and nearly-incompressible beam, comparing the
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Fig. 9. Cantilever beam in non-linear equilibrium states: MAC matrix for the nearly-incompressible beam.

Fig. 10. Cantilever beam in non-linear equilibrium states: MAC analysis for the compressible beam.

Fig. 11. Cantilever beam in non-linear equilibrium states: MAC between compressible and nearly-incompressible modal behavior in a specific nontrivial equilibrium state considered.

Fig. 12. Laying Neo-Hookean beam: geometry, boundary conditions and discretization.
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Fig. 13. Laying Neo-Hookean beam: natural frequencies in the compressible and nearly-incompressible material regime and MAC matrix comparing the two sets of solutions.
Fig. 14. Laying Neo-Hookean beam: comparison between volumetric modes in different material regimes.
actual numerical results with ABAQUS reference solution. The results
are in perfect agreement; minor differences are observed in the high-
frequency band. This last consideration is confirmed by the MAC matrix
shown in Fig. 13(b), in which mode shapes of the compressible beam
are compared with one of the nearly-incompressible beams. Interac-
tions and energy transfer between modes are observed starting from
the 13th mode, so over 1000 Hz. Special considerations are addressed
about the volumetric modes of vibrations depicted in Fig. 14, which
are associated with an axially moving wave along the beam axis. In
the nearly-incompressible material regime, differently to the case of
compressible material, the deformation gradient satisfies the incom-
pressibility condition given by 𝐽 = det 𝐅 = 1; therefore, the components
of the deformation gradient are dependent from each other. Due to
incompressibility, the cross-section of the peak of amplitude mush
shrinks and dilates periodically, differently concerning the compress-
ible case in which the components of the deformation gradient (then
the displacement derivatives and so the strain tensor) are free and
independent from each other.
12
As further analysis, the nearly-incompressible beam is analyzed,
investigating the influence of prestressed equilibrium states on the
modal behavior of the structure. In this particular examination, a
uniform traction pressure is applied at the free end of the beam.
The geometrical features, displacement boundary conditions, and load
applied are depicted in Fig. 15(a). The beam discretization employed
in the current analysis follows the mathematical model employed in
the previous free vibration analysis. Therefore the 20 B4 - 2 LE-3
discretization is adopted. First, a nonlinear static analysis is conducted
to describe the equilibrium path of the beam and the non-trivial equi-
librium states around which the undamped vibration problem is then
solved. Fig. 15(b) shows the equilibrium path of the beam, plotting the
axial stretch 𝜆𝑦 versus the modulus of tip axial pressure applied and the
distribution of 𝑆𝑦𝑦 stress component along the equilibrium path. From
an analytic point of view, it can be shown that the axial component of
PK2 stress tensor is a monotone increasing function that tends to the
value of infinitesimal shear modulus 𝜇 when 𝜆𝑦 tends to infinity, and
this behavior is also obtained numerically.
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Fig. 15. Axially loaded Neo-Hookean beam: load conditions and equilibrium paths.
Fig. 16. Axially loaded Neo-Hookean beam: natural frequencies versus traction pressure applied.
In each representative non-trivial configuration marked in the equi-
librium path, the free vibration problem is solved, investigating the
influence of the principal stretch 𝜆𝑦 on the natural frequencies and
mode shapes of the beam. Fig. 16 shows the stretch–frequency curve
depicting the first fifteen modes function of the principal stretch ratio,
instead Fig. 17 shows the same comparison in the small/moderate
strain regime. Fig. 18 shows the first six normal modes of vibration for
a pre-stretched condition considering 𝜆𝑦 = 2. A monotone-decreasing
behavior is generally observed for the lower frequency modes. Instead,
higher modes increase due to growth in axial internal stresses (influ-
encing the resulting structure stiffness) and then decreasing monotone
behavior in the high strains regime since the internal stresses are
asymptotically tending to a constant value. In conclusion, due to the
nonlinear constitutive behavior of the material, natural frequencies
are expected to decrease since, during the load cycle, an asymptotic
behavior of the internal stress 𝑆𝑦𝑦 is observed, resulting in a decreasing
beam stiffness.

5.4. Thin-walled box beam

The last study case is the modal analysis of a thin-walled box beam.
Natural frequencies and normal modes of vibrations are investigated
in the case of a beam of total length 𝐿 = 50 mm, cross section sides
𝑎 = 4 mm and 𝑏 = 3 mm, with an internal thickness of 𝑡 = 0.2 mm
and clamped at both free ends. Geometry, boundary conditions, and
mathematical models adopted in the discretization of the structure are
13
Table 10
Thin-walled box beam: material properties.

k [MPa] 𝝁 [MPa] E [MPa] 𝝂

Compressible 0.416666 0.19230 0.5 0.3
Nearly-incompressible 16.66666 0.16722 0.5 0.495

depicted in Fig. 19. The dependence on the compressibility condition of
the modal behavior of the structures is investigated again, considering a
compressible and nearly-incompressible material regime with the same
Young’s modulus. Material properties of both conditions are reported
in Table 10.

Material is modeled adopting the classical Neo-Hookean strain en-
ergy function and the quadratic model for the volumetric component
Eq. (47). The modal behavior of the present thin-walled beam is inves-
tigated in two different compressibility regimes, completely defined in
the case of a Neo-Hookean material by the ratio between bulk modulus
and infinitesimal shear modulus. By fixing the Young modulus 𝐸 of the
material and considering two different Poisson’s ratios, the involved
material constants can be found by the classical elastic relations be-
tween engineering constants. For all the simulations 𝐸 = 50 MPa, the
remaining constants are reported in Table 10 and the material density
of the hyperelastic beam is set to 𝜌 = 1150 kg∕m3.

The numerical results obtained employing 1D CUF beam models
are compared with ABAQUS commercial finite element code adopt-
ing solid hexahedral models. The mathematical model considered in
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Fig. 17. Axially loaded Neo-Hookean beam: natural frequencies versus traction pressure applied, nearly-incompressible case, small/moderate stretch regime.
Fig. 18. Axially loaded Neo-Hookean beam: normal modes of vibrations for 𝜆𝑦 = 2.
the case of 1D-CUF is made by a total number of 36 cross-section
expansion elements, accounting for one element for each corner and
eight elements in each straight side of the cross-section as shown in
14
Fig. 19(b), and considering two separated expansion theories (LE-2 or
LE-3) for convergence reasons. The mathematical model adopted will
be addressed as 𝑁𝐵4 − 36𝐿𝐸 𝑇 where 𝑁 stands for the total number
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Fig. 19. Thin-walled box beam: geometrical features and discretization adopted.
Fig. 20. Thin-walled box beam: MAC comparison between modes, clamped configuration.
Fig. 21. Thin-walled box beam: equilibrium path for axial normal pressure.
of finite elements along the beam axis and 𝑇 refers to the polynomial
order of the cross-section expansion model. For each model, the total
number of DOFs will be reported in the following.

In the first case, a convergence analysis for the free vibration
problem around the trivial equilibrium state (undeformed configu-
ration) is considered: natural frequencies are analyzed, both in the
case of compressible and nearly-incompressible material, for different
CUF discretizations. Tables 11 and 12 report the first five natural
frequencies for the compressible and nearly-incompressible regime,
comparing the total number of DOFs of each mathematical model
adopted and the percentage difference between actual model results
15
and 3D ABAQUS reference. In the case of compressible material condi-
tions, each model adopted is adequate for modal analysis and results
are in excellent agreement with the reference. However, in the case
of nearly-incompressible material, the need for higher-order theories
is evident due to the limitation of a pure displacement-based finite
element method in locking prevention, but the use of refined theories
can mitigate these numerical effects. In both cases, saving in terms
of computational costs required for the analysis can be observed. A
wider spectrum of natural frequencies is depicted in Fig. 20(a) for
the compressible case and Fig. 20(b) for the nearly-incompressible
case, comparing the first thirty natural frequencies obtained adopting
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Fig. 22. Thin-walled box beam: natural frequencies versus traction pressure applied, compressible case.
Fig. 23. Thin-walled box beam: natural frequencies versus traction pressure applied, compressible case.
Table 11
Thin-walled box beam: first five natural frequencies in the compressible regime [Hz].

36 LE-2 (parabolic model) 36 LE-3 (cubic model) 3D ABQ

Mode 10B4 15B4 20B4 10B4 15B4 20B4 C8D20RH

1 32.28(0.52%) 32.21(0.32%) 32.18(0.22%) 32.27(0.48%) 32.20(0.28%) 32.17(0.18%) 32.11
2 40.37(0.51%) 40.29(0.31%) 40.25(0.21%) 40.36(0.49%) 40.28(0.29%) 40.24(0.19%) 40.16
3 79.33(0.55%) 79.17(0.35%) 79.10(0.26%) 79.23(0.42%) 79.07(0.22%) 79.00(0.14%) 78.90
4 99.54(0.49%) 99.35(0.29%) 99.86(0.81%) 99.48(0.43%) 99.15(0.09%) 99.13(0.08%) 99.06
5 99.92(0.59%) 99.88(0.54%) 99.26(0.08%) 99.19(0.15%) 99.29(0.04%) 99.21(0.13%) 99.34

DOFs 20088 29808 39528 40176 59616 79056 254118
refined models. As a final consideration, the normal modes of vibration
of the compressible and nearly-incompressible case are compared by
computing the MAC matrix considering eigenvectors associated with
the 20B4-36LE-3 models, normal modes in different compressibility
material conditions are compared to find possible correlations, and the
final results are depicted in Fig. 20(c).

In the second case, the modal behavior of the compressible beam
is investigated in non-trivial equilibrium conditions. Considering now
a uniform normal pressure load applied at the tip-free end of the box
beam, considering again the geometric boundary conditions for the uni-
axial tension test shown in Fig. 21(a), a nonlinear static analysis is per-
formed to obtain the equilibrium path and the stress distribution along
the equilibrium curve, both showed in Fig. 21(b). Subsequently, in each
16
computed non-trivial equilibrium state, the free-vibration problem is
solved. In this way, how natural frequencies and modal shapes are
affected by the stretching ratio along the load direction can be investi-
gated. Fig. 22 shows the variation of the first fifteen natural frequencies
along the equilibrium path of the curve. Since there is a rapidly increas-
ing stress value by looking at the equilibrium path, huge variations
of the natural frequencies in the small/moderate strain regime are
observed. The stretch–frequency curves in the small/moderate strain
regime are depicted in Fig. 23 for the first fifteen modes. In general,
a decreasing behavior of natural frequencies is observed since the
principal stiffness term 𝑆𝑦𝑦 decreases during the load cycle, and mode
aberration is observed. Finally, normal modes of vibration for the fixed
value of stretch 𝜆 = 3.94 are depicted in Fig. 24.
𝑦
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Fig. 24. Thin-walled box beam: normal modes of vibrations for 𝜆𝑦 = 3.94, eigenvector magnitude.
Table 12
Thin-walled box beam: first five natural frequencies in the nearly-incompressible regime [Hz].

36 LE-2 (parabolic model) 36 LE-3 (cubic model) 3D ABQ

Mode 10B4 15B4 20B4 10B4 15B4 20B4 C8D20RH

1 33.21(3.70%) 32.78(2.34%) 32.57(1.70%) 33.19(3.63%) 32.76(2.27%) 32.55(1.63%) 32.03
2 41.35(3.54%) 40.83(2.23%) 40.59(1.62%) 41.34(3.50%) 40.82(2.19%) 40.57(1.57%) 39.94
3 81.09(3.43%) 80.16(2.24%) 79.71(1.67%) 80.90(3.19%) 79.97(2.01%) 79.53(1.44%) 78.40
4 99.59(1.84%) 99.49(1.74%) 99.19(1.44%) 98.80(1.04%) 98.70(0.94%) 98.65(0.89%) 97.79
5 100.77(2.44%) 99.70(1.36%) 99.44(1.09%) 100.67(2.34%) 99.60(1.26%) 99.09(0.74%) 98.36

DOFs 20088 29808 39528 40176 59616 79056 254118
6. Conclusions

In this paper, the unified 1D CUF beam finite element model for the
vibration analysis of materials and structures is proposed, adopting the
classical mathematical formulation of the undamped vibration problem
and hyperelastic constitutive law written in terms of invariants of the
deformation. In the CUF framework, nonlinear governing equations for
the free vibration problem are written in a compact form, exploiting
the independence of physical quantities involved from the kinematic
expansion of the 3D displacement field, defined employing recursive
index notation for arbitrary shape functions and expansion functions.
The Principle of Virtual Displacement is written in matrix form deriving
the analytic expression of mass matrix, tangent stiffness matrix, and
internal and external forces vectors, defined in terms of fundamental
17
nuclei. The undamped vibration problem is then solved in trivial and
non-trivial equilibrium states obtained from a static nonlinear analysis:
the equilibrium path is obtained through a numerical scheme based on
the Newton–Raphson iterative procedure coupled with the arc-length
constraint.

The proposed results show the capabilities of refined fully non-
linear beam models to deal with the modal analysis of compressible
and nearly-incompressible materials and structures, providing accurate
results in terms of natural frequencies and modal behavior in trivial
and non-trivial equilibrium states and description of local phenomena
in the case of thin-walled structures. These kinds of investigations
open to a wide range of analysis and further investigation in robotics,
sensors, and measurement devices since it is possible to ‘‘tune’’ the
modal behavior of the mechanical hyperelastic component by studying
the appropriate pre-stressed condition.
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Future works will deal with the extension of CUF hyperelastic
models to the modal analysis of plates and shells structures, the gen-
eralization of undamped vibration problem for generic hyperelastic
constitutive law (transversely isotropic or in-homogeneous anisotropic
hyperelastic materials), investigating the effect of fiber-reinforcement
and direction-dependent mechanical properties on the modal behavior
of structures, and finally the analysis of the full dynamical behavior of
soft structures including damping and viscosity constitutive behavior.
Furthermore, implementation of locking correction techniques such
as the hybrid formulation (or u/p formulation) and shear/membrane
locking correction via Mixed Interpolation Tensorial Components are
upcoming steps in the formulation of an efficient finite element model
for nearly-incompressible hyperelasticity.
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