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Abstract: This paper describes a hardware/software strategy for the effective and efficient manage-
ment of several distributed Memory Built-In Self-Test (MBIST) units orchestrated by a single CPU to
enable the parallel testing of several memory banks. Experimental testing of the implementation on
an Infineon chip shows up to a 25% test time reduction compared to traditional strategies, especially
in cases for which there are a large number of failures affecting several banks. Additionally, it permits
balanced failure collection from different banks in cases for which there are limitations to the storage
of failure-related information.

Keywords: automotive; SoC; reliability; embedded memory; testing; diagnosis

1. Introduction

With constant improvements in terms of clock frequencies and transistor count follow-
ing Moore’s law, new possibilities arise for designers and programmers for System-on-Chip
(SoC) devices. More transistors for a given area allow designers to increase the number
of peripherals in their systems without affecting their total area. Developers can then use
these peripherals to write increasingly complex memory-greedy programs that require
extensive use of the embedded memory (eMemory). As eMemory is a critical part of
an SoC, it significantly influences the yield and quality of these devices. For this reason,
semiconductor companies place great efforts in their testing and repairing procedures to
ensure that each device shipped to the customer complies with the required hardware
specifications within the operational conditions [1,2]. This is not a trivial task, as eMemory
grows quadratically in capacity with each new generation. Semiconductor manufacturers
must then face the escalating challenge of testing increasingly dense and complex memory.
It is also essential to minimize the test time of each device as much as possible [3]. Test time
is one of the main bottlenecks during the production process and is one of the main costs
for manufacturers as they can usually test just a limited number of devices simultaneously.
To reduce test time and to tackle the increasing complexity of eMemory, most companies
have developed Memory Built-In Self-Test (MBIST) units. They are additional specialized
hardware modules that support the Central Processing Unit (CPU) for testing memory, as
proposed in [4–6]. MBIST units are directly embedded close to the memory circuitry in the
SoC and can reduce test times by orders of magnitude by working with full-speed access.

Many approaches found in the literature focus on the organization of the MBISTs,
their structures, or the test pattern to apply to the memory. Additionally, other papers deal
with MBIST design for multiple memory units. In these cases, either a centralized [4,7] or
distributed scheme can be considered [8,9]. To retrieve diagnostic information in the case of
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a distributed scheme, a possible solution is to check each MBIST one-by-one and perform a
linear search to analyze each one’s status register [10].

Even though multiple-memory testing is a well-known topic, if diagnostic information
needs to be extracted after a failure notification, there are very few contributions in the state-
of-the-art that suggest solutions. Paper [11] describes a potential MBIST-based diagnostic
flow for a single memory unit.

The hardware/software scheme proposed in this paper enables improved control of
multiple MBISTs operated by the CPU in microcontrollers such as the Infineon AurixTM

TC49 used during our tests. Based on the hardware scheme, the system CPU can imple-
ment multiple MBIST-access mechanisms while minimizing the system requirements, for
example, by using a shared interrupt line to trigger the CPU in case of faults. We specifically
designed two approaches: called ’Linear Search’ and ’Binary Search’. In particular, the
Binary Search approach is designed to speed up the testing operations and to solve the
intrinsic priority issue between multiple MBISTs.

This document is organized as follows. In Section 2, we introduce how eMemory
units organized, their testing flows, and the possible architectures of an MBIST. Section 3 is
devoted to describing our proposed approach. In Section 4, we present the experimental
results and compare different access mechanisms. In Section 5, we draw some conclusions.

2. Background

This section discusses the physical organization of eMemory. Particular attention
is dedicated to how the CPU sees eMemory and how the MBIST identifies faults. An
overview of the embedded testing flow is given to understand which operations and actors
are involved in this process. Afterward, we describe a simple model of MBIST circuitry
and clarify its interactions with the rest of the system. Lastly, the focus shifts to how to
retrieve the diagnostic information from multiple independent MBISTs.

2.1. Embedded Memory Organization

Embedded storage cells consist of enhanced MOSFET transistors for which the thresh-
old voltage (Vt) is electrically modifiable in a non-volatile manner via charges trapped in
an oxide layer or a poly floating gate. Cells can be mass-erased to Low-Vt (LVt or “0”)
and bit fine-programmed to High-Vt (HVt or “1”). The fundamental memory elements,
bits, are organized in a matrix; rows and columns of bits are named wordlines and bitlines,
respectively. A wordline is divided into pages—the smallest programmable or readable
unit; to perform a read or a programming operation on any bit, the entire page must be
accessed, and updates are page-concurrent but are still slow towards HVt only.

Wordlines are combined into erase segments, called ’logical sectors’, representing the
smallest erasable unit. Logical sectors are grouped into physical sectors that, in turn, are
combined to form a memory bank. This hierarchy is maintained to obtain different memory
sizes, while the number of physical sectors and banks and wordline and bitline dimensions
are changed accordingly. This organization is graphically described in Figure 1.

Figure 1. Memory organization in eMemory.
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2.2. MBIST Architectures for Diagnosis

Microcontroller eMemory is characterized by highly time-consuming tests. In addition,
memory capacity grows quadratically every four years according to Moore’s Law and,
similarly, testing times also grow.

The introduction of Memory Built-In Self-Test (MBIST) modules led to a test time
reduction for which the magnitude depends on the MBIST structure and the CPU’s and
firmware’s ability to access the memory [12–14]. Consisting of specialized hardware sur-
rounding the memory, MBIST enables at-speed self-testing without the need for expensive
and high-frequency Automated Test Equipment (ATE).

Depending on its complexity, an MBIST’s logic can apply fixed or programmable test
flavors and acts as a slave; thus, it must be configured by the ATE or the CPU, respectively,
for production tests and online inspections [15,16]. The most straightforward configuration
of an MBIST is composed of an Address Generator, a Pattern Generator, a Read/Write
Controller, and a Data Output Evaluator [17] as shown in Figure 2:

• Read/Write Controller is an input to the memory as it decides when its time to write a
new test pattern or read it back.

• Address Generator is also an input to the memory as it decides the address for which
the test pattern has to be written to or read from.

• Pattern Generator decides the pattern to write at a specific address in the memory. It
also provides the reference pattern to the Output Evaluator, which can then compare
it with the output of the flash memory.

• Output Evaluator simply compares the output of the memory at a given address with
the expected pattern provided by the Pattern Generator. In case of a mismatch, a fault
is detected.

Figure 2. Simplified MBIST architecture.

MBISTs can access at page granularity and apply patterns and verify the correctness of
the read data compared to the expected output. This behavior can be achieved in different
ways depending on the MBIST’s complexity and can range from simple ATE-controlled
MBISTs to more advanced programmable MBISTs able to interact with the CPU through
flags or interrupts.

From a higher point of view, MBISTs with programmable options are usually able to
implement many modes of operation [11], including:

• Count mode: At the end of the memory test, the MBIST makes the total fail count
available to the master.

• Stop-on-fail mode: During the memory test, the MBIST module stops each time a fault
is detected and provides the fault’s position and type. After a stop event, the master
must resume the verification.
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For massive embedded memory composed of multiple banks, the basic structure of
an MBIST can be replicated several times. These independent MBIST instances sensibly
reduce test time at the cost of a small area overhead. In particular, a distributed MBIST
system is better than a centralized one because the test of a fault-free bank is not stopped
when a fault occurs in another bank tested by another MBIST instance. The distributed
approach gives a significant speed-up during the ramp-up of a technology. An example of
a distributed MBIST architecture is illustrated in Figure 3.

Figure 3. Hardware organization of four independent MBISTs.

Nevertheless, coordinating MBIST instances is not a trivial task. Especially for imma-
ture technologies, many banks in the same chip may fail simultaneously. Of course, each
unit shows its own fail shape, and several MBISTs must be managed concurrently. In a
stop-on-fail scenario, MBIST behavior is resumed only after the current fail coordinate is
saved. Meanwhile, many MBISTs can notify of failure and wait to be served. This is espe-
cially true for devices with thousands or tens of thousands of faults. In these circumstances,
efficiently managing the MBISTs can save up to 26% of test time.

2.3. Linear Search Method

In the case of multiple independent MBISTs integrated into a system [9], it is necessary
to access each one of them individually to check their statuses. This is the case for the system
represented in Figure 3. The status register is thus the primary communication mechanism
used by the MBISTs. After their programming, they only need to write any event (such as
“fault found” or “job finished”) to their status register. The CPU can then read the status
register of the corresponding MBIST. With the independent MBIST configuration set in the
stop-on-fail mode, to understand if a fault has been found in the memory bank, the CPU
has to continuously check the MBISTs’ status register in a linear search fashion.

In the simplest scenario in the so-called “linear search” approach, all MBISTs are
checked one-by-one, starting from the one with the lowest index as reported in Algorithm 1.
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Algorithm 1 Linear Search for N MBISTs

procedure LINEARSEARCH(N)
Start all MBISTs
while Test not finished do

for each integer i in N do
if MBIST[i] found a fault then

Retrieve fault coordinate
Restart MBIST[i]
break

else
Continue

end if
end for

end while
end procedure

Linear search is the only possible choice for an architecture that requires individual
access to the status register of its MBISTs. A perfect example of this kind of architecture is
presented in [10], where the MBISTs are connected to the central controller bus through a
multiplexer that selects the desired MBIST on a one-by-one basis. Thus, no parallelization
during the MBISTs’ status check is possible using the architecture proposed in [10].

To visualize how the linear search works and its intrinsic issues, Figures 4 and 5 show
how this access mechanism works in a possible test scenario with many fails distributed
along multiple memory banks. This scenario is an example of what automotive SoC
manufacturers may find during the characterization of their devices. Referring to Figure 4
in particular:

1. Banks 0 and 2 represent randomly distributed faults with various shapes.
2. Bank 1 has a faulty bit cell at the junction of the “cross” of failing bit cells. That faulty

bit cell appears to work correctly but negatively affects nearby cells.
3. Failures in Bank 3 represent a failing sense amplifier.

Figure 4. Realistic fault scenario in 4-bank memory.

The diagram in Figure 5 shows a possible order in which the banks (or better, their
MBISTs) requiring CPU attention are served:

• T0. At the start, each MBIST is in the running phase and is testing the memory in
search of faults.

• T1. The MBIST of Bank 0 is the first to find a fault; it stops the bank test and is waiting
for the CPU read. The other MBISTs are still running and are searching for faults.

• T2. The CPU accesses MBIST 0; MBIST 3 stops and waits while the other MBISTs are
still running.

• T3. The CPU resumes MBIST 0. All the other MBISTs are stopped and are waiting for
CPU intervention.
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• T4. The CPU starts analyzing MBIST 1. MBISTs 2 and 3 are stopped and are waiting
for the CPU read, while MBIST 0 is again running and is searching for faults.

• T5. MBIST 0 stops and is waiting for the CPU, MBIST 1 is running. MBISTs 2 and 3 are
still waiting for CPU intervention.

• T6. The CPU starts analyzing MBIST 0. All other MBISTs are stopped and are waiting
for CPU attention (MBIST 3 has been waiting since T3).

After T6, if MBIST 0 and MBIST 1 continue to find faults, they will always be served
first. With this intrinsic priority, MBISTs 2 and 3 will be served last. This unfair serving of
the banks is especially problematic in cases for which there are time or diagnostic memory
limitations (i.e., if there is not enough space to store all fault information, faults appearing
in Banks 2 and 3 will not be logged).

Figure 5. Timing diagram of the linear search applied to the MBISTs of a fault-dense 4-bank memory.

3. Proposed Approach

The proposed approach considers the usage of CPU firmware supported by an ad-
ditional hardware structure, as illustrated in Figure 6A). Such ad hoc circuitry controls a
status bit value by ORing the status bit spilled from every MBIST. When a fault occurs in
any memory, this flag bit raises to value one and triggers the CPU similar to an external
interrupt. The processor, left in idle mode, wakes up from idle and interacts with a bank
selector register to identify the failing bank following the approach shown in the following
paragraphs. This hardware organization is cheap because of CPU reuse to support memory
testing and because it demands very few extra gates. For sure, a single flip-flop could be
extended to a register. However, it would not fit other constraints, such as the number of
interrupt channels, other than for area overhead minimization. A status register without
interrupt capabilities would require continuous polling by an always-awake CPU, which
would impact device consumption during the test execution.

Therefore, distributed MBISTs supported by the proposed hardware add-on allow the
execution of concurrent memory bank tests. Consequently, it sensibly reduces test time with
small area and power demands. This paper focuses on getting maximum performances
out of this scheme without sacrificing the effectiveness of the collected failure coordinates,
especially in cases of simultaneous fails detected on different MBISTs.

Overall, we compare three different methods:

• A linear search method, which is considered as a baseline for comparison.
• Two versions of a binary search method: without and with priority shifting.

Among these methods, binary search with priority shifting achieves a better trade-off
between test time and the retrieved failure information quality, i.e., overcoming the limits
highlighted in Section 2.3 about diagnostic data collection.
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Figure 6. Example of a real scenario.
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3.1. Hardware Architecture for Diagnosis

The hardware design used for our approach enables concurrent access to one or more
MBIST status registers by providing the ORed version of all the selected ones in one readout.
Considering the case in which all MBISTs are addressed for a status register readout, a
raised stop-on-fail flag means that at least one module needs to be served by the CPU.

Figure 6A depicts a simplified model of the proposed hardware organization. The
status register bit accessible for readout contains the ORed information of all MBISTs
selected through the bank selector. That is an array composed of as many bits as there are
MBISTs available. The output of an MBIST is enabled when its corresponding bit in the
bank selector is set to one. To understand if at least one MBIST found a fault, the CPU
must check the common status register bit through polling or by waiting for an interrupt.
Independent of the chosen solution, this organization shows clear advantages in circuit
complexity and test time compared with an arrangement wherein each MBIST has its
own status register. Reducing the number of needed registers is a major contributor to
area savings. For what concerns the test time, as we will see in the following section, this
organization allows for clever search algorithms that exploit the common status register bit.
Architectures with completely independent MBISTs, such as the one presented in [10], can
only resort to the linear search algorithm, which will be used as a reference to evaluate the
performance of the proposed algorithms.

3.2. Binary Search Approaches

The goal of the proposed search algorithm is to overcome the intrinsic problems of
linear access that affect the overall test time. Taking advantage of the capability of our
proposed schema, it is possible to shorten the test time by relying on a tailored binary
search procedure such as the one described in Algorithm 2.

Algorithm 2 Binary search for N MBISTs

procedure BINARYSEARCH(N)
Start all MBISTs
Start = 0
End = N − 1
Enable all MBIST outputs
while Test not finished do

if common status bit is 1 then
while end − start != 0 do

middle = (start + end)/2
Enable output for MBIST[start] to MBIST[middle]
if common status bit is 1 then

end = middle
Continue

else
start = middle

end if
end while

end if
end while

end procedure

In our scenario, the binary search algorithm generates the bitmasks to be loaded into
the bank selector.

Figure 6 shows how binary search is applied in the case of four MBISTs by disabling
or enabling the outputs of groups of MBISTs. Once a fault has been found by at least one
MBIST, the ORed stop-on-fail flag is raised. This flag generates an interrupt that wakes
the CPU from idle. At this point, the algorithm generates a bitmask containing “half 0s”
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and “half 1s”: enabling the ORed flag of MBISTs 0 and 1 (half the MBISTs available). The
algorithm will continue analyzing the rightmost half if the flag is high. Otherwise, it
will proceed on the leftmost half. The analysis iterates, halving the number of MBISTs
to evaluate step-by-step. At the last step, a bitmask containing only one bit set to “1” is
applied, and the procedure returns the index of the bank to be served.

With this approach, in case of fault, exactly log2(N) checks are needed to identify the
correct MBIST. In case of no faults, one check is enough for all the MBISTs. Anyway, the
pure binary search approach still suffers the intrinsic propriety order of access seen in
Section 2.3. For example, let us analyze the case in which every bank requests an action
from the CPU (Figure 7a): the selected bank to be served will inevitably be the rightmost
one. This unintended fixed priority could lead to undesirable starvation of “stopped”
MBIST modules. Consider, for example, an event wherein one memory module completely
fails and the rest present only one fail on the first page; suppose that the entirely failed
memory module has the highest intrinsic priority. All the MBISTs will start concurrently,
and they will all stop on the first page. The CPU will serve and repeatedly resume the
entirely failed bank, preventing the other MBISTs from stepping over the first failing page
and proceeding concurrently.

To overcome this problem, we developed a revised binary search by merging the
superior performance of the binary search with the starvation-free capability of round-
robin scheduling.

(a)

(b)

Figure 7. (a) Binary search, fixed priority. (b) Advanced binary search: the bank selector rotation
increases at every iteration.
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To achieve this priority changeover in the served MBIST, an n-bit rotation to the bank
selector generated at every step of the algorithm is applied: n is increased by one each time
“binary search with priority shifting” is executed.

Figure 7b analyzes again the case in which multiple MBISTs need to be served by the
CPU at the same time: applying a 1-bit right rotation to the bank selector, the priority is
shifted from the rightmost module (MBIST0) to the leftmost one (MBIST3).

For manufacturers, it is crucial to have as much information as possible about the
failures in their systems. However, in a production environment, a trade-off between the
accuracy of the collected information and its costs must be explored; this includes test time
and diagnostic memory size.

A common approach when there are memory limits consists of assigning a fixed
amount of on-chip memory for storing as much diagnostic information as possible. This
constraint limits the number of fault locations that can be stored on-chip during the tests.
Without a specific division of the available on-chip memory between the different MBISTs,
a manufacturer may lose important insight into of some the memory units under test.
For example, in a scenario with a memory bank showing a lot of failures (enough to fill
the assigned memory space) and another with a few, if the priority is fixedly given to the
MBIST self-testing the memory with more failures, then the fault information from the other
one may not be collected. For a producer, this is the worst possible situation; it would be
much better to renounce some information about largely failing banks than totally missing
indications about a failing memory bank.

Figure 8a–c illustrate the issue. It uses a memory module with four banks as a reference;
each bank has its own MBIST.

A Figure 8a shows all the failures in the memory. Without an on-chip memorization limit,
the total test time is the only difference between the three access methods presented in
this paper.

B In Figure 8b, there is a limit to the on-chip memory available to store diagnostic
information. Using the linear and binary search approaches, the BIST of Bank 0 is
always served first. Bank 1’s BIST is served next and fills the remaining reserved
memory space. As can be seen, no information about Banks 2 and 3 reaches the external
world as the reserved memory is already saturated when their MBISTs are served.

C Figure 8c shows the effect of the binary search with priority shifting in case the memory
limitation is still in place. The result is a fairer memory representation with partial
information from all the memory banks.

Binary search with priority shifting ensures a fair representation of the different banks
in the memory. Of course, the trade-off is represented by the partial representation of these
banks. Nevertheless, it is essential to notice that it is often possible to extrapolate fault
patterns and understand their causes even with partial information.

(a)

Figure 8. Cont.
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(b)

(c)

Figure 8. (a) Unlimited diagnostic storage space. (b) Limited diagnostic storage space: binary search
and linear search. (c) Limited diagnostic storage space: advanced binary search.

4. Experimental Results

This section analyzes the behavior of the proposed hardware and software scheme in
real-case scenarios. We used a subset of the tests usually executed during the characteriza-
tion of the SoC. As execution time is the best metric for this kind of test, we analyze the
three access mechanisms’ timing behavior. All of them were executed in an InfineonTM

SoC with the MBIST organization described by our approach and using polling to check
the MBISTs’ common status register. The following experimental results examine three
scenarios: a sweep of artificially injected errors, data from real faulty devices, and some
special cases. In the following sections, the linear search algorithm is used as a reference for
comparison with the basic and priority shifting binary search algorithms. The two binary
search methods exploit the architecture proposed in this paper. Such optimized algorithms
cannot be implemented in architectures with isolated MBISTs like the one presented in [10];
these architectures can only implement the linear search method.

4.1. Sparse Faults Randomly Distributed

Sparse faults randomly distributed along the memory are one of the common issues
with embedded memory. To emulate the sparseness of defective bits that characterizes real
devices, 5000 tests were performed under these conditions:

• Single-bit error (SBE) only: at most, a single bit per page can be faulty;
• Pseudo-randomly generated addresses: the indexes of faulty pages are calculated in a

pseudo-random manner;
• Number of injected errors is between 0 and 90 k, which roughly corresponds to 0.03%

of the bits in the memory.

The faults generated by this random approach are very similar to those obtained
during tests performed during the characterization of the sense amplifiers of the DUTs and
generate a semi-random distribution of faults along the entire memory.

4.2. Test Time Comparison

In our experiments, it is clear that the test times are directly proportional to the number
of injected faults for all three analyzed algorithms in a linear manner. The superiority of
the binary-search-based approaches results in a time reduction of roughly 25% compared
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to the linear search. The standard implementation provides the best performances, leading
to a 26.3% test time reduction, while the binary search with priority shifting is limited to
23.9% (the 2.4% overhead is due to the rotation of the bank selector).

Table 1 shows our results with respect to the time overhead of the three methods with
increasing fail counts. In this experiment, we injected variable amounts of sparse fails on a
single device. As we can see, the binary search approaches have a sensible advantage over
the linear one.

Table 1. Test time comparison for different approaches.

Sparse Random Fault Timing Comparison

Fault Count (#) 27,451 41,416 54,959 68,817
Linear Search (ms) 92 138 182 228
Binary Search (ms) 68 102 134 168
Binary Search priority shifting (ms) 69 104 138 173

4.3. Progress of Bank Verification

To test the evolution of bank verification, we devised an experiment in which we
injected pseudo-random SBEs into roughly 0.006% of the memory. This experiment aimed
to prove that the linear search and binary search methods prioritize the banks with the
lower index. In contrast, the binary search with priority shifting makes all MBISTs proceed
in parallel to the greatest extent possible.

The line plots in Figure 9a–c (with the banks’ color legend in Figure 9d) highlight how
the intrinsic priority affects the progress of the MBISTs’ memory verification. The x-axis
represents the test duration, with 100% being the overall time that the linear search needs.
The y-axis measures the ratio of faults found by each MBIST and the total number of errors
in the corresponding bank, which is expressed as a percentage. The time reduction of the
two binary-search-inspired approaches is over 25%.

This behavior can be easily discerned in Tables 2 and 3. These tables shows the
percentages of faults analyzed by the three access methods in five different banks at 10%
and 30% of the test time (with 100% representing the time required for the linear search).

For the 10% test time represented in Table 2, it can easily be seen that the linear search
and the binary search have similar behavior:

• Faults in Banks 0 and 4 start to be analyzed, with Bank 0 receiving the most attention;
• All faults in the other banks are not analyzed.

By contrast, the binary search with priority shifting shows a “fairer” distribution of the
analyzed faults. Bank 0 is still the most analyzed (perhaps because MBIST 0 is the first that
the CPU programs and starts). Banks 4, 8, 12, and 14 are all analyzed to a certain degree
based on factors such as fault location and, consequently, the detection time for all MBISTs.

For the 30% test time represented in Table 3, again, the priority of lower-indexed banks
is clear in linear and binary searches:

• Faults in Banks 0 and 4 are completely analyzed at 30% test time;
• Faults in Bank 8 are starting to be analyzed;
• Banks 12 and 14 are not even reached at this point.

With the binary search with priority shifting, Bank 0 is still the most analyzed, while
Banks 4, 8, 12, and 14 are all analyzed up to a certain degree.

Figure 9a–c also show what happens in case of a 24 KB limit for the representation of
diagnostic information. The dashed purple lines represent the point at which the 24 KB are
saturated in the different scenarios. The saturation happens in different conditions for the
three tested algorithms:

• For the linear and binary search algorithms, the intrinsic priority of the lowest-indexed
banks is clear. Banks 0 to 4 are completely represented in both cases. The other banks
are analyzed just partially or not analyzed at all, e.g., Banks 13 and 14.
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• The saturation scenario is entirely different for the binary search with priority shifting
algorithm. All the banks are at least partially analyzed, and a couple are already wholly
analyzed. This scenario is much fairer in terms of representation. Once analyzed, the
24 KB of collected diagnostic information will reveal the partial situation of all the
memory banks, making diagnosis of the device easier.

(a)

(b)

(c)

(d)

Figure 9. (a) Bank-by-bank test percentages over time using the linear search algorithm. (b) Bank-by-
bank test percentages over time using the binary search algorithm. (c) Bank-by-bank test percentage
over time using the binary search with priority shifting algorithm. (d) Color legend for the vari-
ous banks.

These results are also summarized in Table 4, which shows the percentages of faults
analyzed at the 24 KB diagnostic memory saturation point by the three access mechanisms
for five different banks.
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Table 2. Bank analyzation at 10% test time.

Percentage of Stored Faults at 10% Test Time for the Different Approaches

Bank Number 0 4 8 12 14
Linear Search 66.89% 35.81% 0% 0% 0%
Binary Search 100% 28.68% 0% 0% 0%
Binary Search, Priority Shifting 67.97% 14.18% 30.32% 11.98% 10.51%

Table 3. Bank analyzation at 30% test time for the different approaches.

Percentage of Stored Faults at 30% Test Time

Bank Number 0 4 8 12 14
Linear Search 100% 100% 14.4% 0% 0%
Binary Search 100% 100% 34.5% 0% 0%
Binary Search, Priority Shifting 100% 41.71% 87.5% 37% 29.9%

Table 4. Analyzed banks at 24 KB diagnostic space saturation for the different approaches.

Percentage of Stored Faults at 24 KB Diagnostic Memory Saturation

Bank Number 0 4 8 12 14
Linear Search 100% 100% 38.03% 0.67% 0%
Binary Search 100% 100% 22.32% 0% 0%
Binary Search, Priority Shifting 100% 36.31% 75% 31.75% 25.28%

4.4. Data from Production Tests

Test times were evaluated by running the three algorithms on datasets of faults
extracted from over 500 samples coming from devices in the production phase. These
experiments were designed to prove the validity of our scheme in a real case scenario
with real devices and its feasibility in an industrial scenario. This time, with respect to the
pseudo-randomly generated faults, pages can also contain multiple-bit errors and other
typical embedded memory fault shapes. Figure 10 illustrates the results for this case. The
axes represent the fault collection time and the total number of faults.

Figure 10. Test times against fault percentage in real case scenarios (solid lines) and random faults
(dotted lines).

The test times do not increase linearly with the number of faults: pages are evaluated
by the MBIST in one read operation, so multiple faults are analyzed at once. The advantage
of the binary approaches is unequivocal when compared to the linear search and can be
highlighted by the dashed trend lines of the three algorithms. Again, the proposed binary
search approaches show a percentage reduction in the test times of roughly 25%. Once
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more, the binary search with priority shifting suffers a 2% overhead compared to the
standard binary approach.

5. Conclusions

This paper described a diagnostic-oriented memory BIST hardware and software
scheme to support effective fail data retrieval from multiple memory banks in a complex
System-on-Chip. The proposed scheme comprises multiple MBISTs with a common status
register bit that contains their ORed statuses. Three different access mechanisms have been
proposed and analyzed to manage this organization: linear search, binary search, and binary
search with priority shifting. The proposed scheme speeds up the execution of the memory
tests, consequently saving money for the manufacturers. The proposed approach benefits
devices with massive embedded memory banks for which memory testing represents a
significant percentage of the total test time. Moreover, the proposed binary search with
priority shifting method achieves a fairer representation of the diagnostic results across
multiple memory banks with respect to the linear search and the basic binary search. Our
experiments show the advantage of these solutions, particularly the binary-search-based
approaches, on an AurixTM TC49 device made by Infineon.
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