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Enhancing ReaxFF for molecular 
dynamics simulations of lithium‑ion 
batteries: an interactive 
reparameterization protocol
Paolo De Angelis 1*, Roberta Cappabianca 1, Matteo Fasano 1, Pietro Asinari 1,2* & 
Eliodoro Chiavazzo 1,2*

Lithium‑ion batteries (LIBs) have become an essential technology for the green economy transition, 
as they are widely used in portable electronics, electric vehicles, and renewable energy systems. The 
solid‑electrolyte interphase (SEI) is a key component for the correct operation, performance, and 
safety of LIBs. The SEI arises from the initial thermal metastability of the anode‑electrolyte interface, 
and the resulting electrolyte reduction products stabilize the interface by forming an electrochemical 
buffer window. This article aims to make a first—but important—step towards enhancing the 
parametrization of a widely‑used reactive force field (ReaxFF) for accurate molecular dynamics (MD) 
simulations of SEI components in LIBs. To this end, we focus on Lithium Fluoride (LiF), an inorganic 
salt of great interest due to its beneficial properties in the passivation layer. The protocol relies heavily 
on various Python libraries designed to work with atomistic simulations allowing robust automation 
of all the reparameterization steps. The proposed set of configurations, and the resulting dataset, 
allow the new ReaxFF to recover the solid nature of the inorganic salt and improve the mass transport 
properties prediction from MD simulation. The optimized ReaxFF surpasses the previously available 
force field by accurately adjusting the diffusivity of lithium in the solid lattice, resulting in a two‑order‑
of‑magnitude improvement in its prediction at room temperature. However, our comprehensive 
investigation of the simulation shows the strong sensitivity of the ReaxFF to the training set, 
making its ability to interpolate the potential energy surface challenging. Consequently, the current 
formulation of ReaxFF can be effectively employed to model specific and well‑defined phenomena by 
utilizing the proposed interactive reparameterization protocol to construct the dataset. Overall, this 
work represents a significant initial step towards refining ReaxFF for precise reactive MD simulations, 
shedding light on the challenges and limitations of ReaxFF force field parametrization. The 
demonstrated limitations emphasize the potential for developing more versatile and advanced force 
fields to upscale ab initio simulation through our interactive reparameterization protocol, enabling 
more accurate and comprehensive MD simulations in the future.

Lithium-ion batteries (LIBs) are and will continue to play an important role in the energy transition for energy 
storage and the fossil fuel  replacement1–4. In the last decades, the growing popularity of electric vehicles, and 
energy storage  systems5 has fuelled the demand for batteries with greater capacity, more consistent performance 
over time, and improved  safety6. While the materials used as anodes and cathodes largely determine battery 
capacity, the degradation phenomena that occur within the device govern battery stability and safety. One of 
the most important and yet poorly understood of these phenomena is the formation of a thin passivization film 
at the electrode-electrolyte interface, known as the solid electrolyte interphase (SEI)7–9. This layer is formed by 
the irreversible reaction of lithium ions with the electrolyte due to the initial thermodynamic instability between 
the anode and  electrolyte10,11. The ions used to create the SEI are subtracted from the battery’s capacity. Indeed 
the increase in the SEI over time is one of the causes of capacity fade observed during battery charging  cycles12. 
Additionally, the uncontrolled formation and growth of the SEI layer can limit the performance and life of current 
LIBs, and its degradation can lead to severe battery damage and uncontrolled exothermic reactions such as the 
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battery thermal  runaway13. Therefore, it is essential to model the SEI to understand and predict the behaviour 
of lithium-ion batteries and improve their performance and  safety14. Despite the importance of SEI, it remains a 
conundrum due to its high reactivity and multiscale nature, which make challenging its study in operando and 
in silico,  respectively3,15,16. The theoretical understanding of the SEI may allow control of its final characteristics 
and it can enable the engineering of such layer, thus possibly leading to enhanced properties including better 
electronic insulation, prevention or alleviation of graphite anode  exfoliation17 and dendrite formation in lithium 
metal  batteries18. In addition, the modelling and subsequent theoretical understanding of SEI can contribute 
to significantly accelerate the discovery of new materials and electrolytes for future lithium-ion  batteries3,16.

In the past two decades, various atomistic techniques have been utilized to study the kinetics of electrolyte 
dissociation in lithium-ion  batteries14. The density functional theory (DFT) method has proven particularly 
useful in predicting the effects of lithium salt and additives on the final components of the solid electrolyte 
 interphase19–24. Additionally, DFT has been used to investigate how the surface of the anode affects the elec-
trolyte  dissociation25–28 and to calculate various properties of SEI products, including ionic  conductivity29–31, 
electron-transfer  properties28,32,33, and elastic  modulus34–36. Although such simulations produce highly accurate 
results, they are computationally expensive. The cost of DFT simulations increases with the number of atoms in 
the system, typically scaling with O(N2) where N is the number of  atoms37, limiting the size of the system that 
can be simulated to a few thousand atoms and the time interval to a few picoseconds. To observe the evolution 
of the SEI over extended periods, one solution is to use approximate functions V(ri) , known as force fields (FF), 
to calculate the system’s energy. Indeed, the physical intuition-based functions employed in many force fields 
enable the replacement of the expensive Kohn-Sham functional E[n]38, based on electronic density n, with an 
approximate functional E[V(ri)] that depends on the atomic configuration of the system ri neglecting the degree 
of freedom of the electrons and thus being computationally less  demanding38. Given the reactive nature of 
lithium-ion batteries, traditional FF methods, which rely on harmonic laws to approximate bonded interactions, 
are inadequate for their study. To overcome this limitation, the ReaxFF  method39, which utilizes the bond-order 
(BO) and electron equilibration method (EEM)40 to describe the connectivity and charges of atoms, respectively, 
has been suggested and utilized. This enabled the use of molecular dynamics (MD) simulations to observe the 
electrolyte decomposition and the formation of SEI components in LIBs. For instance, Kim et al.41 used ReaxFF 
optimized for C–H–O–Li species by Han at al.42 to study the formation of the SEI on lithium metal surfaces. They 
observed the production and layering of organic and inorganic components in the SEI on lithium metal surface, 
resulting from the decomposition of an Ethylene carbonate (EC) and Dimethyl carbonate (DMC) electrolyte 
mixture. Using the same force field, Guk et al.43 demonstrated how the layer of SEI that forms on the surface of 
graphite prevents the percolation of the electrolyte and the anode exfoliation. After this initial work, Yun et al.44 
expanded the FF to include C-H-O-Li-Si-Li-F atoms, enabling the study of SEI formation in high-capacity bat-
teries where graphite is replaced with silicon, which has a higher theoretical capacity ( 372mAh g−1 for LiC6 and 
4212mAh g−1 for Li4.4Si)45. This parameterization was then further enhanced by Wang et al.46 Current avail-
able ReaxFFs have demonstrated success in reproducing dissociation energies and reaction kinetics. However, 
as discussed below in this work, they fall short in accurately describing the solid phase of the SEI components.

In this study, we propose a protocol for reparameterizing the Yun et al. ReaxFF for C-H-O-Li-Si-Li-F atoms. 
Our approach focuses on correcting parameters related to Li and F atoms to better capture the properties of 
lithium fluoride (LiF), which is one of the possible inorganic salts resulting from the formation of SEI. LiF 
stems mainly from fluoroethylene carbonate (FEC) decomposition: LiF-rich SEI is known to exhibit improved 
cycling stability in  batteries47. Furthermore, LiF has exceptional properties such as high ion transport, electronic 
insulation, and mechanical  properties48, making it a crucial element in the engineering of the solid electrolyte 
interface, as demonstrated by Tan et al.49 While addressing a computational challenge, this work is also a critical 
step towards the broader and long-term goal of designing a multi-scale modelling framework for LIBs, which, 
together with additional experimental efforts, can help significantly to close some of the current technological 
 gaps3. These methods are instrumental in comprehensively understanding the complex dynamics and energetics 
in LIB materials. This includes insights into electron localization in cathode materials, lithium diffusion dynam-
ics, and the prediction of SEI formation. In this framework, computational innovation is key to integrating vari-
ous scales and corresponding modelling methods. This integration aims to predict LIB performance from the 
material level up to the full battery pack design. For a deeper understanding of these challenges, we recommend 
further reading the works of Shi et al.50, Wang et al.14, and Cappabianca et al.9, which provide valuable insights 
into the multi-scale computational approach in LIB research.

The advancements in powerful python libraries for the management of atomistic systems, as outlined in the 
Table 1, have enabled the automation and orchestration of atomistic simulations using Jupyter notebooks and 
libraries such as  ASE51,52,  PyMatgen53,54, and  ParAMS55,56. These tools have facilitated the parametrization process 
and made it more efficient. By sharing the Jupyter  notebooks57,58 and the database used in this parametrization 
work, Authors hope to address a current gap in the field of ReaxFF parameterization, i.e., the lack of access to 
raw data and datasets, which can limit the reproducibility and validity of the results presented.

This article is structured as follows: firstly, we present the reparameterization process and results of the new 
ReaxFF. Afterwards, we demonstrate how the enhanced force field improves the representation of the crystal 
structure of the LiF inorganic salt. We then proceed to test the ability of the enhanced force field to accurately 
describe the lithium mobility in LiF and highlight how it provides a more realistic diffusivity value for the Li 
atoms. Then we present a deep investigation of the results from the new ReaxFF, discussing the challenging 
aspects of this kind of potential. In the subsequent section, conclusion are drawn and a possible future outlook 
provided. Finally, the methods used are outlined in the final section.
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Results and discussion
ReaxFF reparameterization
In the currently available ReaxFF force fields, all the energy contributions, including the Li-F interactions, were 
parameterized using a database of ab initio simulations specifically designed to capture the dissociation energy 
for potential reactions in the system. As a result, both the force field of Yun et al.44 and that of Wang et al.46 can 
predict the reaction products in Si-Li batteries with acceptable accuracy. However, the insufficient data on the 
crystal properties of inorganic salts restricts their ability to describe LiF aggregation and solid-phase transitions 
accurately. This limitation underscores the need for a new parameterization. In parametrizing the ReaxFF, the 
methodologies employed for data collection are essential. Tracing back to the foundational work by Van Duin 
et al.39, followed by the significant contributions of Chenoweth et al.77 in the context of hydrocarbons FF, the 
prevailing approach has been to leverage the functional forms of the reactive force field. This is typically achieved 
by utilizing DFT data from exploring diverse reaction pathways, varying environmental conditions, and frames 
captured from ab initio MD simulations. Such strategies ensure an accurate representation of molecular disso-
ciation. However, prior studies have not specifically emphasized the quality assurance and correlation analysis 
of the collected data. Given our objective to integrate solid phase information into the ReaxFF, we developed 
a new database following the methodology proposed by LaBrosse et al.78. This methodology, initially tailored 
for developing force fields specifically for cobalt crystals, provides a robust framework for refining ReaxFF to 
precisely model solid-state phenomena. Furthermore, in this study, we have adopted a stochastic approach to 
select configurations. This strategy aims at minimizing autocorrelation and potential biases within the database, 
ensuring a more representative and accurate dataset for ReaxFF enhancement, and efficiently reduces the number 
of DFT calculations required for the database. A more exhaustive exploration, in contrast, might question the 
advantages of ReaxFF’s functional form even if it ensures a wider potential energy surface exploration. As a result, 
it is not always obvious if this method is more appropriate as compared to fully data-driven force field approach. 
Namely, the new  database79 was created using stable and metastable crystalline unit cells from the Material Pro-
ject  database59 (Fig. 1). Several initial configurations were created using the Pymatgen and ASE libraries. Over 
300 DFT simulations were performed using those systems, and all relevant quantities, such as energies, forces, 
and partial charges, were extracted for the objective function. In accordance with FAIR (Findable, Accessible, 
Interoperable, and Reusable)  principles80, we stored all system and simulation data in an SQLite3 database using 
the ASE library. This database, along with metadata and clear usage instruction, has been shared on Zenodo 
(https:// doi. org/ 10. 5281/ zenodo. 79591 21) and Github (https:// github. com/ paolo deang elis/ Enhan cing_ ReaxFF_ 
DFT_ datab ase) for easy accessibility and usability.

The ReaxFF coefficients were optimized using the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES)81 genetic algorithm. Generally speaking, this evolution algorithm searches for the optimal solution by sam-
pling the population from a multivariate normal distribution (MVN). The generated samples are ranked based 
on the chosen loss function, and the best points, representing lower values for the loss function, are utilized to 
update the covariance and mean of the MVN. Then the updated MVN is used to obtain the next generation of 

Table 1.  List of the most commonly used and useful Python tools and libraries in computational materials 
science. These libraries can be used in one or more phases of material in silico study: PreP = pre-processing, 
Run = simulation running, and PostP = post-processing.

Description PreP Run PostP

ASE51,52 Atomic Simulation Environment (ASE) is a Python library that provides a versatile framework for configuring, running, visualizing, 
and analyse atomistic simulations. Thanks to the object Calculator ASE provides a powerful interface to different codes. � � �

Pymatgen53,54

Python Materials Genomics (Pymatgen) is a library for materials analysis, with a particular focus on solid-state studies and extensively 
used to produce and collect the data for the Materials Project (MP)59 database. It has functions for reading and manipulating structural, 
thermodynamic, and electronic properties of materials. It can also handle inputs and outputs from various DFT codes and easily access 
the MP crystallography database via its integrated API.

� �

AiiDA60,61

Automated interactive infrastructure and Database (AiiDA) is an open-source, Python-based workflow management platform. Its main 
objective is to assist researchers in organizing, automating, managing, sharing, and tracking their simulations, thus enabling the repro-
ducibility of complex workflows in computational materials science. Its plugging interface allows for the management of simulations 
performed with various codes, and it is designed to be used in conjunction with the Jupyter web interface, making the whole study 
interactive and easy to share.

� � �

MDAnalysis62,63
It is a versatile Python library mainly focused on allowing the manipulation and analysis of MD trajectories. With support for various 
trajectory and system configuration formats, it simplifies the process of translating data into n-dimensional  NumPy64 arrays for further 
analysis.

�

Crystal  Toolkit65 It is a library and web application framework for handling, manipulating, and analysing crystal structures. It is widely used in the MP 
database as an interactively visualizing web tool. �

Quippy66,67 It is the Python high-level interface to QUantum mechanics and Interatomic Potentials (QUIP)68. QUIP is a set of software tools for 
performing MD simulations that can be used as a plugin for other programs such as LAMMPS,  CP2K69, and ASE. � �

PyLammps70,71
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a powerful classical molecular dynamics simulation code. 
The python package, which can be installed after code compilation, allows to manage the LAMMPS simulations through the lammps 
module, a wrapper for the code’s C-library API.

�

PLAMS72,73
The Python Library for Automating Molecular Simulation (PLAMS) is the Python interface for the commercial code Amsterdam Mod-
eling Suite (AMS)74. Depending on the code used, it allows the automation of a wide range of simulations, including geometry optimi-
zation, vibrational spectroscopy, molecular dynamics, monte carlo (MC) simulations, and many other types of computational studies.

� �

ParAMS55,56
Parameter optimization for Atomistic and Molecular Simulations (ParAMS) is a specialized Python library included in the AMS. Its 
main purpose is to facilitate the optimization workflow to search parameters for empirical energy functionals such as ReaxFF and 
density functional based tight binding (DFTB).

�

https://doi.org/10.5281/zenodo.7959121
https://github.com/paolodeangelis/Enhancing_ReaxFF_DFT_database
https://github.com/paolodeangelis/Enhancing_ReaxFF_DFT_database
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samples, and the process continues iteratively until convergence or other predefined stopping criteria are met. 
In our case, the loss function is the sum of square errors (SSE) between values obtained from density functional 
theory calculations and molecular dynamics simulations. The algorithm converged after 1.3× 104 iterations as 
shown in Fig. 2, thanks to the use of the step-wise optimization technique already employed by Wang et al.82. 
Indeed, similar to the study conducted by Wang et al.82, we capitalized on the physical-inspired structure of 
the ReaxFF force field, where parameters are categorized based on interaction and atom type, as outlined in 
Table 2. The approach consisted in gradually optimizing a selection of parameters relevant to particular types 
of interactions, instead than letting the algorithm operate in a very high-dimensional search space. Hence, we 
proceeded by optimizing initially the values associated with the bond interactions, then the values related to the 
dispersion energy, as evidenced by the leap in the loss function in Fig. 2a. However, after these first two subsets, 
further optimization of angle and torsional interactions was not feasible because all the initial guess values for 
their coefficients produced similar loss functions, which prevented the calculation of the second generation 

Figure 1.  Isometric representation of unit cells used for ReaxFF reparameterization database generation and 
validation simulation boxes. The left column shows unit cells of LiF stable (a) and metastable phases (b,c) 
corresponding to face-centered cubic (FCC), hexagonal (HEX), and body-centered cubic (BCC) lattice types 
with space groups Fm3̄m , Pm3̄m , and P63mc  respectively59. The right column displays atomistic systems used 
for testing the improved force field built as supercells of the stable unit cell (a): equal Li-F atoms (d), 10% 
vacancies at Li sites (e), and 10% interstitial Li atoms (f). The shown renderings were generated using the Visual 
Molecular Dynamics (VMD)  code75 and followed the Corey–Pauling–Koltun (CPK) colouring  scheme76.

Table 2.  Listing of ReaxFF coefficients for each section in the force field file, organized by interaction type. 
Please note that the numbers in the second column represent the number of coefficients per single entry (e.g., 
for a single atom type or a single bond). However, the total number of parameters required in the force field 
depends on the total number of atom types ( NA ), as indicated in the third column.

Type No. of parameters Note

General 41

Atoms 32 For each atom type NA

Bonds 16
For each bond

NBond =
(NA + 1)!

(NA − 1)!2!

Off-diagonal 6
For each heterogeneous pair

NvdW =
NA!

(NA − 2)!2!

Angles 7
For each possible angle in the system

NAng ≤
(NA + 2)!

(NA − 1)!3!

Dihedral 7
For each possible dihedral angle in the system

NTors ≤
(NA + 3)!

(NA − 1)!4!

Hydrogen bonds 4 Usually only for O, C and N atoms
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of parameters and covariance matrix for the CMA-ES algorithm. More information about the full protocol is 
provided in the methods section. The new parameterization has markedly enhanced the prediction accuracy 
for energy and forces within the database configurations, as evidenced by the regression plot in Fig. 2b, and the 
metrics detailed in Table 3 compared to the previously proposed ReaxFFs. This improvement has positively 
influenced the model’s capability to accurately describe the solid state of the inorganic salt, as demonstrated in 
Fig. 3. The figure includes an energy-strain curve (Fig. 3a) and Murnaghan equation of state (EOS) (Fig. 3b). 
The first plot was obtained by applying a shear strain εxy to a 2× 2× 2 supercell of the stable LiF crystal. While 
the EOS was computed by expanding and contracting the system using a three-dimensional volumetric strain, 
since the two are connected by the following relation �V/V = εxx + εyy + εzz . At a glance, it is clear that the 
previous parameterizations were unable to predict the condensed state of LiF accurately. Indeed, neither the force 
field developed by Yun et al.44, nor that of Wang et al.46 showed the presence of a minimum configuration in both 
the elastic strain and EOS cases. The shear deformation case was particularly problematic because the inverted 
concavity of the curves led to a nonphysical negative value for the elastic tensor component c12 , where the stress 

Figure 2.  Evolution of the loss function during optimization of parameters and regression analysis. Panel (a) 
displays the loss function at each optimization iteration, represented by blue points. A green line indicates the 
moving average of the loss function, calculated using a 100-iteration window. The vertical dashed line marks the 
transition between optimizing different subsets of parameters, specifically the bond interactions (bond) and the 
van der Waals interactions (vdW). Panel (b) presents the regression results in a scatter plot format, contrasting 
reference values with predicted values for energy (square markers) and forces (circle markers). Predictions 
were computed using ReaxFF parameterizations by Yun et al.44, Wang et al.44, and our novel reparameterization 
(represented in blue, green, and red, respectively). Due to the distinct nature and wide range of these quantities, 

standardization was performed using the reference mean, 
〈

ŷ
〉

 , and standard deviation, 
√

〈

ŷ2
〉

−
〈

ŷ
〉2 , enabling 

legible visualization on the plot.

Table 3.  Comparative performance metrics for energy and force FF predictions on the training set. To 
evaluate the efficacy of the FFs we compute the Coefficient of Determination ( R2 ) and the Root Mean Square 
Error (RMSE) metrics.

FF

Energy Forces

R
2 RMSE (eV) R

2 RMSE eV Å−1)

Yun et al. −0.093 0.562 0.227 5.1× 10
−3

Wang et al. −0.093 0.562 0.227 5.1× 10
−3

This work 0.293 0.452 0.377 4.6× 10
−3
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tensor is defined as cij = σijε
−1
ij  with εij representing the strain tensor and σij the stress tensor. The concavity 

of the energy-strain plot determines this component since it is the function of the second partial derivative of 
the energy with respect to strain, i.e., c12 = V−1

0 · ∂2E/∂ε1∂ε2 . On the other side, thanks to the newly designed 
database, the reoptimized ReaxFF force field accurately predicts equilibrium configurations for both EOS and 
elastic strain curves. Specifically, the prediction of the shear strain closely matches ab initio results in the region 
close to the equilibrium value, but deviates substantially for high shear strain values, indicating its limitations 
in predicting material stiffness accurately. Similarly, the ReaxFF prediction of the equation of state agrees well 
with the reference values, even for significant volume changes. This remarkable improvement of the proposed 
reparameterization over previous ones is also demonstrated for the one-dimensional deformation of the crystal 
and for the metastable crystals (as shown in supplementary Fig. S18). It is important to note, however, that the 
new force field predictions are less accurate for metastable cases with hexagonal and body-centered cubic lattice 
(Fig. 1), suggesting that the functionals used to describe various interactions may have limitations in generalizing 
the energies from the DFT simulations.

ReaxFF prediction of bulk LiF
To validate the new parameterization, as first test case, we conducted reactive MD simulations using all the 
discussed ReaxFFs for systems with Li and F atoms to simulate bulk LiF at ambient conditions ( 300K , 1 bar ). 
The simulation was performed on a relatively big system with respect to the ones used for the training. Indeed, a 
supercell of the LiF crystal created by replicating the conventional unit cell five times in all directions was placed 
in a simulation box of size 20.4× 20.4× 20.4 Å 3 , which is analogous to the system in Fig. 1d. After the initial 
relaxation of the system, including box size adjustment, the pure LiF crystal was simulated for 500 ps under an 
NVT ensemble (constant number of atoms, volume, and temperature) set at 300K and with a time-step of 0.25 fs , 
and to attenuate possible artefacts due to the thermostat we have adjusted the relaxation time to be 1000 times 
the time-step ( 250 fs). In Fig. 4 we report the total energy, temperature, and radial distribution function (RDF) 
between the Li and F atoms, gLi,F(r) , evaluated during the reactive MD simulations with different potentials. 
Comparing the results from the simulations using the Yun et al.44 and Wang et al.46 force fields (Fig. 4a and b), 
we observed similar behavior, indicating minimal differences in the parameters for Li and F used in both ReaxFF. 
Furthermore, we can observe that both force fields failed to accurately describe the simulated system, as the 
thermal agitation overpowered the binding energy, resulting in the amorphization of the inorganic salt when it 
reached the external heat bath temperature. This resulted in a sudden drop in the total energy at 2 ps that results 
into an artificial phase change. Indeed, since the melting temperature of LiF is 1121.35 K ( 848.2 ◦C)83, the system 
should ideally exist in a solid phase in the simulated virtual conditions. This remarkable and unexpected result 
is even more evident looking at the two radial distribution functions in Fig. 4a and b, where the initial peaks due 
to the ordered structure of the system and immobility of the atoms disappear, and the curves become liquid-like 
RDF as the temperature rises. Moreover, we can notice a shift in the initial RDF peaks with respect to the theo-
retical position represented by the vertical dotted line, indicating an anomaly in the LiF solid state description 
of the two FFs. In contrast, our new parameterization performed well in simulating a simple bulk LiF system. 

Figure 3.  Exploring the stability of LiF under stress: A dual analysis reveals the material’s response to 
mechanical manipulation. In (a), the energy-strain plot displays the total energy changes with applied shear 
strain ε12 = ε21 , while (b) depicts the equation of state, i.e., the energy variations versus volume deformation 
ratio V/V0 ( V0 is the volume at the equilibrium). The black line represents DFT results used for training, 
while the blue, green, and red lines illustrate the energy predictions made by the ReaxFF from Yun et al.44, 
Wang et al.46, and the proposed new reparameterization, respectively. The simulation snapshot above each plot 
illustrates the frontal view of the crystal at two extreme deformation cases, with the dashed black line indicating 
the minimal energy unit cell. Notice that green and blue lines are mostly overlapped in the reported pictures.
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Indeed, Fig. 4c shows that the radial distribution function has initial peaks that align with theoretical values and 
remain consistent even at high temperatures. In this case, the thermal agitation of the atoms resulted only in the 
smoothening of the peaks and the emergence of secondary peaks due to the oscillation of some atoms between 
the lattice and interstitial positions. This important improvement is also evident by visualizing the temperature 
growth, which gradually reaches 300K and is held constant as the system converges to an equilibrium state, as 
visible from the total energy (Fig. 4c).

Diffusion of Li in LiF prediction from ReaxFF
In designing the training set, we aimed to enhance the accuracy of predicting both the mechanical and ther-
mophysical properties of the inorganic material through ReaxFF simulation. To achieve this, we included con-
figurations with point defects like vacancies, interstitials, and substitutions and incorporated data from ab initio 
simulations conducted at different temperatures. Therefore, the second test case for the new ReaxFF was to 
compute the lithium transport properties with a campaign of MD simulations. We evaluated the mass diffu-
sivity of Li atoms in three systems illustrated on the right side of Fig. 1, specifically: one with 10% interstitial 
lithium atoms ( Li1.1F ), one with 10% lithium vacancies ( Li0.9F ), and one with no defects ( LiF ). These systems 
were simulated for 500 ps at three different NVT temperatures ( 300K , 400K , and 500K ). The lithium diffusion 
coefficients were extracted by measuring the mean square displacement (MSD) during the simulation and by 
using the Einstein-Smoluchowski diffusion  equation84–86:

where the limit argument is the MSD definition, t is time, D is the diffusion coefficient, and cd is a constant indi-
cating dimensionality, with values of 2 for one-dimensional, 4 for two-dimensional, and 6 for three-dimensional 
diffusion. We obtained the diffusion coefficient values by determining the slope of the straight line that best fits 
the MSD evolution for each simulation (as seen in the supplementary Figs.  S19–S21). In Fig. 5, we plotted them 
on a logarithmic scale and used the inverse of the temperature as abscissa. This enabled us to extract the activa-
tion energy that appears in the Arrhenius equation:

(1)lim
t→∞

��ri(t)− ri(0)�
2�i∈Li = cdDt,

Figure 4.  The evolution of bulk LiF simulations using reactive molecular dynamics at 300K using three 
ReaxFF: Yun et al.44 (a), Wang et al.46 (b), and the new reparameterization (c). The top graphs depict total energy 
trends (solid blue line) alongside temperature trends (solid green line), with inset plots providing detailed views 
of the early simulation trajectories. Conversely, the bottom panels show the time evolution of the Li-F radial 
distribution function (RDF). Each RDF curve is obtained by averaging the trajectory every 0.1 ps and then 
coloured according to the simulation time indicated by the colour bar on the right. Notably, RDF curves from 
the literature force field resemble more systems in a liquid phase rather than a solid phase.
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Here, D is the lithium diffusion coefficient from the MD simulations, D0 is the maximum diffusivity value (the 
limit value at infinite temperatures), kB is the Boltzmann constant, and Ea is the activation energy. We repeated 
this process for all three ReaxFFs discussed, and the resulting values of D0 and Ea are reported in Table 4. 
The new force field provides an improved description of bonding forces, which results in a significant reduc-
tion in the mobility of lithium atoms within the crystal lattice, as expected. For example, in the case study of 
defect-free LiF supercell at 300K , the diffusion coefficient predicted by both the Yun et al.44 and Wang et al.46 
force fields is 3.56× 10−5 cm2/s , which is significantly closer to the diffusivity of lithium ions in the electrolyte 
( 0.5× 10−5 − 1.4× 10−5 cm2/s87) rather than in the solid. In contrast, the new parameterization predicts a 
diffusivity of 3.44× 10−8 cm2/s , which is a reduction of 3 orders of magnitude. Similar reductions in diffusivity 
are seen in cases involving interstitials and vacancies.

We compared the obtained values with ab initio values calculated by Zheng et al.31. They studied lithium 
diffusion in various organic components of the SEI by exploring the energy surface using the surface energy 
Climbing Image Nudged Elastic Band (CI-NEB)  method88. The exploration of the energy surface by Zheng 
et al. confirmed that the diffusion of lithium in lithium fluoride occurs via three distinct possible mechanisms. 
These mechanisms include: vacancy movement, where lithium atoms jump to the adjacent empty lattice site 
(vacancy); direct-hopping, where lithium moves directly from one interstitial site to another; and the knock-off 
mechanism, in which an interstitial lithium atom replaces a lithium atom in the crystal lattice, thus causing the 

(2)D = D0 · exp

(

−
Ea

kBT

)

.

Figure 5.  Arrhenius plot displaying the diffusion coefficient of Li (D) in pure bulk LiF ( LiF ) and with point 
defects of vacancy ( Li0.9F ) and interstitial ( Li1.1F ) types, obtained through the molecular dynamics simulations. 
The blue, green, and red dots represent the D values obtained using the Yun et al.44, Wang et al.46, and the 
proposed new ReaxFF parameterization, respectively. The drawn dashed line results from a linear regression of 
the coefficients using the least square method.

Table 4.  The values of the activation energy, Ea , and the maximum value of the lithium self-diffusion 
coefficient, D0 , for the three simulated systems and for each ReaxFF used. The errors were estimated based 
on the inference for the linear regression model coefficients (least squares method), and assuming a 95% 
confidence interval.

ReaxFF D0 [cm2/s] Ea [kJmol
−1

]

LiF

Yun et al. (7.23± 0.05)× 10
−4 7.50± 0.02

Wang et al. (7.2± 0.5)× 10
−4 7.0± 0.2

This work (3± 2)× 10
−6 11.0± 1.6

Li0.9F

Yun et al. (6.1± 0.3)× 10
−4 7.1± 1.4

Wang et al. (5.5± 0.2)× 10
−4 6.810± 0.013

This work (9.0± 1.7)× 10
−7 5.1± 0.5

Li1.1F

Yun et al. (1.5± 0.3)× 10
−5 7.6± 0.5

Wang et al. (8.2± 1.3)× 10
−6 6.22± 0.04

This work (4.0± 1.2)× 10
−7 6.0± 0.8
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displaced lithium atom to move into another interstitial site. Figure 6 shows the Arrhenius curves for the three 
diffusion mechanisms calculated using the values of activation energy and maximum diffusion obtained from 
the ab initio study, as well as the curves obtained from the reactive molecular dynamics simulations. Regarding 
the maximum diffusion coefficient D0 = 3α2v , Zheng et al. approximate its value using the estimated phonon 
frequency in the crystal v = 1× 1013 s−1 and the migration distance for the lithium ions α observed during the 
CI-NEB  simulations31. Molecular dynamics simulations can exhibit various diffusion mechanisms, leading to the 
calculated curves for the new force field and each studied system falling within the region defined by the three 
diffusion mechanisms. For the calculated temperature values, the diffusion coefficients turn out to be intermedi-
ate values between pure knock-off diffusion and pure direct-hopping diffusion. However, looking at the slope of 
the Arrhenius curves predicted by molecular dynamics simulations in Fig. 6 it is clear that even the new ReaxFF 
underestimated the activation energy. Indeed, even for the most favorable diffusion mechanism (knock-off), 
the activation energy obtained from the ab initio energy profile is 24.1 kJmol−1 , which is more than double the 
value calculated with the new force field for the defect-free case ( 11.0 kJmol−1 ). The discrepancies are even more 
significant for all other cases listed in Table 4.

To address this discrepancy, we conducted further analysis of the ReaxFF by reproducing the energy curves 
for lithium diffusion by vacancies and by direct-hopping using the CI-NEB method. Initial and final configura-
tions were made using a 2× 2× 2 LiF supercell and inserting the lithium atoms into two adjacent sites identified 
with the Voronoi analysis from the pymatgen python  library53. While for the vacancy diffusion case, one lithium 
was removed from the crystal lattice from two adjacent unit cells. The energy profile was then obtained using the 
CI-NEB algorithm with the same parameters used in the DFT simulation for training the new ReaxFF. To ensure 
convergence, we used 23 images for direct-hopping diffusion and 17 images for vacancy diffusion. Our simula-
tions yielded activation energies of 64.3 kJmol−1 for vacancy diffusion and 87.5 kJmol−1 for direct-hopping. The 
value for vacancy diffusion was comparable to previous work ( 63.7 kJmol−1 ). Still, the value for direct-hopping 
is higher than that calculated by Zheng et al. ( 52.1 kJmol−1 ) due to the use of a smaller system to reduce the 
computational cost, resulting in a higher defect density in our case. Subsequently, from the result obtained from 
the DFT simulations, we proceeded to calculate each image’s energy using the various ReaxFF discussed. In Fig. 7 
we show the comparison of the energy profile predicted by the various methods.

The additional investigation of ReaxFF presented in Fig. 7 reveals significant discrepancies between previ-
ous parameterizations, DFT prediction, and the reoptimized force field. Specifically, the energy barrier value 
prediction was found to be incorrect for all the ReaxFF studied, and the new force field exhibited unrealistic 
behavior in the case of interstitial diffusion. Indeed, the maximum energy values corresponded to the initial 
and final configurations, while the minimum value corresponded to the transition configuration. This behavior 
contradicts the physical nature of the phenomena, and the predictions made by the DFT calculation and even 

Figure 6.  Arrhenius plot of diffusion comparing the predictions from Reactive MD and DFT simulations. The 
interpolation from MD results is shown using continuous lines and markers (square for Yun et al.44, triangular 
for Wang et al.46, and circular for the new reparameterization), and the confidence interval of 95% is shown with 
the shaded areas. The effect of defects on diffusion is indicated by different colors: blue color for the defects-free 
case, green for the cases with vacations, and red for the case with interstitial lithium. The black dashed, dash-
dot, and dotted lines represent the Arrhenius curves estimated by Zheng et al.31 for three potential transport 
mechanisms (vacancy, knock-off, and direct-hopping) from Climbing Image Nudged Elastic Band (CI-NEB) 
studies.
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by previous parameterizations by Yun et al.44 and Wang et al.46. In order to be able to explain this numerical 
artifact, it is important to consider the general structure of ReaxFF, which is described by the provided equation:

VreaxFF represents the total reactive potential of the particle i interacting with neighboring atoms, which can be 
divided into three contributions: bonded, non-bonded, and “system specific”. The first describes the bonded 
interaction between atoms and is formed by the bond energy Vbond , the angle energy Vangle and the dihedral 
(or torsional) energy Vdihedral and the corrective terms over-coordination Vover , and under-coordination Vunder 
energies. The non-bonded energy, which is analogous to classical molecular dynamics, is given by the sum of 
the van der Waals potential VvdW and Coulomb potential Vq . The last terms, on the other hand, are a set of cor-
rective energies that accounts for specific phenomena in certain specific systems. For additional details about 
the mathematical and physical implications of each term, the reader can refer to the works by Van Duin et al.39 
and Chenoweth et al.77.

From Eq. (3) and the previous studies, we can attribute the unrealistic behavior observed with the new force 
field to the increased energy contribution from bond energy, which improves the description of system connec-
tivity. However, this results in an increase in the effect of correction energy terms, specifically over-coordination 
energy Vover , and under-coordination energy, Vunder , in Eq. (3), which are functions of the difference between 
the total number of bonds of an atom and its valence  number39. Indeed, in the initial and final conditions, the 
lithium atom has the same number of neighboring atoms, which is higher than in the transition state, where 
space is created by moving the lattice atoms, and the increase of the lithium distance respects the atoms at the 
extremes of the unit cell. This unexpected artifact highlights the critical importance of carefully considering 
energy contributions in force fields to ensure accurate predictions, as observed in the case study using ReaxFF. 
Consequently, it is likely that additional configurations are needed to be included in the training set. However, 
it is important to note that this alone does not guarantee the resolution of all the aforementioned issues. In fact, 
due to the reliance on a fixed functional shape in the force field, a more deep and sophisticated alteration in 
the mathematical expression of the energy terms might be required. Implementing such changes would involve 
modifying the code, which exceeds the scope of this work. This also highlights that a critical challenge here is 
the limited transferability of the parameterization beyond the specific database, emphasizing the necessity of 
a comprehensive database of ab initio simulations that is specifically tailored and adequately representative for 
studying the targeted system at an atomistic scale.

(3)

VreaxFF = Vbond + Vangle + Vdihedral
︸ ︷︷ ︸

bonded interaction

+ Vover + Vunder
︸ ︷︷ ︸

bonded interaction (coordination)

+ VvdW + Vq
︸ ︷︷ ︸

non-bonded interaction

+ Vconj + Vtrip + VC2 + VH−bond + Vlp
︸ ︷︷ ︸

system specific

.

Figure 7.  Graphical visualization of the energy profile for lithium migration by vacancy (a) and direct-
hopping (b) calculated by CI-NEB is depicted by the black line and circular markers. The markers indicate the 
exact energy value of each distinct image obtained from the convergence of the CI-NEB algorithm and were 
used to calculate the energy using three different methods: ReaxFFF by Yun et al.44, Wang et al.46, and a new 
reparameterization, represented by blue, green, and red colored markers and line, respectively.
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Conclusion
In conclusion, the proposed partial reparameterization methodology for the ReaxFF has significantly improved 
the description of lithium fluoride in the solid state, leading to better predictions of its solid phase properties 
and lithium mobility in LiF crystal using reactive MD simulations. Indeed, implementing the new parameters of 
the ReaxFF has demonstrated its ability to predict the stable unit cell under mechanical deformation accurately, 
exhibit typical solid-state RDF, and notably reduce lithium diffusivity in LiF by at least two orders of magnitude. 
The automation and interactivity of the protocol, achieved by leveraging Python libraries for atomistic simula-
tions, made it possible to construct and simulate various configurations of the LiF crystal needed to build a 
database for correcting bond and van der Waals interactions of the ReaxFF. The new force field obtained from 
the re-optimization not only improved the behavior of the crystal in the solid phase but also partially corrected 
the description of lithium transport phenomena in LiF.

However, the in-depth investigation carried out revealed that the diffusion activation energies predicted 
by the new force field are still underestimated. This limitation may be due to the method used to construct the 
database, which did not directly sample lithium transport, but focused more on local or global deformation of the 
crystal lattice. This study highlights the strong dependence of the ReaxFF on the configurations included in the 
database. Hence, future effort should focus in addressing the challenges associated to the effective interpolation 
of the energy surface in unexplored or underrepresented regions in the adopted training set. The need to tailor 
ReaxFF for each specific scenario presents a significant challenge, especially when considering the upscaling 
of electronic simulations, such as DFT, to the molecular level. A common mitigation strategy involves utilizing 
previous parametrizations to define the boundaries for parameter optimization. However, for less commonly 
explored elements, like Li and F in our case, other parametrizations might be nearly identical and not particularly 
useful. Therefore, in the absence of disparate parametrizations in the literature to effectively constrain the search 
space, a convenient approach might be to rely on an extensive database. Nevertheless, based on our experience, 
as far as the explored case study is concerned, the need for ever-larger databases poses serious questions on the 
cost-benefit ratio of this method. Although the ReaxFF MD simulations are much faster than ab initio simula-
tions, given all the functionals to be computed and the need to update the charges at each step reduces by at least 
a factor of 100 the speed of reactive MD simulations as compared to simulations with Lennard-Jones  fluid89.

In addition to the sensitivity of the ReaxFF to the training set used, the difficulty in accurately describing 
the system studied in this work may also be attributed to an intrinsic bias of the force field. In particular, it is 
worth noting that the original formulation of the ReaxFF potentials proposed by Van Duin in 2001 was validated 
primarily on organic  systems39, and various new functionals have been added to improve the accuracy and appli-
cability of ReaxFF in other systems over the past few  decades90–92. These include the “lone-pair” energy term ( Vlp 
in Eq. (3)) for hydrocarbon  combustion77,90,93, a three-body functional ( Vtrip in Eq. (3)) term for −NO2 group 
 chemistry90,94,95, and an energy term ( VH−bond in Eq. (3)) to account for hydrogen bonds in aqueous  systems77,96, 
among others. Therefore, it may be necessary to introduce new correction energy terms to improve the accuracy 
of ReaxFF in strongly inorganic systems such as LiF.

On the other hand, the rapid development of machine learning-based (MLFF) and neural network-based force 
 fields97–101 (NNFF) may provide alternative and accurate approaches to the ReaxFF. The database constructed 
using the proposed protocol (or even further automatized by algorithmic  orchestration102) could be used for 
training these new force fields, which may provide superior performance, possibly at the cost of compromising 
on the physical insight into the parameters obtained from the training. With their flexibility and high interpola-
tion capabilities, these newly developed force  fields101,103,104 offer promising solutions to the challenges identified 
in this work and with the ReaxFF. These force fields describe the chemical local environment using a feature 
transformations (“descriptors”)  algorithm99,105,106 instead of the bond order and functional parameters utilized 
in ReaxFF. However, they confront a limitation common in machine learning applications for materials science, 
i.e. the high dimensionality of features relative to the small sample size. This issue has been thoroughly reviewed 
by Liu et al.107, who also suggest approaches like feature reduction and sample augmentation to enhance model 
performance and accuracy. In summary, the proposed methodology, coupled with the synergistic approach 
to data quantity  governance107, could be extended to the parameterization of various other potentials, and by 
increasing the number of initial configurations, it may also be possible to proceed with the parameterization of 
neural network potentials. Moreover, the guided reparametrization method could incorporate other frequently 
encountered inorganic compounds in the SEI within future ReaxFF or NNFF. This expansion offers an exciting 
opportunity to explore increasingly intricate and realistic systems resembling mosaic  structures108 including also 
other SEI compounds (e.g. Li2CO3 , Li2O ) thus emulating the Peled  model7.

Methods
Interactive reparameterization protocol
The protocol for calculating the new ReaxFF parameters is presented in a flowchart shown in Fig. 8. The proce-
dure is carried out using four Jupyter Notebooks (JNBs)57,58 that facilitate the automatic construction, visualiza-
tion, and simulation of the necessary configurations for database construction and optimization of the reactive 
potential. Python libraries  ASE51,52,  pymatgen53,54,  PLAMS72,73 and  ParAMS55,56, designed for atomistic systems 
manipulation and simulation are utilized throughout the entire process, allowing for streamlined and efficient 
handling of the various steps.

The first JNB initiates the protocol by defining the chemical formula of the component to study. Then, using 
the API from the Materials Project database, the available crystalline units are downloaded. In the case of LiF, 
there are three configurations available, corresponding to different lattices (Fig. 1a–c), one stable ( Fm3̄m ) and 
two metastable ( P63mc , Pm3̄m ). These crystals are imported into the interactive work environment as virtual 
objects from the ASE (Atoms) and pymatgen (Structure) libraries. Within this virtual environment, the 
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crystals were manipulated to generate initial configurations for the DFT simulations. Specifically, we build dif-
ferent defected or deformed crystals following the procedure by LaBrosse et al.78, namely: 

Supercells:  To capture the effect of the atoms’ coordination in the training set, several supercells 
of size 2× 1× 1 , 2× 2× 1 , 2× 2× 2 , 3× 2× 2 , 3× 3× 2 , and 3× 3× 3 were 
constructed.

Vacancies:  We randomly removed a lithium or fluorine atom from the 3× 2× 2 supercell, up 
to a maximum of five vacancies.

Strain:  We applied different types of strain to each LiF crystal, including a normal strain 
ε11 , a shear strain ε12 = ε21 , and a homogeneous deformation in all directions 
ε11 = ε22 = ε33 (needed for computing the equation of state), resulting in 13 con-
figurations with strain values ranging from −12.5% to 23.5%.

Substitution:  We randomly substituted a lithium or fluorine atom with the opposite species, with 
a maximum of five possible defects for each crystal.

Interstitial:  We inserted an interstitial atom at the center of Voronoi volumes obtained from 
the 3× 2× 2 supercell for each LiF crystal. We repeated this procedure five times 
to create structures with 1, 2, ..., and 5 interstitial atoms.

Slab:  To include surface energy in the ReaxFF, we generated crystal slabs for the surfaces 
(100), (110), (111), and (210). We repeated each slab 2, 3, or 4 times to account for 
different thicknesses and we introduced sufficient empty space along the normal 
direction to avoid numerical artifacts due to the periodic boundary conditions 
(PBCs).

Figure 8.  Flowchart followed for the reparameterization of ReaxFF. The dotted boxes indicate the Jupyter 
Notebook (JNB) specific to that part of the workflow, all available at https:// doi. org/ 10. 5281/ zenodo. 80367 75 
and in the repository https:// github. com/ paolo deang elis/ Enhan cing_ ReaxFF.

https://doi.org/10.5281/zenodo.8036775
https://github.com/paolodeangelis/Enhancing_ReaxFF
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Bulk at 300 K and 500 K:  We included frames of ab initio MD simulations at 300K and 500K for the 3× 2× 2 
supercell to predict possible energy fluctuations during ReaxFF MD.

Amorphous LiF:  To account for the high-energy state of the crystal, we included possible amorphous 
LiF with an ab initio MD simulation at T = 2500K.

In the second JNB, previously constructed configurations are used to perform ab initio simulations to obtain 
the numerical values needed for the databases. The ASE and pymatgen objects of the various systems were used 
as input to the PLAMS library of the  AMS74 commercial code, enabling the running, control, and processing of 
DFT simulations. For LiF, over 300 DFT simulations were carried out using the BAND plane-wave DFT code 
available in AMS, as listed in the supplementary Table S1. Single-point (SP) simulations were used to calculate 
the energy and force values of each atom in each configuration, by solving the Kohn-Sham equations while con-
sidering the atom cores as fixed. For systems with defects, geometry optimization (GO) simulations were initially 
performed to determine the equilibrium configuration. Ab initio MD simulations were performed using Grimme’s 
extended density functional based on tight-binding (DFTB)109 due to their low numerical cost. From the resulting 
trajectories, 10 frames were selected, and their force and energy values were refined using SP-DFT simulations.

The third and fourth JNBs heavily rely on the AMS  ParAMS55,56 library, which is specifically designed for 
potential optimization. In the third JNB, all quantities, such as energy, forces, and charges needed for the data-
base, are extracted, resulting in more than 3000 entries. Regarding the potential energy, because it is a state 
function, the database does not include the absolute values obtained from the DFT simulations but the forma-
tion energy approximated by the relative energy obtained with respect to the defect-free configuration of the 
LiF crystal, namely:

Where �Hi is the formation energy of i-th configuration, E
(

XLiF
i

)

 represents the energy of the i-th configuration, 
E
(

XLiF
bulk

)

 is the energy of the bulk LiF configuration, ni and mi are integer numbers of Li and F atoms in the i-th 
comparared to the bulk and their sign depend on whether we removed or added atoms, while µLi and µF chemical 
potential, approximated by the energy per atoms obtained simulating pure Li and F unit cells.

This database is then used to optimize the ReaxFF in the fourth and final JNB. The optimization process 
begins by selecting the group of parameters that will form the search space, starting with those that significantly 
influence the behavior of the ReaxFF, such as the bond energy, followed by the van der Waals energy and angular 
energy terms. Various gradient-free optimization algorithms are available in the ParAMS library, and for the 
ReaxFF optimization for LiF, we chose the genetic algorithm Covariance Matrix Adaptation Evolution Strategy 
algorithm (CMA-ES)81 to minimize the objective function represented by the sum of squared errors (SSE) 
between the DFT values and the ReaxFF values.

Each group or subset of parameters is optimized sequentially, and the ReaxFF optimization process is con-
sidered complete when further improvements in the loss function become negligible.

Density functional theory calculations
The dataset values (energies, forces, charges, etc.) for the ReaxFF optimization were obtained from DFT simula-
tions performed with the commercial  BAND110,111 code available in the AMS suite. We numerically solved the 
Kohn-Sham equations using the Perdew-Burke-Ernzerhof (PBE)112 functional and the polarized double zeta 
(DZ) numerical atomic orbitals (NAOs) basis set for the calculation of the s, p, and d orbitals. The software auto-
matically chose the values of k-point and frozen electrons depending on the desired accuracy, and we selected 
a high accuracy value that guaranteed an error of less than 0.01 eV per atom, and by comparing the formation 
energy values obtained for each crystalline unit of LiF studied with the values reported on the Material Project 
online database (see Fig. 1a–c). For very inhomogeneous systems, such as those with a large number of inter-
stitial atoms or surfaces, we calculated forces without frozen atoms and using a single zeta (SZ) type basis set 
to speed up the calculation of the equilibrium configuration. We then refined the resulting configuration using 
the settings described above.

For detailed instructions on installing and utilizing the protocol and database repository, please refer to the 
supplementary material provided.

Molecular Dynamics calculations
All the reactive molecular dynamics simulations were performed using the open-access code  LAMMPS70 with 
the ReaxFF  package113. The initial configuration for the diffusion of Li in bulk LiF was obtained by starting from 
the primitive unit cell of the stable crystal obtained from the Material Project database. The unit cell was then 
converted into the conventional unit cell using the pymatgen routine ConventionalCellTransforma-
tion53 and replicated six times along all directions to obtain a 6× 6× 6 supercell with final dimensions of 
24.5 Å×24.5 Å ×24.5 Å. To create the system with vacancies (i.e. Li0.9F ), 86 randomly selected lithium atoms 
were removed. While to create the system with interstitial atoms (i.e. Li1.1F ), 86 lithium atoms were placed inside 
the LiF supercell using the PACKMOL  code114. After the initial energy minimization, the system was simulated 
for 0.5 ns using an NVT ensemble at three different temperatures ( 300K , 400K , and 500K ) with a Nose-Hoover 
 thermostat115 and a relaxation time of τT = 25 fs . The integration time step was set to δt = 0.25 fs . Thermody-
namic properties, including the instantaneous mean square displacement for all lithium atoms, were sampled 
every 50 simulation steps to compute the diffusivity as discussed later.

(4)�Hi ≈ �Ei = E
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Diffusion energy barrier calculations (DFT)
To determine the energy barrier of Li ion diffusion, we used the climbing image-nudged elastic band (CI-NEB) 
 method88. To employ this method, we built a 2× 2× 2 supercell of the primitive cell of the stable LiF crystal and 
placed a Li atom in the interstitial site found with the Voronoi  analysis116 in two adjacent cells to study the diffu-
sion by interstitials. While, for the vacancy case, we removed a Li atom from two adjacent cells of the supercell. 
After geometry optimization of the initial and final states, we performed the CI-NEB calculation using 23 images 
for the direct-hopping diffusion case and 17 images for the vacancy case. We set the maximum perpendicular 
force component for the transitional state to be 2.5 eV Å−1 as the climbing convergence criterion. Finally, we 
obtained the activation energy by averaging the energy differences between the initial and transitional state and 
the final and transitional state.

Diffusion energy barrier calculations (MD)
To compute the diffusion coefficient D for each combination of temperature, system, and potential, we employed 
the Einstein-Smoluchowski diffusion  equation84–86, Eq. (1), that requires the time derivative of the MSD obtained 
from ReaxFF MD simulations. We obtained the numerical MSD from the MD trajectories and fitted it to a linear 
model of the form �r2� = α0 + α1 · t + ε , where 〈r2〉 represents the mean-square displacement, ε is the statistical 
error, and t denotes the elapsed simulation time (Figs. S19–S21). To determine the coefficients α0 and α1 , we used 
the least squares method (LSM)117. Consequently, the diffusivity can be evaluated as D = α1/6.

An analogous procedure was followed to compute the activation energy from the Arrhenius law, Eq. (2). 
To linearize the equation, we took the logarithm of both sides and applied the variable substitution x = T−1 . 
This manipulation resulted in the equation taking the form ln(D) = ln(D0)− Ea/kB · x (Fig.  5). Using 
the diffusion coefficients obtained from the ReaxFF MD simulations, we fitted a linear model of the form 
ln(D) = β0 + β1 · x + ε to obtain the activation energy as function slope of the line, i.e., Ea = −β1 · kB.

To obtain the reported 95% confidence intervals for the diffusivity and activation energy in Table 4, we 
assumed that the statistical error ε of the linear model follows a Student’s t-distribution Tν , where ν represents the 
degrees of freedom of the  distribution117. In our case, ν equals the number of sampled data n minus the constraints 
of our model, which are the intercept and slope of the model ( ν = n− 2 ). Under these reasonable hypotheses, 
the uncertainty for the diffusivity, δD , and activation energy, δEa , is estimated as  follows117:

tn−2, 0.025 is the cuts probability 0.025 from the upper tail of Student’s t distribution Tn−2 , with n− 2 degrees of 
freedom. α0 , α1 , β0 , and β1 are the coefficients of the two linear models determined from the linear regression. 
〈r2〉i represents the MSD at the i-th time ti of the simulation, kB is the Boltzmann constant, and Di and Ti are the 
diffusivity and corresponding simulation temperature values, respectively. We use the notation � · � to indicate the 
mean value of the independent sampled variable of each model, i.e., the time, t, for the first model, and the recip-
rocal of the temperature, T−1 , for the second. The confidence interval for the entire linear model depicted in Fig. 6 
was instead obtained with the Eq. (6), which provides the uncertainty for the logarithm of the diffusivity, ln(D) , 
as a function of the reciprocal of the temperature, T−1 , which is the independent variable of the linear  model117:

Data availability
Furthermore, the energies, forces, settings, and all other calculated properties obtained from DFT simulation 
are stored as ASE SQLite3 and can be accessed in the repository available at https:// github. com/ paolo deang elis/ 
Enhan cing_ ReaxFF_ DFT_ datab ase or through the Zenodo permalink https:// doi. org/ 10. 5281/ zenodo. 79591 21.

Code availability
In this study, we employed several computational tools to carry out our simulations. We used the open-source 
LAMMPS code for the ReaxFF MD simulations, while the commercial codes BAND and DFTB were utilized for 
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the DFT and ab initio MD simulations, respectively. These last two codes are all available in the Amsterdam Mod-
eling Suite by SCM. In addition, we employed several Python libraries, including ASE, Pymatgen, and Packmol, 
to arrange the initial configurations, as well as the PLAMS library and an in-house Python code for automatically 
managing the simulation campaign. Finally, we utilized the ParAMS library to perform the ReaxFF parametriza-
tion. The repository containing all the Jupyter notebooks required for running the ReaxFF reparametrization 
process, which extensively utilized the aforementioned codes, can be accessed at https:// github. com/ paolo deang 
elis/ Enhan cing_ ReaxFF or via Zenodo permalink https:// doi. org/ 10. 5281/ zenodo. 80367 75.
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