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1. Introduction

In this paper we study critical points of the following (non-convex) energy functional

E(u, ) ::/\Vu\Q + O, (u) dz, (1.1)

where ¢ € (0,1] is a parameter, Q C RY some open domain, and

D (t) := D(t/e) (1.2)
o fg B(rydr  fort>0
() = {O for t <0, 13)

for some given function § € C2° ([0, +oo)) satisfying

B>0, B(0)=0, B(0)>0, [~B=1 (1.4)

When e = 1, & (u, Q) will be sometimes denoted by &(u, ). The assumption 5'(0) >
0 is made for simplicity, but in all our main results it could be actually replaced by
liminf, o 8(7)7P > 0 for some p € (1,00) —see Remark 2.3.

These type of functional arises in combustion models (e.g. flame propagation) [12,4,
13,27,21], and were studied in detail in the book of Caffarelli and Salsa [11].

Connection to the one-phase problem

Due to the assumptions on ®, as € | 0, the energy & formally converges towards
Eolu, Q) = /|Vu|2 + Y(us0 dz. (1.5)
Q

Critical points of & are solutions to Bernoulli’s (or one-phase) free boundary problem:
u>0, Au=0 in{u>0}, du=1 ond{u>0}, (1.6)

where n is the inwards unit normal to 9{u > 0}. The regularity of solutions and free
boundaries for minimizers of & has been extensively studied in [1,2,6-8,10,15,16,19,20,
24,25] (see also the treatment given in [23]). The convergence of &, towards & as ¢ | 0 is
not merely formal: as proven in [11, Theorem 1.15], sequences of minimizers u., of &,
converge as €, | 0 (and up to subsequences) towards minimizers of the functional &.
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A conjecture “a la De Giorgi”

By the results in [10,19], it is know that every minimizer ug : RY — [0,00) of &
in RY must have one-dimensional symmetry in dimensions N < 4, while this fails for
N > 7 (see [16]). On the other hand if v : RY — R, is a minimizer of £ = & in
RY . then the blow-down sequence u., (z) := exu(z/er), ek | 0, are minimizers of &,
in RY. Since by [11, Theorem 1.15] u., converges (up to subsequence and uniformly in
every compact subset of RY) to some entire minimizer of £, every blow-down of u must
one-dimensional if N < 4. By analogy with De Giorgi’s conjecture for the Allen-Cahn
equation (see for instance [14,22]), Ferndndez-Real and Ros-Oton raised the following

Conjecture 1.1 (/18]). Let N < 4 and u : RN — R, be a minimizer of £ in RN (see
Definition 1.2 below). Then, u must be of the form

¢
V()

u(x) =v(w- -z —1) wherev(t) = w_l(t) for (z):= / (1.7)

for some v e SV and [ € R.
The results in this paper answer positively this conjecture.
Minimizers and critical points

We define next minimizer and critical point of &..

Definition 1.2. Let Q C RY be some open domain ad let € > 0. We say that u. € H} ()
is a minimizer of (1.1) in Q if for every V CC Q and for every ¢ € H} (V) we have

Ee(ue, V) < Ex(ue +€,V).

Definition 1.3. Let Q, N and ¢ > 0, as in Definition 1.2. We say that u. € H} _(Q) is a
critical point of (1.1) in Q if for every V CC Q and for every £ € H} (V) we have

% Ec(us +1&,V) =0 = /ZVUE~V£+<I>’E(UE)£dx:O.
t=0
v

Notice that (after integration by parts) any critical point u. of satisfies
Au. = %(I){g(us)a (1'8)

in the weak sense. Since ® is smooth and bounded, by elliptic regularity and the standard
“bootstrap argument” for semilinear equations, any critical point is locally smooth (with
estimates which degenerate in principle as ¢ | 0) and hence satisfies (1.8) in the classical
sense.
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New results

We describe next the main results of the paper. Our main contribution is the following
rigidity results for critical points of £ in RY which are “asymptotic” to (v - z)4 at very
large scales. In its statement (and in the rest of the paper) we use the following convenient
notation for inclusion of sets: we write “X C Y in Z” when XNZ CY N Z.

Theorem 1.4. Let @ be as in (1.3)-(1.4). There exist constants V1 and Vo depending only
on ® such that the following holds. Let u: RN — R be a critical point of £ in RN,

Assume there exist v € SN~1 and sequences Ry, 1 oo and 0y, | 0 such that
|lu—(v-z)y| <0pRr  in Bg,, (1.9)
and
{v-e <—0pRr} C{u<h}C{u<d}tC{v -z <5Ry} in Bg,. (1.10)

Then u is of the form (1.7).

On the other hand, building on the results of [11, Chapter 1] (and introducing new
ideas) we establish the following

Proposition 1.5. Let ® be as in (1.3)-(1.4) and let ¥ and Y2 be the constants from
Theorem 1.J. Let v : RN — R, be a minimizer of £ in RY which is not identically
0. Then, for every sequence Ry 1 oo there exists a subsequence Ry,, a 1-homogeneous
minimizer ug of & in RN — also not identically zero— and a sequence &, | 0 such that

lu—uo| < 6¢Rk, in Br,,, (1.11)

and

{z : dist(z, {ug > 0}) > 6 Ry, } C {u <91} C {u <V}

(1.12)
C {z : dist(z, {uo = 0}) < 6;Ri,} in Bg,.

Combining Theorem 1.4, Proposition 1.5, and using the classification results for 1-
homogeneous minimizers of & of [10,19] we obtain

Corollary 1.6. Conjecture 1.1 holds true.
2. Overview of the proofs and organization of the paper

The proof of Theorem 1.4 is split into several intermediate steps, some of them having
independent interest. The main step (and our main contribution) is establishing an
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“improvement of flatness” result for critical points of £ that we state below. Before that,
we need to introduce two positive constants ¥; and 5, with ¥; < 95 and depending
only on @, that will appear throughout the paper. Under our assumptions on & —see
(1.2)-(1.4)— we can choose positive constants 1, @2, and ¢, such that the following
holds:

{@:0 in (=00,0], @®=1 in[v,00), 2.1)

iu <1d'(u) <cru, Vue[0,9].
We can now give the statement of our “improvement of flatness” result.

Theorem 2.1. Let ® be as in (1.3)-(1.4) and let ¥1 and Y2 as in (2.1). Fix v € (0,1).
There exist constants 69 > 0 and g € (0,1/4) depending only on N and ®, such that
the following holds. For every R > 0, every & € (0,68, every e/R € (0,52), and every
critical point u. of (1.1) in Br C RY satisfying

UE(O) S [1918,’[926] (22)
and

ue(x) —xy <JR in BgrN{uc > 9}

—0R <u.(z) —xn in Bpg, (2:3)
there exists v € SN~ such that
uc(z) —v-x <80y "R in Byyp N {uc >V}
—600 R <uc(x) —v -z in Bgyr (24)
with
v —en| < V2NGS. (2.5)

Let us discuss some key aspects in the statement of Theorem 2.1:

Assumption (2.2) must be though as the analogue of asking 0 to be a free boundary
point in the one-phase setting (¢ = 07). Indeed, on the one hand it follows from the
definition of 95 that u. is harmonic in {u. > ¥2¢}. On the other hand, using the definition
of ¥; we will show (cf. Lemma 3.6) that u. has “exponentially small size in €” inside
{us < ¥1e}. Consequently, the “fat hypersurface” {e < u. < ¥2¢} is really analogous
the free boundary in the one-phase setting.

Assumption (2.3) and conclusion (2.4) must be thought, respectively, as a d-flatness
property of u. at scale R > 0 and a (o]d)-flatness property at scale goR. In our frame-
work this turns out to the appropriate notion of é-flatness. As it is customary, the
flatness is a dimensionless parameter: Roughly speaking, it measures the ratio between
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min,cgn-1 dist ({016 < ue < ¥2e} N Br,{e-2 = 0} N Bg) and R. With respect to [15],
we remark that in (2.3)-(2.4) inequality from above is not required to hold in {u. > 0},
but only in {u. > 1} (otherwise the result would be empty since non-zero solutions to

our semilinear PDE are everywhere positive!).

The conclusion of the theorem can be phrased as an “improvement of flatness”: if u.
is 6-flat at scale R (for small values of ¢ and §), it is (gd)-flat at scale g R.

We now say a few words about the proof of Theorem 2.1. In some sense, this proof is an
“interpolation” of the proofs of De Silva in [15] and Savin in [22] (although an additional
“sliding method” step in the spirit of Berestycki, Caffarelli, Nirenberg [3] is also needed,
by similar reasons as in [17]). Indeed, our goal is to generalize the proof of De Silva [15]
for the one-phase free boundary problem to the setting of critical points of & (-, RY)).
But since we need to go from a scaling invariant problem to a non-scaling invariant
semilinear problem, there is an obvious analogy with what Savin did in his celebrated
paper [22]. In this work Savin proved a version of the De Giorgi’s improvement of flatness
for area-minimizing hypersurfaces (a scaling invariant problem), in the framework of
energy minimizers of the Allen-Cahn equation (a semilinear PDE).

Both Savin’s and De Silva’s proofs follow a “small perturbations” approach (lineariza-
tion around flat solutions). In both cases — although for different reasons— the deviation
between an almost-flat solution and the flat one which best approximates it, is found
to be an “almost-harmonic” function. Further, in both proofs, the quadratic decay of
harmonic function towards their linear Taylor expansion is somehow transferred to the
almost-flat solutions in order to obtain the improvement of flatness property. To accom-
plish this, both proofs use a delicate compactness argument, where deviations converge
in CY towards some limit function which is proved to be harmonic in the viscosity sense.
This type of argument requires some C estimate, or improvement of oscillation esti-
mate, which guarantees the compactness in C° (via Arzela-Ascoli) of the sequences the
deviations.

In our proof we also need such improvement of oscillation estimate, and finding an
appropriate statement we could use in our setting turned out to be not easy at alll
Indeed, in a first “naive approximation”, one could try to extend De Silva’s improvement
of oscillation ([15, Theorem 3.1]) to the semilinear setting as follows:

Lemma 2.2. Let v, be the solution of (1.8) in R satisfying v.(0) = Y1 (see Lemma 3.1,
part (i)). There exist dg,co € (0,1) and 0y € (0,1) depending only on N, ® such that

the following holds. For every R > 0, every § € (0,0g), every a € R and b < 0 such that
a+ bl =9dR, every e/R € (0, cd) and every critical point ue of (1.1) in Br satisfying

ve(xy —a) <wu.(x) <v.(xy —b) in Bg, (2.6)

there exist a’ € R, b’ < 0 such that
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ve(zny —a') <ue(x) <ve(any —b')  in Bpya,
b<b <d <a,

a + || < bp(a+b|).

Lemma 2.2 is true.! Unfortunately, it seems useless: the reason is that we cannot
s

exclude the existence of minimizers £ in Bar which are qg5-close to (zn)4 —with e >0
and ¢/0 arbitrarily small— but failing to satisfy (2.6).

Lemma 6.3, where the d-shifts of v. are replaced by d-shifts of two suitable 1D super-
and subsolutions, is the right replacement to the previous naive statement. We construct
these useful super and subsolutions in Lemma 3.1 part (ii) and (iii). Since they play a
very important role in the paper, we devote the entire Section 3 to the classification of
1D (super- and sub-) solutions and the study of their properties. We do not give yet the
statement of Lemma 6.3 because such preliminaries are needed.

Let us remark that this notion of J-flatness consisting in “being trapped” between
d-shifts of 1D super and subsolutions is essentially equivalent to the notion (2.3) when
e € (0,6%) —this is actually the reason behind this nonlinear relation between e and
0 in the statement of Theorem 2.1. Definition 6.1 and Lemma 6.2 establish this essen-
tial equivalence, when ¢ € (0,52), of the these two notions of flatness which are used
throughout the paper.

Last, but not least, in order to prove Theorem 1.4 we need to be able to apply our new
improvement of flatness result (Theorem (2.1)) to u. := eu( - /e) where u is a minimizer
of & in RN, N < 4. To do so, first we need to show that the assumption (2.3) will be
satisfied —for some § = §p and R = 1— when ¢ is taken sufficiently small. This part
essentially combines previous results in [10,19] and [11] (although some improvements
are needed) and it is contained in Section 4. However there is an important difference
with respect to [22] that is related to our assumption £/R < §? in Theorem 2.1. Indeed,
in contrast with the Allen-Cahn setting (where € and ¢ are comparable and the analogue
of Theorem 1.4 is a corollary of the improvement of flatness), in our setting Theorem 1.4
does not follow as a direct consequence of Theorem 2.1. The reason is the following:
suppose you want to apply Theorem 2.1 iteratively (in balls of radius Rog l) to an entire
minimizer u of &, starting from a huge ball Bg (for which w is dg-flat). Then, at a
mesoscale 1 < R’ < R the flatness will have improved to § = (R'/R)7dy. So, if we want
to continue applying Theorem 2.1 to u in Brs, we must check that 1/R’ < (R'/R)*Y6?
(since € = 1) and hence, we will always reach a critical mesoscale R’ = CR™% for which
we cannot continue iterating. To solve this, we need an additional “sliding method” step
in the spirit of Berestycki, Caffarelli, Nirenberg [3]. This last step follows the ideas of
[17] and is done in Section 7.

1 By a small modification of the proof of Lemma, 6.3.
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Remark 2.3. We assume 3'(0) > 0 for simplicity, although this assumption is not really
necessary. Indeed, our same proofs gives almost identical results if the assumption 3'(0) >
0 is relaxed to liminf, o A(t)t~P > 0, for some p > 1.

More precisely, Theorem 2.1 can be proved under this more general condition, up
to assuming e/R < 9 (instead of ¢/R < §%), for some suitable ¢ = g(p) > 2. The
reason for this change is the following: while 8’(0) > 0 implies the exponential decay
increasing 1D solutions at —oo, 5(t) > t¥ gives a slower power-like decay. Accordingly, the
properties of 1D solutions like (3.2) and (3.4) change to similar ones where powers replace
logarithms. Up to this changes, all of our statements and proofs are still valid —with
minor modifications— in this more general framework. The most important modifications
are localized in Section 3 and only propagate to rest of the paper thought Lemma 6.2,
where the size of the error is not /¢/R but (¢/R)"/? (for some ¢ > 2). This is the reason
why we need to assume ¢/R < §¢ instead of £/R < 62 in Theorem 2.1. By the rest, all
the proofs remain essentially the same.

3. ODEs analysis and barriers
In this section we consider the family of second order ODEs
iie = 1®.(u:) inR, (3.1)

and we provide a classification of its solutions, for every € € (0,1) fixed. With respect
to [18, Section 2.3], our ODEs analysis shows finer properties of global solutions such as
(3.2), (3.3) and (3.4), which will be needed later in the proofs our main theorems.

Lemma 3.1. (1D global solutions) Fix € € (0,1) and let ® be as in (2.1). Then:

(i) Equation (3.1) has a unique solution ve with

v:(0) = Wye, lim o.(x) =1,

T——+00

which is implicitly given by

This solution v. is smooth, positive, increasing, convezx, and satisfies ve(x) — 0 as x —
—00.

(ii) For every t > 0, equation (3.1) has a unique solution v: with

v (0) = V1¢, lim of(z) =1+t

r—+o0
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Moreover, vt is of class C?, increasing, convex, and satisfies vi(x) = —oo, v(z) —
V2t + 12 as ¥ — —oo. Also, if zt is denotes the unique root of vt —i.e. the point where
vi(zl) = 0—, then

g

xt > —ey/2¢ log (1 + %), (3.2)

where ¢y > 0 is the constant in (2.1).
(iii) For any 7 € (—1,0), equation (3.1) has a unique solution vI with

vI(0) = v, zEI-;I-loo ol (x) =1—|7].

Moreover, vl is smooth, positive, and satisfies vI(x) — +oo, ¥I(x) — —1 + |7| as
x — —oo. Also, v] has a unique point of minimum y. satisfying

VE e <o) < V2alre, (3.3)

and

¥
Yyl > —ev/2¢ <2 +log ——— >7 (3.4)

\/2|T‘/Cl
where ¢; > 0 is the constant in (2.1).

Proof. After scaling, let us assume € = 1 and set u = u., v = ve, v' = vl and v™ = v7.
Since @’ is bounded, nonnegative and continuous, a local C? solution u = u(x) to (3.1)

with (u(0),4(0)) = (U1, o) exists and it is convex on its maximal interval of definition

I. Using the assumptions on @', it is not difficult to see that I = R. Further, since (3.1)

is invariant under even reflections (zr — —z), we assume gy > 0.

Step 1. Since @ is nondecreasing the limits lim,_, 1, @ exist. Since 1y > 0 we see that
u(z) — +o00 as x — +00. Let us define

lim 4(z) =: A € (0,400).

r——+0o0

Hence, using that the Hamiltonian z — @(z)? — ®(u(z)) must be constant (and ®(u) = 1
for u > 0 large enough) we obtain

w(z)? — d(u(z)) = A2 -1, zcR. (3.5)

Step 2. Let us classify first monotone solutions: assume lim,_,_, @ > 0 and hence
%> 0 in R. In this case (since ® = &' (u) = 0 for u < 0) we obtain that either

wgrzloou(x) =0 and wgrzloo u(z) =0
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or

lim u(x) =—00 and lim u(x)=: B € (0, A).

r—r—00 Tr——00
From (3.5), we obtain that in the first case A = 1, while in the second one we have
A2 - B? =1,

and hence A > 1.
Now in the first case integrating (3.5) —with A = 1— we get

v(x)

dw
/ o) =z -y, (3.6)

v(y)

for every y < x and so (i) follows. The solution in (ii), is obtained in the case A =1+t
so B2 = A2 — 1 = 2t +t2. To complete (ii) we are left to show (3.2). Integrating (3.5)
between x' < 0 (the root of v*) and 0 (recall v*(0) = ;) and using (2.1) we obtain

191 '191
O—xt:/ dw S/ dw
VO(w) + 2t +¢2 [ L2 4+ 9t 4+ ¢2
0 0 2cq
T d 9
§\/201/—w:\/26110g l—i——1 .
w+1 t
0

Step 3. Let us consider now the case where @ changes sign. If so, there is zy € R such
that a(x) < 0 for z < z¢ and @(z) > 0 for x > 2o (by convexity of u). Since the equation
is invariant under the reflection x — 2xo — x, it follows that u(z) = u(2z9 — x) and thus
lim,_,_ @ = —A. Note that the solutions u = v™ described in (iii) corresponds to the
setting A =1 — |7, with 7 € (—1,0).

To show (3.3), we notice that if y” is the minimum point of v, then 97 (y”) = 0. Thus,
by (3.5), it follows

O (y")) = 2|7| — 72 (3.7)

Using again (2.1) —note that v™(y™) < v"(0) = 91— we obtain

T 2l7| — 72 1
Il 22T L)) < e @lr] = 2) < 26|
c1 c1 2

and (3.3) follows.



A. Audrito, J. Serra / Advances in Mathematics 403 (2022) 108380 11

We are left to prove (3.4). We use now (2.1) to obtain that, for all w € (v (y7), %),

Bw) — 2| + 72 = Bw) 2@ ) = [ H@az 2L
v (y7) (3.8)
= (07~ 0T 2 e (w7 ()
C1 C1

Hence, integrating (3.5) between y” and 0 (recall v™(0) = 1) we obtain

/ \/<I> —2\T|+T2 -

T (yT) v (y7)
91/v7(y7)

d
261 v

Vwvw —1
91/v7(y7)

SM(Z#+ [ =)

-2 <log(3 +2v/2) + log <U:Z;T)>) < \/E<2 + log ﬁ)

In the following remark we introduce important one-dimensional super- and sub-

solutions which will be used in the sequel.

Remark 3.2. Lemma 3.1 gives a classification of solutions to (3.1) in one dimension. The
properties of such solutions are determined by their slopes at infinity, 1, 1 +¢, or 1 — |7,
where t > 0 and 7 € (—1,0) are parameters. As done in Lemma 3.1 it is convenient
to“center” these solutions so that their value at x = 0 is ¥1¢.

In what follows, we will always take

t=c¢, T =—¢
Within this setting, we define
R 0 if v <at ey Juat(erE) ifa<yo®
T S o P
vi(z) if x> ag, v () if x > y=F,

where z€ and y_ ¢ are, respectively, the (unique) root of vZ and the point of minimum of

—€
e -

It is immediate to see that w: and w_© are, respectively, a sub- and a super- solution

v,

of (3.1), both in the viscosity sense or in the weak sense.
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The next two lemmata are auxiliary results, which will be crucial in the proofs of our
main theorems (see Section 6). In the statement of the next lemma we use the following
standard notation diam(X) :=sup X — inf X for subsets X C R.

Lemma 3.3. There exists ¢ > 1 depending only on ¥1, Vo and ¢; > 0 as in (2.1) such that
diam ({016 < wi < Vse}) < ce, Ve > 0,
and
. e 9?2
diam ({916 < w7 ® < ae}) < ce, Ve € (07 ﬁ)
Proof. By scaling, we need to prove that w® := w§ and w™° := w; © satisfy

(i) diam ({1 < w® <) <
)

&
(ii) diam({¥; < w™° <) <c.

To prove (i) wee notice that (3.5) reads as (1°)? = ®(w®) + 2¢ + €2 in {w® > 0} and
so, by (2.1), we find

% <o) < (@) in {01 < wf < D).
Integrating between y and z, it follows

w(x) — w(y) > S (z —y).

- c1

ﬁ

So, choosing = such that w®(x) = ¥3, y = 0 and recalling that w®(0) = ¢;, we find

%x < 95 — we(0) =92 — 94, and (i) is proved.
o

To prove (ii) we use again (3.5): (0 ~¢)? — ®(w~°) = —2¢+£2. Hence, for € € (0, E)’
we find

2
1

()2 > B(w ) — 26> 2 2> 2L >0, in{d) <w <),

which allows us to conclude similarly as for (i). O

Lemma 3.4. For every o € (0, 1), there exists eg € (0,1) depending only on 91, 92, ¢; > 0
n (2.1) and o, such that for every 6 € [0,1) and every e € (0,e9), if ws and w; < are as
in Remark 3.2, then:

(i) If 2% is such that v:(x%) =0, then
wi(x—6—¢e)+6+3e"<a, ax€(xi4+0+e%,1)

(3.9)
wi(zx+6+¢e”)—6—3e% >z, wxe(-1,1).
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(i) If y=¢ is the minimum point of vZ¢, then

w S (x—6—¢e7)+6+3" <z, weE(Y +6+¢%,1) (3.10)
we (@ +0+e%) 037 2w, we(-11). |

Proof. Let us prove part (i). To simplify the notations, we set w® := w¢ and z. = a=.
Let £ > 0 > z. such that w®(Z.) = ¥2e, hence w® is linear for * > Z.. Then if
x € (Ze +0+¢€7,1), we have

wi(x—0—e")—w=vwe+(1+e)(vr—0—-¢"—2.)—x
=Wa+xz)e—(14+e)(d+e%)— (1+¢)i.
g(ﬁg—l—l)e—s"—ég—é—%a",

for every e < g¢ < [2(2 + 1)]ﬁ, while if x € (x. + 0 +¢€7,%. + § + ), we obtain by
(3.2) (with t = ¢)

w(r—0—e")—x < — (xc+ 6+ &7%) < voe + Ce|loge| —§ —e”

< -6 — 3%,

taking eventually g9 smaller. Notice that the constant C' > 0 depends only on 97, and
a1 (cf. (3.2)).

To show the second inequality in (3.9), we assume first  + ¢ + ¢ > &, and we notice
that, since . € (0,ce) (where ¢ > 0 is as in Lemma 3.3), we have

w(r+d+e’)—x=ve+(14+e)(z+5+e” —3.)—x
25+€U—i‘5+5(3§+5+60—1~35)254-60—66254-%60,

provided that g¢ is small enough. Further, since Z. < ce, when z < Z. — § — € we have
2 <0, and the second inequality in (3.9) follows.

g

To show (ii), we set w™¢ = w_ ¢, y. = y- ¢, and we take . such that w°(g.) = Jae.

The proof of the first inequality works exactly as before, using (3.4) instead of (3.2). To
show the second, we assume first € (§. —d —€7, 1) and, recalling that g. < ce, we write

w(x+d+e?)—ax=te+(1—-e)xz+d+e” —G.)—x
=Wy —x)e+(1—-e)(0+%)— (1 —¢e)g.
>64+(1—e)e” —(14+c)e—ed >+ 2e7,

taking eventually g9 smaller. As above, if x < §. — J — €7, then x is negative and the
inequality is automatically satisfied. O
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We end this section by proving that solutions u. to (1.8) decay exponentially fast
inside {u. < ¥1e} as € — 0. This is a main fact we will use later in Section 6 (see for
instance Lemma 6.2). This decay is obtained in Lemma 3.6 using a sliding type argument
based on the continuous family of super-solutions constructed in the following lemma.

Lemma 3.5. Fiz c; > 0 as in (2.1) and ¢ := i For every e € (0,1), 0> 0 and R > p,
let
1 — B = (r—0)

— — o E(R-1) He R 3.11
QD(T) SDE,Q,R(T) . € 1_ /4_+e— [ (R—Q)7 e [Qv ]7 ( . )
H—

€

where py are defined by
pe = —Node b J(Ao1y ez 4 2, (3.12)

Then, for every xo € RN and o > 0, the function

o(0) in By(zo)
o . _ 3.13
V(@) = e R (@) {w(lm —xo|)  in Br(xo) \ By(wo) o
satisfies
~AY+ L9 > 0 in Br(ao)
p=1 in OBR(w0) (3.14)

arw Z 0 mn BR(‘TO)v
in the weak sense.

Proof. Up to translations and scaling, we may assume zo = 0, € = 1 and set ¢ = ¢1,
1 = 1. Notice that if p = R, we have ¢» = 1 in Bg (i.e. p = 11in (0, R)) and (3.14) is
trivial.

If 0 < o < R, since ¢(p) > 0 and p(R) = 1, it suffices to verify that the differential
inequality in (3.14) is satisfied in Bg \ B, with ¢'(¢) =0 and ¢’ > 0 in (g, R).

To see this, we notice that if r € (o, R) and ¢’ > 0, then

"

—Ap+Pp=—¢" = FLy/ 4 2o > o — By + P2,

and so, it is enough to check that

"= FRY +Pp=0  in(oR)
o >0 in (o, R)
¢'(0) = 0.
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Integrating the equation above, we easily see that
o(r) = Ae*+t" + Be*~" r e (R/2,R),

for some suitable constants A, B € R, and p4 as in (3.12). Imposing that ¢'(¢) = 0 and
o(R) =1, we deduce

= 1 B = — £t olpt—n-)e g
"

el+R(1 — Bt o—(ptr—p-)(R—0))’
n—

and, substituting into the expression of ¢, (3.11) follows. Checking that ¢’ > 0 in (g, R)
is a straightforward computation. 0O

Lemma 3.6. There exists eg € (0,1) depending only on N and c¢1 such that for every
e € (0,e9), every solution u. to (1.8), every xg € {ue < ¥1e} and every ball Bsja(xg) C
{u < ¥Y1e}, then

c—1/4

T2
ue < 3ee a1

mn Bﬁ (1’0) (315)
2
Proof. Fix R > 0 and zg € {u < ¥¢} such that Br(zg) C {u < ¥1e}. Let ¥, := e o Rz
be defined as in (3.13), satisfying (3.14), and let 1, := 1€,
If o = R, then ¢ = ¥,¢ satisfies (3.14), with ¥ > u. in Br(zo). Setting v := g —u,
and recalling that Br(zg) C {u < ¥;1¢}, we obtain

—Av+ v = —Adg + Lavr + Au— Zru > Au— $8L(u) =0,

and thus

—Av + Cl%v >0 in Br(zo)
v Z 0 in BR(.’L‘()).

By the strong maximum principle, v > 0 in Bgr(xo) (it cannot be v = 0 since ¥g is a

strict super-solution), that is ¢g > u. in Br(x¢). Now, let

0« =inf{p € (0, R] : ¢, > u. in Br(zo)}.

We have g, = 0. If by contradiction, g, > 0, we may repeat the above argument setting
v :=1,, — u. and noticing that v > 0 in Bg(zo) with v(zx,) = 0, for some z, € Br(xo).
Since by construction Br(zo) CC {u < 91}, ¥,, = V16 on dBg(20), and ¢, is radially
increasing near the boundary of the ball, it must be x, € Br(zo). Thus using the linear
equation for v and the strong maximum principle either v = 0 or v > 0 in Bg(xg). Since
both scenarios are impossible, our contradiction follows.
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In particular, we have g, < % and so, u. < ¥g/o in Br(zo). Now, choosing R = g3/4,

taking 0 = £ in (3.11) and using (3.13), we obtain

_
Ue < 5191(,063/4/2(63/4/2) < 5’191( — Z'_Jr) e 29z in B€3/4/2(.’IJ0),

where p4 are defined in (3.12) (with R = £3/). Since puy — i%l as ¢ — 0T, there is
€0 € (0,1) (depending only on N and c¢;) such that py > 1/(2/c1) and —pq/p— < 2
for every € € (0,¢0) and thus (3.15) follows. O

4. Lipschitz and non-degeneracy estimates
We recall now a useful Lipchitz estimate from [11].

Proposition 4.1 (Uniform Lipschitz estimate; see [11, Theorem 1.2]). For any V CC By,
there exists C > 0 depending only on N, L, U5 and V such that for every e € (0,1) and
for every critical point ue of (1.1) in By with u.(0) < ¥2e we have

sup |[Vu.| < C. (4.1)
%

We also need a non-degeneracy estimate related to [11, Theorem 1.8]. Our estimate is
stronger since balls B,.(z) do not need to be centered at some point in {u > Ce}, with
C' large, and can be centered at any point in {u. > e}

Lemma 4.2 (Uniform non-degeneracy). There exists €9 € (0, 1) depending only on 1 and
c1 such that for every k > 0, there exists ¢, > 0 depending only on N, L, ¥ and k such
that for every e € (0,e9), every local minimizer u. of (1.1) in By, every z € {u. > V1€}
and every r > ke such that B,(z) CC By, then

SUP Ue > Ci T (4.2)
B, (z)

Proof. Let us fix k > 0, and assume that ¢ € (0,¢9), u = u., 2z € {u. > e} and r > ke.
Define
w(r) =1 sup w. (4.3)
BT(Z)
Our goal is to prove a lower bound for w, which holds if g is small enough. Up to
translate and scaling, we may assume r = 1 and z = 0. Let 0 := % where ¢ > 0 is the
constant appearing in (4.7) depending only on N and ¢;.

Step 1: Estimates. Let ¢ € C3°(B1), 0 < ¢ < 1, with ¢ = 1 in By/g. Assume also

Vel <en,  [Ap| < en, (4.4)
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for some cy > 0. Testing the equation of u with 1 = ue?, it is not difficult to find
/ [[Vul® + 1@ (u)u] p* da = %/U2A((p2) dz,
Bl Bl
which, since ®.(u)u > 0 implies
/ |Vu\2dx < cN/u2 dz, (4.5)
Br/s B,

for some new cy > 0.
Now, let ¢ € C®°(RY), 0 < ¢ < 1 with ¢ = 0 in B3/y and ¢ = 1 in RN\B7/8,
satisfying (4.4). Taking v = ¢u as a competitor for u, we deduce

/ Do (u) — Do () dz < / IV (ud)? — [Vuf? de

By

g/(¢2_1) IVl da + 2 / 2|Vl do + / Vul26? da

B, Br/s Brys

<cn / |Vul? +u? d,

Bz7s
for some new ¢y > 0 and so, recalling that ¢ <1, ®. > 0 and using (4.5), it follows
/ O, (u)dx < /@E(u) — P (¢pu)dx < cN/u2 dz.
B34 B1 By
In particular, by the definition of w, we conclude
/ @, (u)dz < eyw(1)?, (4.6)
B3 /a

for some new cy > 0.

Step 2: Decay of w. Note that for all y € By, since u is subharmonic, we have

u(y) < ][ UdJISCN/udx:cN / udx + / udzx |,

Bi,4(y) B3,y Bs/aN{u>t} Bg/sN{u<t}

for every t > 0. Recalling that ® is nondecreasing, there holds {u > ¢t} C {®.(u) > ®.(¢)}
and, using that ®.(¢t) > i(t/s)2 for t € (0,9:1€] combined with (4.3), it follows
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/ wdz < w(1) / dz < w(1) / da

Bz an{u>t} Bsan{u>t} B3/ an{®Pe(u)>®c ()}
€\2 £\2
< cw(l) (;) / O (u)dx < cren (g) w3(1),
B3,y

where the last inequality is a direct application of (4.6). Substituting into the inequality
above, we deduce

2. 2
u(y) <cn [ClcN (%) w3(1) +t] <c [(i) Ww3(1) + t} ’
for some ¢ > 0 depending only on N and c;, and so, by the arbitrariness of y € By /s,

3

w(3) §c[(¥)2w3(1)+t] (4.7)

Setting ¢ := min{max{e,w(1)}}*29 91}, we have that ¢ < ;¢ thanks to the definition

of €. So, using that o = 1,

we may re-write (4.7) as
w(%) < cmax{e,w(1)}' 2. (4.8)

Let us now assume by contradiction that we have ¢ < wy and w(1) < wy, for wy €
(0,1/4) sufficiently small so that (4.8) implies

w(1) < max{e,w(1)}'*7.

After scaling (applying the above inequality to u.(rz)/r), we obtain provided e/r €
(O,Cdo),

w(5) < max{e/r,w(r)}' .
Iterating the above inequality, we obtain that whenever 2¥¢ < wq, we have either

() w@F) < @) or (i) w@ ) <w1)t)"

for all £ € N. Finally, choosing

k= Dogz(s_lﬂ)],

we have 27% < £1/2 < 27%+1 and hence 2Fe < 26172 € (0,wy), provided € € (0,g0) with
go > 0 sufficiently small.
Hence, recalling w(1) < wy < 1 and that by assumption 0 € {u. > 9,1}, we have

max{(28¢)177 (1/4)1F)"} > (27F) 1= 2% sup u > ¥4¢'/2, (4.9)
By i



A. Audrito, J. Serra / Advances in Mathematics 403 (2022) 108380 19

which clearly gives a contradiction if € € (0,eq) with gy chosen sufficiently small (since
(2ke)1+o < (2e1/2)140 « £1/2 and (1/4)1+9)" « 4=k < /2256 1 0). O

5. Proof of Proposition 1.5

This is section is devoted to the proof of Proposition 1.5. It will be obtained as a
corollary of the following result, which is its equivalent version in terms of blow-down
families.

Proposition 5.1. Let ® be as in (1.3)-(1.4) and let ¥, and 99 as in (2.1). Letu : RN — R,
be a minimizer of € in RN not identically 0, with 0 € {91 < u < ¥a}. Let {ej}jen be
a sequence satisfying €5 — 0 as j — 400 and let uc, be the corresponding blow-down
family.

Then for every a € (0,1), there exist sequences €j,,0¢ — 0 and a 1-homogeneous

entire local minimizer of (1.5) ug € W,u>°(RN) — also not identically 0 — such that

|u6u —up| < in By, (5.1)
and

{z dist(z, {ug > 0}) = 6¢} C {ue,, <Vig5,} C {ue,;, < agj, }

(5.2)
C {x : dist(z, {up = 0}) < &} in By,

for every £ € N.

The above statement will follow as a byproduct of several auxiliary results, having
independent interest: in Lemma 5.2 we prove that families of minimizers of (1.1) converge
(in a suitable sense, up to subsequences) to a minimizer of (1.5), while in Lemma 5.3
and Corollary 5.4 we deal with the convergence of the level sets of u.. Proposition 5.1 is
a consequence of these facts and a Weiss type monotonicity formula (Lemma 5.5).

Lemma 5.2. Let R > 0 and {uc,}, €5 | 0, be a sequence of minimizers of (1.1) in Br,
with € = ¢;. Assume u.,;(0) < U2e;. Then, up to subsequence, we have

ue, »ug in H..(Br)NCo(Br), foralla € (0,1), (5.3)
as j — 400, where ug € W °(Bg) is a minimizer of (1.5) in Bg.

Proof. By scaling we may assume R = 1. By Proposition 4.1, the family {u.}.c(,1) is
uniformly bounded in Wl{)fo(Bl) So, by the Ascoli-Arzela theorem, for every a € (0, 1),
there exists ug € W,2>°(By) and ¢; — 0 as j — +0o such that ue; — ug in Cf}.(By).
Furthermore, since in addition each wu. is subharmonic and {u.}.c(,1) is uniformly
bounded in L?

ibe(B1), we deduce ue;, — wug in Wltml (B1), up to subsequence (see for
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instance [5, Lemma A.1]). Consequently, since u.,ug € Wlf)fo (B1) we deduce u.; — ug
in H} _(Bj) by interpolation and (5.3) is proved.

Now, let us set for simplicity u := up and u; := ue,. Let us fix V' CC B; and show
that

Eo(u, V) <liminf & (uj, V). (5.4)
Jj—+oo

Indeed, by H, lloc convergence, it is enough to check that

Jj—+oo
|4 |4

/X{u>0} dz < lim inf/@sj (uj)de. (5.5)

To show (5.5), we first notice that ®. (u;) — 1 in {u > 0}. Indeed, if 2 € {u > 0}, that
is u(x) > €, for some €; > 0, then u;(z) > €, /2 > 0 for all j large enough. Now, by the
monotonicity of ®, &, (e,/2) < ®.,(u;(x)) for j large enough and thus, by definition of
¢,

1= lim & (e,/2) < limsup @, (u;(z)) < 1.

j—=+too j—+oo

Consequently, by Fatou’s lemma

Jj—r+oo Jj—+oo

/x{u>0} dz = / dz < liminf / P, (uj) dr < lim inf/@sj (u;) de,
1% Vn{u>0} Vn{u>0}

and (5.5) follows.
Once (5.4) is established, let us fix V := B,, r < 1, £ € C°(V), and ¢ € C>(B,)
vanishing on 0B, with ¢ > 0 in B,. Since u; is a local minimizer, we have

8& (uj7 V) < 5&j (uj + § - &pv V)a (56)

J

for all j € N and § > 0. Since u; — u in H'(V'), we immediately see that
/|V(uj +€) —5V<p|2dx—>/\v(u+§) — 6Vp|*dz (5.7)
4 v

as j — +o0o. Now, if x € {u+ & — dp > 0} NV, there is €, > 0 such that u(z) + &(x) —
dp(x) > €, and, since u; — u locally uniformly, it must be u;(x) + &(z) — dp(x) > €,/2
for every j large enough. Consequently, by monotonicity,

1= lim &, (e,/2) < limsup @, (uj(z) 4+ &(w) — dp(x)) < 1.

Jj—rtoo j—+oo
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Similar, whenever z € {u+ & — dp < 0} NV, then u(x) + &(x) — dp(z) < —¢, for some
€z > 0 and so uj(z) + &(z) — dp(x) < —€,/2 for every j large enough, which implies

0 < @, (uj(x) +&(x) — dp(x)) < Oy (—€a/2) =0,
when j is large enough. On the other hand, for and every m € N, we have?
Hu+&—30p =0}NB,_1/m| =0 foralléec E, C(0,1), where |(0,1) \ E},| =0. (5.8)
Consequently, since | Uy, ((0,1) \ En)| =0,

Hu+&—0p=0}NB.|=0 forae. 6€(0,1), (5.9)
and we deduce that for a.e. § > 0, ., (u; + & — 09) = X{ut+e—sp>0} a-e. in B, as
j — +oo.

So, putting together (5.4), (5.6), (5.7), noticing that {u + & — dp > 0} C{u+¢& > 0}

and passing to the limit as j — 400 by means of the dominated convergence theorem,
we find

Eo(u, V) < / IV (u+ &) = Vol + X{ute—sp>0p da
%

< E(u+& V) +20|V(u+ 2 IVellz vy + 02 1Vell iz,

for a.e. § > 0. Finally, passing to the limit along a sequence 6 = 0 — 0 for which (5.9)
is satisfied for every k € N, we find E(u, V) < E(u+£,V) and the thesis follows by the
arbitrariness of B, CC By and £ € C§°(B,). O

Lemma 5.3. Let R > 0, {uc}.c0,1) and ug as in Lemma 5.2. Then, for every 9 > ¥,
there exists a sequence €; — 0 such that

{ue; > e} — {uo > 0}  locally Hausdorff in Bg, (5.10)
as j — +oo.
Proof. By scaling, we may assume R = 1. Fix o € (0,1) and ¢ > ¢;. Set u = wy,

uj = ue,;, Uj := {ue, >VJe;} N By, Q:= {u > 0} N B,, and notice that by assumption
0 € Q°. We first show that for every z € Q and every » > 0 such that B,.(z) CC By, then

sup u > g, (5.11)
B, (z)

2 To see this, it is enough to apply the Coarea formula to the function ”ng, which is Lipschitz in B,._1 /p,-
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where ¢ > 0 is the constant appearing in Lemma 4.2 for k = 1/2. Given such z € Q and

r > 0, we take y € B, /3(z) such that u(y) > 0. So, by uniform convergence, y € U for

J large enough (and thus u;(y) > ¥1€;). So by (4.2) (with £ = 1), there is 2; € B, /2(y)

such that w;(z;) > §r. Now, up to passing to a subsequence, z; — z € FT/Q(y) as

J — oo and thus, by Cj convergence, u(x) > $r and (5.11) follows since z € B, (z).
Now fix ¢ > 0, and define

Q= {x : dist(z,Q) < o}, Ujo = {x: dist(z,U;) < o}.

Let us show that U; C Q, for every j > j,, for some j, large enough. Indeed, assume by
contradiction there is a sequence z; such that u;(z;) > d¢; > 1€, but z; ¢ Q,. Then,
by (4.2), there is j, such that
uj(z;) ;== sup u; > $o,
Bs2(z5)

for every j > j, and some z; € FU/Q(zj). In addition, up to passing to a subsequence,
zj = 2z, ; =« € Byya(z) CC QF, and u;(x;) — u(x) as j — +oo, by CjZ_ convergence.
Since u(xz) = 0 by construction, we obtain a contradiction.

We also have Q C Ujo for every j > j,. Indeed, assume by contradiction there is
zj € Q such that z; ¢ U; . Then, by (5.11), there is 2; € B, /2(z;) such that u(z;) > <o
while, by construction, u; < ¥e; in EU/Q (zj). So, since z; — z, x; >« € EU/Q (2) (up to
a subsequence), we have fo < u(x) < 0, a contradiction. The limit (5.10) follows from
the arbitrariness of ¢ > 0. O

Corollary 5.4. Let R > 0, {uc}oc(0,1) and ug as in Lemma 5.2. Then, for every ¥ > 9,
there exists a sequence €; — 0 such that

{ue, <5} = {uo =0}  locally Hausdorff in Bg, (5.12)
as j — +oo.

Proof. It is enough to apply Lemma 5.3 and noticing that {u., < dJe;} = {u., > ve;}¢
and {up =0} = {up >0}°. O

Lemma 5.5. Let u be a nonnegative entire local minimizer of (1.1) with e = 1.
Then, for every xo € RN, the function

r— W(u,z0,7) =1 / |Vau|? + ®(u)dx —r 17V / u?do (5.13)

By (z0) 0By (o)

is well-defined in (0,00) and satisfies
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d 2
EW(U’ zo,7) = 2r N / (3nu — %) do +r 17N / ud’(u) do, (5.14)
OB, (x0) B (z0)

where Opu = Vu - n and n is the outward unit normal to 0B, (xg). In particular, the
function r — W(u, zo,7) is non-decreasing.

Proof. We follow [26, Theorem 2]. Note first that under our assumptions u is a critical
point of [ |Vu|+ ®(u) with ® of class C'+'. Hence u satisfies a semilinear equation of the
type Au = f(u) with f Lipschitz. Hence, by standard elliptic regularity and “semilinear
bootstrap” we have u € Cﬁ)f‘ (R™). This qualitative regularity is enough in order to justify
the computations below.

Fix zo € RY and let u, () := w Then
W(u, xg,r) = /|Vur|2dx+/(1>(rur) dz — / u? do.
B1 By 9B1
Noticing that r%ur = Vu, - ¢ — u, and using the equation of u,, we obtain

dir/|Vur\2dx: %/VUT'V(VUT-w—uT)dx
B,

B,

:—%/Aur(VuT-g:_ur)dx—i—% /(Vur-x)(Vu,.x—ur)do

By B,
=— / @' (ruy)(Vu, - @ — u,) do + 2 / (Vu, - 2)(Vuy - ¢ — u,) do.
B, 9By

Similar,

d%“ (B/q)(ruT) dz :/(I)’(rur)(Vur -z) dz,
d

uldo = —2 / ur(Vuy -z —u,) do.
831 831

dr

Summing and rearranging terms, we find

%W(u,xo,r) = % / (Vi -z —u,)? do + % /ur I1/r(“r)~
9B, B

Changing variables x — *=*¢, (5.14) follows. O
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Proof of Proposition 5.1. By scaling, {u.,};en is a family of minimizers of (1.1) in RY
and thus, by Lemma 5.2, Lemma 5.3, Corollary 5.4 and using a standard diagonal argu-
ment, we deduce the existence of sequences ¢, = ¢;,,6; — 0 and a minimizer ug of (1.5)
in RY with 0 € d{ug > 0} such that (5.1) and (5.2) are satisfied. The fact that wg is
nontrivial follows by uniform non-degeneracy (Lemma 4.2).

We are left to show that ug is 1-homogeneous. To see this, we use Weiss’ monotonicity
formula. For every € € (0, 1), we consider the function

= We(ue,r) i=r= / |Vue|? + @ (u) do — 1N / u? do.
OB,
Noticing that W, (u.,r) = W(u,r/e), we easily compute
d 1d e\ 2
%Ws(ug,r) = g%V\/(u,r/s) =or N / (Bnu6 - u7) do + r_l_N/u5<I>’s(u€) do,
8B, B,
and thus, integrating and neglecting the second term in the r.h.s., we deduce

W(u, R/e) — W(u, 0/e) > / N 8 Ue — % dodr, (5.15)

’I"

for every 0 < o < R fixed. On the other hand, since u is globally Lipschitz and ® < 1,
we have

W(u,r) < r N / \VuE\Q + @ (ue) dr < en (14 || Vul| g ryy) < 400,  Vr > 0.
B,

This, together with the monotonicity r — W(u,r), yields W(u,r) — [ as r — +o0, for
some [ < 400 (depending on u). Consequently, taking e = ¢, and passing to the limit as

¢ — +oc in (5.15), we obtain by H}  and Cj_ convergence
7 2
/riN / (8nu0 — @> dodr = 0.
T
e 0B,

By the arbitrariness of ¢ and R, it follows 0,ug = %% in 9B,., for every r > 0, that is, ug
is 1-homogeneous. O

Proof of Proposition 1.5. Let {R;};en be any sequence satisfying R; — 400 as j —
+00, and let ¢, := R% Let &5,, 0, ue;, and ug as in Proposition 5.1 and Rj, := 1. Then,
since ug is 1 homogeneous, (1.11) and (1.12) follow by scaling back to u into (5.1) and
(5.2). O
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6. Improvement of flatness

This section is devoted to the proof of Theorem 2.1. As mentioned in the introduction,
its proof can be regarded as a suitable “interpolation” of the methods by De Silva [15] and
Savin [22], and requires some auxiliary results: a uniform Hoélder type estimate given in
Lemma 6.3 and Lemma 6.4, and a compactness result provided by Lemma 6.5. Further,
we will crucially use the 1D solutions studied in Lemma 3.1 and their truncations (cf.
Remark 3.2).

Definition 6.1. Let u. be a critical point of (1.1) in Bg C RY.
o We say that u. satisfies Flat, (v, 0, R) if

ue(x) —v-x <SR in BprN{u. > e}

6.1
—0R <u.(z)—v-=x in Bg. (6.1)

o We say that u. satisfies Flaty(v, d, R) if
wi(v-x —I0R) <us(zr) <w °(v-z+dR) in Bp. (6.2)

Lemma 6.2. There exist £9,00 € (0,1) depending only on ¥1, ¥ and ¢; > 0 as (2.1),
such that for every R > 0, every v € SN71, every /R € (0,2¢), § € [0,80) and every
critical point u. of (1.1) in Bg, we have

ue satisfies Flaty (v, 0, R) = u. satisfies Flata(v,d + /¢/R, (1 — /¢/R)R), (6.3)
ue satisfies Flato(v, 0, R) = u. satisfies Flat, (v, 6 + /¢/R, (1 — \/¢/R)R). (6.4)

Proof. Let ¢y € (0,1) as in Lemma 3.4, ¢ € (0,¢9), and set Uz := {u. > ¥1¢}. By
scaling, we may assume R = 1 while, up to a rotation of the coordinate system, we can
set v =epn.

Step 1. Let us prove first (6.3). Assume that u. satisfies Flat;(v, d, 1), as defined in
(6.1). On the one hand we have u.(x) > zy — § in B;. Then, by the first inequality in
(3.9) with o = 1/2, we have

us(x) > oy — 8 > wi(zy — 6 —+e) in ByNn{wi(zy — 8§ —e) >0} (6.5)
Further, since u. > 0, the same inequality holds true in By N {wS(zy — & — /e) = 0}
and the first inequality in (6.3) follows.

To show the second inequality, we use that, on the other hand, u.(z) < xy + ¢ in

B; NU,. Then, by the second inequality in (3.10), we have

ug(x)SxN+5§w;€(xN+5+\/g)—§ in By NU.. (6.6)
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Now notice that by Lemma 3.6 (cf. (3.15)), we have

—1/4

u. < 39ee *”°  in Bi_z\ Ve, Ve =By n{z:d(z,U.) <4} (6.7)
Thanks to (3.3) (with |7] = ¢), we also know that w_(xy +J+/€) > \/%83/2 and thus
by (6.7)

ue <w S (xy +0++e) in B g\ V.,

for every € € (0,g¢), taking eventually ey smaller. We are left to check that u.(x) <
wF(xn +0++/€) in Bi_ zN(Vo\Ue). Let v € By_ zN(V2\U.). Let & € B;NU. such
that |z — z| < %/%. From (6.6) (using u. > 0) we know that w=¢(Zy + + /&) > /2/2.
Hence (using that w_ ¢ is 1-Lipschitz),

u(x) < Ve < Ve/2— ¥t <wI(@n + 0+ VE) — e <wIt(an + 6+ V).

This completes the proof of (6.3).

Step 2. Now we show (6.4). Assume u.(x) > wi(xy — J) in By. Then, by the second
inequality in (3.9) (with o = 1/2), we obtain

ug(x)>w§(a:N—5)>xN—5—§>:EN—5—\/E in By,

and the first inequality in (6.4) follows. On the other hand, if u.(z) < wZ(xy + J) in
By, the first inequality in (3.10) yields

u(z) <w ey +0) <N +0+ Y <an+6+vE in B N{xy >y ° -6},

where y_ ¢

is as in Lemma 3.4. Finally, since u.(x) > ¥1e and the assumption imply
wZ(zn +6) > 91e, we deduce, by monotonicity, that xy +6 > 0 > y-¢ in U, = {u, >
Yie}. Thus By NU. € By N{xny > y-° — §} and the second inequality in (6.4) follows

too. O

Lemma 6.3. There exist dg,co € (0,1) and 6y € (%, 1) depending only on N, 91, 92 and
c1 as in (2.1) such that for every R > 0, every § € (0,0¢), every a € R and b < 0
such that a + |b| = dR, every /R € (0,cod0) and every critical point ue of (1.1) in Bpg
satisfying

wi(zny —a) <us(r) <w *(xy —b) in Bg,

u(0) € [91¢, 92¢], (6.8)

where ws and w;¢ are as in Remark 3.2 with we(0) = w;¢(0) = Y1¢, then there exist
a € R, b <0 such that
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wi(zy —a') <uc(x) <w  (xy —b)  in Bgya,
b<b <d <a, (6.9)
a’ +|b'| < 6o(a+ b))
e

Proof. By scaling, we may assume R = 1. Set u = u., w* = wZ, w™° = w_*, and define

—e,b

wo(zN) == w (N — a), w S (xy) = w (zy — b).

Notice that, up to replace § with é +1/j and then taking the limit as j — 400, we may
assume

W <u<w = in By,
and, since 0 € {¥1e < u. < ¥ae}, we also have
a > —ce, [b] <8+ ce, (6.10)

where ¢ > 1 is as in Lemma 3.3. This can be easily verified since w®(0) = ;¢ and
{the <w® <vse} C {|Jzn| < ce} by Lemma 3.3.
We define

b0 = 35 €0 = 1oz 0o :=1—cn, (6.11)

where ¢ > 1 is as in Lemma 3.3 respectively (depending only on ¢4, ¥J2 and ¢; > 0 in
(2.1)), and ¢y € (0,1) is the dimensional constant appearing in (6.14) (notice that we
may assume fy >  taking eventually cy smaller). In particular, since § € (0,4d), we
have

{5191 Sug&ﬂg}C{|$N|<3—12}. (612)

Fix y = (y',yn) = (0, §). We consider the following alternative. Either:

(a) w™=b(y) —u(y) < uly) —w>*(y)

or

(b) w™=(y) —uly) > uly) — w*(y)

First case. Assume (a) holds. We first prove that

e,a—cNd

for some ¢y € (0,1). Let v := u — w®*. In view of (6.12), v is harmonic and positive in
By n{|zn| > 35} and so, by the Harnack inequality, it follows
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in v > deyo(y) > 2en w0 (y) — we > eno,
Bis/16M{lzn|>1/16} N (y) o N[ (y) (y)] =

for some ¢y > 0. To justify the last inequality we proceed as follows. If @ > a and
b > b are such that w*°(a) = w=="9(b) = ae, then | — a| < ce, |b— b| < ce where
¢ > 0 is the constant appearing in the statement of Lemma 3.3. Consequently, since
WS (y) = Yae + (1 +&)(yn — @), w=(y) = Vae + (1 — &) (yn — b) and ¢ > 1, we find
Ty —w ) = 1=y —b) — (L +e)yy —a) =a—b—§ +e@+b)
>6—2ce—5+ela+b—2ce) >0 —6ce—¢e—ed,

w

thanks to (6.10). Further, recalling that € < ¢yé by assumption, it follows

w™=(y) — w(y) > (1 — 8cep)d > 36,

in view of the definition of ¢y in (6.11). As a consequence, u > w*® + cyd in Bis/16 N
{lzn| > &} and thus, using that w*® is a line with slope 1 + £ in {w™* > ¥} and
e < 1, we deduce (6.13).

The second step is to show

u>wSeNd  in B4, (6.14)
for some new cy € (0,1). If (6.14) holds true, then (6.9) follows by setting o’ = a — ¢y 4,
b’ = b, in view of the definition of 6.

To prove (6.14) we use a sliding argument: given any smooth, nonnegative and
bounded h, we define the family of functions

ua(z) :=w®(xy + Ah(x)), x € By, Xe€]0,end].
Notice that vg = w*®. Using the equation of w*, it is not difficult to check that
Avy = 1@/ (v)) (1 +2XInh + N*|VA|?) + Mi°Ah, (6.15)
where Oy := 0,,. We choose h(x) := h(x — ), where h is the unique radially decreasing
harmonic function in Bys \ By/3p satisfying h=11in §1/32 and h = 0 in RV \ Bi/s.
Consequently,

Avy > 30 (vy) in D= DBypny)n{zy < &1}, (6.16)

for every A € (0,cnd]. This follows neglecting the nonnegative terms in (6.15) and
noticing that dyh > 0 in D by construction. On the other hand,

vy <u in 0D, (6.17)
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for every X € [0, cnd]. Indeed, recalling that h = 0 in 0B /5(y) it follows vy = w™* < u
in 9D N{zn < %6} while, since h < 1 and A < ¢nd, we have vy < w% °~¥% and so
vy <uin dDN{zy = &} in view of (6.13). Now, we define

Av = max{ € [0,¢end] : vy < win D},
and show that A, = c¢yd. If this is not true, there must be A € [0,cnd) and ), € D such
that vy < w in D, with vx(zy) = u(zy). Recalling that vp = w®® and that w* < u
by assumption, we immediately see that A > 0 and, by (6.17), it must be x) € D.

Thus, using the equation of u (or equivalently u) and (6.16), we obtain that the function
Dy 1= u — v, satisfies

@)\ 2 0 inD
Ox(zx) =0, ADx(zx) <0,

which leads to a contradiction since x) € D is a minimum point for . Combining (6.13)
with A\, = cnd, and noticing that By /4 C Bl/g(y), we deduce

u(r) > w(zy —a+cnoh(r)) in By,

and thus, since h > ¢y in Bj/y for some new constant ¢y > 0 by construction, the
monotonicity of w® yields (6.14).

Second case. Assume now that (b) holds. In this case, following the proof of (6.13),
we find

u < wie’bjLCN& in B15/16 N {|$N| > %},
where ¢y > 0 can be taken as in (6.13). So, following the ideas of Step 1, we must prove
u<w =N in By, (6.18)
where ¢y € (0,1) is as in (6.14). As above, (6.18) implies (6.9) taking ' = a and
W =b+cnd.
To do so, we consider

ua(z) ;== w™ % ay + Ah(x)), =€ Bi, X€][—cnd, 0],

where h is as in Step 1 (note however that now A < 0). Using (6.15), we deduce Avy <
1®.(vy) in D, for every A € [—cn4,0). To see this, it is enough to notice that

20nh + A|VR|?> > ex + A|VR|* >0 in D,
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for some small ¢y > 0, if |A| is small enough and so, choosing eventually &y smaller
(depending only on N), the above inequality is satisfied for A € [—cnd, 0). Proceeding
exactly as above, we find

A == min{\ € [—¢nd,0] : vy > uin D} = —cnd,
and we are led to
u(r) <w “(xy —b—cn0) in By,
for some new cy > 0, which is (6.18). O
Lemma 6.4. There exist a, 0y € (0, 1)~ and C' > 0 depending only on N, 91, U2 and c¢1 as
in (2.1) such that for every § € (0,80), every ¢ € (0,6%) and every critical point u. of

(1.1) in By satisfying

us(x) —zy <6 in By N{ue > e}

1
—0 <u.(z) —zN in By, (6.19)
with ue(0) € [Y1e,99¢], then the function
ue(x) —x
Us,ts(m) = E( )5 N
satisfies
Ve,5(x) —ve5(2) Sws(x—2)  in By N{ue > 1€} (6.20)

—ws( — 2) <ve5(x) — ve6(2) in By,
for every z € By o N {ue > Y1}, where
ws(y) == C (0 + |y)*.

Proof. Let 6,00 € (0,1) and ¢y € (0,1) as in Lemma 6.3, and &g € (0, 1) as in Lemma 6.2.
We set

5o == min{dop/4, v/eo/4,c0/4},

and take § € (0,40), € € (0,62). Notice that the definition of d, guarantees 486 < dy and

4e < gg. For simplicity we also set © = u., w® = w: and w™*°

= w_ *, and define
0 < a< |log(6)l, C > 4it2e, (6.21)

Step 1. We first prove that (6.20) holds true for every z € {16 < u. < ¥ae} N By s.
Let us set
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5 :=2(8 +/2/2).

Notice that £ < 62 implies 6 < 48 and thus, since & > 2§ by definition, it is equivalent
to work with § instead of §, which is what we will do from now on.
So, we fix j € N such that

g2 < LRy oy (6.22)
469 4

and we use the definition of § to combine (6.19) and (6.3), which yield
w(zn —0) <u(z) <w S(xy+0) in B3y

Now, in view of (6.22), we have 5 < 4796y and, since £ < 62, we also have e < 62 < ¢yd
and so we may apply Lemma 6.3 (rescaled and translated from By to By /4(z), i.e. applied
to the function u(z 4 4-)) iteratively on By—«x(z) for 1 < k < j, deducing the existence
of ay and by, (with ag = —bg = 5) for which

w(ry — 2y —a) Su(r) Sw S (zy —2n —by)  in Byx(2),

R (6.23)
0 < ay, + |by| < 4650.

Then, applying (6.4) to (6.23) (choosing R = 47 and § = (ax + |bk|)4*) and recalling
that 6y € (3,1), it follows

u(z) — (zy — 2y) < 2086 in By—x9(2) N {ue > 16}

—2056 <u(z) — (zn — 2n) in By-r/o(2), (6:24)

for all 1 < k < j (notice that since & < 62 < 62 and §y < /€0 we automatically have
€ < go4™F, for every k < 7).

Now, assume that |z —z| > k0. Then 4=9+n—=2 < |z—x| < 479" for some 0 < n < j
(n € N) by the definition of j. Applying (6.24) with k = j — n, we find

Iy if e {ue >0
u(e) =y — (u(z) — 2n) = (@) — (5 — 2v) — u(2) {iwiej—ns fo € {ue > vic}
= %Y )

and thus

(2) < 406_" if z € {ue > V1e}

(2),

v(z)

4677 < (x) (6.25)

-V
-V

where we have set v := v, 5 for simplicity. Using the definitions of @ and C in (6.21) and
that |z — z| > 4777772 we have 46" < C|z — 2|* and (6.20) follows.
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If |le — 2] < K0, then, proceeding as above, we find that (6.25) holds true with n =0
and so, since 46} < C(4=*)7*2 for a and C as in (6.21), and k6 > 47772 we deduce

(2) < C(k0)™ if x € {uc > 01}
(2),

v(z) —wv
—C(kd)* <v(z) —v
and (6.20) follows.

Step 2. Now we consider the case x,z € {u > ¥ae} N Byyy. We fix 29 € 0{u >
€2} N By 4 such that |z — zo| = dist(z, 0{u > €¥2}) := d(x).

Set d := d(x) and assume first K0 V |z — z| < d/4. In this case, using Step 1, we easily
obtain

[0(§) — v(wo)| < C(KIV[€ = wo|)™ <27Cd%, V€ € Byya().

So, since v is harmonic in By(z), we have

0SCB, /5 ()

v
sup |Vv| <en < enCod®t,

Bgya(x)

for some C,, > 0 and thus |[v(z) —v(2)| < cnCod® Yz — 2| < Cu (kS V |z — 2|)* for some
new Cy, > 0.

On the other hand, if ké V |z — z| > d/4, we may apply the estimate of Step 1 twice
to obtain

lv(z) —v(2)| < [v(z) —v(0)| + |v(20) — v(2)]
< C(kOV |z — o)™ + (KO V |2 — 20])%]
< CH{[rd Vd(@)]* + [KOV (|z — 2] + d(2))]"} < Cu(kSV |z — 2]),

for some C,C, > 0 and our statement follows.

Step 3. If x € {u < Y1e} and z € {u > J2e} then there exists z € {¥1e < ue < Jqe}
which belongs to the segment xz. Hence, using the previous steps

() —v(2) Z v(@) - v(2) = |v(z) — v(2)|

>—C(kéV]x—2Z))*=C(kdV |z —z|)* = =C(Kkd V |z — z|)*,
and the proof of (6.20) is complete. O

Lemma 6.5. There exists a Holder continuous function v : {xxy > 0} N By;y — R,
harmonic in {xy > 0} N By 4 and with ||v||p~ = 1 such that for every sequence 6; — 0T,
every €; € (0,5?) and every critical point u., of (1.1) in By satisfying

UEJ.(.’E) — TN §5J n Blﬂ{uej Zﬁlfj}

2
—0j <ug,(r) —xN in By, (6.26)
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with u.,(0) € [V1g;,V2¢;], then, setting

the sequence of graphs
Gj={(z,v;(x)) 1z € {uc, >V16;} N B4} (6.27)
converge in the Hausdorff distance in RN to
G={(z,v(®):z€{zn >0} N By}, (6.28)
as j — +00o, up to passing to a suitable subsequence.

Proof. Let « € (0,1) and x,C > 0 as in Lemma 6.4. Let §; — 07, ¢; € (0,5?) and set
Uj i={ue; > 0165} N Byyy, H:={xn >0} N By 4.

Step 1: Compactness. We show that there is v (harmonic in H and a-Holder in H and
with L° norm bounded by 1) such that for every o € (0,1/4),

|v; —vllLee(m,) — 0, (6.29)

as j — 00, up to passing to a suitable subsequence, where H, := {xn > 0} N By 4.

By (6.26), there is j, € N, such that H,/, C U; and [[vj||pe(s,) < 1 (this follows
(6.26) by ¢;) and every j > j,. In addition, v; is harmonic in U, and thus, by standard
elliptic estimates and a diagonal procedure, there exists a harmonic function v in H such
that v; — v locally uniformly in H, up to passing to a suitable subsequence. On the
other hand, by (6.20), we have

|vj (%) — v (Y)| < C(G; + [z =y,

for every x,y € Uj, and thus, passing to the limit as j — +o00, we obtain that v can be

continuously extended up to U and v € C*(H) with |[v|| ey < 1.

Step 2: Convergence of graphs. Fix o € (0, i), v € H, p:= (z,v(z)) € G and set
q = (y,v(y)), where y € H, /5 is taken such that |z — y| < 0. Then, by the C estimate
proved above, we obtain

p—a” =z —yP* + (@) —v(y)]® <o+ C%0* < C%0,
for some new C > 0. Now, if j is large enough, we have H,/, C U; and so

dist(q,G;)* = inf |y - Y12+ oY) — o ()P < [oly) =) < v =il Tew, .
Yy J
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from which we deduce

dist(p, G;) < |p — ¢| + dist(q, Gj) < Co® + ||[v — v}l L=, ,) < Co?, (6.30)

/2

for some new C > 0, for every j large enough, in view of (6.29).

On the other hand, given any sequence p; = (x;,vj(x;)) € Gj, if j is large enough we
may take y; € H, /o such that § < |z; —y;| < o with j such that §; < §. Consequently,
setting ¢; = (y;,v;(y;)), we have by (6.20)

pj = ai* = |zj = yi* + |vj () = vi(y;) P < 0% + C?0?* < C%0.
Further, as above
|2

< v = villL=, )

dist(q;, &) = inf y; — Y2+ Jv(ys) — oI < Jui () — v(ys)
y
and thus, by (6.29),
dist(p;, G) < Co” + [|[v —vjlz~(, ,,) < Co%, (6.31)

for j large enough. Since p, p; and o > 0 are arbitrary, the thesis follows by (6.30) and
(6.31). O

Proof of Theorem 2.1. By scaling, we may assume R = 1. Assume by contradiction that
there are v € (0,1) and a sequence §; — 07 such that for every gy € (0,1), there is

€5 € (0,5?), a solution u; := u.; to (1.8) in B satisfying

ue,(z) —xny <05 in ByN{ue, >vYig;}

6.32
—0j <u.,(r) —wN in B, ( )
with u., (0) € [91e;,U2¢;], such that for every v € SV~1, either
uaj(x)—y.xgéjgé"'"Y in Bgoﬁ{ugj 21915]‘} (6 33)
—8;0077 <ue,(x) —v-x in By, N{uc, >0} )
or
v —en| < V204, (6.34)

fails for j € N large enough.
Step 1: Compactness. By Lemma 6.5, we have that the sequence

U — TN
0j
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converge uniformly on compact sets of U := {zny > 0} N By/4 to some limit function
v € C%(U) which is harmonic in U and, further, the sequence of graphs G defined in
(6.27) converge in the Hausdorff distance in RV*! to the graph G defined in (6.28). In
addition, since 0 € {¥1¢; < u; < Uqe;} and €5 € (0,67), then

0< ’Uj(()) < 192612,

for every j, and thus v(0) = 0. Before moving forward, we define the even reflection of v
w.r.t. the hyperplane {zny = 0}

3(z) = {v(m’,xN) inxzy >0

v(a', —xN) inzy <0,

defined in the whole B/, and satisfying o € C* (B 4).

Step 2. In this step we prove that Oy0 < 0 in {xx = 0} in the viscosity sense,
that is for every ¢ € C°°(B;) such that ¢ < o in B;,4 with equality only at some
z € {zy = 0} N By 4, then Oyp(z) < 0.

By contradiction, we assume there is p € C°°(By) and z € {xx = 0} N By /4 as above,
with dn¢(z) > 0. For simplicity, we assume z = 0, ¢(z) = 0 (the same proof work in the
general case with minor modifications). In addition, we may take ¢ to be a polynomial
of degree 2 (cf. [9, Chapter 2]) with the form

o(x) =may +m' -2’ +27 M-z, z€B, (6.35)

for some vector (m',m) with m > 0, some matrix M € RV with tr(M) = 0 and some
r > 0. This can be easily obtained by modifying a generic polynomial of degree 2, taking
r small enough and using the assumption Oyp(0) > 0. Taking eventually r smaller, we
may also assume ¢ < ¥ — € in 0B,., for some € > 0 depending on 7.

Now, since G; — G in the Hausdorff distance and o € C®(By/4), then for every
sequence o; — 07 there is a sequence r; — 07, such that

lvj(z) — 0(y)| < oy, forevery x,y€ U, satisfying |z —y| <rj, (6.36)

where U; := {u; > v1g;} N Byyy. Since ¥ > ¢ in B, with & > ¢ + ¢ in 9B, and
v(0) = ¢(0) = 0, we have v; > ¢ —0; in U; N By, v; > ¢ +¢—o0; in U; NIB, and
v; < 0;in U; N B,,, for every j. Let

t;=sup{t eR:v; > p+to; inU;N B}

Since v; < 05 in U; N By, and ¢ > 0 in {xy > 0} N {2’ = 0} N B,,, we have t; € [-1,2].
So, setting 0, := t;0;0; = 0(d;),

¢;(x) == xN + d;0(x) + 65,
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and using the definition of ¢; and v;, we deduce

uj > qu in Uj N B,
uj > ¢j + €d; in U; NOB, (6.37)
uj(z;) = ¢;(z;) for some z; € U; N B,.

Further, by (6.20), we have
vj(z) —vj(y) > —wj(r—y) Ve eB, ye Uj, (6.38)

where w;(z —y) := C(6; + |z —y|)*, and C' > 0 and a € (0,1) are as in Lemma 6.4, for
every j.

Now, given « € {xy > —/8;} N B,, since by assumption {zy > —§;} C U;, we can
take y € U; such that |z — y| < 2,/0;. Hence, using (6.38) we deduce

vi(x) > vi(y) —wi(z —y) > o(y) —oj — 05?/2

() = Claz —y| — o; — 632 (6.39)

%

> (z) —206)% — 0; — €872,
for j large enough and a new constant C' > 0. Consequently, noticing that

vj(x):M%MZ—Z—]YZ(S;UZ%—i—OO in B, N{zy < —/4,}, (6.40)
j j

for large j, it follows
Uj Z d)j in Br, (641)

for j large enough, eventually taking §; = o(d;) smaller.

Now, let us set w® = w:?. Combining the first inequality of (3.9) (with § = 0 and
o € (1/2,3/4)) with (6.41), we obtain u; > w® (¢; —7) in B, N{w (¢; —&7) > 0} and
thus, since u; > 0,

u; > w9 (¢p; —€7) in By, (6.42)

for j large enough. Using (3.9) again and the last two inequalities in (6.37), it follows

{’u]‘ > wei (¢J — E? + %(Sj) + %6] in Uj N OB, (643)

uj(w;) < w(p;(x;) +€7),

for every j large enough. Now, let us set wy := w (¢; + )\5‘]-7) and define
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As i=sup{X € (—=1,00) : wy < u; in B, }.

By definition of A, we have

C > in B
Uj = W, m Dy B (6.44)
uj(y) =wr.(y)  for some y € {wx, >0} NB,,

while, following (6.15) and recalling that Oy > 0 in B, and Ay = tr(M) = 0, we easily
find

Awy, = (wa,) [1+25j8Nap+5j2-\V<p|2]

(wy,) in {wx, >0}NB,. (6.45)

1
1ol
1
> 1o (w
If y € {wx, > 0}NB,, then A(u; —w,,)(y) <0, in contradiction with (6.44). So, we are
left to show that it cannot be y € {wy, > 0} N B, obtaining a contradiction with the
definition of \,.

To see this, we notice that A, € (=1, 1), thanks to (6.43) and the monotonicity of w®i
Consequently, since for j large enough we have 26?"_1 < §, the first inequality in (6.43)
yields

wy, = w (¢ + Ae]) < wT (¢ — €] + 2¢7 )Swsj(¢j—5§’+26§”)

*

Notice that the above inequality also implies wy, = 0 in OU; N 0B,, that is {w\, >
0}NdB, C U; N 0B,, and our contradiction follows.

Step 3. Now we show that On0 > 0 in {xy = 0} in the viscosity sense, that is for every
@ € C*(By) such that ¢ > o in By, with equality only at some z € {xx = 0} N By 4,
then dnp(z) > 0.

Proceeding as in Step 2, we assume by contradiction Oy ¢(0) < 0 for some ¢ € C°(By)
as in (6.35) with m < 0 and tr(M) = 0.

By (6.36) and the assumptions on ¢, we have v; < ¢ +0; in U; N B,, v; < p —e+0;
in U; NOB, and v; > —o; in U; N B,.;, for every j. So, similar to Step 2, we deduce

u; < ¢j in Uj N B,
U, S ¢j — 6(5]‘ in Uj n 8BT
uj(z;) = ¢;(x;) for some z; € U; N B,

where ¢;(z) := 2 +38;¢(2) +0;, for some &; = o(d;). As above, by the second inequality
n (3.10) (with o € (1/2,3/4) and § = 0), we obtain

uj <w (¢;+¢€7) inU;N By,
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and
{“j <wTU(¢j+ef —50;) —50;  inU;NOB, (6.46)
uj(zj) > we(d;(x;) — 7).
Actually, we have
uj <w=(¢;+¢e7) in By, (6.47)

for j large enough. Indeed, exactly as in (6.7), u; exponentially decays in B, \ V;, where
V= B, N{z:d(z,Uy) </},
and thus, by (3.3), we have u; <w™%(¢; +€7) in B, \ V;. Moreover, by monotonicity,

w_af (¢] + E?) Z U)_Ej (¢] + E;— — %(5]) Z Uj + %(Sj in Uj M 8BT, (648)

by the first inequality in (6.46). So, thanks to the comparison principle, we are left to
check that

uj <w T (¢;+¢€7)  in dB. N (V;\Uj).

This follows exactly as the end of the proof of Lemma 6.2 (Step 1): by the inequality
above and ¢; < (5J2.7 we have

w (g +e7) > 5E in U, NOB,,

and so, if y € B, is any point such that w™% (¢;(y) + ) = Ve, and x € U; N B,
then it must be |x — y| > ¢,/€j, for some ¢ > 0 independent of j, which implies

W™ (¢ +€9) > 0ae;  in {z:d(w,U; NOB,) < YL}

< €7 for every j large enough, we have

Finally, since s?
w_aj(¢j+£f?) 219283‘ >191€j >u; in 8Brﬂ(Vj \Uj),

and (6.47) follows.
Now, similar to Step 2, we define wy := w™% (¢; + A7)

A i=inf{\ € (—o0,1) : u; <wy in B},

which satisfies A, € (—1,1) in view of the second inequality in (6.46). Further,
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{uj < wa, in B, (6.49)

ui(y) = wa, (v) for some y € B,,

and by (6.15)-(6.45), and that dyp < F in B, with Tr(M) = 0, there holds

*

Awy, = %(b’sj (wa,) [1428;0n¢ + 67| Vol*] + 81x, Ap < %(I),sj (wy,) in By,

if j is large enough. Exactly as above, (6.49), the equation of u; and the above differential
inequality imply y € 9B,. On the other hand, since o € (1/2,3/4), A« € (—1,1) and
using (6.48), we see that

wy, = w” & (qj)j-i-E(jT—%(;j—l—%(sj—(l—)\)Eg) > % (¢j+83~7—%(5j) > u]‘—l-%(SJ‘ in Ujﬂ(?Br,

up to taking j larger. Further, u; < wy, in B, \ V; by exponential decay as j — +oo
by Lemma 3.6 (similar to (6.7)). The fact that u; < wy, in 9B, N (V; \ U;) follows
exactly as in the proof of (6.47) (that is, the case A, = 1) and thus u; < wy, in 9B,, in
contradiction with y € 9B,.

Step 4. As a consequence of Step 2 and Step 3, we obtain that ¥ is bounded and
harmonic in By /4 and On¥|ey—0 = ONV]ey=0 = 0, 9(0) = v(0) = 0. In particular, by
standard elliptic estimates, 0 € C*°(B,) and

sup [9(z) — Vo(0) - z| < eno?,
r€EB,

every o € (0, i) and some ¢y > 0. Proceeding as in (6.39), we have
03(2) 2 0;(y) —wj(x —y) 2 8(y) —0; = 05" = o(x) - 208, — o — C87"7,

for every x € {&y > —1/5;} N B, we take y € U; such that |z — y| < 2,/9;, while, by
(6.40), vj(z) > 6;1/2 in {zny < —/8;}NB,. Consequently, by (6.36), for every o € (0, 1),
there is j, > 0 such that

vj(a) = Vo(0) -
—cno? <vj(z) — Vo(0) -

<cno in ﬂUj

BQ
6.50
in B, (6.50)
for some new cy > 0 and all j > j,. Now, let us define the unit vector

- enN + (%V”U(O)
= ex + 6,700

Notice that, since Oyv(0) = 0, we have

lex +0;V0(0)]* = 14 67|Va(0)]?, (6.51)
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and so
s BIVOO)P + (e +6,V0(0)] = 1) _ 22T0(0)[* +2(1 — [ew +6;V0(0)))
14—(5J2-|Vv(0)|2 1+532-\Vv(0)|2
21~ (2
< 25j|Vv(0)| .

len —v|

Hence, recalling [|0]|zo(5,) = ||z (B,n{zxy>0}) < 1 and using the standard gradient
estimate for harmonic functions

lex — V] < V26;|V5(0)] < V28, N[[oll () < VENG;,

for and j large enough. On the other hand, since u; is uniformly bounded in By,4 by
(6.32), (6.51) yields

uj(z) —v-z u; () < L+ 6]2-|Vv(0)\2 - 1) uj(z) — (exy +9;Vv(0)) - x

9; 0; ' 0;
= 0(9;) + vj(z) = Vo(0) - z,
and thus, by (6.50),
uj(r) —v-x <cyo®6; in B,NU,
g e ) (6.52)
eno®d; <uj(z) —v-z in B,,

for some new ¢y > 0 and j > j,. Finally, given any v € (0, 1) and taking gy € (0, 1) such
that ¢y 08 < Q(I)J”, we obtain that both (6.33) and (6.34) are satisfied, a contradiction. O

7. Proof of Theorem 1.4 and Corollary 1.6

The goal of this section is to prove Theorem 1.4 and Corollary 1.6. The former will
be a consequence of Theorem 7.3 below, which is obtained combining Theorem 2.1 and
a sliding argument in the spirit of [3,17]. The latter will be an immediate byproduct
of Proposition 1.5, Theorem 1.4 and the classification of 1-homogeneous entire local
minimizers of (1.5) established in [10,19].

We begin with two consequences of Theorem 2.1 that we will use in the proof of
Theorem 7.3.

Corollary 7.1 (Preservation of flatness). Fiz v = 1/2, and let §o > 0 and oo € (0,1/4)
be the constants as in Theorem 2.1. Let Ry :=1/p9. Given § > 0, we define

- [|logo?|
Js = { log Ry | (7.1)




A. Audrito, J. Serra / Advances in Mathematics 403 (2022) 108380 41

Let u: RN — Ry be a critical point & with u(0) € [91,9s]. If u satisfies Flaty (v, 6, RE)
for some 6 € (0,0¢), k > js, and vy, € SN=1 then for every i such that js < i < k, u
satisfies Flat (v;, 6, RY) for some v; € SV—L.

Proof. The proof is by iterating Theorem 2.1. Indeed, thanks to (7.1) we have

1 1
S2R? = 52Rj5
0 0

<1 for all ¢ > js . (7.2)

Thanks to Theorem 2.1 if u satisfies Flaty (1,9, RY) for some v; € S¥=1 and i > js
then u satisfies Flatq(v;—1, R0, R(ifl) for some v;_1 € SV7!. In particular u satisfies
Flatq(v;—1, 9, Réﬁl). Iterating this the corollary follows. O

Corollary 7.2 (Improvement of flatness). Fix v = 1/2, and let 9 > 0 and 9o € (0,1/4)
be the constants as in Theorem 2.1. Let Ry :=1/9¢. Let k,n € N and § > 0 such that

og 62
(1+2y)n < k- Leer L (7.3)

Letu : RN — R be a critical point of £ with u(0) € [91,V2). Ifu satisfies Flaty (v, 6, RE)
for some § € (0,00), k > js and vy, € SN=1 for every i such that k —n < i < k, u
satisfies Flatq (v, R(;’Y(k_l)é, RE) for some v; € SV-L.

Proof. The proof is by iterating Theorem 2.1. Indeed, thanks to (7.3) we have
1 1
- <
(Rof'y(kfz) 6)2R6 — 52Rl(<):7n72'yn

<1 foralli>js. (7.4)

Thanks to Theorem 2.1 if u satisfies Flatl(ui,Ra'Y(kfi)é, Rf)) for some v; € SV-!
(which is satisfied by assumption for ¢ = k), and i > k — n then u satisfies
Flatl(yi,l,RaA’(kﬂH)é, Réﬁl) for some v;_; € SV1. Tterating this, the corollary fol-
lows. O

Theorem 7.3. Let v = 1/2, and let g € (0,1/4) be the constant in Theorem 2.1, and
Ry = 1/@0 > 2.

Suppose that u : RN — Ry s a critical point of & with 0 € {91 < u < ¥3} and let
{tec}ee(0,1) be a blow-down family, where u. = cu(- /¢).

SN—l

Set ej := Ry”? and assume there exist v € , and a sequence j; — +o0o and d; — 0

(as 1 — 4+00) for which
\ugjl —(v-2)4| <8 in Ba, (7.5)
and

{z v v-2 <=8} C{ue, <Vigj} C{ue, <oy} C{z :v-az<d} in B2, (7.6)
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for everyl € N. Then u is 1D.

Proof. Throughout the proof §y will denote the constant of Theorem 2.1. Observe that,
by possibly replacing d; by some sequence with slower convergence towards 0, we may
assume without loss of generality that ¥oe;, < 6;/2.

Up to a rotation of the coordinate system, we may assume v = epy. The proof is
divided in several steps as follows.

Step 1. Fix 6 € (0,0¢) to be chosen later. We first show that

u satisfies Flat(vj,0, R)) Vj > js:= Pllc(;i(;?'—‘ (7.7)
for some v; € S"L.
By (7.5) (v = en), we have
(an)+ — 0 <ue;, < (zn)+ +6  in Bo. (7.8)
Let us show that this implies
Ue;, () —zy <6 in BN {u% > hej,} (7.9)

—0; <ue,, () —zn in B,

for all [ sufficiently large.

Indeed on the one hand, (7.8) implies u.; > xn — & in By (for [ large), which gives
the inequality from below in (7.9).

To show the one from above, we set v := Uy — TN — 29; and we show v < 0 in
Blﬁ{usjl > 11¢€j, } using a comparison argument. Thanks to (7.8), using (zn)+—0; < zn
in {xy > —0;} we find (using Vae;, < 6;/2)

v < Ue;, — (.TN)+ -6 < 7926]’1 -6 < —% in Bo N {U;Ejl < 192€jl} N {.T,‘N > —51},

for every [ large enough. Further, (7.8) automatically implies v < —¢; < 0 in BoN{zy
0}, since (zn)+ = xn there. Also, by (7.8) again, v < §; in Fgﬂ{ugjl > g, N {|zN]
5}

On the other hand, Av = Au; = %@g” (te;,) = 0 in By and thus the function

vi= 6% + Ax%,
satisfies
Ay > 24 in BoN{-§ <zn <0}
QS—%—‘FA(S? in BQﬁ{.’EN:—(Sl}
v <0 in BoN{zy =0}
QSI%—ACS? inaBgﬁ{—5l§$N<0},
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for every A > 0. Now, consider the function hy,(z) = %|x — z0|?. For every z¢ €
By n{-4§ < zny < 0}, we have

hey > %4 in0ByN{—6 < zy <0},

and taking A := 2N, we have hy, > 2 in By N {—& < 2x < 0}. Then, for [ large, we
have Aélz <1 and

Av > 2A = AEEO in BonN{-4§ <y <0}
QSOSE% in BoNo{-d <zn <0}
v <2< hy, in 9By N{—6; < zn < 0}.

Then, by the maximum principle we obtain v < EIO. Consequently, since EIO (z9) =0
and zg is arbitrary in B1 N{—§ < zny < 0}, we have 7 <0 in ByN{—§ < zy <0} and
so, by the definition of v, we obtain v < 0 in By N {—§; < xx < 0}. This proves (7.9). In
other words, after scaling we have shown that (7.7) holds for j = j; and v;, = v, provided
that [ is sufficiently large. Hence, as a consequence of Corollary 7.1 we obtain that that
(7.7) holds for every integer j such that js < j < j; for some v; € SN—=1_ Observing that
Jji can be taken arbitrarily large concludes the proof of (7.7).

Step 2. In this second step, we prove that there exists C' > 1 such that for every
z € {t <u <Yy} and every R > C

u(z+ -) satisfies Flat)(ex, CR™Y2 R) VR > C. (7.10)

Note that this is a really strong information since the constant C' and the direction
ey of flatness are independent of z, which varies in an unbounded set!

To obtain (7.10), we first show the existence of some kg (independent of z) such that
for every k > ko and every z € {1 < u < 03}, there are v, € S¥=1 such that, for all
k > kO?

u(z + -) satisfies Flaty (v k, 60, Rb) (7.11)

for some v, € S"!. Indeed, given z € {7 < u < U2} choose i € N such that
2| < 2 Rj. Take j =i+ 1in (7.7), and choose § such that 2Ry < §y. We then have

w(z) —vip1 - x < %"Ré in BRSH(O) N{u>v}

7.12
_?RO SU/(.T) —Viy1 T in BRE‘)Jrl (O) ( )

Now since |z| < %OREJ and Ry > 2 we have By (2) C Bpi+1 and

u(@) = vigr - (@ = 2)] < |u(2) —vigr -2 + 2] S 6By in By (2).
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Thus, (7.12) implies

u(x) —vig1-x < 0oRy  in Bp(z)N{u >0}
—(SoR%) §u(x) — Vi1 - T in BR[i) (Z)

In other words, setting vy, , := v;+1, we see that (7.11) is satisfied for k = i large enough
(where ¢ depends on z). But then thanks to Corollary 7.1 (applied with § = dp and to
the “translated function” u(z + -)) we obtain that (7.11) holds for all k > ko := js, .

We will now use (7.11) and Corollary 7.2 (applied again to the translated function
u(z + +)) to show (7.10). Indeed, for given j € N large enough, set

noe |97 | log 62|/ log Ry
= >

and
k:=j74+n

Then,

. , )
(1+2y)n—n+2ﬂ1 |log /1ogRoJ< |log 62|

k— ——. 1
2’}’ - log RQ (7 3)

The above inequality implies that (7.3) is satisfied. By (7.11) (since we assume that
j = C sufficiently large we have k > j > ko), we may apply Corollary 7.2 to u(z + -)
to obtain that u(z + -) satisfies Flat; (v, ;, R(;’Y(k_l)éo, RY) for some v,; € SNV for all

t=74,7+1,...,5 4+ n (in particular for ¢ = j). Hence using the definition of Flat; and
that kK —i=n > 2]—7—0, we obtain

50R()—’Y(k—j)R% < 50Rgf'yn < CR%(1—1/2)
and

_ u(ac)—z/mw(x—z)SC’Ré/2 in BRg(z)ﬁ{uzm}
—CR(J)/2 <u(z) — vy, (x—2) in Bp, (2).

Now, on the one hand, as a consequence of (7.14), we have
max (O y Vg T — CRg/Q) < u(z + x) < max (191 s Ve T+ C’R%m) in BR(%,
and thus, using this in two consecutive scales, we obtain

max (0 , Ve & — CR6/2) < max (191 s Va1l T+ C’Réj+1)/2) in BRJO-.
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This implies (for j large)
Ve j = ve | < C(Ro) Ry, (7.15)

where C'(Rp) is independent of z an j. This shows that v, ; — v, as j — oo for all z.
On the other hand, since for every two pair of points z1, 2o (7.14) applied at a scales
R} >> |21 — zo| implies (v, j — Vs, ;) — 0, we see that v, = v, for all z, where v, is
independent of z. On the other hand, assumption (7.5) (where v = ey as said in the
beginning of the proof), forces v, = ey and hence lim;_,o, v, ; = en for all z. Finally,
using again (7.15), triangle inequality, and summing the geometric series we obtain

[vej = en| < fvsy = Jim v ;| < O(Ro) SR < ORI,
I=j

for all z € {¢¥; < u < ¥2}. Combining this information with (7.14) we conclude the proof
of (7.10).

Step 3. We now observe that (7.10) has two significant consequences. First, it implies
the existence of a function G : RN~! — R with G(0) = 0 satisfying

Gz — G| < CVla' —y|, Va',y e RN (7.16)
and
{an <G@)-Cyc{u<V}Cc{u<dy) Cl{oy <G@E)+C} mRY. (7.17)
Second, since u — xy is harmonic in {u > ¥2}, standard elliptic estimates yield

c .
sup  |V(u(z) —an)| < v sup |u(z) —an| < CN—RJ/Q,
mGBr/z(y) r z€ B (y) r

for every B,(y) C {u > ¥} N Bg,. Consequently, for every j € N and every y such that
Bpri2(y) € {u > 92} N By, we have

sup  |V(u(z) —zy)| < enCR™I/2, (7.18)

mEBRJ' /4(9)
This easily implies that
|Vu| < C  in RY (7.19)

Indeed, if * = (2/,7y) is a point in RY and let R, > C to be chosen. We consider
two complementary cases: either zy — G(z') < R, or xy — G(2') > R,. In the first
case, by (7.10) with R = 2R, we obtain |u| < C in Bgr_(z) (with a possibly larger C).
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Now, since u is a bounded solution of the semilinear equation Au = %@’(u) standard
elliptic estimates yield |Vu(z)| < C. In the second case, using (7.17)-(7.16) we obtain
that, if R, is chosen large enough and R := dist(z, d{u > ¥2}) > R,, then it also follows
|Vu(z)| < C, thanks to (7.18).

Step 4. We now perform a sliding argument a la Caffarelli-Berestycki-Nirenberg. We
fix o >0, ¢ € SN~ N {xy =0}, and define, for any given A > 0,

e:=(,0), uMx) = u(z — Xe). (7.20)

Choose Ay > 0 such that Cv/A, + 2C < o), where C' is the constant in (7.17)-(7.18).
Let us show that

wW<wu inRY for every A > Aq. (7.21)
To prove so, we first observe that, for every A > A,
{u <95} C {u* <0} (7.22)
Indeed, let = € {u < Y2} and notice that (7.16) yields

(z—=Xe)y —G((x—Xe) )+ C=any —oA—G(a' = \e') + C
< —oA+G(2') - G(2' — Ne') +2C
< —oA+CVA+2C <0,

for every A > A, provided )\, is chosen large enough.

Now, we set v := u — u* and we show that v > 0 in RY for every A > ),, that is
(7.22).

To do so, we first notice that RY = Q; UQy := {u > ¥} U{u* < 9} for every A > A,,
thanks to (7.22). Further, in the domain §2; the function v satisfies Av = 0 in {u* > ¥}
and © — u* > Y5 — 95 = 0 in u* < 5. Hence the negative part of v_ is subharmonic in
Q.

Also, thanks to (7.22), the boundary d{u > ¥} of Q; is contained in {u* < ¥}
and hence v — u* > 95 — 93 > 0 on O{u > 92}. In other words v_ is subharmonic and
vanishes on the boundary of ;. Since —thanks to (7.16) and (7.17)— the complement
of 21 contains a cone with nonempty interior, and —thanks to (7.19) v (and in particular
v_) is bounded in all of RY, we deduce v_ = 0 in §2; from the comparison principle in
unbounded domains which contain a cone (see for instance [3, Lemma 2.1]).

Similarly inside s, either v > 9 and u* < ¥; and so v > 0 or both u and u*
are smaller than ;. In that second case, recalling that ®’ is increasing in (0,1), we
have Av = ®(u) — ®(u*) < 0 at points where v = u — u* < 0. Hence v_ is again a
subharmonic function in 5. Similarly as before we can show that v_ = 0 on 9Qs and
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that it is bounded. And again the complement of )5 contains a cone, so we may conclude
v_ = 0 everywhere (that is v > 0).

Step 5. Let C' and G as in (7.17). Define
C:=C+ (14 X)|VG|lpo@wy-1), (7.23)
and
G:={z=(a/,zy) eRY : jzy — G(2')| < C}. (7.24)
We prove that for every A > 0
v <uinGg = v <uinRY. (7.25)

In light of (7.21), it is enough to treat the case A € (0, A, ). Following the ideas of Step
4, we observe that

{z, <G(z') = C} C {u <V}
Indeed, let z satisfy
rn < G(2') - C.
Consequently, by (7.23), the above inequality and the definition of e, we obtain

(x—Xe)y — G((z — Xe)') < zy — G(2') + A|VG| oo mv-1)
<zn— G(x') + /\UHVG||L00(RN—1) <-C+C-C= —C,

and thus, by (7.17), we have z — Ae € {u < ¥1}.In a very similar way, we show

{u* <y} C {zy < G(z') + C}, (7.26)

for every A € (0, \y). To complete the proof of (7.25), it is enough to consider v = u—u?,

notice that v > 0 in G (by assumption) and repeat the arguments of Step 5.
Step 6. In this step we show that for every A > 0

vw»<u ing. (7.27)
Notice that, as a consequence of (7.25), (7.27) implies that for every A > 0
u*<wu inRY. (7.28)

To verify (7.27), we let
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As ::inf{)\ZO:u/\guing}g)\g,

and show that A, = 0. Assume by contradiction that . € (0, A,).

By definition of \,, we have u** < u in G and, in addition, there exists x; € G such
that u(z;) —u™ (x;) < 1/4. Set uj(x) := u(x+z;), uj‘(z) = uM(z+x)), vj = uy fu;‘*
and G; := G — x;.

We have

G, ={(',zn) € RY : |zy — G,(2') < C},
where G(2') := G(2' + 2}) — 2 n (here z; x := (z;)n) With

|G;(a)| < |G +27) — G(a))| + |G(2]) — zjn] < CV/]a!| +2C

(7.29)
VGl Lo @nv-1) < [[VG| poo w1y,

for every j in view of (7.16) and that z; € G. As a consequence, we deduce the existence
of a locally bounded function G : RY — R such that G; — G locally uniformly in RY
and G; — G locally Hausdorff in RY (up to subsequence), where G := {(z/,zy) € RV :
lzy — G(2')| < C}.

In particular, thanks to (7.17), we have

{:L’N < é(l’l) — 26} C {’LLj < ’191} C {Uj < 192} C {.’EN < é(.’ﬂl) + 26} in RN, (730)

for every j large enough. On the other hand, using (7.29) for ' = 0 and recalling (7.19)
we have

lu;(0)] <2C and |Vu;|<C inRY,

thus, the sequence {u;} e is locally uniformly bounded in RY.
Further, since Au; = %@’ (u;) in RN and @ is bounded, standard elliptic estimates
and a diagonal argument yield u; — u in C?  as j — 400, for some u € CZ _(RY), up

to passing to a subsequence. Similar, w; — ™ in C?

. as j — +oo and, since

Avj = L(®(u;) — ¥'(u}*))  inRY

vj Z 0 in gj

v;(0) < 1/,
for every j € N, v; = ¥ in C?,, as j — +oo. By uniform convergence we have 7(0) = 0,
Au = 19'(u) in RV, and © > 0 in G. Therefore, using (7.25) applied to the function
and with A = \,, we deduce

7>0 inRY. (7.31)
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On the other hand,

AU = (@/(ﬂ) — (I)l(ﬂ/\*)) < ||(I)||Cl,1(]R)E in ]RN,

=

and so, ©(0) = 0, (7.31) and the strong maximum principle yield 7 = 0 in R". Conse-
quently, for every fixed z € RV

() = 7™ (x) = jEIJPoo u (z + xj) = jginoo u(x+x; —ely)

= 1' ; — )\* = - )\* 9
j;rﬁwuj(x eXs) =Tz —ely)
that is, @ is A.-periodic along the direction e.
Now, fix ¥ € (91,72) and take ; € G such that &; v = z; y and u(Z;) = 9, for every
j € N and set #; := #; — z;. By (7.17), (7.23) and (7.24), we have |#;] < 2C and thus,
up to passing to a subsequence, £; — & € G as j — 400, and

9= lim u(@)= lim u(@+z;)= lim wu;(i;) =7 7.32
Jim (@) = lim u(i; +og) = lm (i) =u(2), (7.32)

by uniform convergence. We also have

{u=9}c{an >-C1+]z'])}, (7.33)

up to taking C' > 0 larger. To see this, we take y € {ti = 9} and we notice that y € {; <
uj < Uy} for large j’s or, equivalently, y + z; € {1 <u < 2} C {zn > G(2') — C}, in
light of (7.17). This, combined with the fact that ;v < G(z) + C (since z; € G) and
(7.16) give

yn > Gy + ) —ajn —C > Gy + 7)) - Ga)) —C—C > —c/]y'| -C - C,

which is (7.33), up to taking ¢ > 0 large enough (depending on C and C).

To complete the contradiction argument, we notice that by (7.32) and the .-
periodicity of u (along the direction e), it must be & — neA, € {u = 9} for every
n € Z, and thus, using (7.33), it follows & — neA, € {xnx > —C(1 + /]2’])} for every
n € Z. Using the definition of e and passing to the limit as n — +oo, we find

0 < (2 —neXa)n + CO(1 + /|(& —ned.)|)

= 3N — nol —1—6(1 + /|2 —ne’)\*\) — —

as n — +00, a contradiction, and (7.27) follows.

Step 7. By (7.28), we have 9.u > 0 in RY independently of & > 0 (cf. (7.20)) and so
deroyu > 0 in RY, for every ¢ € SN1 N {ay = 0}. Since d_ gyu = = pyu < 0 in
RY and €’ is arbitrary, it must be O(er,oyu = 0 in RY for every ¢/ € SN~ n{zy = 0},
that is w is 1D. O
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Proof of Theorem 1.4. Let u : RN — R be a critical point of £ in R¥ satisfying (1.9)
and (1.10) for some Ry, — oo and 6, — 0. Setting € := R™F and scaling, we immediately
see that wu., := epu(-/ex) satisfies (7.5) and (7.6) for k large and so u(z) = v(zy) for
some v : R = R (up to a rotation), by Theorem 7.3.

On the other hand, by Lemma 3.1, we know there are exactly three families of 1D
solutions (cf. (i), (ii), (iii) of Lemma 3.1 with ¢ = 1). However, by (7.5), we have u., —
(xn)+ locally uniformly, up to a translation and a rotation, and thus v cannot be of
class (ii) and (iii). The only possibility is that v is of class (i). Recalling that v(0) = 9
by construction, a direct integration of (3.5) (with A = 1) yields (cf. (3.6))

z

d¢

0= g

for every z € R, which is (1.7), up to a shift. O

Proof of Corollary 1.6. Let u : RN — R, be an entire local minimizer of £ in RV. Up to
shift, we may assume w(0) = 1. If {R;} e is an arbitrary sequence satisfying R; — +o00
as j — +oo then, by Proposition 1.5, there exist sequences R;, — +o00, §; — 0 and a
1-homogeneous nontrivial entire local minimizer ug of (1.5) with 0 € d{ug > 0}, such
that (1.11) and (1.12) hold true (with k& = j). Consequently, since we know that

uo(w) = (v- )+,

for some v € SV~ (see [10,19]), we deduce that (1.9) and (1.10) are satisfied too, and
thus u satisfies (1.7) by Theorem 1.4. O
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