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THE NEUMANN PROBLEM FOR THE FRACTIONAL LAPLACIAN:
REGULARITY UP TO THE BOUNDARY

ALESSANDRO AUDRITO, JUAN-CARLOS FELIPE-NAVARRO, AND XAVIER ROS-OTON

ABSTRACT. We study the regularity up to the boundary of solutions to the Neumann
problem for the fractional Laplacian. We prove that if u is a weak solution of (—A)°u = f
in Q, Msu=01in Q°, then u is C* up tp the boundary for some o > 0. Moreover, in case
5> %, we then show that u € C**71T%(Q)). To prove these results we need, among other
things, a delicate Moser iteration on the boundary with some logarithmic corrections.

Our methods allow us to treat as well the Neumann problem for the regional fractional
Laplacian, and we establish the same boundary regularity result.

Prior to our results, the interior regularity for these Neumann problems was well
understood, but near the boundary even the continuity of solutions was open.

1. INTRODUCTION AND MAIN RESULTS

We study the regularity of solutions to the Neumann problem

(=A)u = f inQ
{ Ngu = 0 in QF, (1.1)
where N is a “nonlocal normal derivative”, given by
u(y)
Nsu(z) == cNS/ z y’N+2s dy, z € Q°. (1.2)

The constant cy s is the one appearing in the definition the fractional Laplacian
u(z) — u(y)
(—A)SU(ZE) = CN,s PV o m dy (13)

The Neumann problem (I.1)) was first introduced in [I8],20], and has been subsequently
studied in several papers; see for example [11, [3, [14] 3T, 42]. As explained in detail in [18],
(1.1) is a natural Neumann problem for the fractional Laplacian, for several reasons:

e The problem has a variational structure, and weak solutions are obtained by minimizing
the energy functional

2
g — CN,s //RQN\(QC)2 |xz|]\/(+2)s|dx dy — / fu (1-4)

Solutions exist if and only if [, f

e The following integration by parts formulas hold for C? functions u, v:

/(—A)su de =— [ Nzudzx
Q Qe
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a.

nd
Cns () = w@) (00 =0®)) g [y (—ayus [ ona
2 //RQN\(QC)Q |$_y|N+28 d dy_/Q ( A) +/c Ns . (15)

e The corresponding heat equation with homogeneous Neumann conditions possesses
natural properties like conservation of mass inside {2 or convergence to a constant as
t — oo.

e The problem has a natural probabilistic interpretation, heuristically described in [1§],
and rigorously studied in [42].

e As s 1 1, we recover the classical Neumann problem for the Laplacian in 2.

e The energy functional (|1.4]) is the same that yields solutions to the Dirichlet problem
for the fractional Laplacian; see [38, [36].

The aim of this paper is to study the boundary regularity of solutions to (|L.1).

1.1. Main results. While the Dirichlet problem is very well understood [2, 4} [6], 9] 13|
22, 24], 25], 130, 36l [38], much less is known for the Neumann case. Our main result reads
as follows:

Theorem 1.1. Let Q C RY be any bounded Lipschitz domain. Let s € (0,1), and u be
any weak solution of (1.1) with f € LY(Q), with q > QL\; and [, f =0.
Then,
[ull ga@y < C (I llLag) + llull2(0) -

for some o > 0. Moreover, if s > %, qg> N, and Q is C', we then have

[ull g2s-r+agmy < C (Ifllzage) + lullz2)) -
The constants C' and « depend only on N, s, q, and €.

This is the first boundary regularity result for the Neumann problem , and even
the continuity of solutions is new.

As in case of the Dirichlet problem [3§], it turns out that the boundary regularity is much
more delicate than the interior one, and does not follow easily by adapting the classical
methods used for s = 1 [35], [32]. This is because in this nonlocal context one cannot use
any even/odd reflection to study solutions near the boundary, and a completely different
strategy is needed.

In [38], a key idea was to use the methods coming from equations with bounded mea-
surable coefficients in non-divergence form. Here, instead, we will need to use methods
coming from equations with bounded measurable coefficients in divergence form. More
precisely, we will need (among other things) a delicate Moser iteration on the boundary
involving some logarithmic corrections on 0f). This will be explained in more detail later
on in the paper.

In a sense, Theorem can be seen as the Neumann version of the boundary regularity
theory for the Dirichlet problem developed in [38].

Remark 1.2. It is important to remark that 2s — 1 is a natural critical exponent in this
problem. This can be seen easily when 2 = {xy > 0}, in which the function |xy|?*~!
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solves (1.1) pointwise, even though it is not a weak solution — nor it satisfies (L.5). Thus,
C%s~1%2(Q) is the minimum regularity needed in order to discard this kind of solutions.
This will become even more clear in case of the regional fractional Laplacian, explained
below.

1.2. Regional fractional Laplacian. The methods developed in this paper allow us to
treat as well the Neumann problem for the regional fractional Laplacian. This corresponds
to a censored stochastic process; see [§].

Solutions to this problem are obtained by minimizing the energy

CN,s u(z) = u(y)|? /
= : 1.
E(u) 1 /Q = s dedy — | fu, (1.6)
and the operator is given by
u(z) — u(y)
—A)¢ = PV — " dy. 1.
( Jou(r) = cns /Q |z — y|N+2s dy (1.7)

This problem shares many of the properties of described above: it has a variational
formulation, a nice probabilistic interpretation, convergence as s T 1 to the Neumann
problem for the Laplacian, and conservation of mass for its parabolic version. The main
difference is that the operator given by depends on €, and that in this case RV \ Q
plays no role.

The Dirichlet problem in this setting is obtained by considering among all functions
u =0 on 9. Notice that, by trace theorems for H*(2) spaces [17], this makes sense only
when s > . It turns out then that solutions to the Dirichlet problem are C*~1(Q), and
if f > 0 they actually satisfy

w=d* ' in
see [8, [11, 12} 27].

However, as in case of the fractional Laplacian , the Neumann case is much less
understood, and it is not even clear what is the right pointwise Neumann condition for
solutions in this case.

An integration by parts formula found in [26] suggests that the right quantity in this

context is given b

835_1u(z) = lim u(z +tv) - u(z),

where v is the (inward) unit normal to 0f2. More precisely, it is proved in [26] that, if
u,v € d*1C2(Q )+02( thenfl]

o | / —u ;f;g— W) gy — [ ottt [ vittu )

This is the analogue of ( in this context, and suggests that the pointwise Neumann
condition in this setting should be

0¥ lu=0 on 0N (1.9)

Our main result in this context answers positively this question, and reads as follows.

z € 09},

INotice that when u = 0 on 8 (Dirichlet case), then this quantity is the same as u/d**~!|sq.
2A function w belongs to d**~*C?(Q) 4+ C*(Q) if it can be written as w = d**~'g+h, with g, h € C*(Q).
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Theorem 1.3. Let Q C RY be any bounded Lipschitz domain. Let s € (0,1), f € LI(€),
with g > Z—Z\Q, be such that fQ f =0, and u be any free minimizer of (1.6)).
Then,

ullgagy < C (Ifllzag) + lullze) »
for some o > 0. Moreover, if s > %, g> N, and Q is C', we then have

[ull g2s-r+agmy < C (Ifllzage) + lull o)) -

In particular, for every s € (0,1) we have (1.9). The constants C' and « depend only on
N, s, q, and €.

In particular, thanks to Theorem|l.3] we find that the Neumann problem for the regional
fractional Laplacian is actually

—A)du = in
{(QQS)S%U = g on Of). (1.10)

Notice that our result also implies that solutions to the Neumann problem are more regular
than those corresponding to the Dirichlet case, as expected.

Remark 1.4. Other Neumann problems for the fractional Laplacian (—A)® have been
introduced in [5 [7] and [25]. These different Neumann problems recover the classical
Neumann problem as a limit case, and the one in [5] [7] has a probabilistic interpretation
as well. We refer to [I8] for a comparison between these different models, and related
problems for the other operators.

1.3. Acknowledgements. XR was supported by the European Research Council (ERC)
under the Grant Agreement No 801867. AA and XR were supported by the Swiss National
Science Foundation (SNF). JF and XR were supported by MINECO grant MTM2017-
84214-C2-1-P (Spain). JF acknowledges financial support from the Spanish Ministry of
Economy and Competitiveness (MINECO), through the Maria de Maeztu Programme for
Units of Excellence in R&D (MDM-2014-0445-16-4). Moreover, he is a member of the
Barcelona Graduate School of Mathematics (BGSMath) and part of the Catalan research
group 2017 SGR 01392. Part of this work has been done while JF was visiting Universitat
Zirich.

1.4. Organization of the paper. In Sectionwe transform the Neumann problem
into a regional-type operator inside €). In Section |3| we prove an L* bound for solutions
of and . Then, in Section 4| we develop a Moser iteration (with logarithmic
corrections), and deduce that solutions are C'“ for some « > 0. In Section [5| we establish
a Neumann Liouville-type theorem in a half-space, and finally in Section [6] we use it to
prove higher regularity of solutions.

2. AN EQUIVALENT PROBLEM IN

As first noticed in [I], problem (1.1) can be reformulated as a regional-type problem
in  for a new operator

Lou(x) := PV/Q (u(z) — u(y)) Kolz,y) dy, (2.1)
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with
CN7
Ko(z,y) = m + ka(z,y), (2.2)
dz
kQ(l',y) _CN,S/ y l',yGQ.
o TPy
(2.3)

Moreover, it was proved in [I] that, for every fixed x € €, the kernel kq(z,y) has a
logarithmic singularity along 9{2. Here we need more precise estimates, with constants
that are independent of z,y € ).

2.1. Fine estimates on the new kernel. Here, and throughout the paper, we denote
A =< B whenever C~1'A4 < B < CA for some positive constant C.

Proposition 2.1. Let Q C RN be any Lipschitz domain, let d be the distance function to
the boundary, and denote

dx:y = mln{d(w), d(y)}7 T,y € Q.
Then, the kernel kq satisfies

1+ ‘log(‘iil&')’ |
kQ('Ia y) = ‘CL’ — y’N+25 Zf dx,y < ’.’IT - y| (24)

dyy ™% if dey =[x =y

In particular, the kernel Kq satisfies

[z—y]
oy

1+log™ ( do y >
Kﬂ(xay) =

for all z,y € Q, (2.5)

where log™ t :== max{0, —logt}.

The constants in and depend only on Q. Moreover, if QN By can be written
as a Lipschitz graph, then and hold for x,y € Q2N By with constants depending
only on N and the Lipschitz norm of such graph.

Proof. Since follows immediately from , it suffices to prove . Moreover,
since any Lipschitz domain can be locally written as a Lipschitz graph, we will assume
that N By is a Lipschitz graph, and prove the estimate for x,y € QN By.

By [II Lemma 2.1] we have that

dw : —2s —N—-2s
/Q |z — w|N+2s = min {d"*(z), dV7*(2)}
for z € Q¢ so we deduce that

ko (a )v/ d* () dz
aAnY) = Qe |z — 2[N42s|y — 2|N+2smin {1, d=N(2)}’

On the other hand, notice that the kernel is scale invariant, in the sense that

x,y € QN By.

_N_st;
T

ka(T.%‘,’I"y) =r _19(‘/1:)3/)’
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and it is symmetric in x,y. Moreover, the estimate we want to prove is also scale invariant
and symmetric. Therefore, to prove the desired estimate, we may assume that

d(y) < d(z) and max{d(z), |z —y|} = 1.

Moreover, since for z,y € N By the contributions from QN BS in (2.3) are bounded,
we have

d*(2) dz
kQ xz,y x/ )
(9D = J o, T — 2]y — 2V

Now, notice that since such integral is obviously bounded when d(z) > d(y) > 3, since

x,y € QN By. (2.6)

z € Q¢ and therefore the integrand is bounded. Further, notice that if |x —y| > 1 then
the singularities are well separated, and therefore we can split the integral into two pieces.
Because of this, we split the proof into different cases. First, assume that |z — y| <
d(y) < d(z) = 5. Then, by triangle inequality we have d(y) + |z —y| > d(z), and therefore
d(y) > %, which yields that the integrand in is bounded. Hence, in this case, kg =< 1.
For the second case, assume that d(y) < |z — y| < d(z) = 1. By triangle inequality, we
have |z — y| > 3 in this case. The factor |z — z|7"72% is bounded, and hence we have

d*(2) dz
baoy) = [ S
o) QenB, [y — 2|V

Then, by doing a bi-Lipschitz transformation, it suffices to consider the case in which
QN By is flat, i.e., QN By = {xny > 0} N By. (Notice that the estimates are invariant under
a biLipschitz transformation, since all distances stay comparable.) Then, we get

|zn|?* dz
k(o) < [ A=Az ogdy)].
{zn<0}NB2 |y - Z|N+25 ’ ’

The last estimate can be proved as follows: denote d(y) = yy =: § > 0, so that by a
change of variables z +— dz we have

|ZN‘25 dz / |2N|25
— oo o~ ———————dz =<1+ 10g5
AZN<O}OB2 |y - Z|N+2s {ZN<0}QBl/5 1 + ‘Z|N+28 ‘

as claimed.
Finally, for the third case, assume that d(y) < d(x) < |x —y| = 1. Then, by the same
argument we have

d2s d d25 d
o[ e
QB jo(z) 1T — 2] QB () 1Y — 2]

=<1+ |logd(y)

)

Y

where we used that d(y) < d(z). Thus, the result is proved. O

Thanks to these estimates, we will treat problem (|1.1) as a problem inside €2 for an
operator ([2.1) with kernel satisfying (2.5). This will allow us to treat at the same time

both problems (1.1]) and ({1.10]).
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More precisely, throughout the next two sections we assume that Lq is an operator of

the form (2.1)), with kernel K satisfying either

1+ log™ (ég;)

Kq(x,y) < P— T for z,y€Q, (2.7)
or 1

The first case covers the Neumann problem for the fractional Laplacian, while the second
case covers the regional fractional Laplacian. The constants in and are given
by Proposition

The corresponding bilinear form is given by

B(u,v) := /Q/Q (u(z) — u(y)) (v(z) — v(y)) Ka(z,y) dz, (2.9)
and the definition of weak solution to the Neumann problem is the following.

2.2. Weak solutions. Here, and throughout the paper, we denote with Hx (€2) the space
of functions for which

ol = llol 2y + /Q /Q w(z) — w(y)|? Koz, y)dedy

is finite.
Similar, we denote with Hg j,.(€2) the space of functions for which the quantity

[P / / — ()P Koz, y)da dy
QNB JONB

is finite for any ball B ¢ RYV.
Definition 2.2. Let Q ¢ RY be any Lipschitz domain, B c RY be aball, and D := BNS.

Let Kq be any kernel of the form either (2.7)) or (2.8), and let Lo and B be given by (2.1)

and ([2.9), respectively. Let u, f € LY(D) w1th q € (237 ]
We say that u € Hg j0.(2) is a weak supersolution in D, with Neumann conditions on
02N B, and we write

Lou>pu+ f in D,
if
B(u,n) > / pundx +/ fndx  for all n € C§°(B), n > 0.
We say that v € H K,loc(g) is a Weaszubsolution in D, with Neumann conditions on
Q2N B, and we write
Lou<pu+f in D,
if
B(u,n) < /Dmmdx + /Dfndx for all n € C3°(B), n > 0.
We say that u € Hg j,.(€) is a weak solution to
Lou=pu+ f in D,
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with Neumann conditions on 92 N B, if it is both a weak supersolution and subsolution
in D with Neumann conditions on 92 N B.

Finally, we say that u is a weak (sub/super)-solution in Q if the previous definition
holds for all balls B ¢ RV,

We will also need the following.

Lemma 2.3. Let Q be a bounded Lipschitz domain and Kq, B, f, p, as in Definition[2.3,
Then, the following statements hold.

(i) Let u satisfy
Lou=pu+f in D,
with Neumann condition on 02N B. Then uy and u_ satisfy respectively
Louy < puy + f+ in D,

and
Lou_ > pu_+ f-  in D,

with Neumann condition on 02N B.
(ii) Let p, f > 0 and u a nonnegative function weakly satisfying

Lou <pu+f in D,

with Neumann condition on 00 N B. Then for any | > 0, the function u =
max{u,l} also satisfies

with Neumann condition on 02 N B.

Proof. We follow the proof of 29, Lemma 2.4]. The proof is very general and does not
really use the explicit form of the kernel.

Let us first prove (i). Setting p(x) = =4, we consider a sequence of smooth and convex
functions py, : R — R, such that

PPk =0, pe(x) =p(x), 2 €R\ (=1, 1), lp—millmm) < 3 (2.10)
for all positive integer k. Using the convexity of pg, it is not difficult to verify that

B(pk(u)v 77) < B(“’a P%(U)U%

for all k and all n € Hg(2), n > 0. Further, we notice that, thanks to the properties of

pr, and the fact that v € Hg (), p)(u)n is an admissible test, whenever n € Hg () (by

approximation it is always possible to test with functions belonging to Hx (2)).
Consequently,

MMWM—AWWMM—AﬁWx
< Bkl [ uounds = [ fondo

ZAwaMM+AMWMM—LWWMM—AﬁM%
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for all k and all n € Hx(£2), n > 0. Finally, passing to the limit as & — 400, and noticing
that [, pup),(u)n, [o upk(u)n — [o pugn, it follows

B(Mm)—/um%%—/ f+nd:v§/ fndw—/ fndr <0,
Q Q Qn{u>0} Q

for all n € Hi (), n > 0, which proves the first part of our claim. To prove the second
part, it is enough to notice that —u is a solution with —f and apply the first part of
our statement. We obtain that u_ = (—u)4 is a subsolution with f_ = (—f)4, which is
exactly what we wanted to prove.

To prove part (ii), we proceed as before. We fix [ > 0 and we define p(z) := max{x,}.
Then, we consider a sequence of smooth and convex functions py satisfying (2.10). Thus,

B(p(u),n) — /Q ppx(uw)ndz — /Q fndx
< B(u, p,(u)n) —/Qupk(U)nd:c—/and:c

< /Q prupy (w)ndz + /Q fo(u)ndz — /Q ppx(u)ndz — /Q fndz,

for all k and all n € Hx(£2), n > 0. Passing to the limit as £ — 400, we obtain

B(p(u),n) — / pp(u)ndz —/ fndr < —l/ pndx —/ fndx <0,
Q Q Qn{u<l} Qn{u<l}
for all n € Hi(2), n > 0, and our statement follows.

3. L°° BOUNDS

The aim of this section is to prove L*° bounds for solutions to the Neumann problems
that we study. For this, we only need the lower bound Kq(z,y) 2> |z — y| V=%,

We next prove the boundedness of solutions to (1.1) and (1.10). We start with the
following.

Lemma 3.1. Let Q C RY be a bounded Lipschitz domain and ¢ € LY(Q) and q > % Let
Kq be of the form either (2.7) or (2.8). Assume that u satisfies

{Lgu <e(x)u in Q

3.1
u>0 in €, (3.1)

in the weak sense with Neumann conditions on 0X). Then
gN
lullzmioy < € {1+ Il ) lullaco

for some constant C' > 0 depending only on N, s, q, and €.

Proof. Note that by scaling properties we can assume ||c[|zq(q) < 1. That is we only

(Q) La(Q)

when ||c||paq) > 1. Given 8 > 2, the idea is to take uP~1 as test function in the weak
formulatlon and thanks to Sobolev inequality, improve iteratively the integrability of w.

—a ~
need to work with the auxiliary function w(z) = u HCHN 2as > in Q = ||| Jas s QcCQ
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Since a priori we cannot guaranteed that u®~' € Hg () we need to truncate it in some
sense in order to be an admissible test function. That is, let us consider the sequence

ug := min{u, k},
for all k € N, k > 1. We have up € Hg(2), 0 < ug < upsq and ug — w a.e. in Q. Testing
the inequality with n = u£_2u, we immediately deduce

B(u,u£_2u) §/Qc(x)u£_2u2dx. (3.2)

Note that the fact uk_Qu 6 Hg(Q), for > 2, can be easily checked.

Now, setting v := ug/ u and applying [29, Lemma 2.3|, we obtain

B(v,v) < BB(u,u} *u) (3.3)
for all 5 > 2. On the other hand, by Hoélder inequality, we have

| ety e < elluuolllZ oy < 10l (3.4)

Since q > 2%, it follows that 2 < 2¢’ < 2% and so, taking ¥ € (0,1) satifying

1 ¥ 19 ) 2qs — N
= ) ie. 9= ———

222
and using the interpolation and the Sobolev inequality, we obtain
1—
002y < 012 101252 < © (ol + B@.w)) " ol (35)
Now, thanks to the fact that ¥ € (0, 1), we infer

I

2qs

1-9 1w
(lo1320) + B@.0)) ol < 2B,0) + 1+ 7T 0lagy,  (36)

for all € > 0. Putting together , , , , and choosing
e=(Cp)”
it follows by taking into account that 8 > 2 that
B(v,v) < CB7 |[v]22qy,

and, using Sobolev inequality again, we deduce
1

(/Q u2u§72dx> E < (C’,@’)ﬁ%9 </Q u2u£2daz) ’ ) (3.7)

for some new constant C' > 0 depending only on N, s, ¢, and the Lipschitz norm of 9€.
Here, v :=2%/2 > 1.

Now, taking By = 2 and 3; := vBi—1 = Bo~y’ for all integers i > 1, and iterating ,
we obtain

i1 1 i 1
v i\ o7 Py [V
[kl ) < lullfa@y D o(CA)H < ullfaig) D (C7)>" = C llullfaq
1=0 =0

Thus, passing to the limit as j — +o0, it follows
sl 7o ) < Cllull 72y (3.8)
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Finally, since the previous inequality holds for any k with the same constant C, we
conclude that

[ull oo () < Cllullr2(q)-
O

We now prove the following result, which gives the boundedness of solutions. We notice
that, in case of (1.1]), a similar result has been obtained in [19], with a different proof.

Proposition 3.2. Let Q C RY be a bounded Lipschitz domain, p, f € LI(SY), with q > 2—]\;
Let Kq be of the form either (2.7) or (2.8)). Let u be a weak solution to

Lou=pu+ f in,
with Neumann conditions on 9S). Then,

Jull ooy < C (lull 2y + 1 fllLage))
for some constant C'> 0 depending only on N, s, q, ||pl|eq) and .

Proof. Thanks to Lemma (part (i)), we know that u4 is a nonnegative subsolution
with g = p4 and f = f4. Consequently, the function v = max{u4, 1} is still a subsolution
and, furthermore, v > 1 (Lemma [2.3] part (ii)). Consequently, v satisfies
Lov <c(x)v inQ
in the weak sense (with Neumann conditions on 0f2), where ¢ = py + fy.
Now, note that if [[ut|[z2() < 1 then [[v12(q) < /1 + [£2] and so, under the assump-
tions [lut|[z2) < 1 and [[f+][Le@) < 1, it follows by Lemma

ut Loy < [Jvllzee) < C,
for some constant depending only on N, s, g, [|pt4]|e(q) and Q. Applying the above
inequality to the subsolution
U+t

w = s
lutllr2) + [1f+ e

we deduce
s [y < C (lurllrz) + 1 llLa@) -
for some constant depending only on N, s, q, ||p4||re(n) and 2. Finally, repeating the

same procedure for the subsolution u_ (with 4 = p_ and f = f_), we complete the proof
of the theorem. O

We will also need the following. Here, we denote Dg(xg) = Q2N Br(zo).

Lemma 3.3. Let Q C RY be a domain, R > 0, z9 € Q and f € LY(Dag(x0)) with q > %
Let Kq be of the form either (2.7) or (2.8). Moreover, assume that Q2 N Bsgr(xo) is a

Lipschitz graph. Then, there is a weak solution to

Laqv = ‘f| in Dag(xo),
{v =0 in Q\ Dag(xo), (39

with Neumann conditions on 02 N Bagr(xg) in the sense of Definition . Furthermore,
it satisfies

s— N .
0<v< ko R* 0 ||flla(pon(ao) 1 Dor(zo),
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for some nonnegative constant ko depending only on N, s, q, and the Lipschitz norm of

o N BgR(.T[)).

Proof. Since the general case comes by scaling, we take R = 1. First, let us notice that the
existence (and uniqueness) of such solution v can be obtained by minimizing the functional

=1 [ 1wt@) = wt) Kot — ) dedy = [ 7@)u(a)da

among all functions w € Hg () such that w =0 in Q\ Da(x). See [30, Section 3] for the
details in case of the fractional Laplacian.

Next, in order to prove that the solution is nonnegative we can use the same argument of
[36, Theorem 4.1], consisting on using v_ as a test function in the weak formulation, which
yields v— = 0 in . The bound from above is more delicate and we need to repeat the
arguments from Lemma [3.1] and Proposition [3.2] adapted to this setting of mixed Dirichlet
and Neumann conditions. In that way we obtain that

v < C(|[vl[22(Dy(@o)) T I lILa(Da(aoy)) 10 D2(z0),

where C' is a nonnegative constant depending only on N, s, ¢, and the Lipschitz norm of
o2 N Bg (330)

Finally, we need to estimate the L?-norm of v in terms of the L%-norm of f. In order
to do that it is sufficient to use v as a test function in the weak formulation and applying
the fractional Poincaré inequality in Ds3(z¢). That is,

1ol z2(Daaop = 11011220y moyy < CPIVire(Dy(moyy < CPLelirn) <C [ o’
2(Zo
< ClfllLa(Da o)) VI L2 (D (0))-

Let us remark that we apply the fractional Poincaré inequality in D3(x) since we need v
to be zero in some subset of the domain of v. O

4. MOSER-TYPE ITERATION AND HOLDER REGULARITY UP TO THE BOUNDARY

The goal of this section is to develop a Moser-type iteration for our nonlocal problem
with Neumann boundary conditions. The overall strategy follows that of Kassmann [29]
for interior regularity but, as we will see, the logarithmic singularity of the kernel in
will introduce several difficulties.

From now on, for any » > 0 and x( € €2 we denote

D,«([E(]) = BT<.1‘0) N Q.
The main result of this section is the following.

Theorem 4.1. Let Q@ C RY be a domain, R > 0, mg € Q and f € LY(Dg(xo)) with
qg> N Assume that OQN Br(xg) is a Lipschitz graph. Let Kq be of the form either ([2.7))
or (2.8)). Assume that u is a weak bounded solution to

LQU = f m DR(xo),
with Neumann conditions on 02 N Br(xo) in the sense of Definition .
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Then there exist o € (0,1) and C' depending only on the Lipschitz norm of 9QN Bgr(xo),
N, s, and q, such that

ote) — )] < € (L) [lullmior + B W lasonn] (42

for a.e. x,y € Dp/s(w0).
Theorem will be obtained through several auxiliary results. The first step in the
proof is the following.

Lemma 4.2. Let Q C RN be a domain, R > 0 and xo € Q. Let Kq be of the form either

or . Assume that 92 N Bagr(xo) is a Lipschitz graph.

Then for any ¢ > 0, dyg € (0,1/2) and ¥ > 1, there exists v € (0,2s) depending only on
the Lipschitz constant of 0Q N Bag(xo), N, s, ¢, 0y and V¥ such that for any u € L>(Q)
satisfying

( ) >0 for a.e. x € Dr(xo)
)>c¢ [1 - < ) } for a.e. x € Q\ Br(zo) (4.2)
|{u>1}ﬂDR(:r0 > 1
[Dr(zo) =2
it holds
/ u(x)Kq(z,y)de >0  for a.e. y € D,(xp), (4.3)
Q\Br(mo)

for all r < R such that

[{u= 1} (Daleo) \ Deeo))| | 5 )
| Dr(z0)]

Proof. Taking ur(z) = u(zo + Rz) instead of u, we may assume R = 1 and z9 = 0. We
prove the result for K of the form ; the case is simpler.

By the third assumption in , we deduce the existence of g € (0,1) depending only
do > 0, N and the Lipschitz constant of 92 such that holds if r < rg.

Let us take r < rg satisfying and set A, :={u > 1} N (D1 \ D,). By assumption
we have |A,| > do|D1|, v > 0 in D; and so for a.e. y € D,, it follows

_ ( da.
/ u(z)Ko(x,y)de > / Kq(z,y)dx > c/ B ](Vl_t;;) dx
D1\D» Ar |z — y|NH2s

Ar

with ¢ > 0, where d,, = min{d(x),d(y)}. We have to find a suitable lower bound for the
above integral. To do so, we first notice that for any fixed d > 0, the function

. 1+1log™ (d/o)

oN+2s ; 0>0

is decreasing and thus, since |z — y| < 2, we find

1+ log™ (i)
z—y| —N-2s - dz,y _ d(y)
/T VT2 dx > 2 / 1+ log <2> dz > c|A,| <1 +log < 5 .

Consequently, whenever d(y) > 1, we have

/ u(z)Kq(x,y)dz > c|Ar| > cdo, (4.5)
Dl\DT
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for some ¢ > 0 depending only on N, s and 2. Conversely, when 0 < d(y) < 1, we obtain
by the inequality above

| @Koty = ColDi|(1 + logd(y). (4.6)
Di\D;
On the other hand, for a.e. y € D, it holds

/ w(@) Koz, y)de > —c / 11— (9]2)"| Ka(e, y)dz,
Q\Bl Q\Bl

thanks to the second inequality in (4.2). Moreover,

— ( da.
[ = @ Kol gde <0 [ 1= @l e gv'if">d
O\B1 O\B; ‘x - y! s

11— (I]2)] ( ey ) 4.7
:C/ 2= e Y )| d (4.7)
o, lo— gV [\ [z =y
1= (I]z])"]
+C B2 T ge = [i(y) + I(y),
B ]x—y]N+25 1(7) 2(7)
where ; := (2\ B1) N {d,y < |z — y|}. Notice that
_ ¥
Li(v) :/ 1 (ﬁL\fJF)J log< d() )'dm
01N {ds.y=d(z)} 1T — YN T2 |z — vyl

os (12|
g<|j(—xij|>'dx

log |z — y|dx

+/ 11— (9]|)"]
0 {dgy=d(y)} 1T — Y|V
11— (9]z|)"]
S N+2s
0N {de.y=d(z)} 1T — Yl

+/ 11— (]|)"]
AUN{dey=d(y)} [T — Y[V

|1 — (O]x])"]
y[N+2s z-

+ |log d(y)|
N y=d(y)} [T~
Further, |1 — (9]z|)"] — 0 for a.e. x € Q\ By as v — 07. So, since |logd(z)]| is integrable
near JQ and recalling that |z —y| > 1 —r > 0, we deduce the existence of §, — 0T as
v — 0% such that I1(y) < d,(1+4|logd(y)|) for all small v > 0, by dominated convergence.

Similar for Io(vy). Therefore, by (4.5)), (4.6)) and (4.7),

/ u(x)Kq(x,y)dx :/ u(x)Kq(x,y)dx —I—/ u(z)Ko(x,y)dx
O\B, Di\D, O\B,
> Coo|D1| (1 4 [logd(y)]) — 65 (1 + [logd(y)]) = 0,
if v > 0 is small enough and our statement follows. O

Using the previous lemma, we can now prove the following.
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Lemma 4.3. Let Q C RY be a domain, R > 0 and o € Q0. Let Kq be of the form either
(12.7) or (2.8). Assume that OQ N Bagr(xo) is a Lipschitz graph, and that u satisfies

Lou>0 in Dr(zo)
u>0 in Dg(xo),

with Neumann conditions on QN Br(xg). Assume also that u satisfies (4.3) with r = R.

Then,
1/Bo —1/Bo
][ u(z)%da <C ][ u(z) Podx ,
Dr(zo) Dr(zo)

for some By € (0,1) and C > 0 depending only on the Lipschitz constant of 02N Bag(xo),
N, and s.

Proof. The proof is basically the same for both classes of kernels, and .

By scaling and translation we may assume R = 1 and zg = 0. Given any arbitrary
zp € Dy and p > 0 such that By,(29) C D1, we take B, = B,y(20). Then, exactly as in [29]
Lemma 3.3] with 7 = o (here we use the assumption (4.3))), we find

log u(z) — log u(y)]? _9s
[ los) loguwlP ¢
By xB, lz —yl

for some constant C' > 0 depending only on N, s and the constants in (2.7)-(2.8) (which
depend only on the Lipschitz norm of the domain). This yields logu € H*(B,) and thus,
by the Poincaré inequality,

/ |logu(z) — [logu]39|2dx < Co",

4

for some constant C' depending only on N, s and the constants in (2.7)-(2.8]), where
[logu]p, := JCBQ log u. By Holder inequality, it follows that

/ ‘logu(aj) - [logu]BQ|d:U < Co",

4

and therefore, thanks to the arbitrariness of zg and o > 0, we deduce that logu € BMO(D)
(see [10, Theorem 0.3]). Now, by the John-Nirenberg inequality (see [10, Theorem 0.3 and
Theorem 0.4]), we deduce the existence of fy € (0,1) and C, depending only on the
Lipschitz constant of 0€2, N, and s, such that

/ efollogu(@)~llogulp, | g < (.
Dy

Finally, since

<][D1 U(x)ﬁodw> 1/8o . (él u(x)—ﬂodx> 1/80

1/Bo 1/Bo
_ (][ eﬁo{logu(x)[logulnl}dx> . (][ eﬁo{logu(x)[logubl}dx) <c
D1 Dl

the result follows. (]

On the other hand, we next prove a key lemma for the Moser-type iteration.
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Lemma 4.4. Let Q C RY be a domain, R > 0, 2o € Q and B > 1. Let Kq be of the form
either (2.7) or (2.8). Assume that u satisfies

Lou >0 in Dr(xo)
u >0 m DR(.QZ()),

with Neumann conditions on 0N Br(wo), in the sense of Definition[2.4
Then, there exists a constant C depending only on N, s, and the Lipschitz constant of
0Q N Bag(xg), such that

1-8 1-8
[u(z) = —u(y) = |’
N+2s dxdy
Dy (20)x Dy (z0) [z —y

Cp? 1-8 d(x)
< 7(]% — /DR(zo) u(x) <1 + ‘log 7o, ) dz,

for all0 <r < R. In case (2.8]), the same estimate holds without the logarithmic term.

Proof. Since the kernels and (4.8) are scale-invariant, after a rescaling we may assume
that R —r = 1. We take a smooth cut-off function 0 < ¢ <1 satisfying

=1 in B,, supp(p)C Br, sup|Vy|<ec.

Testing Lou > 0 in Dg with 5 := ' P4 ~F (notice that 7 is an admissible test since u > 0
in Dg and ¢ =0 in Q\ Bg), it follows that

/Q/Q[U(fv) —u@)][e" P (2)uP(z) — " (y)u=P (y)| Ka(z, y)dzdy > 0.

In particular, for any € > 0,

[ [ e [80) = @l @) (@) = )P ) Ko, )dady

lz—y[>e
== / g [0@) = u@)][@"F (@)uP (2) — " (y)u P (y)| Ka(x, y)dady.

|z—y|<e

Now, we apply [29, Lemma 2.5] with a = u(x), b = u(y), 1 = ¢(z), 72 = ¢(y) and
p = 3, integrate on (2 x Q) N {|z — y| > €} and use the above inequality to obtain

18 1pn2
[ [ om0 | (25) - ()] e
= /wgﬂs[so(x) o) [ Zg)ﬂ s (%)ﬁ] Koe,y)dudy

~(8-1) [ g [00) ~ u@]le @ @) - o ) () Kol y)dody
lz—y|<e
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where cg = max{ﬁ ,6(6 ? } < 2, since B > 1. Since n = ' TPu=F € Hy(Dg), the
last term converges to zero When we pass to limit as € — 0. Thus, we deduce

/Q/Qw(a:)w(y) [(Zg)lgﬁ - (;EZ;)lgﬁrKg(x,y)dxdy
SﬁQ/Q/Q[w(m) — o)) [(Zg;)l_ﬁ + <ZE‘Z)))1_B] Koz, y)dwdy.

Now, using that ¢ = 1 in D,, we bound from below the left hand side as

o [(23) ™ - (s) ™|

32

- [ / ola)e) l(zg) o (42) B] Ko(ry)drdy

. —uw) 2]
¢ ’.T— ’N-‘r?s ray,

where ¢ > 0 depends only on N, s and the Lipschitz constant of 9Q N Bag(zg). Here we
have used (12.2)) and that kg > 0.
On the other hand, by symmetry, we have

/Q/Q[gp(x) el [(Zngﬁ " (Z?@ﬁ) 1[3] Ko(w,y)dzdy

=2 [ [ o) ola) ~ o) Pute)Kolw, y)dedy
u(z) =P r) — 2o (x .
SQ/DR () /Q[sO( ) — o(y)*Ka(z, y)dyd

Therefore, we have proved that

1-8+2
// |x—y|N(‘zJ?)8 Liway < o /DR “<$)1_6/Q[<p(:c)—sa(y)]2KQ(a:,y)dyda;.

To finish the proof, we have to estimate the integral

/Q lo(2) — o) Koz, y)dy = / () — o) Koz, y)dy

D (z)

+ / () — o) Koz, y)dy == Jy + T,
Q\B1(x)
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where x € Dp is fixed and d := d(z) < 1. In view of (2.2) and (2.4)), have
|log |z — y|| + |log d(x)| + [log d(y)|

J <C dy
1 Dl(z) |CC _ y|N+2572
|log d(y)|
< C(1+ |logd(z)]) +C 108,
(1+[logd(z)} Dy (@)n{d(z)/2<d(y)<2} 1T — Y[V 272 (4.9)
|log d(y)|
+ C |x _ |N+2372
D1 (@) {d(y)<d(z)/2} |T =Y

= C(1+ |logd(z)]) + I1 + I2.

Now, taking into account that |logd(y)| < C(1 + |logd(x)|) when d(x)/2 < d(y) < 2 we
obtain that I; < C(1 + |logd(x)|). Next, in order to estimate I3 it is enough to consider
the case in which D; is flat since any other Lipschitz domain can be transform through a
bi-Lipschitz transformation. In that case,

lo
L=0C |g—13fthd
Dy (@)n{0<yy<an/2} 1T = Yl
TN —N—2s542
<-C log(zn — yn) ( / (ya +121°) " 2 dz> dyn
:ITN/Q BlcRN71 (410)
TN
<-C ) log(zn — yn)(1 + yy >*)dyn
TN /2

< C(1+ |logay]) = C(1 + |log d(x))).
Here, we have used the following estimate

1/yn N-2

—N—2s+2 _ r
/ (x+ 1217 2 dz<Cyy 25/ ——
BiCRN-1 0 (

dr

NH425—2

1+7r2)7 2

1-2s V2 N Low —2s
<Cyy /0 r dr+//2 r—°dr
1

<C(1+yy ™).
Putting together (4.9) and (4.10)), we find
Ji < C(1+ |logd(x)]),

for some constant C' > 0 depending on N, s and the Lipschitz constant of €.
To estimate Jo, we notice that

—{ duy
1+ log (|x_y|>
’l‘ _ y’N-l-Zs Y

Jo < 2/ Kq(z,y)dy < C
OQ\Bi(z) Q\Bi ()

for some universal C' > 0 and that the kernel is singular only near 0f), due to the fact
that |z — y| > 1. Moreover, y — |logd(y)|d(y)~~2% is integrable for |y| large and thus
repeating the arguments which have led to (4.9) and (4.10]), we find

Jo < C(1 + [logd(x)]),
for some C' > 0 depending on N, s and the Lipschitz constant of 2, as wanted. O
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Using the previous lemma, and a Moser-type iteration, we deduce the following.

Corollary 4.5. Let Q C RY be a domain, R > 0, zo € Q and B > 1. Moreover, assume
that 02N Br(xo) is a Lipschitz graph. Let Kq be of the form either (2.7) or (2.8)). Let u
satisfy

Laou>0 in Dr(zo)
u>0 in Dg(xo),

with Neumann conditions on 0Q2 N Br(xo) in the sense of Definition .
Then, there exists a constant C > 0 depending only on the Lipschitz constant of OS2,
N, s, and B > 0, such that

z€Dp/2(z0)

-1/
essinf w(x) >C ][ u(z)Pdx . (4.11)
DR(QJ())

Proof. By scaling, we can assume xg = 0 and R = 1.
Let {ri}ren be a decreasing sequence satisfying ro = 1 and r, — 1/2 as k — +o00. For
a given B > 1, we apply the Sobolev inequality to (4.8]) to obtain
) dx,

(/D U(x)(l_ﬁ)vdw> v < Cﬂz)% /D u(z)'~? (1 -

(rk — Tht1 -
where v := 2%/2 > 1 and where C depends only on the Lipschitz constant of 92, N, and
s.
Let € € (0,7 — 1) and apply Holder inequality to the right hand side:

/ u(z)t =P (1 + _d@) ) dx < /
Dy, Tk = Tk+1 Dry,
1+e ﬁ
X / (1 + 'log ﬂ ) dx
D, Tk — Tk+1
%
+e
Dy,

14e T%E
Cy = </ (1—1— logd(x)> dx) .
Dy, Tk — Tk+1

Notice that, since 7, — 1,11 — 0 and rp, — 1/2, we have

14« f?
ck§c</ <1+ M) dw)
Dy /o

Tk — Tk+1
_£

1te 1+¢
<C (/ (14 [logd(x)])= dx) + [log(r — rig1)| | < Cllog(r — k1)l
Dy

d(x)

Tk — Tk+1

log

Tk+1

log

=

where

log




20 ALESSANDRO AUDRITO, JUAN-CARLOS FELIPE-NAVARRO, AND XAVIER ROS-OTON

for some C. Further, for any fixed o € (0,1),

[ log(rk — it 1)| < Calre — ri41)” %,
for some C,, and so
Cr < Calrk —h41)” % (4.12)
for some C,. Now, changing 1 — § — —/f, we easily deduce

</D'rk+1 u(:E)_ﬂvalac)BlV > [M}é (/Drk u(x)_ﬁ(1+€)d$>

Further, setting v := u'*¢, o := 1+8 > 1, and using , it follows
1+e

(o) "= (o] " (o) o

for some C. Thus, given By > 0, we define By := Boo¥, k > 1. Iterating (#.13)) with
8 = By, we obtain

_ 1
—r 1 2s+a B;
> It
[0l -px (D, ) = | [ [ Cl+ 3, ] [0l -0 (D)

1
B(1+e€)

(4.14)

2s+a

_1
H U5 2R 7
L5 L O+ Goo?)? L720Dro)

up to changing the constant C' > 0, independently of k € N. Now, we notice that

_ 1 _
’ﬁ [(Tj - 7’]‘+1)28+a] oot _ exp kS kz:l 1 log [(Tj — rj+1)2s+a}
=0 C(1 + Bood)? Fo = ol C(1+ Boo?)? ’

for all k& > 1, and so, choosing r; such that (r; — rj41)?7® = CB30~% for j € N large
enough, we obtaln

I CRUNCC I T

= o’ C(1+ Bo aJ — o7

Consequently, we can pass to the limit in and deduce (4.11)), thanks to the fact that
HU”L—ﬁk(DT ) —essinfuepy ,(2g) V(@) a8 k: — +oo and v = u' e, O

Combining Lemma [£.3] and Corollary [£.5 we finally deduce the following.

Theorem 4.6. Let Q@ C RY be a domain, R > 0, g € Q and B > 1. Assume that
0Q N Bsr(xo) is a Lipschitz graph. Let Kq be of the form either . or . Assume
that u satisfies

LQU Z 0 m DQR(.T())
u >0 m DQR(iL'o),

with Neumann conditions on 02 N Bagr(xo) in the sense of Definition .
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Then for any ¢ > 0 and 9 > 1, there exist k > 0 and v € (0,2s) depending only on the
Lipschitz constant of 02, N, s, ¢ and ¢, such that if

u(xz) > ¢ [1 - (ﬁ@)’y] for a.e. x € Q\ Bar(xo)

{42 1D (a0l s 1 (4.15)
[D2r(0)] =2
then
essinf wu(z) > k. 4.16
peinf (z) (4.16)

Proof. By scaling, it is enough to consider the case R =1 and zg = 0.
First, since 02 N Bs is a Lipschitz graph, and 0 € €2, we can show that there exists
w € (0,1/2) such that
D
| Dy /o] <o
| Dy
Indeed, this follows from the pointwise inequality v4 — 22 > 3./1/4 — 22, which shows
that we can take w =2/5 < 1/2.
Now we claim that the second condition in (4.15) guarantees the existence of ¢ €
(1/2,2) such that
\{uZl}ﬂDTO|>1+2w \{uZl}ﬂ(Dg\DTO)]>1—2w
| Ds| -4 | Da T4

Let us define the functions

hp) = ’{“2’11)}2’“1)0’7 (p) = {uzl}(z)j?z\Dp)!.

It is clear that they are both continuous. Moreover, the first one is nondecreasing and
satisfies h(1/2) < w and h(2) > 1/2 by hypothesis. This means that there exists ro €
(1/2,2) such that h(rg) = (1/2+w)/2 = (1+2w)/4. If we now use that h(p)+h(p) > 1/2,
the claim easily follows.

Applying Corollary (with R = rg), we obtain that for any g > 0

essinf u(z) > C ][
CIZEDTO/Q D
for some constant C > 0 depending only on the Lipschitz constant of 9€2, N, s, and f.

Now, by Lemmal[d.2) with R = 2, dp = (1—2w)/4 and r = ro, there is y € (0,2s) depending
only on the Lipschitz constant of 02, N, s, ¢ and ¥ such that

-1/8
u(x)_ﬁdx> , (4.17)

0

/ u(z)Kq(z,y)de >0 for ae. y € Dy,.
O\By,

On the other hand, by Lemma (with R = 1), there exists 8y € (0,1) depending only
on the Lipschitz constant of 92, N, and s such that

1/Bo —1/Bo
u(z)odx w(z) Podz
(]f) <>d> gc(]é (@) d) ,

70 70
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and thus, choosing 8 = [y in (4.17)), it follows

1/Bo 1 1/Bo
essinf u(z) > C ][ u(z)?dx >C || —— u(x)®dz
2€D /2 D, [ Drol JDyyn{u=1}
c <|{u > 1) mDm|>1/5° s (I{u > 1}ﬂDm|>1/ﬁO
| D | - | Ds|

119 1/Bo
>C’< + w) = K.

v

- 4
Since 79 > 1/2, the thesis follows. O

As a first consequence, we can prove a version of the above theorem that allows a right
hand side f.

Theorem 4.7. (Weak Harnack inequality) Let 2 C RY be a domain, R > 0, g € Q and
f € LY Dagr(xo)) with q > QE Assume that 002N Bsg(xo) s a Lipschitz graph. Let Kq be
of the form either (2.7) or (2.8). Assume that u satisfies

Lou > f in Dag(z0)
u >0 m DQR(.ro),
with Neumann conditions on QXN Bag(wo), in the sense of Definition[2.4

Then for any ¢ > 0 and ¥ > 1, there exist kg > 0, k > 0 and v € (0,2s) depending only
on the Lipschitz constant of 0, N, s, ¢ and ¥, such that if (4.15) holds, then

N
essint u(z) + 50 B 5 s antany > (1.18)
x€DR/4(x0)

Proof. We assume R = 1, xg = 0. Let us consider the function w := u+wv, where v satisfies
(3.9) (with R =1 and xp = 0). Then, w satisfies

LQw 2 0 in D2
w >0 in Do,
with Neumann conditions on 02N Bs in the sense of Definition Notice that w > u in

2 and thus it satisfies the assumptions in (4.15)). Consequently, we can apply Theorem
to the function w and, since v < kg || f||pa(p,) in Dy (by Lemma [3.3)), we deduce

essinf u(x) + k > essinfw(z) > Kk
csyinf u(e) + 0 |l zapy) > essinf w(z) >

which proves (4.18]). O

We finally use the previous weak Harnack inequality to deduce the Holder regularity of
solutions.

Proof of Theorem [{.1 The result follows by iterating the previous weak Harnack inequal-
ity, with an argument similar to those in [29, [41]. By scaling and a covering argument as
in |23, Remark 2.13], it is sufficient to assume that u is a weak bounded solution to

Lou=f in D3(x),
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with Neumann conditions on 092 N B3(zp) (in the sense of Definition and prove

u(z) — u(y)| < Clz —y|* [lullL= @) + [1fllLa(Ds (w0

for a.e. ,y € Dy /(o).

Step 1. Let us take ¥ =4, c =2, k € (0,1), v € (0,2s) and k9 > 0 as in Theorem 4.7
(depending only on the Lipschitz constant of 92, N, s, and ¢). We set & := k/2.

Given any zg € Di(zp), we construct a non-decreasing sequence (my)ncz and a non-
increasing sequence (M, )necz such that

my, <u(y) < M, forae. y € Dy—n(20)
M, —m, = K9~ "¢,

for all n € Z, some o € (0,1) and K > 0 to be determined (independently of zp and ).
We choose

(4.19)

0 < £ §min{;,4’20} (4.20)
and
My = iy + I laopataays 0 3= [z,
so that
K= Mo = mo = 20y + — | flla0stany

Now, we assume that holds and show how follows. Since w is bounded,
whenever z,y € Di(xg) satisfy |z —y| > 1, follows with C' = 2 and any « € (0, 1).

Thus it is enough to check the validity of when z # y and |z — y| < 1. In such
case, we take x = zp and consider n € N (depending on y) such that

9D <z —y| <97
Consequently,
lu(z) —u(y)| < oscp,_, (yu < My —mp, = K97 < K9%z —y|*

«

19 (0%
< g|$ - [HUHLOO(Q) + ||f||Lq(D3(a;0))] ;

which is exactly with C' = 9%/gp. Using the arbitrariness of xz,y € D;(zp) with
|z —y| <1 and z # y, the estimate follows.

Step 2. Notice that, since u is bounded in €2, the choice of K guarantees that
hold true for n = 0 and, moreover, setting M,, = My and m,, = my for all negative integers
n, hold true for any n € Z, n < 0.

Step 3. We construct the sequences (my,)nen and (M, )nen by induction on n € N. So,
we assume that there exists k > 1 such that hold for all n < k — 1, and we show
how to choose mj and M}, such that hold for n = k.

We define
2
= mi In{ —— In? 4.21
a mln{’y,n(Q_K>/n }, (4.21)

and we consider the function

v(z) = <u(19_(k_1)x +z0) —

M1 + my_1 ) 20%—De
2 K
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Notice that, in view of (4.19), we have
lv| <1 in Dy,

where B; = B1(0), Q := {z € RN : 9= +Vz 4 25 € O} and Dy := B; N2 Note that since
Qisa dilation, its Lipschitz constant does not increase. Now, we divide the proof in two
cases. First, we assume
[{v <0}N D
| D |
In order to apply Theorem we study the decaying of v in Q\Bl. So, for any y € Q\Bl
we have |y| > 1 and thus there is j € N, j > 1 (depending on y) such that

¥ <y < 7.
Using that (my,)nen is non-decreasing, the fact that y € By; and (4.19), we obtain

1
> —. 4.22
> (422)

99 (k—1)a My 1 +my—
_ 200 De —(k—1) _ AME—1 T -1
oy - (u(ﬁ Y+ 20) 7 >
2,[9(]6*1)01 Mk_l + mg—1
<—%— (Mk;—j—l — Mp—j—1 + Mp—j—1 — 2>
99 (k—1)a M1 —myp—
<— = (Mk;—j—l = Mg—j—1 — 2)
k—1)a
- 219(K) (Kﬁ—(k—j—l)a _ I;ﬁ—(k—l)a) = 2090 — 1 < 20%y|* — 1,

which, setting w := 1 — v, is equivalent to
w(y) >2[1— @y forae. yeQ\ B

Furthermore, w is a weak solution to
Low = —%W—?S)(’“—U fin Dy,

and so, thanks to assumption (4.22) and the fact that o < 7 (see (4.21)), we can apply
Theorem 4.7 (with R = 1) to deduce

250 (a—2s)(k—1)
?19 ° ”fHLq(ﬁ2) >

essinf w(x) +
x€D1971

Ky

which implies

2/<.10

v(ir) <1—kK+ 7 ﬂ(a_zs)(k_l)ﬂfHLq(fb) for a.e. & € Dy-1.

Notice that, using the definition of K and that o < 2s (cfr. with (4.21))) and ¥ > 1, we
have

2& 50||f||Lq(52)
K ) 60”“”[,00(52) + ”f”Lq(52)

thanks to the choice of €9 > 0 in (4.20]). Consequently,

< 2kg < 2kpe0 <

a—2s)(k— K
oA I 1)HfHLq(52 9’

v(iz)<1—=:=1-% forae z€ Dy1.
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So, using the definition of v and the above inequality, we obtain

1-% M _ 1-%& M, -
u(w) < K,Kﬂ—(k—l)a_’_ k=1t mE-—1 _ K(Mkfl—mkfl)—i—w
2 2 2
K
=my_1+ <1—2> (M1 —my_1)

for a.e. * € Dy-«(29). Finally, using (4.21)), we have that 1 — g < 97, and so from the
definition of K, we deduce

u(z) < mp_1 + K97*  for a.e. € Dy-r(20).

Choosing my, := my_1 and My, = my_1 + K9~%*, it follows that is satisfied for
n = k and we complete the proof of the first case.

Finally, if is not satisfied, it is sufficient to notice that it holds for v := —v and
repeat the above procedure working with o. O

5. A NEUMANN LIOUVILLE THEOREM IN THE HALF-SPACE

The goal of this section is to prove the following Liouville-type theorem in a half-space
with nonlocal Neumann boundary conditions.

Theorem 5.1. Let ) = Rf = {zny > 0}, and s € (%,1). Let Lg and Kq be given by
either (2.1))-(2.2))-(2.3)), or (1.7). Assume v is a weak solution to
Lov=0 inRY

with Neumann condition on ORY = {zx = 0} (in the sense of Definition . Leta>0
be given by Theorem and assume that

25—14-¢
HUHLOO(Bg) <Co(1+R ) forall R >0,
for some Cy and ¢ € (0,«). Then,
v)=a+b-zx
for some a € R and b € RN with by = 0. Moreover, if 2s —1+¢ < 1 then b= 0.

The proof of this result is not standard and does not follow from classical tools such as
even reflection for harmonic functions. Moreover, the extension problem for the fractional
Laplacian is of no use here, and therefore the proof must be different from the Dirichlet
case, too.

We stress that, even in 1D, we do not know how to prove a better Liouville theorem
(allowing more growth on v). This seems a challenging open problem, which is strongly
related to the higher boundary regularity of solutions to (|1.1J).

5.1. 1D barriers. We need sub- and supersolutions for both problems ((1.1)) and ([1.10]).
We start with the following.

Lemma 5.2. (Supersolution for (1.1) and (1.10)) Let N =1, Q = (0,00), and s € (%, 1).
Let Lo and Kq be given by either (2.1)), (i or . Given any ro > 0, let us
consider n € C3°([0,2r)) satisfying 0 <n <1 andn =1 in [0,ro].

Then, there exists ¢ > 0 (depending only on ro) such that the function

B(a) = n(z)a®*!
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satisfies
Lop>¢ in (0,79).
Moreover, if Lo and Kq are given by (2.1)), (2.2)-(2.3), a logarithmic improvement can be

done. That is,
Lop >¢ (1 +log~ <x>> in (0, 7o)
7o

Proof. We prove the result for Kq of the form (2.1)), (2.2)-(2.3)); the case (1.7 is simpler.

By scaling, we may assume 19 = 1. Given x € (0,1) and using the definition of @, we
compute

Lop(z) = /0 T )y ) Kaley) dy

Z/ {z271 =y} Ka(z,y) dy+/0 y?* (1 =n(y) Ka(z,y)dy == 11 + I>.
0

Now, by the symmetry and the scaling of the kernel K (see Section, it is easy to check
that Lo(2%*7!) = 0 in Ry and so I;(z) = 0. On the other hand, we know that 7 = 1 in
[0,1] while n = 0 in [2,00). Moreover, if we use that 1 <y —z <yforallz <1<2 <y,
it follows

2 0
Ix(x) =/1 v (1= n(y)) Ka(z,y) dy+/2 v (1= n(y) Ka(z,y) dy

> [P = ) Ka(ew) dy = / y? Ko, y) dy

We next show the following construction of subsolutions.

Lemma 5.3. (Subsolution for (1.1)) and (1.10)) Let N =1, Q = (0,00), and s € (%, 1).
Let Lo and Kq be given by either (2.1)), (2.2)-(2.3) or (1.7). Given any ro > 0, let us
consider n € C§°([0,2r9)) satisfying 0 < n < 1, n =1 in [0,79] and ¢ € C§°((ro,2r0))
satisfying 0 < ¢ <1 and { 0.

Then, for any ¢ > 0, there exist M > 0 (depending on ¢, s and o) such that the function

(@) = n(@)a® " + M(()
satisfies
Lop < —c in (0,79).
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Moreover, if Lo and Kq are given by (2.1), (2.2)-(2.3)), a logarithmic improvement can be

done. That 1is,
Lop < —c <1 + log™ (f)) in (0,70).
- 0

Proof. We proceed as in the previous lemma, proving the result only in the case Ly and

Kq are given by (2.1} . q and ro = 1. Given x € (0,1) and using the properties
of ¢ and the identity Lq(x = 0 in R4, we obtain

Lop(z) = Lop(z) + MLQC(x)
2 00 2
= / v (1 = () Ko(z,y) dy +/ v Ko(z,y) dy — M/ ((y) Ka(z,y) dy
1 2 1
= Il<l‘) + IQ(.%') — MIg(:U)
Now, we consider separately each of the three terms. That is,

2
fﬂx>=3[ V21— () Kolz.y) dy

1+1log™ (=
—:y O_g )gi;: ) dy

2
so/y%ﬂrm@»

— 0/12 y>1(1 —1+2s dy + C/ 25— 1 n(y)) (Lg()H)}s X{y>22} AY
= I (z) ‘l‘ f 12(7 )
On the one hand, we know the existence of two positive constants § and C, such that
1—n(y) <Cy—1)* forally e [1,1+0).

This follows from the fact that 7'(1) = 0 and that 7”(1) is bounded (notice that 6 and C
depend only on 7”). Consequently, since z € (0,1), we have y — x > y — 1 and, moreover,
when y € (14 6,2) we have y — x > §. Thus,

146 2s 1 23 1 1 . (y)>
IH C/ d + C/ dy
1+25 145 _ 33 1+23

1+0 2
< C/ y25—1(y _ 1)1—25dy 4 05—1—25/ y25—1dy < C < +00.
1 1+9

On the other hand, taking into account that y —z >y — 1/2 > 1/2 when x < 1/2, whilst
y—a>x>1/2 when x > 1/2 and y > 2x we arrive at

2 log (=5)
Ill < C/ 728 X{y>2$} dy < C/ 10g dy

§C<1+10g (i)) < C(1+1log™ ).

Thus, we obtain
Il(x) <C; (1 + log™ x) .
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Next, we proceed with the estimate of the term I5. That is, since y — x > y/2 when
z<1<2<y we get

Ix() =/ #~ 1 Ka(x,y) dy < C'/ a1t (ﬁ) dy

(y — )+
<C/ <1+10g <y;x>>dy

<C/ +log< >> dng(l—logx)/ y~ 2 (1+logy) dy
2
<Oy (1+1log™ z).

Finally, we consider I3. By using again again that 1/2 <y —x < 2 when 2z < y < 2,
we arrive at

=/12<<y>KQ<xy y> e /c Hlog )gi:f)dy

2 1+ lo X {y>22
> C/1 C(y) ( )2+2£y>2 }d

2
> c/ < + log ( )X{1>21’}> dy
1
2 1 1
c/1 1+ log o7 | X{1>22} dy > c|1+log 9z ) X{1>22}

ZC’g(l—Hog :c)

v

Therefore, as a consequence of the previous computations, for all € (0,1) and all ¢ > 0,
we obtain

Lop(x) =11 + I — MI3 < (C1 4+ Cy — MC3) (1 +1og™ z) := —c (1 +1log™ z),
if we take M > 0 large enough, depending only on s and c. O
5.2. A 1D boundary Harnack. We now prove a boundary Harnack estimate in di-
mension 1, by using the previous sub/supersolutions and following the general steps from

[38].
For any R > 0, we define

Ig:=(0,R) and I} :=(R/4,R/2).
The first step is the following.

Lemma 5.4. Let N =1, Q = (0,00), s € (%, 1), and Ky > 0. Assume that either Lg and
Kq are given by (1.7)) and u satisfies

Lou > —Kj m IR,
u>0 in Ry,
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or Lo and Kq are given by (2.1)-(2.2)-(2.3) and u satisfies

LQ'LL > —KQ [1 + log_ (%)] m IR,

Then, there exists C' > 0 depending only on s, such that

LG <C’[ inf @) Rl (5.1)

EGIE $2871 - erR/él .’1’:2571

Proof. We prove the result for Kq of the form (2.1), (2.2)-(2.3]) since the case (1.7)) is

completely analogous.

By scaling properties we may assume R = 1. The general case is recovered by applying
(5.1) (with R = 1) to the function ug(z) :== R~%u(Rx), R > 0.

Step 1. Assume Ky = 0. Let us define

u(x
m := inf 2( _>1 > 0.
el T s

If m = 0, the thesis follows immediately. So, assume m > 0. In this case, it holds

u(x) > ma® > mrd*t in I

Now, for any € > 0, we define
p(r) = ep(),
where ¢ is the subsolution constructed in Lemma for ro = 1/4 and ¢ = 0, satisfying

Loy < 01in I;/4, and supp(yp) C I, /5. Consequently, ¢ is a subsolution in I;,, for any
€ > 0 and, furthermore,

p(x) = eln(@)a® ! + M{(2)] < (27 + M) <md ™ < (),

for all x € [1/4,1/2), whenever 0 < € < ¢ := m41725/(21725 4 M). Thus, choosing ¢ = &g
and recalling that u is nonnegative, it follows that ¢ < w in [1/4,400) and so applying
the comparison principle in I /4 we obtain

0™t = p(x) <u(x) in Iy

Taking C' = (2!72% 4 M)/4'~2% and using the definition of g, it easily follows

and the proof in the case Ky = 0 is completed.
Step 2. Assume Ky > 0. For any ko > 0, we define

2s—1

v(x) := kop(z) + u(z) = Koz +u(z) in I,

where @ is the supersolution constructed in Lemma (with 7o = 1 and r = 2), satisfying
Lop > ¢(1+log™ ) in I, for some universal constant ¢ > 0, and supp(y) C Io. Thus,
choosing kg = K /¢ and recalling that % is nonnegative, it follows

Lov>0 in I;
v >0 in Ry.
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Hence, we can apply Step 1 to the function v to conclude the existence of a constant C' > 0
(depending on s) such that

inf A7) o e 2T
'7‘,6]1+ xS $611/4 xreS—

Finally, (5.1) follows easily since v(x) = rox?*~! 4+ u(z) in I;. Notice that the constant
C > 0 changes passing from v to . U

We will also need the following, which follows from the interior Harnack inequality (see
for instance [15]).

Lemma 5.5. Let N =1, Q = (0,00), and s € (%, 1). Let Lo and Kq be given by either

2.1)-@2.2)-2.3), or (L.7). Assume that

|Lou| < Ko (1+1log™ (%)) in Ir
u >0 n Ry,

for some Ko > 0. Then there exists C > 0 depending only on s, such that

sup &) <C[ inf 42 +K0R} (5.2)

2s—1 — :BGIE I2571

Proof. Again, it is enough to prove the case R = 1. Inequality (5.2]) easily follows from
the interior Harnack inequality (see (2.2)-(2.3) in [15])

sup u(z) < C[ inf u(x)+ Ko},

+
xEIfL zel]

and using that = € (1/4,1/2), and that log™ = is bounded in [1/8,1]. O

We can now prove the oscillation decay for the quotient u /22571,

Lemma 5.6. Let N =1, Q = (0,00), s € (%, 1), and Ky > 0. Assume that either Lg and
Kq are given by (L.7)) and u satisfies
u(0) =0,

or Lo and Kq are given by (2.1)-(2.2)-(2.3) and u satisfies

|Lou| < Ko (1+1log™z) inly

u(0) = 0.
Moreover, assume that u satisfies the growth condition

u(y)| < co(1+y*~°),  for all y >0, (5.3)

for some c¢g > 0, g > 1. Then there exist o € (0,1) and C > 0 (depending on s, cy and
€0), such that
xclp T S relp X s—1

< CR” [|Jull oo 1) + Ko] » (5.4)

for all R € (0,1].
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Proof. As in the previous results we are only proving it in the case Lo and K are given
by £1-23-E3.

Let us fix ¥ = 4 and R = 1. Similar to the approach followed in the proof of Theorem
we construct a non-decreasing sequence (my,)nen and a non-increasing sequence (M,,)nen
such that

<M, forae yé€lyn (5.5)

for all n € N, some a € (0,1) and K > 0 to be suitably determined. We proceed by
induction on n € N.
Step 1. We prove the case n = 0. Let n € C§°([0,2)) satisfying 0 <n <1landn=11in
[0,1] and define
v(z) =n(z)u(z), x>0.

Notice that for any = € I; = (0, 1), we have v(z) = u(x) and, furthermore,

2 1, _ © |y
]LQU($)]§|LQU($)\+/1 Wdy+/2 (y|g)1|+2

< Ko(l+1log™ x) + K1(1 +1log™ z) + Ko(1 +log™ z) := Ko(1 + log™ z),

where K depends only on ¢y > 0, g > 1 and s. The above bounds follow by using that
z € (0,1), y >1 (and so y — & >y — 1), the regularity properties of 7 and (5.3).

Now, let © be the supersolution constructed in Lemma (with 79 = 1, r; = 2)
satisfying Loy > ¢(1 4+ log™ z) in I;, and let ¥(z) := Ap(x), A > 0. Since, v is
bounded and has support contained in I2, we can choose A large enough (for instance,
A > max{||ul| o (1,), Ko/c}) so that

Y >v  in[l,00),

_ 5.6
Loy > A¢(1+1log™ z) > Ko(1+1log™ z) > Lov  in I3, (56)

and so, recalling that ¢ (0) = v(0) = 0, it follows ¢ > v in I; by the maximum principle.
In particular, u(z) < Az?~! for all # € I;. Notice that the function ¢ = —1 works as a
subsolution in I; with ¢ < —v in [1,00) and so |u(z)| < Az?*~! for all z € I;.

Thus we can choose My = A, mg = —A and K = My — mg = 2A. We anticipate
that in the second part of the proof we will ask K > 3CKy (see (5.9)), where C > 0 is
the constant appearing in Lemma and Lemma To guarantee this, it is enough to
choose

K =24, A=Cy([lullpse,) +Ko), Co>max{1,3C/2,Ko/(cKo)}. (5.7)

Notice that this choice guarantees A > max{||ul|ze(r,), Ko/c} and thus (5.6) is justified.
Step 2. We assume that (5.5)) hold for all n < k and we prove the existence of myq
and My satifying (5.5)), too. Define
ug () = u(z) — mpz*1,
and write uy, = uj — u; . Notice that in view of (5.5)) we have

+ _ .
uy =ugp in Ly—k.
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Using the monotonicity of (my)reny and (My)ren, we easily deduce that given x € Iy—;, it
satisfies

ug(z) = u(w) — mpa® =t > (mj — my)x* 7t > (mj — M + My, — my)z

_ K(_,ﬂ—ja + ﬁ—ka)l,Qs—l > _Kﬁ_j(%_l)(ﬂ_ja o ﬂ—ka)’

2s—1

for all j < k. Now, for any = > 9%, there is j < k — 1 such that 9771 < 2 <97/, and
thus, if x € Iy—; \ Iy, we have

| | g—i2s—1) g—ie
—j(2s—1 —ja —kay __ —k(2s—1+a
wk(w) > K9 IETD @ = 7R = — K )<19—ka_1)

S R (U S T Y A\ I
= ﬂ_k ﬁ_k ’ [ Y=k

Since the r.h.s. of the above inequality does not depend on j, we conclude that (5.8]) holds
for all x € Ry \ Iy-x. Now, let us take x € Iy« /5. Using that u, =0 in Iy and (5.8),

we obtain

(5.8)

o0

0 < —Louy, (x) = /OOO uy (y) K (2, y)dy 2/9 uy (y) K (z,y)dy

—k

()
cogoinrien [* (St} (dtn) Lt (5)]

g-k_g \ UK 9k MESE Y
20y \ 2 [ 205\ 11+ ‘log (g)‘
ok ok) Y T W

< O K9~ HeD) / (20y)2~1 [(209)° — 1] 1+ |logy| + |log x‘dy

1/2 ylts
< eo(@)Cs K9 D(1 4 log™ ),

o0

u, (z+vy)
< A At
— 8 9k yl+25 (

< Gy i [
N 9=k /2

where .
cofa) = [ oy f2on)” - 1 L
1/2 )
Notice that eg(a) — 0 as a — 0, since (20y)* — 1 as a — 0 for all y > 1/2 and Lebesgue
dominated convergence theorem. Consequently, recalling that K has been fixed in ,
we choose a € (0,1) in the following way: if C' > 0 denotes the constant appearing in the
statements of Lemma [5.4 and Lemma [5.5] we take o small such that

1 1
<, V>1——. 5.9
“ole) < 55 3C (5:9)
Notice that the second inequality above is guaranteed by (5.7). Now, writing u;: = up+ug
and using that Lo(22*~!) = 0in (0,00), ¥ > 1 and o € (0, 1), we estimate
|Lou; (z)] < |[Lou(z)| + |Louy, (z)| < Ko(1 +1log™ z) + 0(@)Cs K91 (1 4 log™ 2)

< [Ko + £0(a)Cs K] 9 H@7D (1 + log™ ),
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for all € Iy-k /5. Consequently, we can apply Lemma and Lemma to uz and,
recalling that u;: = uy, in Iy-x, we deduce

sup [ l;(:i)l - mk] < C’{ inf [ u2(ai)1 - mk] + (Ko + so(a)K)ﬂ_ka}
z€l” T $€I+—k °
9=k /2 9—k/2

< c{ inf [“(x) —mk] + (Ko —1—80(04)K)19_k0‘}

2s—1
x€I§,k/4 T

Now, defining
uF () = Mya® ! —u(x),

and repeating the above argument, we deduce

sup [Mk— “(x)] < C{ inf [Mk _ u@) ] +(K0+50(a)K)19_k0‘}.

2s—1 2s—1
+ T zel T
we[ﬂ—k/z

9=k /4

Summing, it follows

Mj = my, < C{ inf [u(x) - mk:| + inf [Mk - ;Lf)l}

In particular, we deduce

u(x) ) u(z) C-1 “k
sup —  inf < —— (M, —myg) + (Ko +eo(a) K)9 7
Ielﬂf(k+l) xQS—l xe[ﬁ*(/ﬂrl) x28—1 C ( ) ( ( ) )
-1
— <0 + fo + sg(a)> Ko~
and so, thanks to (5.7]) and (5.9)), we find
C-1 K
. -4 v < 9
- + % +eola) <¥
Consequently, choosing
u(z) : u(z)
My := sup ——, Mpy1 (= inf ——,
+ €l (1) r2s—1 + el (ki) r2s—1
the thesis follows. O

We can finally prove the following.
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Theorem 5.7. Let N =1, Q = (0,00), and s € (%, 1). Let Lo and Kq be given by either

(2.1)-(2.2)-(2.3), or (L.7). Let R >0 and f € L*°(Izr). Assume that
{Lgu =f in g

u(0) =0,
and u satisfies (5.3)) for some ¢y > 0, g > 1. Then the function
u(z)
r2s—1

can be continuously extended up to x = 0 and, furthermore, there exist « € (0,1) and
C > 0 (depending on s, co and €g), such that

u(z)  uly)

225—1 y2s—1

_ r —
<o (L) a4 B lo] . (50

for all z,y € Ig.

Proof. We define §(z) 1=z, v := u/6*!, Ko := || f||oo(s,) and we set R = 1. First, from
Step 1 of the proof of Lemma, we have

[0/l oo () < Co ([lull oo (1) + Ko) (5.11)
for some suitable Cy > 0 depending only on s, ¢g and gg. Further, by Lemma we have

also (see (5.4))
SIIlpU - mfv < Co" [|lull oo (ry) + Ko 5 (5.12)
o
for some v € (0,1),C >0 (dependmg only on s, ¢p and ) and all p € (0,1]. In particular,
notice that from (5.12)) one can easily deduce that v can be continuously extended up to
z=0.
Now, for any x € I, we set J;© := (x/2,3z/2). Thus,

[ ]CO g(J-&-) < CT [HUHL‘X’(IQ) + KO] )

for all 8 € (0, 5,) and some suitable S, € (0,1) (cf. Theorem . On the other hand, it
is not difficult to check that

H51 ZSH < C 7“ s’ [51725] S CSTfZS’

Loo(J;h) CO1(JH)

for some Cs > 0 depending only on s. As a consequence, by interpolation

[61723]0076(E) < CST172S*5’

for all 8 € (0,1). Thus, for any 8 € (0,8:) and all z,y € J,F (2 # y), using the definition
of v, it follows

[v(z) — vl 1522 |u(2) — u(y)| 6172 (2) — 8> ()

|z —y[? P Pl VAR P
< Cr' 70 Jlull oo (1,) + Ko
for some new constant C' > 0, which implies
[ ]CO ﬁ(J+) < Crl 250 [HUHL"O 1) +KO] (513)
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for all 8 € (0, ). Now, we see how (5.11)), (5.12)), and ([5.13]) lead to
[Wlcoay < C [llull ez, + Ko] ,

for some « € (0,1) depending only on s, ¢y and &g.

Given x,y € I, we suppose x > y, and set ¢ = x, o = |z — y|. Notice that thanks to
(5.11)), we can assume p € (0,1). Finally, we fix

25 — 1
S PF2s-1
p
where 5 € (0, 5,) as above. There are two possible cases:
Case 1. o > gP/2. Then, thanks to (5.12)),
[v(z) = v(y)] < [v(z) = v(0)] +[v(0) — v(y)| < C [[lullLe(r,) + Ko] 0
< Co"'? [||ull oo (1) + Ko]

and so it is enough to choose a = ~y/p.
Case 2. Assume p < pP/2. Since p > 1, we see that y € Jgf = (/2,3x/2) and so, using
2s5—1

(5.13)), it follows
~1—25— _B42s-1
[o(x) —v(y)| < Ca* 2208 [J|ull oo () + Ko] < Co” 7 [J[ull oo (1) + Ko ,

and so we complete the proof by choosing « := min %, 08— %} > 0. O

5.3. Proof of the Liouville theorem. First, as a consequence of the 1D boundary
Harnack, we can deduce the following Neumann Liouville theorem in the half-line.

Corollary 5.8. Let N =1, Q = (0,00), and s € (%, 1). Let Lo and Kq be given by either

--, or . Assume that

Lou = in R
ou=0 i (5.14)
u(0) =0,
and u satisfies
lu(y)] < co(l+y>17%), y>0, (5.15)

for some cog > 0 and ¢ € (0,«), where a € (0,1) is as in Theorem|5.7. Then,
u(z) = Az?51,

for some A € R.
Furthermore, if in addition u satisfies (5.14)) in the weak sense with Neumann condition
(in the sense of Definition atx =0, thenu =0 in Ry.

Proof. From (5.15)), we immediately see that
Hu||L°0(12R) < 00(1 +R2S—1+5)’

for some Cy > 0 depending only on s, ¢y and ¢, and all R > 0. On the other hand, we
notice that all the assumptions of Theorem are satisfied (in particular, (5.15]) implies
(5.3)). Thus, setting v(x) := u(x)/2?>*~!, and combining ((5.10]) with the above inequality,
it follows

[W]coa(ryy < CR7TH 7 ull poo () < CRT,
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for some new constant C' > 0 and all R > 0. Since € € (0, ), we can pass to the limit as
R — +oo to deduce [v]co.a(g,) = 0, which trivially implies that v = A for some A € R,
i.e. the first part of our thesis.

To show the second part, we recall that u satisfies

/ / () — u(y)][n(z) — n(y) Kz, y)dedy = 0,
Ry JRy

for all n € C§°(Ry) and, since u € C®°(R4) (see [34]), it satisfies Lou = 0 in R;.
Consequently, from the first part of the statement we deduce that u(z) = Ax?*~!, for
some A € R.

However, assume A > 0 and take n € C§°((—o0,1]), with ' <0 and 1 # 0. Using that
x — 271 is strictly increasing in R, it follows

0=4 /R + /R =) ()}, )y

=A [z — 7 [n(z) — n(y)] Ka(z, y)dzdy
{z<y}

<0 >0

+ A - (2271 — 7 In(2) — n(y)] Ka(z, y)dzdy < 0,
2y

>0 <0
since 1 # 0 (similar if we assume A < 0). This leads to a contradiction, unless A = 0, and
thus u = 0. U

In order to extend the previous Neumann Liouville theorem to higher dimensions we
need some preliminary lemmata. The first one concerns Holder regularity of solutions in
the half-space.

Lemma 5.9. Let Q =RY = {xn > 0}, and s € (3,1). Let L and Kq be given by either
(2.1)-(2.2)-(2.3), or (1.7). Assume that v is a weak solution to
Lov=0 in Rf
with Neumann condition on ORY = {xx = 0} (in the sense of Definition . If
< R° >
||U||LOO(B§) _R ; R_]-a
for some 0 < o < 2s. Then
< o >
[v]ca(B;) = CR ) R il 17
for some constant C' > 0 depending only on N,s, and o, and o as in Theorem [].1}

Proof. As usual along this paper, we are proving the result in the case Lo and K¢ are given
by ——. The other case is analogous, but without the logarithmic corrections.
The main idea is to apply Theorem but, since v is not bounded, we first need to
cut it in a suitable way in order to making use of the Holder estimate. By scaling, it is
enough to prove the result for the case R = 1.
Let us define the auxiliary function w(xz) = v(z)xp,(z). It is clear, due to the growth
condition on v, that this new function w is bounded in Rf . Indeed,

o
HwHLoo(Rﬁ) < 4%
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First, we prove that w satisfies
Low=f in B;,

in the weak sense with Neumann condition on ORY N By, where f € LY(By) is a function
which will be determined next. So, given any test function n € C§°(B2) and using the
equation satisfied by v we have

B(w,n) = /RN /RN(“J(»”C) —w(y))(n(z) —n(y)) Ka(z,y)dzdy
- /RN /RN (v(@) x5, (x) — v(y)x5. (1) (@) — n(y)) Ka(z,y)dzdy
=[] w) o)) i) Ko, vy
Bf JB}

+2/B4+ da;/( o dyv(z)n(z) Kao(z,y)

= /+ (2/ v(y) Kn(w,y)dy> n(z)de = | fle)n(z)de
Bj (B9 Bj

Then, given any = € B, we claim that f satisfies the following pointwise estimate

[f(x)] < C(1+1og™(zn)),
for some positive constant C' depending only on N, s and o. In particular, it follows that
f € LYBY) for any 1 < ¢ < .
Now, if we apply Theorem to w with ¢ = N/s, and we take into account that v = w
in B;r we obtain

leegsry = [Wloas) < € (ol ey + 11l agayy ) < C

as we wanted.

Finally, let us prove the pointwise estimate for f. Letting d = d,,, using (2.5 and
taking into account that |y|/2 < | — y| < 2|y| and d < |z — y| when = € By and y € Bj,
we have

- d
1+ log (7|27—y|>
‘:B _ y’N+2s

f(@)| =2 <C lyl”

(Bo)*

/ o(y) Ko, y)dy
(B§)*

=C WJ+C/ log(%)
(

Yl” —— s W
(Bo)*+ | — y|N+2s |z — y|N+2s

dy / log(2[y|) + |logd|
<C — 4 C dy
(Boy+ [y|N 2= (BS)+ |y| N +2s

Dt

log |y| + [log x|

< c+C |y|N+23

(B TN{zn<yn}

log |y| + | log yn|
|y‘N+23

+C dy < C (1 +log™(zn)),

(B)Tn{yn<zn}
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for some positive constant C' depending only on N, s and o. Here, it is crucial the fact
that 0 < 2s and d(x) = zy together with the integrability of logd close to 8Rf. O

Next step is proving that weak solutions to Lov =0 in 2 = Rf are linear functions.

Proposition 5.10. Let Q = RY = {zy >0}, and s € (3,1). Let Lo and Kq be given by
either (2.1)-(2.2)-(2.3), or (1.7)). Assume v is a weak solution to
Lov=0 nRY ={zy >0}
with Neumann condition on ORY = {xx = 0} (in the sense of Definition . If
||UHL°°(BE) <c¢(l+R7), R>0, (5.16)

for some cg > 0 and 0 < 0 < 2s. Then, there exist functions wy, ..., wny_1 such that
N-1
v(z) = wo(xn) + Z wi(TN)x;.
i=1

Furthermore, v(x) = wo(xy) if o < 1.

Proof. Note that we can assume that ||v]]| L(B}) < R? for every R > 1, after dividing by

a suitable constant.
First, we prove that v is a polynomial in the first N — 1 variables with coefficients
depending on xy, i.e.,
o)=Y ajlzn)#,
l7I<N
where j = (j1, ..., inv_1) is a multiindex and &/ = :U]f x?{,\]_’f
By Lemmawe know that [v]ca(p,) < CR7~%. Now, given any direction e = (¢,0) €

SN=1 and any h > 0 we define the function

o) = M)

where C is the positive constant appearing in the statement of Lemma [5.9] Then, since
ey = 0, it is clear that v} ; satisfies

Lovi, =0 inRY

||IU}C;’1||L00(BE) SRU_OC’ R > 1.
Now, since v}, ; satisfies the same equation of v and an “improved” growth condition, we
can iterate this procedure and, defining recursively

. vﬁ7k_1(x + he) — U}c;’k_l(l‘)
Uh,k:(x) = Clhle )

we obtain that ”Uic;k;HLoo(B;) < R~*a_ Therefore, if we choose k > d 4+ 1 := [o/a] and

take R — oo we get that U ar1 = 0in ]Rﬂ\r’ . By definition, this means that the discrete
differences of order d of v in every direction e are zero and thus v is a polynomial of
degree d in the first N — 1 variables. Furthermore, in view of and that o < 25 < 2,
it follows d = 1 and therefore v has the form stated above. Indeed, since for any given
zy > 0, v(-,znN) is a polynomial of degree d, then ””(‘va)HLoo(Bg) > cRY, for some
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constant ¢ depending on zx and any R > 1. On the other hand, by (5.16)) we obtain that

||v(-,xN)||LOO(B+) < CR? with ¢ < 2. It thus follows that d = 1. Notice that when o < 1
R

we get that d = 0 and so we conclude v(x) = wo(zy). O

Lemma 5.11. Let Q@ = RY = {zy > 0}, and s € (3,1). Let Bg be given by [2.9) with

Kq either of the form (2.2)-23), or (1.7). Assume v,0 € Hr(RY) and n € C&(RY)

are functions of the form v(z) = z;w(xy) for some i € {1,...,N — 1}, 0(x) = w(zn) and
n(x) = 7(Z)nn(rN) with x = (F,2n5) € RN"L x Ry. Then,

By (0,1) = </RN1 7(2) dZ) B, (@,1v),
and
Bay(om) = ([ i) =) B, ().

Proof. The proof comes from direct computation. On the one hand, if we use the form of

¥ and 7, add and subtract the term ny(zn)7(y)(W(zy) — wW(yn)) and rearrange them, we
arrive at

— [, [ 6@ = 5 @) ~ n(w) Ky (2.9) dady

R R+

/ (@(ex) — D)@y (@n) - 3@ ) Ka (2.) dady
= / L ) @tan) — @) @) — 100)) Ky o.9) dody
+ [ / 7) (@) — ©(un)) (o) — mv () K (2, y) dady
=:J1 + Jo.

Now, one can conclude that J; = 0 due to the antisymmetry of the integrand with respect
to the variables z and . Next, we can use the identity

KR{'\_T(E;JTN,@,Z/N) di:KR+(wNayN)7 (517)

RN-1

which can be easily checked in both frameworks: Kq either of the form (2.2)-(2.3)), or
(1.7), in order to deduce that

Tz = < /R L) dy> Br., (@, 1n)-
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On the other hand, if we use the form of v and 7, add and subtract again different terms

and rearrange them, we arrive at
(v(z) = v(y))(n(z) = n(y))
B = dxd
Rf(Uﬂ,/) \/Rf /I‘Rf \x—y\NJFQS ray

/RN /RN (ziw(zn) = yiw(yn))(((@)nn (z8) = 1(@)nn (yn) Kgy (2,y) dzdy

— /RN/IR v (zn)(w(zn) —w(yn))yi(7(z) — ﬁ(gj))Kﬂw(x,y) dzdy

+ /Rf /Rf w(zy)ny (@n) (@i — v) (71(z) — (7)) Kgy (2, y) dzdy

+ /M /Rf yin(@)(w(zn) — wlyn)) (v (@n) = v (yn)) Ky (2, y) dedy

:Il+I2+13+I4.

Now, we show that the first three integrals are zero while the last one give us the desired
result. That is, by symmetrization with respect to the variables Z and 4 and the translation
invariance and odd symmetry of the kernel KRf (z,y) in the first N — 1 variables, we get

I = /N /N v (@n)(w(@n) — wlyn))yi (i) — 0(y)) Kgy (2,y) dedy
RY JRY
— —% /]Rf /Rf v (zn)(w(zy) — wyn)) (@i — vi)(7(Z) — 7(y)) Kpy (x,y) dxdy
— /R N /R v (en)(w(en) = wlyn)) (@i = yi)i(5) Key (2,y) dady

RN 0 RN_] 2z

The computations of Iy and I3 are completely analogous, although we do not have to do
the first symmetrization. Next, we proceed with I;. By using again the identity (5.17)) we

arrive at

I, = /N /N yin(y)(w(zn) — wlyn))(mn(zn) — v (yn)) Ky (x,y) dody
RY JRN

= ([ wito) ) Be. ().

Finally we present the proof of Theorem [5.1
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Proof of Theorem [5.1] First, by applying Proposition [5.10] with o = 2s — 1 4+ ¢ we know
that

N-1
v(x) = wo(zn) + Z wi (TN )T
i=1
Now, we are going to take advantage of Lemma to prove that every w; satisfies
Low; =0 in R4 (5.18)

in the weak sense with Neumann boundary condition at 0. To do this, let us take any test
function with separated variables, i.e., n(z) = 7(Z)nn(zn). Then, by applying Lemma
and the fact that v is a weak solution of the problem (BRQ(% n) = 0), we obtain

N-1

i(z) dz+ ) <BR+(wi777N) /RN_1 zin)(z) dZ) =0,

i=1

Bg, (wo,nN) /

RN—l
for any given 7 € C°(RY 1) and ny € C°(R4).

We claim that this equality is equivalent to Br_ (w;,ny) = 0 for any ny € C§°(R4.) and
therefore that w; satisfies , as we wanted. In order to show that we only need to
choose 7 properly. On the one hand, by taking a radial 7, we get that Bg, (wo,nn) = 0.
On the other, if we choose the test function 7 to be odd with respect to the i*’-variable
and even with respect to the others we conclude B, (w;,nn) = 0 for i > 0.

Moreover, it is clear that each w; satisfies the same growth condition as v, i.e., ||w;|| ;o (B}) <

co(1 4+ R?*71+¢) for any R > 0 and so, applying Corollary to each w;, we obtain the
desired result:

as wanted. O

6. HIGHER REGULARITY BY BLOW-UP

The aim of this final section is to establish a C*~17@ estimate (in case s > 1), by

combining the C* estimate from Section |4] a blow-up argument in the spirit of [40], and
the Liouville theorem with nonlocal Neumann conditions established in Section [Bl
We will also need the following.

Lemma 6.1. Let Q C RY be any Lipschitz domain, f € L? (Q) and xo € Q. Let Lo and

loc

Kq be given by either --, or . Assume that u satisfies
Lou=f inQ
with Neumann conditions on 0X). Assume that
lu(z)| < Mo(1 4 |z|*7%) in RY.
Then, for any 0 <r < R and any xq € §), we have
(W (D (ao)) < C {Hf”%?(DR(a:o)) + Mg} :

with C depending only on N, s, xg, €, 7 and R.
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Proof. Fix g € Q@ and 0 < r < R. Let ¢ € C§°(Bg(z0)), such that 0 < ¢ <1l and p =1
in B, (xg). Testing the weak formulation with 7 = up, we obtain

Blun) = [ [ @) —ulfu@)e(@) — e Kot dody = | fugds.
Writing

u(z)p(x) — u(y)e(y) = [u@) — uly)]e(z) +uly)p(r) — e (y)],
we deduce by symmetry

2[u(@) —u(y)][u(@)p(@)—u(y)e(y)] = [u(@)—u(y)]?[p(2)+e(y) ]+ u (@) —u®(y))lp@) —e(y)].
Consequently, using the symmetry of K and the definition of ¢, it follows

2B(u, ) = /Q /Q u(z) — u(y)Plp(@) + o) Koz, y)drdy
" /Q /Q 12(x) — ()] (x) — o(y)] Koz, y)dedy

> 2full o,y —2 | 00 Lol

Now, since ¢ € C§°(Bgr(zo)), we claim hat
/ u?(x)| Lo (x)|dr < CMg/(l + |2|*572) | Lap(z) |dz < OME, (6.1)
Q Q

for some constant C' depending on 2, N, s, R, ¢, and xg. If (6.1 holds, then

[u]%{s(pr(xo)) < / fudx + CMO2,
Dpg(z0)

and combining Young’s inequality with the growth condition on u we complete the proof.
Hence, it only remains to prove (6.1]).
Let us estimate |Lop|. For this, notice first that since ¢ is Lipschitz, then

Lag(x)| < C /Q & — y| Ko(z, y)dy,

which gives a universal bound whenever s < % However, in case s > % the bound is

nontrivial, since we cannot immediately symmetrize the integral. In that case, we separate
the proof into two cases.

o Assume first that Lq is given by (1.7]). Let = € Bap(zo) and d = d(z). Then,

Lag(z) = PV / (o(2) — o) Kalz, y)dy + / (p(2) — o) Kalz, y)dy
By(x) Q\Bg(z)
=1+ J.

By the regularity of ¢ and symmetry of K¢ inside Bgy(x), it follows that

2p0(z) — p(z —y) — o(z +y)| / dy
Il < / y<c| Y _a<c
’ | B, |y’N+28 B, |y‘N+23—2

for some constant depending on N, s, 2 and . Further, since ¢ is Lipschitz, we obtain

d
] < / o(z) — o) Kale, y)dy < C y
Q\Bd xT

1-2s
oy = G

RN\By(z
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with C depending only on N, s and ¢.
Consequently, we have proved
|Lap(z)] < C(1+d 7*(x)), 2z € Byg(xo). (6.2)

Now, since ¢ has compact support in Br(zg), for all x € Bog(z¢)¢ we find

dy C
Lap@)| < [ o)l Kooy < C < L (63)

Q suppe |$ - y|N+2S (1 + |x‘)N+23

Thus, combining (6.2)) and (6.3)), (6.1]) follows.

e Assume now that Lg is given by (2.1)-([2-2)-(2.3)). For z € Byg(xo) we have

Lopl@) =PV [ (¢(@) — e Kooy + [ (plo) = o) Kole,)dy
Bg/a(x) Q\Bg/2(z)
=1+ J,
and
z) —o(y
reonepv [ POy by [ (o) o)kt )i
Bgyo(x) [z —yl Bgya(z)

Exactly as above, the first integral is bounded, by symmetry. Moreover, thanks to Propo-
sition in Byjs(x) we have |ko(z,y)] < Cd~NV72% and thus since ¢ is Lipschitz we
deduce that
11| < C(1+d%(2)).
On the other hand, using (2.5) and the fact that ¢ is Lipschitz, it is not difficult to see
that

| <cC x| L lor” (o) dy < C(1+ |logd(x)))(1 + d(z)"%)
~ Ja\Bys@) |z — y| V2 B
Therefore,
[Lag(@)] < C(1+ |logd(z)])(1 +d'"*(x)), = € Bar(zo). (6.4)
Finally, a similar computation shows that for = € BSp (o) we have
C|logd(z)|
Lap(@)| < [ e)Kapidy<C [ Ka@ydy< FOE500L (65)
Q suppg (1 + |x|)N+2S
and thus (6.1]) follows. O

We can now proceed with the blow-up argument.

Proposition 6.2. Let Q C RY be a bounded C' domain, s > 1, and f € LI(Q) with
q > N. Let Lg and Kq be given by either (2.1)-(2.2)-(2.3), or (L.7). Assume that

u € Hig(Q) is a weak solution to
Lou=f inQ,

with Neumann conditions on 0§) in the sense of Definition [2.9
Then, there exist C' and v > 0, depending only on N, s, q and €1, such that for any
z € 00 and x € Q, we have

[u(z) = u(2)| < Cle = 2> [[ull o) + 1l Lao)] - (6.6)
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In particular, for any z € 09,

. ou(z) —u(z — Av(z))
Akgh' A2s—1

=0, (6.7)
where v(z) denotes the exterior unit normal to 00 at z.

Proof. Recall that, thanks to Proposition we have u € L*(Q). So, dividing u by a
constant if necessary, we may assume that [[u|pecq) + || fllLe@) < 1, and can be
written as

lu(z) — u(z)] < Clz — 2>, (6.8)
for all x € Q and z € 9. Now, we prove with a blow-up and contradiction argument,
for some v > 0 small enough, to be chosen later.

Assume by contradiction that there are sequences:

o (ug)ren and (fi)ren of weak solutions to Louy = fi in Q with Neumann conditions on
09, satistying ||ugl|ree () + | frllLag) < 1 for all k € N,
o (z)ken € Q and (2x)ren € 09,
e and C} — 400 as k — +00, such that

lug (z) — up(2)]
|z) — 21]°

where 0 :=2s — 1+ 7.

It follows |z — 2| — 0 as k — +o0 and so, up to passing to a subsequence, xy, 2z — 2o
as k — +oo, for some suitable zg € 9f).

Now, the function

(1) := sup I(r) :=sup max o 7 ||ur — ur(z < (B.(x
(7) sup k(7) SUp max g lur — wr(2) | oo (B, (1))

is clearly monotone non-increasing and, thanks to , it satisfies 9(r) — +ooasr — 0T,
that is

sup sup 7”7 |lug — ug(2) | Lo (B, (2,)) = +00- (6.10)
keN >0

Indeed, choosing ry = |z — 2x|, we have

|uk (k) — up(2k)]
|zk — 2|7

and thus, in view of , we can pass to the limit as &k — +oo and (6.10]) follows.

Furthermore, by the definition of ¥ we deduce the existence of two sequences r; — 07
and (k;);jen such that

Oi(re) 2 rp Ml — we(ze) | Lo (B, () =

)

I(rj)

T;O-Hukj — Uk, (ij)HLOO(BTj(zkj)) > 9 ] e N. (611)

Step 1: Blow-up sequence. Now, we introduce the blow-up sequence

L Uk (zj + ij) — Uk (ij)

vi(x) = — . jeEN,
! r7d(r;)
which satisfies vj(0) = 0 for all j € N and
1
||vj||L°°(B1) 2 5? for all ] € N7 (612)
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thanks to (6.11)). Further, for any R > 1, we have
1 1
|| 100 = ——lup, — up. (25| oo < ——(r;R)°Y¥(r;R) < R°
vl oo (BR) 700r) lk; = un; (zh) | Lo (B, r (o)) < 79(r) (rjR)79(rjR) < R,

where we have used the definition of ¥ and its monotonicity: ¥(r;R) < 9(r;) for j € N
and all R > 1. Thus:

”Uj”L‘x’(BR) S RU, _] € N, R Z 1. (613)
On the other hand, each v; satisfies
2s—0
Ljvj(z) = 15(7“) flrjz + z;) = fi(x), x€Q;:= rj_l(zkj —Q), (6.14)
j

in the weak sense with Neumann conditions on d€2;, where L; := Lq;, and

25— _o
q

~ r.
1fillLoy) < Iflla@)y~5——, forall jeN. (6.15)
"9(73)

Now, fix R>1 and define w; := vjxB,,, J € N. Following the proof of Lemma and
setting D}, := Br N, it is not difficult to verify that

Losw; = f; in Djp.
where

Ti=Fivz [ ) Ko (oo
Q;\Bar

Using and that ¢ > N, we can choose 7 > 0 small enough so that 2s — N/q—o > 0,
and thus || f;l|re(q,) is uniformly bounded. Further, using and repeating the proof
of Lemma we find that also the second term in the definition of fj is bounded in
Lq(Dg ), uniformly w.r.t. j (recall that we can reduce consider the case ; = RY by

using a local bi-Lipschitz transformation of ;). In particular, f; is bounded in LY(D3p),
uniformly w.r.t. 7 and thus Theorem [.1] implies

_ 2s— N —
Wilcupg < OB [Jusllieiay + B ¥ 1 o)
By the argument above and since [|wj|[ze(q,) = |vjllze(@;nBr) < CR7 (see (6.13)), it
follows that [wj}ca( piy < Cp for all j € N and some constant Cr > 0 (independent of j).
R .
In particular, since w; = v; in Dg%, we obtain

[Uj]ca(Dg%) < CRg. (6.16)

Moreover, choosing v > 0 small enough so that o < s, we combine Lemma and
, to deduce

(W) (pi) < Cr; (6.17)
for any fixed R > 1 and some new constant C'r > 0 independent of j € N.

Step 2: Compactness. Using simultaneously , , the fact that € is of class
C' together with zg; — 20 € 0, and the Ascoli-Arzela theorem, it follows that for any
R>1and any v € (0, ),

v; — v,
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uniformly in Br N H (and in C¥), where H := {e-x > 0}, for some unit vector e depending
on 29 € Q. Moreover, v € C¥(BrN H) and v(0) = 0. Further, in view of (6.17)), the
sequence {v;};jen is uniformly bounded in H 15(€2;) and so v € H 1oc(H).

Notice also that by uniform convergence, we obtain that v satisfies
1
lllzoe(B1) 2 5

once we pass to the limit in (6.12)) and (6.13)).

Step 3: Passage to the limit into the equation. Since the v;’s satisfy (6.14) in the weak
sense with Neumann conditions on 0§25, they satisfy the same equation in the distributional

sense, that is
1 ~
/ vjLjndr = 2/ fin, (6.19)
Q; Q;

for all n € C§°(RY), and all j € N. To justify this, we fix n € C§°(RY), j € N, £ € (0,1)
and we notice that, by the symmetry of the kernel, we have

/Q j vj(x) /Q b [n(z) — n(y)|Kq, (z,y)dydz = // : v;(@)[n(x) — n(y)] Ko, (z,y)dzdy
- ;// E_[Uj($) —vj)]n(z) — n(y)|Ke, (z,y)dzdy,

o]l (5, < R®, forall R > 1, (6.18)

(6.20)
where D5 == {(z,y) € Qj x Qj : |[x —y| > e}. For any z € €2, we define
Linw)i= [ (nla) = n(w)]Ka, (. 0)d.
Q;\B: ()
Notice that L5n — L;n a.e. in RY as e — 0T and
hj(x)
[ Lin(z)| < (6.21)

(T eV

for some h; € L} (}RN) independent of ¢ € (0,1); see (6.2)-(6.3) and (6.4)-(6.5) in the
proof of Lemmal6.1} Noticing that the funct1on x— (1+|z])~ N C“h (z) belongs to L' (RY)
for any a > 0, recalling (6.13)) and that o < s, we can pass to the limit into (6.20) to

obtain
/ v; () / (n(z) — n(y)|Ka,(z,y)dydr — / v Lyndx
Q; Q\Be(z) Q;

as € — 0, thanks to the dominated convergence theorem. On the other hand, since
l)]E — Qj X Qj, we find

], st = s @ina) ) ooy = B, = [ o
and so, in view of , is proved.

Now, we fix an arbitrary n € C{)’O(RN) and we pass to the limit as j — +oo in (6.19)).
Using (6.15) and that 2s — N/q — o > 0, the right hand side of the equation converges
to 0 as j — +oo. Further, using that x; — xg and Kq, — Ky a.e. in RY . we apply
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the Vitali’s convergence theorem (here we use again (6.2))-(6.3]) and (6.4))-(6.5)), to deduce

Lin— Lgn a.e. in RN, Writing
‘/ vjLindr — /vLHnd:c < ‘/ vj(Ljn — Lgn)dx —i—‘/ (vj —v)Lpndx
Q; H

we easily see that both I; and Tj go to 0 as j — +oo. Indeed, since L;n — Lyn, the v;’s
satisfy and o < 2s, we obtain I; — 0 as j — +o00, applying the Vitali’s convergence
theorem again. Similar for I;, using that v; — v uniformly on compact sets of RN,

As a consequence, we can pass to the limit and deduce that v satisfies

= Ij —i—Tj,

/ vLgndr =0, for all n € CF(RY). (6.22)
H

From interior regularity estimates and (6.17)), we know that v € C°(H) N Hg jo.(H) and
thus v is a weak solution to
Lyv=0 inH, (6.23)

with Neumann conditions on 0H in the sense of Definition Indeed, let n € C°(RYN)
and set

) = [ (o)~ 0w K. ) dy.
H\B: ()
By , we have
. 1
| v@tim@s =35 [ o) = olnte) ~n)Kntepdedy, (629

where D® := {(x,y) € H x H : |z — y| > ¢}. Now, proceeding as above, it follows

/H @ Linade — [ o(@)Lun(ods

as € — 07 and so, in view of (6.22]) and the fact that D° — H x H as € — 01, we obtain
| [ @) = olinte) — nw) (e pdedy o

Recalling that v € Hg jo.(H), (6.23) follows.
Step 4: Conclusion. In view of (6.18) and Theorem we deduce that v is constant
in H. On the other hand, recalling that v(0) = 0, it must be v = 0 in H, a contradiction

with (6.13). O

We will also need the following observation.

Lemma 6.3. Let Q C RY be a bounded C' domain, o € (0,2s), and assume that u
satisfies:

o jul| < Cyin Q,

e Nyu =0 in QF°,

o |u(z) —u(z)| < Colz — 2|7 for all z € O, = € Q.

Then, we have
lu(z) —u(z)| < CCylz — 2|7 forall z€ 0, xcRYN. (6.25)
The constant C' depends only on §2.
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Proof. Notice that, since Nyu = 0 in Q°, then

dy u(y)
%y S C VA
u(x)/g |z — y|N+2s /le—le“s v

for all z € Q¢, and thus

By [ uly) —u()
i) —u(z) [ o = [ e
for any z € 0.

When d(z) > 1 the bound ([6.25)) holds trivially, so we will assume d(z) < 1. In that
case, by [I, Lemma 2.1] we have

dy - J—2s
/Q |x_y‘N+25 =d (:c)

Moreover, since 2 is C!, choosing z to be the projection of y onto 99, we have

[u(y) — u(z)| ly — 2| / ly — 2|7
dy <C <C dy,
Q |z —y/Nr2 Q \w—y\N“S ) + |y — 2)N 2

for some C' > 0 depending on ). Since

\?/—Z’U —9
dy =< A=
/RN (At |y— 2Nz Y ’

we deduce u(y) )l
uly) —ulz o—258 _ o—2s
Combining the previous estimates, the result follows. O

Finally, to prove Theorems [I.1]and [I.3] we will also need the following interior regularity
results. The first one is probably well known, we give a short proof for completeness.

Lemma 6.4. Let N > 2 and s > 5. Assume that u € L®(By), (1 + |z[)™V"2%u(z) €
LY(R), satisfies
(—A)Pu=f in By,
for some f € LY(By) with ¢ > N/(2s). Then, for any v < 2s — N/q,
lullor (s, ) < CUNzagsyy + 1L+ )™ u(@)]| @y + | oo 5,)):
where C' is a positive constant depending only on N, s, q and 7.

Proof. We can decompose u = v + w, where v = (—A)~*f (in the sense that v is the
Riesz potential of order 2s of the function f extended by zero outside Bj) and w satisfies
(=A)*w = 0 in B;. Then, if we apply the estimates in [39] Theorem 1.6 (ii)] and [38
Corollary 2.5], we get

Wlevwyy < ClifllLasyy, 111+ |~’UD_N_ZSU($)||L1(RN) < Cl|fllzaBy)s
and
[wlev sy, < CUIA+ |2) N w(@)|| 110y + [[wl] e (8,))-
The result then follows from these estimates. O

The second one is for the regional fractional Laplacian.
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Lemma 6.5. Let Q ¢ RY be any domain with N > 2 and s > % Let Lo be given by
(T.7). Assume that u € L®(By), (1 + |z|)"N=2u(z) € LY(Q) and satisfies

Lou=f in Bs C{,
for some f € LYB3) with ¢ > N/(2s). Then, for any v < 2s — N/q,

[Wlon(,0) < CUL N pagsy) + 1L+ [a]) ™2 u(@)]| L) + [ull oo (8,)):
where C' is a positive constant depending only on N, s, q and 7.

Proof. Extend u to be zero outside 2. Then, for any x € Bs, it is clear that

(—~A)u(x) = Lou(z) + u(x) / o — "N = f(a) + u(z) / & — N2 dy = g(a).

(&
Moreover,

(&

ol < U1+ Clal [ o™ dy < |7+ Clal
3

which means that |[g]|ra(B,) < C([|f||La(By) + |ullLoe(By))-
Hence, u satisfies

(-A)’u=g in ByCQ,

for some g € LY(By) with norm depending only on N, s and f. The result then follows
from Lemma [6.4] U

We can now give the:

Proof of Theorem [1.1l We divide the proof in two steps:

Step 1: C% estimate. Since () is bounded and Lipschitz, it can be covered with a finite
number of balls in such way that 92N B is a Lipschitz graph for any ball B. Consequently,
combining the interior estimate of Lemma and the boundary one of Theorem [4.1] we
deduce

lu(z) — u(y)| < C (IfllLa) + lullr2@) lz = yl*
for every z,y € Q with a and C depending only on N, s, ¢ and €.
Step 2: C?5~1+ estimate for s > % Dividing u by a constant if needed, we may assume
11l Loy +lull L2y < 1. Now, given z,y € Q, we define r = |z —y| and p = min{d(z), d(y)}
and, without loss of generality, we assume p = d(z). We divide the proof in two cases.

On the one hand, when p < 2r, we take z € 0N such that |z — z| = p and, using
Proposition we conclude

lu(z) — u(y)| < |Ju(z) —u(z)| + [u(y) —u(z)] < C (Jo — 2P7H 4 |y — 2]>71F9)
<C (d(x)2s—1+a + (d(m) + T)Zs—l-‘roz) < CT2S_1+a =C |£E _ y|2s—1+a,

for some « > 0 small enough.
On the other, if p > 2r we have Ba,(y) C Q. We define the auxiliary function u,(x) =
u(y + rx) — u(y) and the set Q, := (Q — x)/r. Then, it is clear that u, satisfies

Lo, u,(x) = rzsf(y +rx)=: fr(x) in By,
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with || fr][Le(By) < Cr2?s=N/4_ Moreover, by using Proposition and Lemmamwe know
that |u,(z)| < C|rz|?*~1T% for some a small enough, which yields

lur| Lo () < Cr# 1 and - [|(1+ |2) 7w, (2) || gy < Cr¥mite

Furthermore, since ¢ > N, we can take o small enough such that 2s — N/q > 2s — 1 + «.
Thus, applying Lemma with v = 25 — 1 + «, we arrive at

[ur]zo-1ta(my) < OSrllagsy) + 11+ )™ ur (@) L1y + [lurl o< (3,))
< C(r2st/q + pls—lta + r2371+a) < Op2s—lta
which is equivalent to say

[U]C2sfl+a(37.(y)) <,
for some constant independent of y and r. Consequently,

u(e) — u(y)] = 2o D) — U] et W

’$ _ y’2s—1+a — 2B, (y)

< T2S—1+O¢ {

u]co,25—1+a(BT(y)) < Op2s—1ta — O|$ _ y|2s—1+a‘
Since z,y € Q have been arbitrarily chosen, the thesis follows. 0
Finally, we give the:

Proof of Theorem[I.3 The proof is basically the same as the previous one, applying
Lemma [6.5] instead of Lemma [6.41 O

APPENDIX A. EQUIVALENCE FOR WEAK SOLUTIONS

For completeness, we prove here the equivalence established in [I] for classical solutions,
in the setting of weak solutions.

Proposition A.1. Let u € C2(RY) N L>®(RY) be such that
{(—A)Su =f in Q,
Neu=0 in RN\ Q.
Then, it satisfies
| (@) = uw)} Kalwy)dy = @) in 2
where Kq s given by —.

Proof. Given any z € Q¢ we have

0= MNu(z) = / ulz) — uly) dy

oz —y/Nt2s

—-N-2s u(y)
=u(z z— dy — | ————dy,
@) [y = [ ey

Jou)lz —yl™ V25 dy
Jolz—7Z|"N-2sdz

and so

u(z) = in RV\ Q.



THE NEUMANN PROBLEM FOR THE FRACTIONAL LAPLACIAN: BOUNDARY REGULARITY 51

Now, we substitute this identity in the fractional Laplacian. Given any = € ()

CAYu) [ ) u) [ M), [ ),
R Q

CN,s N ‘.’L’-y‘N+28 Q ‘$_y’N+25 . ’IE—Z|N+28

Jou@)|z—y| =N "2 dy

|x_y|N+2s |IE—Z‘N+23
[uD v, | Jo oAy
= — . Ay — — dz
Q ’x_y’N+2s Qe |.CU—Z|N+23 fQ|Z—Z‘ N-2s >
u(z) — u(y) / |z — 2| TNy — 27N
= | TNt O - dzd
/Q gz YT Q{U(:}:) u(y)} R T
and the result follows. O

In what follows, we denote

2
H HHQ H HLQ(Q) (RN xRN\ (06 x9¢) ‘m _ y’NJrQS

Lemma A.2. Let v,w: RY — R be such that Nyw = 0 in RN \ Q. Then,

/ / {0(z) — v(y)} {w(z) — w(y)} Kolz,y)dz dy
QJQ

— {v(z) —v(y)} {w(z) —wy)} N
o / /(RNX]RN)\(QCXQc) ’x — y’N+2s d dy,

where Kq is given by (2.2))-(2.3]).
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Proof. Note that adding and subtracting the terms w(z)(v(z)+v(y)+v(2)) and v(2)(w(z)+
w(y) + w(z)), and rearranging them, we obtain

[ [ 1060 = o)} {wle) — vt} Kot ey
Q
_CNS/"/)h’ ppﬁixiﬁ U} gy ay
+CNS/ d:r/ dy/cdz\xZ|N+2s>‘y(Z’2v}+{2?} )‘Z; )z}v o
// e |:c }{|1J€i22 ()}dl'dy

+CNS/ o [ o | gy e [

vews Lo [ | e |N+2s)|y (|¥+{2ZU(I )\z (|)1}”8d2

o [ [ [ e O )

vons [Lar [ av | cdﬂw—z|N+2s)\y—(zr?V}+{£(fQ)\z—§|)J}V Tz
—h4 L+ L+ I+ s

By symmetry in the variables x and y it is clear that Iy = I5 and I3 = I;. Now, let us
simplify them. On the one hand

L=1I= CNS/ d:z/ dy/cdz x_z‘N+28)|y (‘J)\/}—i-{;:j‘ )|z—,£ )J};/—2s dz
ove f 0 \x—zwﬁ}i\{;} g (f )
_%M/myc{v et ot vt}

On the other hand, using the condition AVyw = 0 in RY \ Q we obtain

I3 = I4 = CNs/ d:z:/ dy/cdz .7} — z|N+2s)|y _i|3\/}+{;sv}g)z _ £| )]}V 2s =z
. : v(z) —v(y) w(z) —w(z) .
—ons [y [ e e U )
B ~Now() {o(z) - o(y)}
= CN’S/Qdy/c dz’y — Z‘N+25 fQ |z — 5‘—N—2s dz
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Putting all the terms together we finally arrive at

/ / {0(@) — o)} {w(@) — w(y)} Kolz,y)de dy
QJN

— . {v(z) —v(y)} {w(z) — wy)} N
= N’s//(RNXRN)\(QcXQC) |$—y|N+23 d dy,

as wanted. O

Finally, we prove:

Proposition A.3. Let u € H be such that

CN.s {u(z) —u()} {v@@) o)}, N
2 //(RNXRN)\chQc) z — g V2 dz dy /Qf( Jo(z)dz (A1)

for all test function v € HE. Then, u € Hx () and it satisfies
! v 7 _
5 /Q /Q {u(z) — u(y)} {v(z) = v(y)} Kalz,y)dzdy = /Q f(z)o(z) da (A.2)

for all v € Hy(Q), where Kq is given by [2.2)-[2.3)). Moreover, Nyu =0 in RV \ Q.

Proof. Given any test function v € Hp () we define v : RV — R in the following way

B v(x) if x € €,
o) = {(fﬂ [o— z|N+28 dZ) (fQ |z — 2|7 N2 alz)f1 if ze€RN\Q.

Indeed, this is the extension of v outside € that ensures Nyv = 0 in Q¢. Then, applying
Lemma, we obtain

/QX {u(z) —u(y)} {v(z) —v(y)} Kaolz,y)dsdy
//QX u(y)Hv(z) —v(y)} Kalz,y)dzdy

— ¢ {u(@) —uy)}Hv(x) —vly)}
- / /(RNxRN)\(Q«:ch) |x — y|N+2s dz dy.

Moreover, by using v as a test function in (A.1]) we have

s {u(z) —u(y)} {v(x) —v(y)} .
2 //(RNX]RN)\(QCXQC |$—y|N+23 dx dy

/f dw:/gf(a?)v(at) dx

Thus, (A.2) follows by putting together the previous identities. Notice that applying
Lemma |[A.2{ with w = v, we conclude that v € H3. Thus, we can use it as a test function

in .

Now, taking any ¢ € C°(RY \ Q) C HY and using it as a test function in (A.1), we

deduce
/C e(y)Nsuly) dy = / e(y) <de> dy =0,

|
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and so we get that Nyu = 0 in R\ Q. Furthermore, we can apply Lemma with

v =w = u and, since u € H, we conclude that u € Hg (). O
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