
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Legendre-based node-dependent kinematics shell models for the global–local analysis of homogeneous and layered
structures / Carrera, E.; Pagani, A.; Scano, D.. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. -
ISSN 0020-7683. - ELETTRONICO. - 289:(2024). [10.1016/j.ijsolstr.2023.112630]

Original

Legendre-based node-dependent kinematics shell models for the global–local analysis of homogeneous
and layered structures

Publisher:

Published
DOI:10.1016/j.ijsolstr.2023.112630

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2985067 since: 2024-01-15T10:10:34Z

Elsevier Ltd



International Journal of Solids and Structures 289 (2024) 112630

A
0

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

Legendre-based node-dependent kinematics shell models for the global–local
analysis of homogeneous and layered structures
E. Carrera1, A. Pagani ∗,2, D. Scano3

Mul2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy

A R T I C L E I N F O

Keywords:
Carrera unified formulation
Shell models
Node-dependent kinematics
Global–local
Legendre polynomials
Taylor polynomials
Zig-zag theories

A B S T R A C T

The present work demonstrates the use of the node-dependent kinematics method to derive and compare
several two-dimensional shell theories. The three dimensional displacement field is expressed in terms of
generalized coordinates, which are subsequently expanded along the shell thickness using arbitrary functions.
The in-plane unknowns, are then discretized through classical finite element approximation. Based on the
Carrera Unified Formulation, the proposed method combines in a unique manner the theory of structures
and the finite element method; thickness interpolation functions are defined node-wise. As a consequence,
the resulting finite element model represents diverse approximation theories at each single node. In this
work Taylor-based kinematics (including the Murakami Zig-Zag function) and Legendre-type nodal kinematics
are incorporated at the element level without adopting mathematical artifices leading to the global–local
strategy, where refined theories are selectively employed in specific areas, while maintaining acceptable
computational costs. Numerical cases from the existing literature are employed to establish the effectiveness
of node-dependent models in bridging a locally refined theories to global kinematics when local effects need
to be considered. The analyses focus on localized loads for both homogeneous and multi-layered structures.
1. Introduction

Shell structures play a significant role in a wide range of engineering
applications due to their efficient load-carrying capabilities. However,
the continuous development of new structural materials, including
composite layered materials, has led to increasingly complex structural
designs that demand intensive analysis. Nonetheless, addressing these
challenges often results in a substantial increase in computational costs.

Over the past few decades, numerous shell models have been intro-
duced. The initial and less computationally intensive two-dimensional
(2D) model is known as Thin Shell Theory (TPT), which is rooted in
Kirchhoff’s theory (Kirchhoff, 1850). Kirchhoff’s hypothesis assumes
that the section of the shell remains orthogonal to the reference sur-
face during deformation. Consequently, out-of-plane components of the
strains are disregarded. The extension for the composite structures was
proposed Classical Lamination Theory (CLT) in Reissner and Stavsky
(1961). The First Shear Deformation Theory (FSDT) was developed
to account for transverse shear deformation. It originated from the
works of Reissner (1945) and Mindlin (1951) and was subsequently
employed to propose various structural models within the context of

∗ Corresponding author.
E-mail addresses: erasmo.carrera@polito.it (E. Carrera), alfonso.pagani@polito.it (A. Pagani), daniele.scano@polito.it (D. Scano).

1 Professor of Aeronautics and Astronautics.
2 Associate Professor.
3 PhD Student.

the Finite Element Method (FEM). Notable contributions include the
works of Pryor and Barker (1971), Noor and Mathers (1977) and Panda
and Natarajan (1979), as well as Parisch (1979). Classical models,
based on these theories, continue to be used in commercial software
today. Although, the classical theories work well for thin and isotropic
shells and do not satisfy the compatibility requirements, they are still
used in the commercial codes for their simplicity and a relatively low
computational cost, see Argyris (1966).

Because classical models are not well-suited for accurately analyz-
ing thick and/or composite materials, Higher-Order Theories (HOT)
have been introduced over the years. Notable among these are the
refined models proposed by Reddy (1984). Carrera conducted a his-
torical review of zig-zag theories, with a specific emphasis on the
plate/shell formulation, as detailed in Carrera (2003). Additionally,
in Carrera (2001), the same author presented advanced models based
on Reissner’s Mixed Variational Theorem (RMVT). In these theories,
higher-order expansions of the displacement fields are assumed along
the laminae of the composite structure and were presented by Kant
et al. (1982) and Kant and Kommineni (1994). Reddy (1997) em-
ployed refined models for both plates and shell structures. Kulikov
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and Carrera (2008) proposed higher-order shell models by using in-
terpolation surfaces. In contrast, Zig-zag functions are introduced into
classical or higher-order theories. These functions are piecewise and
designed to meet the mechanical requirements of laminated materials.
Numerous finite element (FE) implementations have been developed
based on these methods. For instance, see the works of Murakami
(1986), Aitharaju (1999), and Cho and Averill (2000). Additionally,
Kumar et al. (2013) proposed a shell element that incorporates higher-
order Zig-Zag models. Nguyen et al. (2015) implemented a Zig-Zag
theory to analyze viscoelastic laminated composite plate. Cho and
Oh (2004) studied smart materials by using a fully coupled thermo-
electro–mechanical formulation. Finally, Carrera (1996) and Carrera
and Demasi (2002) introduced the Carrera Unified Formulation (CUF)
for plate and shell theories. This method allows the flexibility to select
both the structural theory and the shape functions according to specific
requirements.

In most of the previously discussed papers, an Equivalent Single
Layer (ESL) approach for modeling composite structures is commonly
adopted. ESL models feature variables that are independent of the
number of mathematical domains. On the contrary, the Layer Wise
(LW) approach is employed when precise and detailed analyses are
needed, particularly for accurate shear stress determination. In LW
models, each layer is described by distinct sets of variables. Numerous
authors have successfully integrated LW theories with finite element
(FE) formulations. Notable works include those by Rammerstorfer et al.
(1992), Reddy (1993), Mawenya and Davies (1974), Noor and Burton
(1990), and Carrera (1998). The latter adopted the CUF framework. It
is worth noting that the LW approach necessitates a more computation-
ally intensive effort due to the inclusion of a greater number of degrees
of freedom in the models.

Although the previously mentioned models lead to increased ac-
curacy, they simultaneously lead to a significant increase in compu-
tational costs. In cases involving complex local phenomena such as
delamination (Airoldi et al., 2015), cracks (Haryadi et al., 1998), or
local buckling (Kubiak et al., 2016), a more detailed local solution is
often required. To manage and control these computational costs, sev-
eral approaches have been developed in recent decades. For instance,
one commonly employed method involves the use of refined models in
regions where higher-order effects need to be analyzed, as described by
Reddy (1989). In contrast, the remainder of the structure is discretized
using lower fidelity models. By doing so, the total number of degrees of
freedom can be reduced with only a minor decrease in solution accu-
racy. Implementing global–local models, however, is not a trivial task.
Over the past few decades, scholars have proposed various methods
for integrating different structural theories in the same mathematical
model. For a comprehensive overview of these approaches, interested
readers are referred to the review by Noor (1986). In his work, Noor
summarized the criteria for developing a coherent global–local method;
[...]The effective implementation of this approach requires the following:

1. systematic procedure for generating the hierarchy of mathematical
models[...],

2. criteria for the adaptive refinement of the mathematical model, and
3. treatment of the interfaces between the different regions.

When two domains described by different models must be connected,
several issues come into play. Most notably, the compatibility of dis-
placements between these domains must be ensured. For instance, Fish
et al. (1996) introduced a multi-grid method that relies on an iterative
algorithm to share information between coarse and fine meshes. In the
context of global–local analysis, researchers have proposed methods
involving the use of Lagrange multipliers, as demonstrated by Prager
(1968). In this context, Park and Felippa (2000) utilized a continuum-
based variational principle to formulate discrete governing equations
for partitioned structural systems. Additionally, Aminpour et al. (1995)
and Ransom (2001) employed a spline method to establish connec-
2

tions between two domains discretized by different finite elements.
Lastly, Blanco et al. (2008, 2011) employed an eXtended Variational
Formulation (XVF) by adopting the Lagrange multiplier approach. An
alternative approach for ensuring compatibility between two zones is
to introduce an overlapping zone. Dhia (1998) and Dhia and Rateau
(2005) initially proposed the Arlequin method, which utilizes Lagrange
multipliers. This method was subsequently implemented in the context
of the CUF for plate and beam models by Biscani et al. (2012) and
Carrera et al. (2013), respectively.

This work demonstrates the capabilities of the Node-Dependent
Kinematics (NDK) approach, as implemented in the CUF framework for
the shell formulation. It employs combinations of Legendre-Legendre,
Legendre-Taylor, and Legendre-Taylor with Zig-Zag functions. Due to
the hierarchical nature of CUF, it is possible to select the desired
structural theory for each element node without resorting to additional
mathematical techniques. Specifically, for a 2D problem, the expansion
functions change across the shell mid-plane. Within the Finite Element
Method (FEM), there are no restrictions to combining different struc-
tural theories. This flexibility allows for the arbitrary use of low- to
higher-order theories. The NDK method was initially introduced by
Carrera and Zappino (2017) for linear static analysis within the beam
formulation. This approach was subsequently extended to the plate
formulation for multilayered structures by Zappino et al. (2017), who
proposed FE models using Lagrange and Taylor Zig-Zag functions. On
the other hand, Carrera et al. (2017) employed Legendre and Taylor
expansions. Carrera et al. (2018) also introduced the NDK method for
electro-mechanical problems in the shell formulation.

Even though the expansion along the thickness is formally the same
for both plates and shells, the problems are intrinsically different, from
both practical and mathematical perspectives. In fact, the shell formula-
tion considers finite curvatures. This permits to explore different types
of structures, while the application of plate formulation is restricted to
the plane cases. Thus, the shell formulation allows to describe exactly
the geometries of the structures. In the open literature, the shell and
the plate formulations are usually studied in an independent manner.

Finally, it is worth noting that FE analysis can suffer from significant
stiffening when dealing with thin structures. The plate elements are
affected by the shear locking, while the membrane locking must be
considered in the shell elements as well. The first phenomenon is
related to the incapacity of the finite elements to calculate the bending
deformation, and the strain energy is erroneously absorbed by the shear
mode. Physically, the transverse shear energy tends to zero when the
structures become thinner. On the other hand, the membrane locking
occurs when the stretching of the mid-plane is incorrectly calculated
during a bending deformation. In this way, the membrane energy
overcomes the bending energy. To address these numerical issues, the
present paper employs the Mixed Interpolation of Tensorial Compo-
nents (MITC) method (Bathe and Dvorkin, 1986; Bucalém and Bathe,
1993). The MITC integration method has been integrated into the shell
formulation within the CUF framework. It is beyond this work to fully
demonstrate the application of MITC. More details can be found in the
work of Cinefra and Carrera (2013).

This paper is organized as follows: Section 2 provides a review
of the Hierarchical Legendre Expansions for the shell formulation.
Section 3 offers an overview of the modeling approaches for composite
structures. Section 4 covers the shell formulation within the CUF. This
section also introduces the Node-Dependent Kinematics method and
presents the governing equations. It concludes with an illustration of
the assembly of the stiffness matrix. Section 5 presents the results
obtained for a doubly-pinched cylinder and a composite shell. Finally,
in Section 6, the paper summarizes the most significant conclusions.

2. Two-dimensional models based on Hierarchical Legendre poly-
nomials

In the present work, Hierarchical Legendre Expansion (HLE) utilizes

Legendre polynomials to formulate structural theories. The theoretical
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Fig. 1. Hierarchical Legendre Expansions for shells. Definition of vertexes and edges .
Fig. 2. Behavior of the displacements along the thickness.
foundation for this approach is presented by Szabo and Babuška (1991).
A key feature of HLE is its combination of a hierarchy in the structure
of kinematic terms, akin to Taylor expansion, with a non-local distri-
bution of mechanical unknowns across the thickness domain, similar
to Lagrange expansion. These expansions are constructed based on the
same cross-section discretization, and other functions, such as the hp-
method for the CUF, are also adopted. For expressing the relationship
involving one-dimensional Legendre polynomials, the most useful form
is as follows:

𝐿𝑝(𝜁 ) =
2𝑝 + 1
𝑝 + 1

𝐿𝑝−1(𝜁 ) −
𝑝

𝑝 + 1
𝐿𝑝−2(𝜁 ), 𝑝 = 2, 3,… (1)

where 𝑝 represents the polynomial order. This relation is valid within
the natural plane 𝜁 = [−1,+1]. The initial values for the Legendre
polynomials are 𝐿0(𝜁 ) = 1 and 𝐿1(𝜁 ) = 𝜁 . A set of 1D functions can
be defined out of this polynomials as:

𝐹1(𝜁 ) =
1
2
(1 − 𝜁 )

𝐹2(𝜁 ) =
1
2
(1 + 𝜁 ) (2)

𝐹𝜏 (𝜁 ) =𝜙𝜏−1(𝜁 ), 𝜏 = 3, 4,… , 𝑝 + 1

with

𝜙𝑗 (𝑟) =

√

2𝑗 − 1
𝑗 ∫

𝑟

−1
𝐿𝑗−1(𝜁 )𝑑𝜁 =

√

1
4𝑗 − 1

(

𝐿𝑗 − 𝐿𝑗−2
)

, 𝑗 = 2, 3,… , 𝑝

(3)

Fig. 1 shows an illustration of the plate section in the natural plane
with 𝜁 = [−1,+1].

3. Modeling approaches

In the development of theories for composite structures, two pri-
mary modeling techniques are commonly employed: the Equivalent-
Single Layer (ESL) and the Layer Wise (LW) approaches. In this section,
we provide a brief description of the behavior of displacements along
the thickness of these composite structures.
3

In the ESL approach, the mathematical assumptions for the displace-
ment field are consistent across all layers. For the sake of completeness,
Fig. 2(a) illustrates the through-the-thickness distribution of displace-
ments in this approach. Consequently, the resultant model considers
variables for the entire composite structure and is independent of the
number of layers. In this paper, Taylor polynomials are employed
within ESL models. Furthermore, these polynomials can be enhanced
by incorporating Zig-Zag functions, particularly the Murakami function.
For more detailed information, please refer to Appendix B and the
work of Carrera (2003). The inclusion of these functions allows for
the satisfaction of the 𝐶0

𝑧 -requirements (Carrera, 1996) for the dis-
placement field along the thickness direction. In the domain of the
structural theories, the displacements and the out-of-plane stresses must
be piecewise continuous through the thickness, while their derivatives
are discontinuous in the multilayered structures. In particular, accord-
ing to the elasticity theory, the equilibrium and compatibility equations
must be satisfied. If the ESL models are adopted, the derivatives of the
displacements are continuous through the thickness, which does not
permit to replicate the Zig-Zag behavior of the in-plane displacements.
Then, the strains are continuous. When the strains are multiplied to
the constitutive relations of each layer, the equilibrium equations are
not satisfied. For this reason, even a higher order ESL theory is not
sufficient to obtain good results, especially for the transverse stresses.

As far as LW approach concerns, different variables are described in
each layer, independently from the other layers. Mechanical character-
istics continuity is maintained at the interlaminar level, as depicted in
Fig. 2(b). It is worth noting that the derivatives of the variables are not
necessarily continuous at the interlaminar interfaces in this approach
(i.e., 𝐶0

𝑧 -requirements are naturally assured). The stress outcomes are
comparable to exact and 3D solutions only if higher-order theories are
adopted. In this paper, Legendre polynomials are employed within the
LW models.

4. Node-dependent kinematics two-dimensional models

4.1. Preliminaries

Consider the shell depicted in Fig. 3. The shell mid-plane, denoted
as 𝛺 , lies in the (𝛼, 𝛽) plane, while the section domain is defined along
0
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Fig. 3. Reference system for a multilayered shell.

the thickness direction 𝑧. The three-dimensional displacement vector
for a multi-layered section shell in this reference system can be defined
as follows:

𝐮𝑘(𝛼, 𝛽, 𝑧) =
{

𝑢𝑘𝛼(𝛼, 𝛽, 𝑧) 𝑢𝑘𝛽 (𝛼, 𝛽, 𝑧) 𝑢𝑘𝑧(𝛼, 𝛽, 𝑧)
}𝑇

(4)

where 𝑘 indicates the mathematical layer. The strain, 𝝐𝑘, and stress, 𝝈𝑘,
components are herein arranged as:

𝝈𝑘 =
{

𝜎𝑘𝛼𝛼 𝜎𝑘𝛽𝛽 𝜎𝑘𝑧𝑧 𝜎𝑘𝛼𝑧 𝜎𝑘𝛽𝑧 𝜎𝑘𝛼𝛽
}𝑇

,

𝝐𝑘 =
{

𝜖𝑘𝛼𝛼 𝜖𝑘𝛽𝛽 𝜖𝑘𝑧𝑧 𝜖𝑘𝛼𝑧 𝜖𝑘𝛽𝑧 𝜖𝑘𝛼𝛽
}𝑇

(5)

where the strain vector are related to the displacements through the
differential operator matrix 𝐃 as

𝝐𝑘 = 𝐃𝐮𝑘 (6)

The explicit form of the matrix of differential operators, 𝐃, is defined
in Appendix A.

The stress components can be determined using the constitutive
equation as follows:

𝝈𝑘 = �̃�𝑘𝝐𝑘 (7)

where �̃�𝑘, is the matrix of the material coefficients, which is explicitly
defined in Appendix A.

In the framework of 2D shell CUF, the 3D displacement field and
its corresponding virtual variation can be conveniently expressed as
follows:
𝐮𝑘(𝛼, 𝛽, 𝑧) = 𝐹𝜏 (𝑧)𝐮𝑘𝜏 (𝛼, 𝛽), 𝜏 = 1,… ,𝑀
𝛿𝐮𝑘(𝛼, 𝛽, 𝑧) = 𝐹𝑠(𝑧)𝛿𝐮𝑘𝑠 (𝛼, 𝛽), 𝑠 = 1,… ,𝑀

(8)

In this formulation, 𝐹𝜏 (𝑧) represents the expansion functions along the
thickness direction, and the Einstein convention is assumed for the
repeated index 𝜏. The parameter 𝑀 represents the total number of
expansions utilized. This formulation allows for the adoption of an
infinite number of structural theories. For simplicity, Legendre-like
and Taylor-like (with Zig-Zag functions using the Murakami function)
functions are presented. In this paper, Taylor-like expansions (along
with Zig-Zag functions) are employed in the global zone, as further
detailed in Appendix B. For the shell formulation, Taylor expansion
utilizes 1D polynomials 𝑧𝑖 as a base, where 𝑖 is a positive integer.
4

Subsequently, the displacement vector, denoted as 𝐮𝑘𝜏 , and the
virtual variation, 𝛿𝐮𝑘𝑠 , can be approximated using the Finite Element
Method (FEM) as shown below:

𝐮𝑘𝜏 (𝛼, 𝛽) = 𝑁𝑖(𝛼, 𝛽)𝐮𝑘𝜏𝑖, 𝑖 = 1,… , 𝑁𝑛
𝛿𝐮𝑘𝑠 (𝛼, 𝛽) = 𝑁𝑗 (𝛼, 𝛽)𝛿𝐮𝑘𝑠𝑗 , 𝑗 = 1,… , 𝑁𝑛

(9)

in which 𝑁𝑖(𝛼, 𝛽) represents the shape functions, and 𝑁𝑛 is the number
of nodes within an element. The variable 𝐮𝑘𝜏 (𝛼, 𝛽, 𝑧) signifies the nodal
unknowns. For the numerical assessments in this work, the classical
nine-node Lagrange (Q9) element is employed. Further information on
this element can be found in Bathe (1996).

Consequently, by combining the CUF approximation (Eq. (8)) and
the FEM discretization (Eq. (9)), the complete expression of FE displace-
ment functions can be formulated:

𝐮𝑘(𝛼, 𝛽, 𝑧) = 𝑁𝑖(𝛼, 𝛽)𝐹𝜏 (𝑧)𝐮𝑘𝜏𝑖, 𝜏 = 1,… ,𝑀 ; 𝑖 = 1,… , 𝑁𝑛
𝛿𝐮𝑘(𝛼, 𝛽, 𝑧) = 𝑁𝑗 (𝛼, 𝛽)𝐹𝑠(𝑧)𝛿𝐮𝑘𝑠𝑗 , 𝑠 = 1,… ,𝑀 ; 𝑗 = 1,… , 𝑁𝑛

(10)

4.2. Node-dependent kinematics

An additional advancement can be achieved by anchoring the thick-
ness functions with the nodes of shell finite elements. Essentially, every
FE node possesses its unique set of structural theories. This concept can
be expressed mathematically as follows:

𝐮𝑘(𝛼, 𝛽, 𝑧) = 𝑁𝑖(𝛼, 𝛽)𝐹 𝑖
𝜏 (𝑧)𝐮

𝑘
𝜏𝑖, 𝜏 = 1,… ,𝑀𝑖; 𝑖 = 1,… , 𝑁𝑛

𝛿𝐮𝑘(𝛼, 𝛽, 𝑧) = 𝑁𝑗 (𝛼, 𝛽)𝐹
𝑗
𝑠 (𝑧)𝛿𝐮𝑘𝑠𝑗 , 𝑠 = 1,… ,𝑀𝑗 ; 𝑗 = 1,… , 𝑁𝑛

(11)

Eq. (11) defines a family of two-dimensional FE models with NDK. This
type of element allows for the straightforward adoption of different
kinematic theories within the same element. This approach facilitates
local kinematic refinement on the nodal level. For the sake of clarity,
Fig. 4 illustrates a four-node element (Q4) in which various theories are
employed. Taylor-like (including Zig-Zag functions) and Legendre-like
expansions can be applied without the need for additional mathemat-
ical complexities. In particular, HLE2 has three expansions for each
layer, TEZ2 is associated to four expansions, while TE2 has three
expansions. For example, the in-plane displacement 𝑢𝑘𝛼 for this element
can be expressed as shown below:

𝑢𝑘𝛼(𝛼, 𝛽, 𝑧) = 𝑁1

HLE2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝐹 1
1 𝑢

𝑘
𝛼11

+ 𝐹 1
2 𝑢

𝑘
𝛼21

+ 𝐹 1
3 𝑢

𝑘
𝛼31

)

+ 𝑁2

TEZ2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝐹 2
1 𝑢𝛼12 + 𝐹 2

2 𝑢𝛼22 + 𝐹 2
3 𝑢𝛼32 + 𝐹 2

4 𝑢𝛼42
)

+ 𝑁3

(

𝐹 3
1 𝑢𝛼13 + 𝐹 3

2 𝑢𝛼23 + 𝐹 3
3 𝑢𝛼33

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
TE2

+𝑁4

(

𝐹 4
1 𝑢𝛼14 + 𝐹 4

2 𝑢𝛼24 + 𝐹 4
3 𝑢𝛼34

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
TE2

(12)

The following explains the meaning of the expansion functions for each
FE node:

• 𝐹 1
1 and 𝐹 1

2 : linear terms of Legendre expansion, see Eq. (2);
• 𝐹 1

3 : parabolic term of Legendre expansion, see Eq. (2);
• 𝐹 2

1 = 𝐹 3
1 = 𝐹 4

1 : constant terms of Taylor expansion, see Eqs. (25)
and (27);

• 𝐹 2
2 = 𝐹 3

2 = 𝐹 4
2 : linear terms of Taylor expansion, see Eqs. (25)

and (27);
• 𝐹 2

3 = 𝐹 3
3 = 𝐹 4

3 : parabolic terms of Taylor expansion, see Eqs. (25)
and (27);

• 𝐹 2
4 : Murakami Zig-Zag function, see Eq. (27).
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Fig. 4. A four-node shell element with node-dependent kinematics.
4.3. FE governing equations

The principle of virtual displacements is used to derive the govern-
ing equations:

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑒𝑥𝑡 (13)

In the provided equation, 𝛿𝐿𝑖𝑛𝑡 signifies the virtual variation of the in-
ternal work, whereas 𝛿𝐿𝑒𝑥𝑡 denotes the virtual variation of the external
work. The expression for 𝛿𝐿𝑖𝑛𝑡 can be written as:

𝛿𝐿𝑖𝑛𝑡 = ∫𝑉𝑘
𝛿𝝐𝑇 𝝈𝐻𝛼𝐻𝛽d𝛼d𝛽d𝑧 (14)

See Appendix A for the definition of 𝐻𝛼 and 𝐻𝛽 . By using the CUF-type
displacement functions (Eq. (11)), the geometric relations in Eq. (6),
and constitutive equations (Eq. (7)), the following expression can be
obtained:

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐮𝑘𝑇𝑠𝑗 ∫𝑉𝑘

(

𝐃𝐹 𝑗
𝑠𝑁𝑗

)𝑇 �̃�𝑘 (𝐃𝐹 𝑖
𝜏𝑁𝑖

)

𝐻𝛼𝐻𝛽d𝛼d𝛽d𝑧 𝐮𝑘𝜏𝑖 = 𝛿𝐮𝑘𝑇𝑠𝑗 𝐊
𝑘
𝑖𝑗𝜏𝑠𝐮

𝑘
𝜏𝑖

(15)

where 𝐊𝑘
𝑖𝑗𝜏𝑠 is the fundamental nucleus (FN) of the stiffness matrix for

NDK FE models. The explicit expression of 𝐊𝑘
𝑖𝑗𝜏𝑠 is provided as follows:

𝐊𝑘
𝑖𝑗𝜏𝑠 = ∫𝑉𝑘

(

𝐃𝐹 𝑗
𝑠𝑁𝑗

)𝑇 �̃�𝑘 (𝐃𝐹 𝑖
𝜏𝑁𝑖

)

𝐻𝛼𝐻𝛽d𝛼d𝛽d𝑧 (16)

The virtual work 𝛿𝐿𝑒𝑥𝑡 done by the external load 𝐩 is expressed as
follows:

𝛿𝐿𝑒𝑥𝑡 = ∫𝑉𝑘
𝛿𝐮𝑘𝑇 𝐩𝑘𝐻𝛼𝐻𝛽d𝛼d𝛽d𝑧 (17)

The above equation can be further written in the form of CUF as:

𝛿𝐿𝑒𝑥𝑡 = 𝛿𝐮𝑘𝑇𝑠𝑗 ∫𝑉𝑘
𝑁𝑗𝐹

𝑗
𝑠 𝐩

𝑘𝐻𝛼𝐻𝛽d𝛼d𝛽d𝑧 = 𝛿𝐮𝑘𝑇𝑠𝑗 𝐏
𝑘
𝑠𝑗 (18)

where 𝐏𝑘
𝑠𝑗 represents the FN of the load vector. Hence, the governing

equation for the shell FE models with NDK is described by the following
relation:

𝐊𝑘 𝐮𝑘 = 𝐏𝑘 (19)
5

𝑖𝑗𝜏𝑠 𝜏𝑖 𝑠𝑗
In the present work, the Mixed Interpolation of Tensorial Component
(MITC) method is adopted to counteract the shear locking issues. For
the sake of brevity, the extended formulation is not shown. More
information can be found in Cinefra and Valvano (2016).

4.4. Assembly of the stiffness matrix

In the preceding section, the fundamental nucleus was described
as the 3 × 3 core unit of the stiffness matrix. Conversely, the FN of
the load vector is 3 × 1. By iterating through the superscripts, the
stiffness matrix can be determined on both the node and element levels,
and subsequently assembled at the structural level. For more in-depth
information, please refer to Carrera et al. (2014).

Fig. 5 illustrates a portion of the assembly process for the stiffness
matrix and load vector in models featuring node-dependent kinematics.
This matrix is based on the example presented in Fig. 4. When different
models are utilized within a single element, 𝐾 𝑖𝑗 becomes rectangular
instead of square if 𝑀𝑖 ≠ 𝑀𝑗 . For example, if the number of expansion
terms at node 1 is 𝑀1 = 5, while at the fourth node it is 𝑀4 = 3, the
dimensions of the matrices are as follows: 𝐊11 is a 15 × 15 matrix, 𝐊44

is a 9 × 9 matrix, 𝐊14 is a 15 × 9 matrix, and 𝐊41 is a 9 × 15 matrix.
The load vector must be constructed accordingly to match the stiffness
matrix.

5. Numerical results

In this section, the displacement and stress fields are analyzed for
two benchmark cases. These results are then compared with refer-
ence solutions from the open literature. The first benchmark involves
an homogeneous simply-supported cylindrical shell subjected to two
pinching loads. The second benchmark features a three-layer spherical
shell loaded by a bisinusoidal local pressure.

Different variable kinematic models have been considered and com-
pared. The models have been named as follows:

• HLE𝑚 indicates Hierarchical Legendre Expansion;
• TE𝑚 stands for Taylor Expansion;
• TEZ𝑚 represents Taylor Expansion with the Murakami Zig-Zag

function (MZZF).
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Fig. 5. Assembly of the stiffness matrix and load vector of models with node-dependent kinematics.
Fig. 6. Geometrical properties and loading conditions of the homogeneous cylindrical
shell under two pinching loads.
Source: The study case is taken from Lindberg et al. (1969).

Here, 𝑚 corresponds the polynomial order. For the sake of clarity, the
notation of the NDK models is detailed later for each study case.

For both study cases, the refined theories are used in the area
around the localized load.

5.1. Homogeneous cylindrical shell under two pinching loads

The first considered benchmark is a cylindrical shell. Lindberg
et al. (1969) first proposed the analysis. Fig. 6 shows the geometrical
properties of the structure. The geometrical data are 𝑎∕𝑅𝛽 = 2, 𝑅𝛽∕ℎ
= 100, and 𝑏 = 2𝜋𝑅𝛽 . An isotropic material is considered and its
properties are: E = 3 × 106 [psi] and 𝜈 = 0.3. The cylinder is simply
supported at 𝛼 = 0 and 𝛼 = 𝑎. Two concentrated forces, 𝑃𝑧, are applied.
See Fig. 6. These loads are posed in [𝑎∕2, 𝑏∕4, ℎ∕2] and are equal to 104

[lb]. A comparison with Flügge equations (Flügge, 1934) calculated by
6

Fig. 7. Homogeneous cylindrical shell under two pinching loads. Scheme of the NDK
method. Adoption of a 13 × 13 FEM discretization.

Lindberg et al. (1969) is given. In this study case, transverse displace-
ments, 𝑢𝑧, are studied. The dimensionless displacements are given as
follows:

𝑢𝑧 =
𝐸ℎ
𝑃𝑧

𝑢𝑧 (20)

Taking advantage of the symmetry feature of the structure and loading
conditions, an octave of the cylinder is discretized with finite elements.
Symmetric boundary conditions are imposed, as illustrated in Fig. 7. A
uniform mesh grid of 13 × 13 elements is employed for all the analyses
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Table 1
Transverse displacements evaluated in [𝑎∕2, 𝑏∕4, 0] for the homogeneous cylindrical shell
under two pinching loads.

Model 𝑢𝑧 DOF

Literature

Exact (Lindberg et al., 1969) −164.24 –

Present-uniform models

HLE4 −165.42 10 935
HLE3 −165.42 8748
HLE2 −165.23 6561
HLE1 −146.04 4374

Present-NDK models

HLE3×4-HLE2×165 −165.39 6636
HLE3×4-HLE1×165 −158.60 4524
HLE3×16-HLE2×153 −165.41 6804
HLE3×16-HLE1×153 −162.44 4860
HLE3×36-HLE2×133 −165.41 7062
HLE3×36-HLE1×133 −164.01 5372

Fig. 8. Homogeneous cylindrical shell under two pinching loads. Transverse displace-
ments evaluated along the line [𝛼, 𝑏∕4, 0] for the uniform models Exact solution from
indberg et al. (1969).

n this study. While the convergence analysis has been conducted, it is
ot presented here for the sake of conciseness.

Several structural theories are used. First, uniform Legendre HLE1,
LE2, HLE3, and HLE4 models are adopted for comparison purposes.
hen, NDK models are considered. In particular, Fig. 7 shows a simpli-
ied scheme of the NDK method. HLE3 kinematics is adopted as a local
efinement around the loaded zone. Less refined theories are used in the
emainder of the shell, namely HLE1 and HLE2. FE models with node-
ependent kinematics are denoted by HLE𝑚×𝑝-HLE𝑛×𝑞 . In particular,
he upper scripts denote the number of elements of the shell ele-
ents adopting the corresponding kinematics. Three different config-
rations of NDK models are used: HLE3×4-HLE𝑛×165, HLE3×4-HLE𝑛×153
illustrated in Fig. 7), and HLE3×36-HLE𝑛×133.

Table 1 compares the results of the present uniform and NDK
odels, with the reference solution. This is useful to understand the
ifferences between the lower-order theories, while using the same
OF. Displacement results are given in the central column, while the
OFs are reported in the third column. Fig. 8 depicts the transverse
isplacements along the line [𝛼, 𝑏∕4, 0]. In this figure, the reference
olution and the results from the uniform models are compared. Fig. 9
llustrates the trends for the NDK models. Specifically, Figs. 9(a) and
(b) present the results for the NDK models using HLE1 and HLE2 in
he global part of the structure, respectively.
7

Here are some important remarks based on the results: o
1. The results show excellent agreement with the reference solu-
tion;

2. This analysis highlights the necessity of employing refined mod-
els, such as HLE3, to accurately investigate displacement behav-
ior in the vicinity of a point force;

3. Remarkably accurate results are achieved when combining HLE3
and HLE2;

4. Enhancing the area where a local model is employed signifi-
cantly improves the accuracy of the solution, especially when
HLE1 is used in the global region.

.2. Three layer shell loaded by bisinusoidal localized pressure

The second case study involves the analysis of a three-layered cross-
ly spherical shell. The three layers have an equal thickness of ℎ∕3. The

shell is loaded with a local bi-sinusoidally distributed pressure applied
at the center of the shell’s top layer, as depicted in Fig. 10. The origin
point of the curvilinear reference system is positioned at the central
point of the spherical shell. The middle-surface radii are assumed to be
𝑅𝛼 = 𝑅𝛽 = 𝑅 = 1. A radius-to-thickness ratio of 𝑅∕ℎ = 10 is considered.
The local pressure is applied to the top surface, and its distribution
follows:

𝑝(𝛼, 𝛽) = −𝑝0 cos
𝜋𝛼
𝑎∕10

cos
𝜋𝛽
𝑏∕5

(21)

where 𝑎 and 𝑏 represent the dimensions of the spherical shells in 𝛼
and 𝛽 direction, respectively, while 𝑝0 = 1 [Pa] is the magnitude of
the pressure load. The loaded region covers the central area of 𝑎

10 × 𝑏
5 .

The laminae have the following material properties: E𝐿 = 25 E𝑇 , E𝑇
= E𝑧, G𝐿𝑧 = G𝐿𝑇 = 0.5 E𝑇 , G𝑇 𝑧 = 0.5 E𝑇 , and 𝜈𝐿𝑇 = 𝜈𝐿𝑧 = 𝜈𝑇 𝑧 =
0.25. 𝐿 stands for the longitudinal direction, and 𝑇 for the transverse
one. 𝑧 indicates the thickness coordinate. The lamination sequence is
[90∕0∕90]◦. The shell is simply supported with correspondence to its
four edges. For comparison purposes, the transverse displacements and
the stresses are expressed in the following dimensionless parameters:

𝑤 = −
106𝐸𝐿ℎ3

𝑝0𝑅4
𝑤, 𝜎𝛽𝛽 = −104ℎ2

𝑝0𝑅2
𝜎𝛽𝛽 ,

𝜎𝛽𝑧 =
102ℎ
𝑝0𝑅

𝜎𝛽𝑧, 𝜎𝑧𝑧 = − 1
𝑝0

𝜎𝑧𝑧

(22)

Utilizing the structural and loading symmetry of the configuration, a
quarter of the shell is modeled with finite elements, employing sym-
metric boundary conditions, as shown in Fig. 11. This case corresponds
to the one presented by Li et al. (2019), where results were provided
through a finite element analysis conducted using the commercial soft-
ware ABAQUS. In particular, C3D20R (20-node quadratic brick element
with reduced integration) is used to build 3D FE models.

A uniform mesh grid of 20 × 20 elements is utilized for all the
nalyses in this benchmark. For the sake of brevity, the convergence
nalysis is not presented. Various structural theories are employed.
nitially, uniform Legendre HLE1, HLE2, and HLE5 models, Taylor
E3 and TE6, and Taylor models with Murakami functions TEZ2 and
EZ5 are used for comparative purposes. Subsequently, NDK models
re introduced. In particular, Fig. 11 illustrates a simplified scheme
f the NDK method. A local refinement is applied around the loaded
one, where a HLE5 model is adopted, while less refined theories are
mployed for the remaining part of the shell. In contrast to the previous
xample, the superscripts in the notation are omitted here. The same
onfiguration is used for all the NDK models, where 24 elements adopt
LE5, while 376 elements implement lower-order theories.

Transverse displacements, 𝑤, in-plane stresses, 𝜎𝛽𝛽 , shear stresses,
𝛽𝑧, and transverse stresses, 𝜎𝑧𝑧, are assessed in the vicinity of the
pplied pressure. Six different combinations of NDK models are em-
loyed: HLE5-HLE2, HLE4-TEZ5, HLE5-TE6, HLE5-HLE1, HLE5-TEZ2,
nd HLE4-TE3. The first three NDK theories have 35 301 degrees

f freedom, while the latter three have 20 172 degrees of freedom.
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Fig. 9. Homogeneous cylindrical shell under two pinching loads. Transverse displacements evaluated along the line [𝛼, 𝑏∕4, 0] for the NDK models.
Fig. 10. Geometrical properties and loading conditions of the three layer shell loaded
by bisinusoidal localized pressure.
Source: The study case is taken from Li et al. (2019).

Table 2 compared the results obtained from the models considered
in this study with those from the literature. The reference solution,
uniform solutions, and NDK solutions are compared. This comparison
helps in understanding the differences between the lower-order theories
while maintaining the same number of degrees of freedom (DOF).
Displacements and stresses are provided in the central columns, and the
DOFs are reported in the last column for the purpose of comparison.
In all the figures presented, the left graph compares uniform models
with reference solutions, while the right diagram compares the HLE5
solution with the NDK models. Figs. 12(a) and 12(b) illustrate the
trend of shear stress along the thickness for higher-order models, while
Figs. 13(a) and 13(b) show the results when HLE1, TEZ2, and TE3 are
used as global theories.

The analysis yields the following results:

1. Refined models are essential in the vicinity of the loaded zone
for accurate results;

2. It is worth to remark that even an higher-order ESL, i.e. TE6, is
not sufficient to obtain acceptable results for the shear stresses;

3. The NDK method offers a way to combine the accuracy of
LW models and the computational efficiency of ESL models,
8

Fig. 11. Three layer shell loaded by bisinusoidal localized pressure. Scheme of the
NDK method. Adoption of a 20 × 20 FEM discretization.

resulting in optimal shells models, particularly for models using
the Murakami Zig-Zag function (TEZ);

4. Implementing HLE-HLE models, which means using LW-LW
models, significantly accelerates the analysis while keeping the
DOFs low;

5. Figs. 12(b) and 13(b) clearly demonstrates how the shear stresses
can be accurately described. At the same time, the NDK meth-
ods permit to diminish the computational cost, since the re-
fined theories are used in a small portion of the computational
domain. The proposed models are particularly cost-efficient if
lower-order expansions are used in the ‘global’ zone.

6. Conclusions

In this paper, a class of refined 2D shell FE models with node-
dependent kinematics is presented for the global–local analysis of
homogeneous and composite curved structures. The present shell for-
mulation is able to accurately account for different type of structures
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Fig. 12. Three layer shell loaded by bisinusoidal localized pressure. Shear stresses evaluated in [0, 2𝑏∕25, 𝑧] for HLE2, TEZ5, and TE6. ABAQUS solution from Li et al. (2019).
Fig. 13. Three layer shell loaded by bisinusoidal localized pressure. Shear stresses evaluated in [0, 2𝑏∕25, 𝑧] for HLE1, TEZ2, and TE3. ABAQUS solution from Li et al. (2019).
Table 2
Transverse displacement and stresses for a three layer shell loaded by bisinusoidal
localized pressure.

Model 𝑤 𝜎𝛽𝛽 𝜎𝛽𝑧 𝜎𝑧𝑧 DOF
[0, 0, 0] [0, 0, ℎ∕2] [0, 2𝑏∕25, 0] [0, 0, ℎ∕2]

Literature-ABAQUS

C3D20R (Li et al.,
2019)

5680 528.2 1.757 1.001 950 283

Present-uniform models

HLE5 5727 538.4 1.687 1.005 80 688
HLE2 5677 497.1 1.605 1.006 35 301
HLE1 5607 415.2 1.666 0.8625 20 172
TEZ5 5711 532.1 1.606 1.017 35 301
TEZ2 5596 429.2 1.649 0.9964 20 172
TE6 5614 527.8 1.504 1.011 35 301
TE3 5571 496.2 1.439 1.104 20 172

Present-NDK models

HLE5-HLE2 5716 538.1 1.686 1.005 38 460
HLE5-HLE1 5672 537.8 1.689 1.005 24 384
HLE5-TEZ5 5720 538.9 1.686 1.005 38 460
HLE5-TEZ2 5672 537.8 1.687 1.005 24 384
HLE5-TE6 5670 539.4 1.673 1.005 38 460
HLE5-TE3 5620 537.3 1.634 1.005 24 384
9

and curvatures. This ability is crucial when shallow structures are
considered. Hierarchical Legendre Expansions (HLE) are adopted as
through-the-thickness functions for the local refinement on the nodal
level. In particular, the present advancements enable the use of HLE
with various polynomial orders within the same model. Additionally,
Taylor expansions, including the incorporation of the Murakami Zig-
Zag function, can be applied in the global zone. To demonstrate the
capabilities of this approach, two well-established case studies, homo-
geneous cylindrical and composite spherical shells, are selected from
the open literature. A comprehensive analysis is conducted, considering
various boundary and load conditions, as well as different material
properties.

The outcomes obtained through the developed NDK FEs are metic-
ulously compared with analytical and numerical solutions whenever
feasible. The following concluding remarks can be made:

1. By combining HLE with NDK method, computational efficiency
is enhanced for the analysis of both homogeneous and three-
layer shells;

2. This approach allows the incorporation of two or more different
kinematics (i.e. theories of structures) in the same model, en-
abling the use of various types of polynomials and polynomial
orders;



International Journal of Solids and Structures 289 (2024) 112630E. Carrera et al.

A
t

p
p
f
t

𝐮

𝐹

W
d
a
a
r
c
w

𝑢

Fig. 14. Geometrical meaning of Murakami’s Zig-Zag function.

3. Local kinematic refinement can be implemented without the
need to alter the finite element mesh, providing flexibility in
modeling;

4. Models using HLE-HLE and HLE-TEZ combinations can accu-
rately predict displacement and stress results;

5. Within the Carrera Unified Formulation (CUF), the structural
finite element formulations are compact and do not require
additional coupling or superposition.

However, some drawbacks are present in the NDK method. First, more
degrees of freedom are used if compared to the monolithic low-order
models. Second, the individuation of the ‘local’ zone, which can be
rather cumbersome, and it is problem dependent. In the considered
examples, it was easy to identify the most critical zone. In other cases,
the ‘local’ zone and the loaded one could not be coincident. See Zappino
et al. (2023) for more details. It is shown that the refined zone could be
in several portions of the structures, depending on what the researcher
wants to evaluate.
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Appendix A. Matrix of differential operators and matrix of mate-
rial coefficients

For problems with infinitesimal strains, the explicit form of the
matrix of differential operators, 𝐃, can be written as follows:

𝐃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝜕𝛼
𝐻𝛼

0 1
𝐻𝛼𝑅𝛼

0 𝜕𝛽
𝐻𝛽

1
𝐻𝛽𝑅𝛽

0 0 𝜕𝑧
𝜕𝑧 −

1
𝐻𝛼𝑅𝛼

0 𝜕𝛼
𝐻𝛼

0 𝜕𝑧 −
1

𝐻𝛽𝑅𝛽

𝜕𝛽
𝐻𝛽

𝜕𝛽 𝜕𝛼 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(23)
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⎣ 𝐻𝛽 𝐻𝛼 ⎦
where 𝜕𝛼 =
𝜕(⋅)
𝜕𝛼

, 𝜕𝛽 =
𝜕(⋅)
𝜕𝛽

, 𝜕𝑧 =
𝜕(⋅)
𝜕𝑧

, 𝐻𝛼 = 1 + 𝑧
𝑅𝛼

, and 𝐻𝛽 = 1 + 𝑧
𝑅𝛽

.
It is possible to return to the plate formulation if 𝑅𝛼 and 𝑅𝛽 tend to
infinity. Thus, 𝐻𝛼 and 𝐻𝛽 can considered equal to one, and the matrix
is thus simplified.

The explicit expression of the matrix of material coefficients is
defined as follows:

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 𝐶12 𝐶13 0 0 𝐶16
𝐶12 𝐶22 𝐶23 0 0 𝐶26
𝐶13 𝐶32 𝐶33 0 0 𝐶36
0 0 0 𝐶44 𝐶45 0
0 0 0 𝐶45 𝐶55 0
𝐶16 𝐶26 𝐶36 0 0 𝐶66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

ppendix B. Taylor polynomials and the Murakami zig-zag func-
ion

In this paper, Taylor-based polynomials and Zig-Zag Taylor-based
olynomials are employed as expansion functions for evaluating dis-
lacements across the thickness of composite structures. In the shell
ormulation, 1D polynomials 𝑧𝑖 are used (where 𝑖 is a positive integer)
o construct the Taylor-like expansions:

= 𝐹1𝐮1 + 𝐹2𝐮2 +⋯ + 𝐹𝑀𝐮𝑀 = 𝐹𝜏𝐮𝜏 , 𝜏 = 1,… ,𝑀 (25)

1 = 𝑧0 = 1, 𝐹2 = 𝑧1 = 1, ⋯ , 𝐹𝑀 = 𝑧𝑀−1, (26)

hile Taylor-based models are unable to capture the Zig-Zag effect, the
iscontinuity of the first derivative at the layer interfaces in the ESL
pproach can be addressed by utilizing the MZZF. To facilitate this,
n adimensional layer coordinate 𝜁𝑘 = 𝑧𝑘∕2ℎ𝑘 is introduced, where ℎ𝑘
epresents the thickness of the 𝑘th layer, and 𝑧𝑘 is the layer thickness
oordinate. An example of a Taylor second-order expansion enhanced
ith the MZZF is provided below:

𝛼(𝛼, 𝛽, 𝑧) = 𝑢𝛼1 + 𝑧𝑢𝛼2 + 𝑧2𝑢𝛼3 + (−1)𝑘𝜁𝑘𝑢𝛼4
𝑢𝛽 (𝛼, 𝛽, 𝑧) = 𝑢𝛽1 + 𝑧𝑢𝛽2 + 𝑧2𝑢𝛽3 + (−1)𝑘𝜁𝑘𝑢𝛽4 (27)
𝑢𝑧(𝛼, 𝛽, 𝑧) = 𝑢𝑧1 + 𝑧𝑢𝑧2 + 𝑧2𝑢𝑧3 + (−1)𝑘𝜁𝑘𝑢𝑧4

For the sake of clarity, Fig. 14 illustrates the Murakami function, the
second-order Taylor expansion, and their sum, which results in an
enhanced second model.
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