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Abstract

This paper addresses the stochastic discrete lot-sizing problem on parallel ma-

chines, which is a computationally challenging problem also for relatively small

instances. We propose two heuristics to deal with it by leveraging reinforce-

ment learning. In particular, we propose a technique based on approximate

value iteration around post-decision state variables and one based on multi-

agent reinforcement learning. We compare these two approaches with other

reinforcement learning methods and more classical solution techniques, showing

their effectiveness in addressing realistic size instances.

Keywords: Dynamic programming, Stochastic programming, Multi-agent

systems, Machine learning, Reinforcement Learning

1. Introduction

Production planning aims to determine the best allocation of limited produc-

tion resources to meet demand over a time horizon. In this context, lot-sizing

problems are among the most important and most addressed decision problems.

They have been studied under two settings: big-time buckets and small-time5
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buckets. In the first setting, the principal model is the capacitated lot sizing

problem. It considers time steps whose length allows the production of differ-

ent items on a machine; thus, it does not address the sequencing of production

activities. In contrast, the principal model in the second setting is the discrete

lot sizing problem (DLSP). It splits the (macro) periods of the capacitated lot10

sizing problem into several (micro) periods that do not allow for the production

of different items on the same machine. Therefore, only one item may be pro-

duced per period, and if production starts, it uses the full capacity. This is the

so-called all-or-nothing assumption. Usually, the time periods addressed in the

discrete setting correspond to hours, shifts, or days.15

This paper focuses on the small-time buckets setting, where production tries

to satisfy a stochastic item demand, which we assume is independently and

identically distributed over time. We consider a plant with parallel machines,

as is usually the case, for example, in the semiconductor industry [1]. When

a machine starts to produce one item, we incur both a setup cost and a setup20

loss. While setup costs accounts for the economic cost of starting production in

terms of material and workforce, setup losses accounts for the decrease in the

number of items produced due to the portion of the time bucket used for the

setup operations. We assume both setup cost and setup losses to be sequence-

independent. Therefore, the problem that we address is the stochastic discrete25

lot sizing and scheduling problem with sequence-independent setup times and

costs (SDLSPsetup ). This optimization model is challenging to solve in a

realistic setting due to its dimension (number of products and machines) and the

presence of binary variables (produce or do not produce an item on a machine).

Therefore, heuristic methods are required.30

Research works have been carried out to deal with stochastic DLSP employ-

ing a scenario tree, resulting in multi-stage stochastic mixed-integer program-

ming. However, scenario trees are limited in capturing uncertainty while pre-

serving computational tractability, which motivates the development of heuris-

tics to obtain a good quality solution in a reasonable time [1].35

Two interesting alternatives to multi-stage stochastic programming are ap-
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proximate dynamic programming (ADP) and deep reinforcement learning (DRL).

These techniques have been shown to be effective in solving complex optimiza-

tion problems using statistical learning to approximate the optimal policy or

value function. Nevertheless, their applications to the SDLSPsetup setting40

have been limited. This paper fills this gap by proposing and comparing dif-

ferent dynamic programming-based heuristics for solving SDLSPsetup . More-

over, we evaluate the performance of these heuristics and provide insight into

their relative strengths and limitations. More in detail, the contributions of this

paper are:45

• We provide an open-source environment model of inventory management

simulation for RL application, which can support future researchers in

reproducing and extending this work.

• We develop two innovative heuristics; one based on a value function ap-

proximation, and one based on cooperative multi-agent reinforcement learn-50

ing.

• We compare the performance of these heuristics using out-of-sample sim-

ulations on different instances.

The paper is organized as follows: Section 2 presents the literature review

about the problem and solution techniques, Section 3 specifies the mathematical55

model of the SDLSPsetup , Section 4 presents the proposed solution methods

in detail, and Section 5 reports the results of the computational experiments.

Finally, Section 6 presents the conclusions of the work.

2. Literature review

While lot sizing problems considering big time buckets have been extensively60

tackled in the literature [2, 3, 4, 5], problems considering small time buckets

have been addressed much less [6, 7]. The basic problem type in the small time

bucket setting is the DLSP, introduced in [8]. It models settings where decisions
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must be made on a daily or even shift-wise basis. It combines both lot sizing

(medium range planning) and job scheduling (short range planning) problems65

[9].

The DLSP has been formulated with both deterministic and stochastic mod-

els. Several papers have addressed deterministic DLSP [10, 9, 11, 12, 13, 14, 15,

16] on which all parameters (like demand, production costs, and capacities) are

known in advance and remain constant throughout the planning horizon. The70

deterministic DLSP is often approached with heuristic methods to find good

solutions efficiently, as exact methods cannot be used in real-size instances.

Moreover, the deterministic DLSP has been applied in several industrial set-

tings such as glass container production[17, 18], food and animal-feed industry

[19, 20], furnace scheduling [21], soft drink production [22], textile and fiberglass75

industries [23], pharmaceutical manufacturing [24], amongst many others.

In a real setting, assuming that all parameters are deterministic is often un-

realistic. For example, the demand or the machine production rate is subject

to uncertainty and variability. When uncertainty is factored into the DLSP,

the problem becomes computationally more challenging, and the determinis-80

tic solutions lead to bad results [1]. The first paper addressing the stochastic

DLSP is [1]. The authors consider the variability in the machine production rate

and present a solution by modeling the problem as multi-stage stochastic pro-

gramming. They also suggest a fix-and-relax heuristic to achieve high-quality

solutions within a reasonable time. While [1] is the only research paper that85

applies multi-stage methods to this problem, uncertainty has also been tackled

with a chance-constraint approach in [25]. The authors address a multi-level lot-

sizing and scheduling problem with sequence-dependent setup times, stochastic

demands, and processing times. Instead, two-stage stochastic programming has

been used to deal with a single-level version of the problem in [26]. The au-90

thors present a numerical study based on a few scenarios generated by moment

matching and scenario reduction techniques.

Despite the significance of stochastic models and the integration of lot-sizing

decisions within finite planning horizons, the literature about stochastic DLSP
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is rather scarce [27, 28].95

Various optimization techniques can be employed to tackle the stochastic

DLSP effectively, with reinforcement learning (RL) emerging as a promising

yet underexplored approach. Together with RL another important branch of

research is deep reinforcement learning (DRL) , which, in contrast to RL, models

policy or value function by means of artificial neural network (ANN). One of the100

first works to employ DRL is [29], where the authors use an ANN to approximate

the value function of the SDLSPsetup for the instances with three items and

a single machine. Besides using a small plant, the authors do not consider

setup loss nor compare the techniques with other stochastic policies. The same

setting is used in [30], where the authors address uncertainty in demands and105

processing times. They proposed a Q-learning algorithm improved through

heuristics, which modified the ϵ-greedy method to optimize the learning of the

RL agent. Despite the good results, Q-learning algorithms do not scale well to

large problem instances. This is proved also by [31], where the authors explore

the use of Deep-Q-Network for single-machine problems within the constraints110

of a small-scale setting.

A competitive technique in this setting is Proximal Policy Optimization

(PPO). In [32], the authors present results showing the superiority of PPO over

other RL methods, as the ones in [29], although requiring more comprehensive

training and hyperparameter optimization. Moreover, in [33], the authors in-115

vestigate the scalability of PPO for large problem instances without set-up loss,

bridging the gap between theoretical models and real-world industrial applica-

tions. Our work aims to build upon these developments, further advancing the

field of stochastic DLSP employing ADP and DRL-related methods.

3. Mathematical models120

We consider a production environment composed of a setM = {1, . . . ,M}

of parallel machines. Each machine can be idle, or it may produce an item. We

call the set of possible states of machine m, I(m), and we call the set of all the
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change setup

production

di,t

satisfy demand dt

pay lost sales and holding costs

change setup

t t+ 1

Figure 1: Flow of events.

items that can be produced I = {1, . . . , I}. For each item i, we call M(i) the

set of machines that can produce it.125

The problem consider set T = {0, . . . , T} of time periods. Immediately

before t = 0, each machine m has an initial state i0 ∈ I(m), we call the set of

all pairs (m, i0), C ⊆ M× I.

At the beginning of each time period, the decision maker assigns to each

machine a possible state (i.e., an element of I(m)). If necessary, the machine130

configurations are changed and the setup cost fi,m for the production of item

i is incurred. Then, each non-idle machine produces pi,m items if no setup

occurs. Instead, if a setup occurs, the production will decrease by a number

ci,m of items. After production, on-hand inventory is updated the demand di,t

becomes known, and the available items are used to satisfy it. Finally, both lost135

sales and holding costs are computed (in this paper, we rule out the possibility

of backorder). We call hi and li, the unit holding cost and lost sale penalty for

item i, respectively. The flow of events is represented in Figure 1.

Using this notation, we present three mathematical models for the problem.

First, in Subsection 3.1 we present the deterministic model, whose purpose is to140

clarify our assumed problem setting. Then, in Subsection 3.2 we model demand

uncertainty using a scenario tree, defining a multistage stochastic programming

model. Finally, we model stochasticity by means of a Markov Decision Process,

in Subsection 3.3, which paves the way for the application of ADP/RL methods.
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3.1. Deterministic Model145

The presented model is similar to the one in [8], but it introduces setup

losses. Let us define the sets:

• I0(m) the set of items that can be produced by machine m, i.e., I0(m) is

equal to I(m) without the idle state.

• T + = T \ {0}.150

Moreover, we define the following variables:

• Ii,t is the inventory of item i at the end of time period t.

• xi,m,t, set to 1 if machine m is producing item i at time t.

• δi,m,t: binary variable set to 1 if a setup on machine m is carried out

between time t− 1 and time t, in order to start production of item i.155

• zi,t: the lost sales of item i at time t.

Here, we have implicitly defined variables for compatible item–machine pairs.

The deterministic version of the problem can be formulated as follows:

min

I∑
i=1

 ∑
m∈M(i)

T∑
t=0

fi,mδi,m,t +

T∑
t=1

(hiIi,t + lizi,t)

 (1)

s.t. Ii,t − zi,t = Ii,t−1 +
∑

m∈M(i)

(pi,mxi,m,t−1 − ci,mδi,m,t−1)− di,t ∀i ∈ I, t ∈ T +

(2)∑
i∈I0(m)

xi,m,t ≤ 1 ∀m ∈M, t ∈ T

(3)

xi,m,t = 0 ∀i /∈ I0(m), t ∈ T

(4)

δi,m,t ≥ xi,m,t − xi,m,t−1 ∀ m ∈M, i ∈ I0(m) t ∈ T +

(5)
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xi,m,t−1 − xi,m,t + ε ≤ (1 + ε)(1− δi,m,t) ∀ m ∈M, i ∈ I0(m), t ∈ T +

(6)

δi,m,0 ≥ xi,m,0 − 1(m,i)∈C ∀ m ∈M, i ∈ I0(m)

(7)

1(m,i)∈C − xi,m,0 + ε ≤ (1 + ε)(1− δi,m,0) ∀ m ∈M, i ∈ I0(m)

(8)

Ii,0 = Īi0 ∀i ∈ I

(9)

Ii,t ∈ [0, Imax], zi,t ∈ R+ ∀i ∈ I, t ∈ T

(10)

δi,m,t, xi,m,t ∈ {0, 1} ∀ i ∈ I,m ∈ M, t ∈ T ,

(11)

where ε is a small constant required for the logic constraints, and 1(m,i)∈C is

equal to 1 if (m, i) ∈ C, 0 otherwise.

The objective function (1) is the sum of the setup, holding, and lost sales

costs. This last term is considered even if the model is deterministic since160

for some instances, it may be convenient not to satisfy the demand in order

not to incur high inventory costs. An example occurs when the productions

pi,m are big while the demands are very low. Therefore, it may be better to

lose some sales instead of producing the new batch and storing it. Constraints

(2) force the inventory balance, and constraints (3) enforce the all-or-nothing165

assumption. Notice that this assumption prevents a machine from producing

different items during the same time step, but it permits different machines to

produce the same item. Constraints (4) forbid to produce items that a machine

cannot produce. Constraints (5), and (6) impose that δi,m,t must be one if and

only if there is a change in the machine setting. In particular, constraints (6) are170

needed to prevent the model from setting δi,m,t = 1 to reduce the production

and better match the demand even if a setup is not required. Finally, constraints

(7), and (8) force the initial setup, and constraints (10), (11) impose the type
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of variables. For the sake of simplicity, we assume that all the items have the

same maximum inventory Imax. It is worth noting that model (1) - (11) has full175

knowledge of the demand along all the time horizons. This knowledge is usually

not available in practice. Despite this drawback, we will use this model as a

benchmark. In the following, we refer to model (1) - (11) as perfect information

(PI).

3.2. Multi-stage Stochastic Optimization180

Model (1) - (11) can be modified to consider stochastic demand. A typical

choice to model uncertainty is through a scenario tree. Following the notation

in [34], we define:

• The set of nodes in the scenario tree is N , and N+ = N \ {0}.

• p(n) the parent of node n ∈ N+.185

• π[n] the unconditional probability of node n (π[0] = 1).

• d
[n]
i the demand for item i at node n ∈ N .

We refer to the number of children at each node at a specific tree level as the

branching factor. For instance, the branching factor [2, 2, 2] identifies a binary

tree over four-time instants, including the current time corresponding to the190

root node and eight scenarios.

The decision variable of the stochastic version of the model (1)-(11) have the

superscript ·[n] instead of the subscript ·t to identify the node n ∈ N to which

they refer. For example, the inventory of item i in node n will be I
[n]
i , etc. The

multi-stage version of model (1) - (11) is:195

min

I∑
i=1

∑
n∈N

π[n](
∑

m∈M(i)

fi,mδ
[n]
im) +

∑
n∈N+

π[n](hiI
[n]
i + liz

[n]
i )

 (12)

s.t. I
[n]
i − z

[n]
i = I

[p(n)]
i +

∑
m∈M(i)

(pi,mx
[p(n)]
i,m − ci,mδ

[p(n)]
i,m )− d

[n]
i ∀i ∈ I, n ∈ N+

(13)
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∑
i∈I0(m)

x
[n]
i,m ≤ 1 ∀m ∈M, n ∈ N

(14)

x
[n]
i,m = 0 ∀i /∈ I0(m), n ∈ N

(15)

δ
[n]
im ≥ x

[(n)]
i,m − x

[p(n)]
i,m ∀ m ∈M, i ∈ I0(m), n ∈ N+

(16)

x
[p(n)]
i,m − x

[n]
i,m + ε ≤ (1 + ε)(1− δ

[n]
i,m) ∀ m ∈M, i ∈ I0(m), n ∈ N+

(17)

δ
[0]
i,m ≥ x

[0]
i,m − 1(m,i)∈C ∀ m ∈M, i ∈ I0(m)

(18)

1(m,i)∈C − x
[0]
i,m + ε ≤ (1 + ε)(1− δ

[0]
i,m) ∀ m ∈M, i ∈ I0(m),

(19)

I
[0]
i = Īi0 ∀i ∈ I

(20)

I
[n]
i ∈ [0, Imax], z

[n]
i ∈ R+ ∀i ∈ I, n ∈ N

(21)

δ[n]m , x
[n]
i,m ∈ {0, 1} ∀m ∈M, i ∈ I, n ∈ N .

(22)

The objective function (12) is the expected value of the sum of all the costs

(setup costs, lost sales, and holding costs). While constraints (13),(14), (15),

(16), (17), (18), and (19) are the stochastic counterpart of constraints (2), (3),

(4), (5), (6), (7), and (8), respectively. It is worth noting that given the solution

of the model, the action taken by the agent at time t is Xt = [x
[0]
i,m]m∈M,i∈I . In200

the following, model (12) - (22) will be addressed as multi-stage (MS).

3.3. Markov Decision Process Model

Instead of using a scenario tree to model uncertainty, it is possible to use

Markov Decision Process. This choice requires defining states, actions, immedi-
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ate costs, and state transitions.205

The state is described by the available inventory and by the state of the

machines. Formally, we use the notation St = [It,Mt], where

• It = [I1,t, . . . , II,t] is the array of inventory levels.

• Mt = [m1,t, . . . ,mM,t] is the array of machines configurations, where

mm,t ∈ I(m) is the configuration of machine m.210

Linked to the state, we define Nt = [n1,t, . . . , nI,t] to be a vector containing the

number of machines producing a given item.

The action is described by Xt = [xi,m,t]m∈M,i∈I , where xi,m,t = 0,∀ i /∈

I0(M)

The immediate costs is:

Ct (Xt,St) =
∑

m∈M(i)

I∑
i=1

fiδi,m,t +

I∑
i=1

hi

Ii,t + ∑
m∈M(i)

(pi,mxi,m,t − ci,mδi,m,t)− di,t

+

+

I∑
i=1

li

di,t − Ii,t +
∑

m∈M(i)

(pi,mxi,m,t − ci,mδi,m,t)

+

,

(23)

where the first term accounts for the setup cost, the second for the inventory,215

the third for possible lost sales, and where [y]+
.
= max{y, 0}. Note that the first

term of the immediate costs is deterministic, while the second and third ones

are stochastic (since, at time t, di,t is unknown).

Finally, the state transition equation for inventory, under our lost sales hy-

pothesis, is

Ii,t+1 =

Ii,t + ∑
m∈M(i)

(pi,mxi,m,t − ci,mδi,m,t)− di,t

+

, (24)

while the state transition equation for the setup state is straightforward.

4. Solution methods220

This section presents the solution methods used to tackle the SDLSPsetup

problem. In Subsection 4.1 we describe a decision rule which will be used as
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benchmark as well as a component for other heuristics. In Subsection 4.2, we

present a new approximate dynamic programming method. Finally, in Sub-

section 4.3, we describe actor-critic techniques used as a benchmark, and in225

Subsection 4.4, we present a new model-free reinforcement learning technique

leveraging a multi-agent approach.

4.1. Decision Rule

To develop a decision rule for SDLSPsetup , we consider the expected run-

out times (which depend on the inventory state and can be easily estimated if230

the demands are i.i.d.) and the current machine setup states [35].

The main procedure is divided into three steps: First, we select all items

with an expected run-out time below a threshold. Then, we compute a priority

indicator. Finally, we assign to each machine a state. The algorithm is shown

in Pseudo-code 1.235

The initial step of the heuristic is to compute the average demand d̄i of each

item employing Monte Carlo methods. Then, each item’s expected run-out time

is computed by dividing the available inventory by the average demand.

All items with run-out time smaller than α1 are considered eligible for pro-

duction. The priority for each of these items is computed as a combination of240

the following:

• The ratio between the lost sales costs and the expected run-out time: It

prioritizes big lost sales costs and small expected run-out-time.

• The number of machines producing that item: the higher this number,

the smaller the priority.245

• The ratio between the average demand and the maximum possible pro-

duction: If this ratio is high, we need more machines to satisfy the average

demand. Therefore, the priority is higher.

We call the weights α2, α3, α4, and the weighted sum priority. Without loss of

generality, we set α2 = 1.250

12



1 Pseudo-code: Decision Rule

1 eligible items = []

2 compute average demand d̄ by using Monte Carlo method

3 expected runout ← [Ii,t/d̄i]i∈I

4 for i ∈ I do

5 if expected runout[i] ≤ α1 then

6 priority ← α2
li

expected runout[i]
+ α3Ni + α4

d̄i

maxm pim

7 eligible items.add( (i, priority) )

8 sort eligible item with respect to priority

9 x← [0, . . . , 0] # initialize the action by setting all machine to idle

10 for i ∈ eligible items do

11 M ← set of machine producing i

12 if M ̸= ∅ then

13 m̂← maxm∈M fi,m

14 else

15 m̂← free machine with smallest
fi,m

pi,m−ci,m

16 x[m̂]← i

17 for m ∈M do

18 if x[m̂] = 0 and Mt[m] ̸= 0 then

19 Ixi ← Ii + pi,m

20 if fMt[m],m ≥ α4h
(⌊

Ix
i

d̄i

⌋
+ 1

)(
Ixi − d̄i

2

⌊
Ix
i

d̄i

⌋)
then

21 x[m]←Mt[m]

The list of eligible items is then sorted according to their priority.

We initialize the action by setting all the machines to idle. Then, starting

with the item with higher priority and moving to the one with less priority, we

check if a machine is producing that item. If more machines produce the item,

we keep producing it with the machine with the highest setup costs. Instead,255

13



if no machine produces the item, we start producing it with the free machine

with the smallest ratio between production and setup costs.

Once we end the list of eligible items, we focus on setting activated machines

to idle. We leave them to produce if the setup cost is greater than a threshold

α5 multiplied by an estimation of the expected inventory cost computed as:

⌊ Ixi
d̄i

⌋∑
t=0

h(Ii + pi,m − d̄it)
(25)

where, Ixi = Ii + pi,m. This expression sums the holding costs considering a

depletion equal to the average demand (i.e., d̄i) and considering that production

happens (i.e., the initial inventory is Ii + pi,m). We can rewrite Eq. (25) as

⌊ Ixi
d̄i

⌋∑
t=0

h(Ii + pi,m − d̄it) = hIi

(⌊
Ixi
d̄i

⌋
+ 1

)
− hd̄i

⌊ Ixi
d̄i

⌋∑
t=0

t

hIi

(⌊
Ixi
d̄i

⌋
+ 1

)
− hd̄

⌊ I
x
i

d̄i
⌋
(
⌊ I

x
i

d̄i
⌋+ 1

)
2

= h

(⌊
Ixi
d̄i

⌋
+ 1

)(
Ixi −

d̄i
2

⌊
Ixi
d̄i

⌋)
.

(26)

Where,
(⌊

Ix
i

d̄i

⌋
+ 1

)
represents the total number of time periods required

to deplete the inventory level Ixi based on the average demand d̄i for item i,

and
(
Ixi − d̄i

2

⌊
Ix
i

d̄i

⌋)
is the average inventory level over the time periods until260

depletion.

Comparing the Eq. (26) with α5 enables us to avoid stopping the production

of machines whose setup costs are much greater than their inventory costs.

In the following, we refer to this algorithm as decision rule (DR).

4.2. Approximate Dynamic Programming265

Dynamic programming can be used to compute the optimal solution of the

SDLSPsetup for small instances, assuming that the demand distribution is

known. Using the Markov Decision Process setting described in Section 3, we

define the state value function Vt(St) as:

Vt (St) = min
Xt∈X

E [C (Xt,St) + γVt+1 (St+1)] =

= min
Xt∈X

E [C (Xt,St)] + γE [Vt+1 (St+1)] ,
(27)
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where γ is a discount factor [36].270

Unfortunately, Eq. (27) includes a difficult stochastic optimization prob-

lem and suffers from the curse of state dimensionality. Therefore, it can only

be solved for really small instances. One way to simplify the problem, al-

lowing for statistical learning-based ADP, is to introduce post-decision states

[37]. The post-decision state variables refer to the change in the state after

the decision has been implemented but before the risk factor realization. In

the SDLSPsetup setting, we define the inventory after replenishing but before

serving demand (It
x) and the setup state at the end of the time bucket (Mx

t ).

These post-decision states are related to the next pre-decision states by

It+1 = [It
x − dt]

+

Mt+1 = Mx
t .

(28)

Using these variables, we may define a value function around post-decision

states, i.e., V x
t (Ixt ,M

x
t ). The standard dynamic programming recursion around

pre-decision states is:

Vt (St) = min
Xt∈X

{E [C (Xt,St) | Xt,St] + γE [Vt+1 (St+1) | St,Xt]} . (29)

The value function around post-decision state is defined as

V x
t (Sx

t ) = E [Vt+1 (St+1) | Sx
t ] . (30)

Plugging Eq. (30) in (29), we obtain:

Vt (St) = min
Xt∈X

{E[C (Xt,St) |Xt,St] + γV x
t (Sx

t )} . (31)

Taking expectations at t− 1 we get:

V x
t−1

(
Sx
t−1

)
= E

[
Vt (St) | Sx

t−1

]
= E

[
min
Xt∈X

{E[C (Xt,St) |Xt,St] + γV x
t (Sx

t )}
]
.

(32)

Eq. (32) allows swapping optimization and expectations with respect to Eq.

(29). We split the expected value of the immediate costs as:

E[C (Xt,St)] = D (Xt,St) +G (Xt,St) , (33)
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where D(Xt,St) =
∑M

m=1

∑I
i=1 fiδi,m,t is deterministic component linked

to the setup costs, and

G (Xt,St) = E

 I∑
i=1

hi

Ii,t + ∑
m∈M(i)

(pi,mxi,m,t − ci,mδi,m,t)− di,t

+

+

I∑
i=1

li

di,t − Ii,t +
∑

m∈M(i)

(pi,mxi,m,t − ci,mδi,m,t)

+
(34)

is the expected value of the stochastic component linked to the holding and lost

sales costs that must be learn. The first term of the Eq. (34) calculates the

inventory costs as the sum of the inventory at the end of the time, and the total

production across all machines, minus the demand. Instead, the second term of275

Eq. (34) accounts for the lost sales costs considering the demand exceeding the

available inventory plus the total production.

It is worth noting that it is not possible to have both terms in Eq. (34)

positive since there is either excess inventory (leading to holding costs) or unmet

demand (leading to lost sales costs).280

Using post-decision state variables, we write G (Xt,St) as G
x (Ixt ). It is easy

to see that Gx (Ixt ) is additively separable with respect to the items:

G(Ixt ) =

I∑
i=1

G(Ixi ), where Gi(I
x
i ) = E

[
hi[I

x
i − d]+ + li[d− Ixi ]

+
]
. (35)

Since each Gi(I
x
i ) is the expected value of piecewise linear convex functions, it

is still convex (see Section 3.2.1 of [38]). Moreover, also G(Ixt ) is convex being

the sum of convex functions. We approximate each Gi(I
x
i ) by using a piecewise

linear approximation based on regression tree, and we call it Ĝ(Ixi ).

Since V x
t still suffers from the curse of dimensionality, we approximate it

with a sum of two components: one related to the inventory and one related to

the machine configuration. In formula,

V̂ x(Ixt ,M
x
t ) =

I∑
i=1

V̂
(I)
i (Ixit) +

I∑
i=1

V̂
(M)
i (nx

it), (36)

where:285
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• V̂ x
t (Ixt ,M

x
t ) is the post-decision value function approximation,

• nx
it is the number of machines that are producing item i at time t computed

after that the decision is made,

• V̂
(I)
i (·) is the function accounting for the costs of the inventory.

• V̂
(M)
i (·) is the function accounting for the machine states.290

Since each inventory may have Imax maximum value and the maximum number

of machines producing an item is M , we consider all the V̂
(I)
i (·) and V̂

(M)
i (·) in

a tabular representation.

It is worth noting that the post-decision value function approximation in

Eq. (36) does not consider the time index. With this choice, we are approxi-295

mating the finite time horizon problem with an infinite time horizon one. This

approximation is usually done [33].

The algorithm used to learn Ĝ(·), V̂ (I)
i (·), and V̂

(M)
i (·) is described in Pseudo-

code 2.

Problem (37) is the core of the ADP algorithm as it provides the data for the300

update of the estimation of the value function as well as deciding the optimal

action to take. There, the first term is the deterministic component of the

immediate cost, the second one is the expected cost of inventory and lost sales

while the third one estimates the future value based on the post-decision states

of inventory and machine setup.305

Due to its importance, we solve it in an exact way. Nevertheless, since model

(37) is non-linear due to V̂ x(·), we need a procedure that searches exhaustively

all the possible solutions. This is equivalent to explore
∏M

m=1 |Im| possible

solutions, which is clearly out of the question. Therefore, we develop a wise

exploration, adapting the branch and bound algorithm.310

The branch and bound tree has a starting root node, and several levels (each

level is associated with a machine). Each node of the level represents a potential

state of the corresponding machine (i.e., a possible item to produce or the idle

state). A path from the root node to a leaf is a possible solution to model (37),

17



2 Pseudo-code: ADP algorithm.

1 Initialize V̂
(I)
i (I), V̂

(M)
i (I), Ĝi(I) to zero, ∀I = 0, . . . , Imax,∀i.

2 Set the total number of iterations N and k ← 1.

3 while k ≤ N do

4 Set the initial state S0.

5 Generate a sample path for the demand [d]t=0,1,...,T .

6 for t ∈ [0, 1, 2, ..., T − 1] do

7

Ṽt ← min
x

D(x,St) +

I∑
i=1

[
Ĝi(I

x
t )
]
+ γV̂ x(Ixt ,M

x
t ) (37)

8 Use Ṽt to update V̂ x

9 Let X∗
t be the optimal solution of Eq. (37).

10 Generate the next post-decision state Sx
t , based on the current

state st and the optimal decision X∗
t .

11 Generate the next pre-decision state St+1, based on Sx
t and

dt+1.

12 Use the observation of G(Xt,St) to update Ĝ(Ix)

13 Increment the iteration counter k ← k + 1.
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i.e. a vector assigning to each machine a state. We call the path from the root315

node to any intermediate node partial solution. We show a part of a general tree

in Figure 2. To reduce the search space, we use two pruning strategies, namely

feasibility pruning and optimality pruning.

m1 : 0 1 i1

m2 : 0 i2

Figure 2: Part of the general branch and bound tree.

We apply feasibility pruning when the quantity of items produced by a partial

solution leads to an inventory greater than the maximum allowed. For example,320

if the maximum inventory level for item i is equal to 10, the initial inventory

is equal to 5 and we are considering a partial solution in which the production

of item i is 6 there is no point in continuing the exploration of the successor of

that node since they will violate the maximum inventory constraint.

Instead, we apply optimality pruning if all the successors of one nodes lead325

to a sub-optimal solution. We can detect this condition by looking to the sum

of the set up cost and the expected inventory cost since it is a lower bound

of the cost of the final solution. If this value is greater than the value of an

incumbent solution, there is no point in continue the exploration. To summa-

rize, value function approximation offers several advantages over the traditional330

vanilla value iteration method commonly used in dynamic programming. While

the vanilla method provides an exact solution for smaller instances, it is heavily

constrained by the curse of dimensionality, especially when dealing with the

complex stochastic nature of the SDLSPsetup problem. Our ADP approach,

leveraging post-decision states, addresses these limitations effectively. In fact,335

it allows for a more effective description of the system’s dynamics, providing
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a more accurate estimation of the value function by capturing the immediate

effects of decisions. This refinement is particularly useful in managing the un-

certainty inherent in the SDLSPsetup .

Moreover, the use of branch and bound algorithms significantly enhances340

the efficiency of the solution process enabling us to optimally solve the decision

problem (37).

Furthermore, while other studies, such as [39], have applied similar branch

and bound heuristics in conjunction with approximated dynamic programming,

the proposed heuristic is specifically applied to the lot-sizing problem. In the345

following, we refer to this technique as ADP.

4.3. Actor-critic

Actor-critic architectures are composed of two main components: the actor

and the critic. The actor is the policy which is approximated by an ANN and

is denoted µθ(S), where θ is the vector of parameters of the ANN. The critic is350

the value function approximated by an ANN. It can either estimate the state

value function (represented as V̂ω(S), where ω is the vectors of parameters of

the ANN), or the state-action value function (represented as Q̂ω′(X,S)). Notice

that the state-action value function can be expressed in terms of the state-value

function: Q̂ω′(Xt,St) = E [C(Xt,St) + γVω(St+1)], where Xt = µθ(St), there-355

fore we use the parameters ω′ also for the state-action value function [40]. Actor

and critic work in tandem to improve both the policy and value estimation. It

is important to mention that employing ANN for both the actor and the critic

may give a good capacity to handle large action and state spaces (see, e.g., the

neural networks used to deal with images [41]).360

The update of the actor network is done by using batch stochastic gradient:

θ ← θ + α∇θE[(logµθ(S))Q̂ω(X,S)]. (38)

Note that, we do not employ the t subscript notation as we are working with

batches of X and S.
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The update of the critic is done using the stochastic gradient descent applied

to the following loss function:

L(X,S) =

(
Q̂ω(Xt,St)− C(Xt,St)− γ min

Xt+1

Q̂ω(Xt+1,St+1)

)2

. (39)

Notice that in Eq. (39), a temporal difference is used to calculate the loss,

L(X,S) [42, 43]. This loss function is designed to minimize the difference be-365

tween the actual estimation, Q̂ω(Xt,St), and the temporal difference target

estimation, C(Xt,St) − γminXt+1 Q̂ω(Xt+1,St+1), associated with the actions

taken by the agent in a given state. This enables actor-critic methods to

estimate the state-action value without knowing the transition functions. The

lack of dependence on the transition function is one of the key characteristics370

of model-free methods.

While the discrete state space of the SDLSPsetup can be easily addressed,

the discrete action space must be considered with care since actor-critic agents

handle large continuous action spaces describing the probability of taking action

in a given state. Therefore, we transform the probability vector output by the375

actor into action through a function called embedding. In summary, the output

of the artificial neural network that approximates the policy is a probability

matrix of dimensions (I + 1) × M which is then embedded into the actual

decision (a vector of size M that specifies for each machine the action to pick).

Note that an underlying assumption in this approach is that the choices are380

independent. For instance, if we have two identical machines, the probability

of allocating Item A to Machine 2 could be influenced by allocating the same

item to Machine 1. However, this potential issue is mitigated by the ANN

which accounts for a machine’s current setup status. This simplification further

reduces the likelihood of such dependencies.385

Throughout the training phase, the conversion from continuous to discrete

space is accomplished by sampling based on the probability vector. This method

enables the policy to explore the action space. Instead, during the testing phase,

the action selected is the one corresponding to the maximum probability. The

model effectively incorporates the constraints from the mathematical environ-390
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ment not by fixing them but by allowing the network to learn and understand

them with the environment interaction.

In the following, we will use two actor-critic techniques: advantage actor-

critic (A2C), and proximal policy optimization (PPO) [40].

4.4. Lot-sizing cooperative multi-agent adjustment395

In this section, we present a multi-agent reinforcement learning method that

employs cooperative concepts to address the SDLSPsetup . We call the pro-

posed method Lot-sizing cooperative multi-agent adjustment (LSCMA). It used a

baseline agent (a pre-trained RL algorithm or another technique) that provides

a first action (called baseline recommendations, Xb) and M other RL agents,

called sub-agents, one for each machine, which try to improve the baseline rec-

ommendation. Different from other implementations employing multi-agent RL

[44], the reward function is not shared across the different sub-agents but we

have a different reward function for each sub-agent which is defined as:

Cm(Xt,St, ) =
∑

i∈I0(m)

[fi,mδi,m,t + (hiIi,t + lizi,t)] . (40)

In contrast to [44, 45], where policies are developed entirely from scratch

through environmental interactions, we use a trained baseline agent to gen-

erate the initial policy. Therefore, the state that each sub-agent considers is

(St,X
b), where St is the state of the system, and Xb is the recommendation.

Each sub-agent decides if it should use the recommendations of the baseline

agent or the previous recommendation. In formula,

Xm,t =

Xb
m,t−1 if x−

m,t = 1

Xb
m,t if x

−
m,t = 0

, (41)

where x−
m,t is the action of the sub-agent associated with machine m at time t.400

Therefore, if the action is x−
m = 1, the sub-agent uses the action of the previous

setup, and if the action is 0, the agent uses the new baseline setup. Thus, each

sub-agent has a reduced set of two possible actions.
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Figure 3 depicts the architecture of the multi-agent system during both

the training and testing phases for the LSCMA. The training phase for LSCMA is405

detailed in Pseudo-code 3 and graphically represented in Figure 3a. Since each

agent works independently, we use a set of adapted environments for each agent,

which runs with the same parameter of the standard environment but returns

the cost specifically for the sub-agent (considering the set-up cost of the machine

that the sub-agents can act on). The baseline agent’s decision Xb,t−1 and the410

current state St are given to each sub-agent. Therefore, each sub-agent is aware

of all the baseline actions xb and it decides to use the new recommendation xb
t

or the previous recommendation xb
t−1 as shown in Eq (41).

The test method presents important differences from the training method.

In fact, during the test each sub-agent uses the baseline agent recommended415

action, xb
t , and the environment state, St, observed to return a new adjusted

decision xm,t. This adjusted decision is then informed to all the other sub-agents

(represented by the transparent dashed line in Figure 3b) as a new baseline

action xb
m. Then, each sub-agent returns its final decision that is concatenated

together with the other baseline decisions to form the final action, i.e., Xt =420

⟨x1 |x2|x3 |x4|x5| . . . |xM ⟩t−1. A graphical representation is depicted in Figure

3b. Notice that we perform this testing procedure to guarantee that the actions

of each sub-agent are working cooperatively.

5. Computational Experiments

To compare the proposed techniques, we consider different instances varying425

the number of machines, items, time steps, max inventory level, and demand

distribution (we discuss the instance generation procedure in Subsection 5.1).

In detail, we conduct three sets of computational experiments.

In the first set of experiments, reported in Subsection 5.2, we address a

problem with one machine and two items. This setting (detailed in Appendix430

A, Table A.4) allows us to compute the optimal solution with value iteration and

to compare DR, A2C, PPO, MS, ADP against it. Here, we measure the performance

23



..
. ..
.

Base environment

Environment 1
𝐶1,𝑡, 𝑺𝑡

𝐶2,𝑡, 𝑺𝑡
Environment 2

𝑥2,𝑡−1

𝑥1,𝑡−1

𝑥3,𝑡−1

𝑥4,𝑡−1

𝐶3,𝑡, 𝑺𝑡
Environment 3

Agent 1

Agent 3

Agent 2

B
aselin

e A
g

en
t

𝐶𝑡, 𝑺𝑡

𝑿𝑡−1
𝑏

𝑿𝑡−1
𝑏

𝑿𝑡−1
𝑏

𝑿𝑡−1
𝑏

𝑿𝑡−1
𝑏

𝑿𝑡−1
𝑏

(a) LSCMA training

..
.

B
ase en

v
iro

n
m

en
t

Baseline 

Agent

𝑥2,𝑡−1

𝑥1,𝑡−1

𝑥3,𝑡−1

𝑥4,𝑡−1

𝑿𝑡−1
𝑏

Agent 1

Agent 3

Agent 2 𝑥
1 |𝑥

2 |𝑥
3
𝑥
4
𝑥
5 |…

|𝑥
𝑀

𝑡−
1

𝐶𝑡, 𝑺𝑡

𝑥2
𝑏

𝑥3
𝑏

𝑥4
𝑏

𝑥1
𝑏

(b) LSCMA test

Figure 3: Training and testing architectures for the LSCMA.

3 Pseudo-code: Lot-sizing multi-agent adjustment

1 Generate and train the baseline agent.

2 Initialize the parameters of each sub-agents.

3 Select the total number of iterations N

4 k ← 1.

5 while k ≤ N do

6 Set an initial random state Sj
0.

7 Generate a sample path for the demand [d]t=0,1,...,T .

8 for t ∈ (0, 1, 2, ..., T − 1) do

9 Compute Xb
t+1 from the baseline agent

10 for m ∈M do

11 Compute xm,t+1 from each sub-agent

12 Xt ← (x1,t, x2,t, . . . , xm,t)

13 Generate the next state sm,t+1, based on sm,t, dt+1, and Xt.

14 Updates the sub-agents using the new information;

15 Increment the iteration counter k ← k + 1.
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of each method against the optimal solution computed by value iteration. We do

not consider LSCMA since, with one machine, we would have just one sub-agent,

making the multi-agent approach useless.435

In the second set of experiments, reported in Subsection 5.3, we tackle in-

stances with up to 15 items and 5 machines. This setting (detailed in Appendix

A, Table A.4) prevents the usage of exact techniques such as value iteration.

Therefore, we compare the performance of DR, A2C, PPO, MS, ADP, and LSCMA

using the perfect information agent as a benchmark.440

Finally, in the third set of experiments, reported in Subsection 5.4, we exam-

ine large instances with up to 25 items and 10 machines. In this setting (detailed

in Appendix A, Table A.5), the perfect information agent is no longer a viable

baseline comparison due to the size of the mathematical model. Therefore, we

compare the absolute costs of DR, A2C, PPO, MS, ADP, and LSCMA.445

All the computational experiments were run on an AMD Ryzen 5 5600X 6-

Core Processor 3.70 GHz, an RTX 3060 (12GB), and 32GB of RAM. The code

(available upon request) has been developed in Python 3.6; the libraries used for

the DLR algorithms are Pytorch [46] and Stable baselines3 [47]. Gurobi v9.5.0

solves all the models via its Python3 APIs.450

The following settings are considered in the experiments (unless otherwise

stated):

• Multi-stage configuration: For the MS model, we implement a branch-

ing factor of [4, 4, 2, 2]. Recognizing the limitations of rough Monte Carlo

scenario generation, as highlighted in [48], we intentionally reduce scenar-455

ios to enhance result accuracy. Due to the potentially time-consuming

nature of solving the model for some instance configurations, we set a

time limit of 5 minutes per solution for each decision. This time limit is

crucial, especially considering that our experiments encompass 100 simu-

lations, each containing 10 to 100 steps. A time frame exceeding 5 minutes460

per step would render the MS approach impractical for our experimental

scope. Additionally, as the complexity of the problem increases with more
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machines and items, the time required for computation scales accordingly,

eventually surpassing the feasibility threshold for available computing re-

sources.465

• Decision Rule parameters: Parameters α1, α3, α4, and α5 for the DR

model are optimized using particle swarm optimization.

• Reinforcement learning configuration: The LSCMA model employs DR

as its baseline policy, supplemented by PPO for each sub-agent. As a com-

parison, we also use single-agent RL methods, both PPO and A2C methods470

configurated to train for 50,000 epochs, with the number of iterated steps

tailored to the specific environment configuration. A detailed list of hy-

perparameters for the single agent compared methods for both PPO and

A2C is available in the supplementary material (see Appendix A, Table

A.6).475

Since the demand is stochastic, the performances of the methods are aver-

aged over 100 different episodes. Despite the considerable error range implied by

the standard deviation, the statistical robustness of our experiment—stemming

from the substantial number of tests—ensures reliable average performance met-

rics across various initial conditions.480

5.1. Instance generation

Given a number of items I, of machines M , a number of time steps T , and

a maximum inventory size Imax, we generate the initial inventory for each item

a random number between [0, Imax]. Then, following what is done in [1], we

generate hi, li, and fi,m from a uniform random variable in [0, 1], [5, 10], and485

[1, 5], respectively.

The production matrix (i.e., pi,m) is generated by randomly selecting 2|I|/|M|

items for each machine; for these items, the production is drawn from a uniform

distribution between 10 and 20, while for the remaining ones, pi,m = 0. This

setting ensures that several machines produce the same item, thus avoiding a490

problem that can be decomposed. Then, we check that each row of pi,m has at
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least one non-zero element (i.e., there is at least a machine that can produce

it). If not, we set two random components to a value drawn from a uniform

distribution between 10 and 20.

In this study, demand is modeled using different binomial distributions whose495

parameters adapt to the instance type (e.g. the instances with more machines

will be characterized by higher demand). Since the problem is characterized

by several parameters, we present in this paper only the most interesting re-

sults that we have obtained. Nevertheless, the open-source code is available at

https://github.com/leokan92/discrete_lot_sizing_rl_agents, to prop-500

erly guarantee reproducibility and enable interested readers to carry out further

experiments.

5.2. Small size instance

This section presents the computational results for the small instance (I = 2,

M = 1, and T = 10). We consider that production, setup costs, setup losses,505

and inventory costs are the same for the two items, while the lost sale costs

of item 2 are twice the lost sales of item 1. These characteristics enable us

to compute the exact solution using value iteration and to visualize the policy

function.

In Figure 4, we show the optimal policy (computed using VI) for different510

demand distributions. In particular, we use a binomial distribution with n = 3

and p = 1
3 for Figure 4a while we use n = 5, p = 0.4 for Figure 4b.

We represent the policy employing three tables for each demand scenario,

one for each present machine setup. Each table contains Imax × Imax cells,

one cell for each possible inventory level, and each cell is shaded with a color515

corresponding to the optimal action. The green color (in the legend, the color 1)

corresponds to the production of item 1 (in the legend, the color 2), the yellow

color is the production of item 2 (in the legend, the color 0), and the blue color is

the idle state. As the reader can notice, the optimal policy has a similar pattern

for each of the three tables: if the inventory of one item is small, its production520

starts, and if both the inventories are small, item 2 is preferred due to its greater
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(a) VI policy visualization

(b) VI policy visualization - higher demands

Figure 4: Comparison of VI policy visualizations under different demands - lower and higher

demand

lost sales cost. Moreover, in Figure 4b (higher demands), it is possible to notice

that setup deeply affects the optimal policy. When the machine produces item

1 (second table), the number of cells in which the production is maintained is

greater than in the other two tables. The same holds, almost symmetrical when525

the machine produces item 2 (see the third table).

These representations help to obtain insights concerning the pattern of the

optimal policy. In the following, we compare the methods using only the lower

demand scenario with a binomial distribution parameterized with n = 3 and

p = 1
3 . We report the results of the experiments in Table 1. Table 1 defines the530

experiment configuration in the column ”Experiment”. This column indicates

the number of items by the number followed by the letter “I”, the number

of machines with the number followed by the letter “M,” the number of time
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Table 1: Average total costs, holding, lost sales and setup costs percentage with respect to

value iteration for the one machine and two items setting.

Experiment Algorithm
Total

Costs %

Holding

Costs %

Lost Sales

Costs %

Setup

Costs %

DR 6±71 -12±25 100±479 0±94
ADP 2±12 -2±5 3±2 0±4

I2 M1 T20 Imax10 A2C 114±172 -31±31 992±1181 -54±120
PPO 1±46 -3±21 18±301 8±67
MS 0±8 0±4 0±49 0±17

steps in an episode next to “T,” and the maximum number of each item in the

inventory after the notation “Imax”.535

As the reader can notice, MS, PPO, and ADP have performance close to VI,

but PPO has a far much bigger standard deviation than the other three methods.

DR performs quite well, achieving an average gap of 6%, while A2C achieves the

worst performance being distant from the other methods. Its bad performance

is due to its underproduction, which leads to huge lost sales costs. The high540

standard deviation observed in the results is due to the stochastic demand and

to the different initial conditions. To cope with this inherent limitation we run

100 episodes of the test.

5.3. Medium size instances

This section presents the computational results for the medium instances545

(I = 4M = 2, T = 10, I = 10M = 5, T = 10, and I = 15M = 5, T = 10).

For those instances, VI cannot be applied due to dimensionality. Therefore, we

use the PI agent as benchmark. The distribution of item demand is given by

the binomial distribution with p = 0.4 and n = 4 for the three instances. The

average results are shown in Table 2.550

In the I4 M2 instances, PPO performs best, followed by LSCMA and by ADP.

MS performs poorly due to the time limit that prevents reaching the optimal

solution. It is worth noting that while its computation is not finished after
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Table 2: Average total costs, holding, lost sales, and setup costs percentage with respect to

the perfect information agent.

Experiment Algorithm
Total

Costs %

Holding

Costs %

Lost Sales

Costs %

Setup

Costs %

DR 159±159 -59±39 465±493 104±213

ADP 64±102 -38±41 231±274 16±193

I4 M2 T10 Imax10 A2C 208±131 9±41 730±396 -79±162

PPO 47±87 3±44 115±187 29±197

MS 131±140 -50±39 310±369 161±221

LSCMA 59±95 -7±43 207±253 -13±182

DR 94±100 -29±29 425±453 67±126

ADP 102±97 -23±33 704±458 -56±107

I10 M5 T10 Imax10 A2C 138±89 44±35 732±440 -51±140

PPO 145±108 3±43 840±509 -42±119

MS 89±84 -29±31 226±253 155±151

LSCMA 83±90 4±36 421±394 3±115

DR 86±73 -41±26 155±130 67±99

ADP 37±48 -13±27 85±76 -19±104

I15 M5 T10 Imax10 A2C 93±57 25±38 193±103 -62±91

PPO 67±46 23±31 95±70 51±103

MS 61±53 -33±24 82±77 115±111

LSCMA 65±60 3±34 132±102 -19±95

the time limit of 5 minutes, all the other methods require a computational

time smaller than a minute. Moreover, while DR has poor results, LSCMA is the555

second best method, proving that the multi-agent strategy can deeply improve

the starting policy of the baseline agent.

The best policy in the setting with 10 items and 5 machines is LSCMA followed

by DR and MS. Considering the costs, it is possible to notice that ADP strongly

reduces setup costs at the expense of increased lost sales costs. Instead, LSCMA560

maintains setup costs lower than DR while achieving a relatively low lost sales

cost, which is crucial for its overall superior performance. Moreover, the holding
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costs for all three methods are quite similar, with the LSCMA being higher.

Finally, in the setting with 15 items and 5 machines, the lost sales cost takes

on greater significance, rendering the ADP policy the best choice, surpassing the565

LSCMA policy.

More in detail, ADP policy incurs a slightly lower setup cost yet maintains the

lowest lost sales cost. Instead, DR while being the best model in terms of holding

cost, it generates a lot of lost sales and setup costs, which means that it stops

production too often. Finally, LSCMA deals with DR deficiency and improves over570

it, having a better result than DR in all three costs.

When comparing the LSCMA multi-agent approach against the PPO and A2C

methods, we observe that the training times of LSCMA are much faster than the

ones of both PPO and A2C. To better investigate convergence, we report the cost

in the different episodes of the training set in Figure 5. As the reader can see,575

the cost of LSCMA slightly increases in the first episodes and quickly stabilizes.

This increment is due to the exploration phase of the method that terminates

after 50 episodes. Then the cost becomes stable. This really fast convergence is

due to the small set of actions that each sub-agent considers. Moreover, due to

a good starting solution also standard deviation of the cost is reduced.580

It is worth noting that, despite the costs achieved by LSCMA in the training

set are greater than the ones achieved by PPO and A2C, in the test the result is

the opposite, due to the change in the LSCMA structure.
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Figure 5: Moving average of 100 of the cost curve with standard deviation of the distribution

taking 5 different seeds for the instance I10 M5 T10 Imax10.

In conclusion, we can claim that while for small instances, PPO provides
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good solutions, both LSCMA and ADP have better results in medium-sized ones.585

Moreover, it is worth noting that ADP and LSCMA deliver better outcomes, par-

ticularly in reducing setup and inventory costs and they are also able to reduce

or maintain the lost sales while reducing the other costs.

5.4. Large size instances

This section considers instances with I = 15,M = 5, I = 25, M = 10, and590

a time horizon of 100 time steps. For the large size instances, MS becomes too

time-consuming even with the time limits: in the I15M5 instances (the smaller

ones), the computation rarely stops before the 5 minutes, thus requiring a huge

amount of time for the 100-time steps repeated 100 times. Therefore, we just

compare DR, ADP, A2C, PPO, and LSCMA. Due to the branch and bound procedure595

implemented, ADP becomes too time-consuming for the I25M10 setting, leaving

DR, A2C, PPO, and LSCMA as the only candidate method for these instances.

For the I15M5T100Imax10, the demand is distributed according to a bino-

mial distribution with the same parameters of previous experiments p = 0.4

and n = 4 while for the I15M5T100Imax100 and I25M10 ones, the parameter600

n assumes a value of 20, thereby increasing the demand. We consider greater

demand values to maintain the proportion of production and demand capacity

while increasing both T and Imax. We show the average cost in Table 3. ADP

performs better than the other methods achieving the best results for all the

instances with 15 items.605

Comparing the results with I = 15, with Imax = 10, and Imax = 100, it is

possible to notice how the methods behave concerning a change in the dimension

of the state space. As the reader can notice, the results are almost the same,

meaning all the methods can deal effectively with the larger state space. Notice

that the increment in dimensionality affect ADP computational time since the610

number of feasibility cut decreases.

Finally, in the setting with I = 25, the best method is LSCMA which improves

the performance of DR and reduces its variance. Interestingly, DR surpasses both

A2C and PPO, meaning that for high dimensional space, the learning methods
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Table 3: Average total costs, holding, lost sales and setup costs. Testing in settings on which

perfect information agent it is not able to provide optimal solution

Experiment Algorithm
Total

Costs

Holding

Costs

Lost Sales

Costs

Setup

Costs

DR 2062±443 44±135 1966±647 52±88

ADP 1393±163 112±110 888±217 393±59

I15 M5 T100 Imax10 A2C 2000±250 327±72 1555±319 118±76

PPO 2066±269 322±77 1737±367 7±70

LSCMA 1988±319 243±97 1715±436 30±28

DR 1982±384 58±122 1689±515 235±34

ADP 1472±169 109±101 1137±253 226±26

I15 M5 T100 Imax100 A2C 2129±270 320±70 1801±364 8±81

PPO 1918±230 103±104 1705±337 110±79

LSCMA 1981±343 229±95 1655±459 97±36

DR 3290±922 129±253 2962±1397 199±272

I25 M10 T100 Imax100 A2C 3609±470 436±130 3158±642 15±152

PPO 3612±468 435±127 3158±641 19±191

LSCMA 3249±590 451±166 2682±825 117±101

of these two algorithms start to fail. More in detail, LSCMA mostly reduces lost615

sales costs using the production capacity.

6. Conclusions

This paper addresses the stochastic discrete lot sizing problem on parallel

machines. The problem arises when the time step considered does not allow

for the production of simultaneous different items on the same machine. This620

characteristic leads to a difficult integer programming problem that requires

heuristics to be solved. We propose two heuristics: one based on approximate

dynamic programming and leveraging a branch and bound technique to solve

the nonlinear optimization problem for selecting the action (ADP), and one based

on multi-agent reinforcement learning applied to an initial action generated by625

a simple decision rule (LSCMA).
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Through computational experiments, we provide shreds of evidence of the ef-

fectiveness of these techniques on a set of instances, and we compare their perfor-

mance against state-of-the-art deep reinforcement learning techniques (namely,

proximal policy optimization and advantage actor-critic). The results show that630

the proposed techniques behave on average better than the benchmark tech-

niques. Future studies will address more complex versions of the stochastic

discrete lot sizing problem, e.g., considering non-parallel machines and/or un-

certainty in both demand and production rates. Moreover, an interesting topic

to consider is heteroscedastic demand. In fact, due to the orders the demand635

in closer timeframes is characterized by less noise compared to that in more

distant timeframes.

Lastly, another promising field of research is the integration of model-free

methods together with more standard operation research techniques. In fact,

one of the results of this paper shows that up to medium-size instances, these640

techniques achieve the best results. These mixed strategies promise to advance

the field further, offering more versatile and powerful solutions to complex and

high-dimensional lot-sizing problems and other problems.
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Appendix A.

Here we show a summary of the scenario configuration settings. Table A.4

refers to the results from the experiment in subsection 5.3. In Table A.5 we list870

the environment configuration setting employed in the experiments in presented

in Subsections 5.2, 5.3, 5.4

We also provide the hyperparameters employed for the PPO and A2C algo-

rithms in Table A.6.
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Table A.4: Scenario configuration settings for lower number of steps setting. Since we gen-

erate random numbers for some of the environment settings, we only present the interval and

the matrix shape.

Parameter I2 M1 T20 I4 M2 T20 I10 M5 T10 I15 M5 T10

Time horizon 20 20 10 10

Number of items 2 4 10 15

Number of machines 1 2 5 5

Initial setup 0 1 × m array ∈ [0, n] 1 × m array ∈ [0, n] 1 × m array ∈ [0, n]

Machine production 3 m × n array ∈ [0, n] m × n array ∈ [0, n] m × n array ∈ [0, n]

Max inventory level 10 10 10 10

Initial inventory 0 1 × n array ∈ [0, 10] 1 × n array ∈ [0, 10] 1 × n array ∈ [0, 10]

Holding costs 0.01 0.1 0.1 0.1

Lost sales costs 1 1 × n array ∈ [1, 3] 1 × n array ∈ [1, 3] 1 × n array ∈ [1, 3]

Demand distribution Binomial, di,t,2 Binomial di,t,4 Binomial di,t,4 Binomial di,t,4

Setup costs 1 2 2 2

Setup loss 1 1 1 1

Table A.5: Scenario configuration settings for higher number of steps setting. Since we

generate random numbers for some of the environment settings, we only present the interval

and the matrix shape.

Parameter I15 M5 T100 M10 I15 M5 T100 M100 I25 M10 T100 M100

Time horizon 100 100 100

Number of items 15 15 15

Number of machines 5 5 5

Initial setup 1 × m array ∈ [0, n] 1 × m array ∈ [0, n] 1 × m array ∈ [0, n]

Machine production m × n array ∈ [0, n] m × n array ∈ [0, n] m × n array ∈ [0, n]

Max inventory level 10 10 10

Initial inventory 1 × n array ∈ [0, 10] 1 × n array ∈ [0, 100] 1 × n array ∈ [0, 100]

Holding costs 0.1 0.1 0.1

Lost sales costs 1 × n array ∈ [1, 3] 1 × n array ∈ [1, 3] 1 × n array ∈ [1, 3]

Demand distribution Binomial di,t,4 Binomial di,t,20 Binomial di,t,20

Setup loss 1 1 1

Setup costs 2 2 2
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Table A.6: Hyperparameters for PPO and A2C models

Hyperparameter PPO A2C

Batch size 256 -

Number of steps 256 100

Gamma (γ) 0.96 0.95

GAE lambda 0.9 -

Update delay (epochs) 20 -

Entropy coefficient 0.0 -

Max gradient norm 0.5 -

Value function coef. 0.5 0.7

Learning rate α 5e-3 0.002

Use SDE False -

Clip range ϵ 0.4 -

Policy net architecture [300, 300] [300, 300]
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